Departamento de Matemática da FCTUC

Matemática e Engenharia Geográfica

Matemática Numérica I

Exame de Recurso 2h30m 18 de Julho de 2006

Observação: A resolução completa de cada exercício inclui a justificação do raciocínio utilizado e a apresentação dos cálculos efectuados. Não é permitido o uso de qualquer tipo de máquina de calcular.

1. Sejam
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
 e $b = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 8 \end{bmatrix}$.

- (a) Faça a decomposição QR da matriz A, onde $Q \in \mathbb{R}^{4\times 2}$ é uma matriz ortogonal e $R \in \mathbb{R}^{2\times 2}$ é uma matriz triangular superior.
- (b) Usando a alínea anterior, determine a solução de Ax = b no sentido dos mínimos quadrados.
- 2. (a) Seja A uma matriz simétrica e seja λ^* um valor próprio de A e v^* o vector próprio associado a λ^* , com $||v^*||_2 = 1$. Seja P uma matriz ortogonal tal que

$$Pv^* = e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Considere a matriz $B = PAP^T$. Determine Be_1 .

(li) Seja
$$A = \begin{bmatrix} 2 & 10 & 2 \\ 10 & \mathbf{i} & -8 \\ 2 & -8 & 11 \end{bmatrix}$$
.

- i. Verifique que $\lambda=9$ é um valor próprio de A associado ao vector próprio $\mathbf{v}=[2/3\ 1/3\ 2/3]^T.$
- ii. Determine uma matriz de Householder P tal que $Pv = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
- iii. Determine a primeira coluna de $B = PAP^T$

3. Sejam
$$A = \begin{bmatrix} 3 & -1 \\ -1 & 0 \\ 0 & -\mathbf{B} & -1 \end{bmatrix} e b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

- (a) Resolva o sistema, $Ax^3 = b$, utilizando eliminação de Gauss.
- (b) Escreva o método iterativo de Jacobi para este sistema na forma $x^{(k+1)} = Tx^{(k)} + c$, determinando explicitamente T e c.

- (c) Para $x^{(0)} = [0 \ 0 \ 0]^T$ determine a iteração $x^{(3)}$, usando o método de Jacobi.
- (d) Sabendo que o erro na iteração k é dado por $e^{(k)}=\mathbf{x}-x^{(k)},$ onde \mathbf{x} é a solução exacta de $A\mathbf{x}=\mathbf{b},$ prove que $e^{(k)}=T^ke^{(0)}.$
- (e) Determine $||e^{(3)}||_{\infty}$
- 4. Seja $\phi(x) = \frac{1}{2}x^T Ax b^T x$, onde A E IR^{nxn} é uma matriz simétrica e definida positiva e b E IRⁿ. Seja ainda

$$x_{k+1} = x_k + \alpha_k p_k, \ k = 0, 1, 2, \dots$$

onde $x_0 \in \mathbb{R}^n$ é dado e $\{p_0, \dots, p_{n-1}\}$ é um conjunto de direcções A-conjugadas. Temos ainda que α_k é solução do problema

$$\min_{\alpha} \phi(x_k + \alpha p_k).$$

- (a) Mostre que $\alpha_k = -\frac{r_k^T p_k}{p_k^T A p_k}$ onde $r_k = Ax_k b$.
- (b) Sejam A = $\begin{bmatrix} 5 & 2 \\ 2 & 4 \end{bmatrix}$, $b = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $p = -r_0 e x_0 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$
- i. Determine x_1 e r_1 .
- ii. Supondo que p_0 , r_1 e A são dados, mostre como determinaria β_1 , sabendo que $p_1 = -r_1 + \beta_1 p_0$, onde p_0, p_1 são direcções A-conjugadas.
- iii. Usando a alínea anterior determine β_1 e p_1 .
- 5. Seja $f(x) = \frac{1}{(1 + x)^2}$.
 - (a) Determine o polinómio cúbico de Hermite $h_3(x)$, que interpola a função f(x) nos pontos $x_0 = 0$ e $x_1 = 1$.
 - (b) Determine $h_3(1/2)$.
 - (c) Determine um majorante para o erro cometido com a aproximação da alínea anterior.
- 6. Seja $f(x) = x^2 x 2$.
 - (a) Considere a iteração do ponto fixo $x_{n+1} = x_n^2 2$ e verifique, justificando convenientemente, se esta iteração converge para uma raiz de f(x) = 0.
 - (b) Escreva a iteração do método de Newton-Raphson que determina uma aproximação das raízes de f(x) = 0.
 - (c) Para o método de Newton-Raphson da alínea anterior
 - i. Determine x_1 e x_2 considerando $x_0 = 0$.
 - ii. Determine ainda x_1 e x_2 considerando $x_0 = 1$.