Departamento de Matemática da FCTUC Ano 2010/2011

Licenciatura e Menor em Matemática

Data de entrega: Até 5 de Abril

Matemática Numérica II Problema A de Março

Alunos: A — J

Não se esqueça de que a organização e clareza das respostas também é avaliada.

1. Seja $R: D \subset \mathbb{R}^n \to \mathbb{R}^m$ uma função continuamente diferenciável numa vizinhança de x_k . Denotemos por $J(x) \in \mathbb{R}^{m \times n}$ a matriz Jacobiana, em x, da função vectorial R. Prove que se a característica de $J(x_k)$ for igual a n então o passo de Gauss-Newton

$$p_k = -(J(x_k)^T J(x_k))^{-1} J(x_k)^T R(x_k)$$

é uma direcção de descida para a função $f(x) = R(x)^T R(x)/2$.

- 2. Considere a função de Rosenbrock $f(x_1, x_2) = 100(x_2 x_1^2)^2 + (1 x_1)^2$.
 - (a) Mostre que $x_* = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ é o único minimizante local de f e que $\nabla^2 f(x_*)$ é definida positiva.
 - (b) Determine o minimizante de f usando o método de Newton e o método BFGS. Considere $x_0 = [-1.2 \quad 1]^T$ e $B_0 = (\nabla^2 f(x_0))^{-1}$. Faça uma tabela com os valores $||x_k x_*||$ até 40 iterações para os dois métodos.

Algoritmo (Método BFGS): Resolver o sistema $\nabla f(x) = 0$, dados os valores iniciais x_0 , B_0 , $\epsilon > 0$. Gera uma sucessão x_k que converge para x_* . Iniciar k = 0.

while
$$||\nabla f(x_k)|| > \epsilon$$

Determine $s_k = -B_k \nabla f(x_k)$

Faça
$$x_{k+1} = x_k + s_k, y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$$

Determine
$$B_{k+1} = (I - \rho_k s_k y_k^T) B_k (I - \rho_k y_k s_k^T) + \rho_k s_k s_k^T$$

$$k = k + 1$$

end

- (c) Se usarmos o método de descida mais rápida para resolver o problema da alínea anterior observa-se que são necessárias 5264 iterações para reduzir a norma do gradiente para 10^{-5} . Quantas iterações dos métodos de Newton e BFGS são necessárias para fazer o mesmo?
- 3. Prove que nas condições do Teorema da convergência local do método de Newton e do segundo Teorema da Aula 5, temos que (a) e (b) são equivalentes

(a)
$$\lim_{k \to \infty} \frac{\|J(x_k)(p_k - s_k)\|}{\|s_k\|} = 0$$
 (b) $\lim_{k \to \infty} \frac{\|p_k - s_k\|}{\|s_k\|} = 0$,

onde $s_k = -A_k^{-1} F(x_k)$, $p_k = -J(x_k)^{-1} F(x_k)$. As matrizes A_k são as do Método de Broyden.

Departamento de Matemática da FCTUC Ano 2010/2011 Licenciatura e Menor em Matemática

Data de entrega: Até 5 de Abril

Matemática Numérica II Problema B de Março

Alunos: L — Z

Não se esqueça de que a organização e clareza das respostas também é avaliada.

1. Considere a seguinte modificação do método de Newton para optimização: em cada iteração a matriz Hessiana $H_k = \nabla^2 f(x_k)$ é substituída por $H_k = QDQ^T$ onde D é a matriz diagonal contendo os valores próprios de H_k , e Q é a matriz cujas colunas são os vectores próprios e é tal que $Q^TQ = QQ^T = I$. Dado um parâmetro $\nu > 0$, construa a matriz diagonal modificada \tilde{D} da seguinte forma: se $d_{jj} \geq \nu$, então $\tilde{d}_{jj} = d_{jj}$, mas se $d_{jj} < \nu$, então $\tilde{d}_{jj} = 1$. Seja agora $\tilde{H}_k = Q\tilde{D}Q^T$, e escolhamos a direcção $d_k = -[\tilde{H}_k]^{-1}\nabla f(x_k)$.

Mostre que d_k é uma direcção de descida mesmo que H_k não seja definida positiva.

- 2. Considere a função de Rosenbrock $f(x_1, x_2) = 100(x_2 x_1^2)^2 + (1 x_1)^2$.
 - (a) Mostre que $x_* = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ é o único minimizante local de f e que $\nabla^2 f(x_*)$ é definida positiva.
 - (b) Determine o minimizante de f usando o método de Newton e o método BFGS. Considere $x_0 = [-1.2 \quad 1]^T$ e $B_0 = (\nabla^2 f(x_0))^{-1}$. Faça uma tabela com os valores $||x_k x_*||$ até 40 iterações para os dois métodos.

Algoritmo (Método BFGS): Resolver o sistema $\nabla f(x) = 0$, dados os valores iniciais x_0 , B_0 , $\epsilon > 0$. Gera uma sucessão x_k que converge para x_* . Iniciar k = 0.

while
$$||\nabla f(x_k)|| > \epsilon$$

Determine $s_k = -B_k \nabla f(x_k)$

Faça
$$x_{k+1} = x_k + s_k, y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$$

Determine
$$B_{k+1} = (I - \rho_k s_k y_k^T) B_k (I - \rho_k y_k s_k^T) + \rho_k s_k s_k^T$$

$$k = k + 1$$

end

- (c) Se usarmos o método de descida mais rápida para resolver o problema da alínea anterior observa-se que são necessárias 5264 iterações para reduzir a norma do gradiente para 10^{-5} . Quantas iterações dos métodos de Newton e BFGS são necessárias para fazer o mesmo?
- 3. Prove que nas condições do Teorema da convergência local do método de Newton e do segundo Teorema da Aula 5, temos que (a) e (b) são equivalentes

(a)
$$\lim_{k \to \infty} \frac{\|J(x_k)(p_k - s_k)\|}{\|s_k\|} = 0$$
 (b) $\lim_{k \to \infty} \frac{\|p_k - s_k\|}{\|s_k\|} = 0$,

onde $s_k = -A_k^{-1} F(x_k)$, $p_k = -J(x_k)^{-1} F(x_k)$. As matrizes A_k são as do Método de Broyden.