Departamento de Matemática da Universidade de Coimbra

Métodos Numéricos para Equações com Derivadas Parciais (2009/2010)

DATA DE RECEPÇÃO: 16/04/2010 Folha de problemas 2 DATA DE ENTREGA: 05/05/2010

1. Consider the inhomogeneous Dirichlet problem

$$-\nabla^T (A(x)\nabla u(x)) + b^T(x)\nabla u(x) + d(x) = f(x), \text{ for } x \in \Omega,$$

$$u(x) = g(x) \text{ for } x \in \partial\Omega,$$

with bounded and measurable functions $A : \Omega \longrightarrow \mathbb{R}^{n,n}$, $b : \Omega \longrightarrow \mathbb{R}^n$, $d : \Omega \longrightarrow \mathbb{R}$, $f \in L_2(\Omega)$, $g \in L_2(\partial\Omega)$. Let there be a function $w \in H^1(\Omega)$ such that w(x) = g(x) for $x \in \partial\Omega$ and let $\tilde{u}(x) = u(x) - w(x)$.

- (a) Derive a differential equation for \tilde{u} .
- (b) Derive the weak formulation of the differential equation of (a).
- 2. Let $\Omega =]0, 1[^2$. Consider the finite element space $V_h \subset H^1(\Omega)$ consisting of all continuous piecewise linear functions on a triangulation of Ω obtained from a uniform square mesh of size $h = 1/N, N \ge 2$, by dividing each square into two triangles with the diagonal of negative slope. Given that $u \in H^2(\Omega)$ let $I_h u$ denote its continuous piecewise linear interpolant from V_h . You may take it for granted that

$$||u - I_h u||_1 \le K_1 h |u|_2,$$

where K_1 is a positive constant, independent of u, u_h and h. (If you are really ambitious, you may try to prove this, but it is not compulsory; be warned: it is a hard work!).

Now consider the elliptic boundary value problem

$$-\Delta u + u = f(x, y)$$
 in Ω , $u = 0$ on $\partial \Omega$,

where $f \in L_2(\Omega)$.

Given that V_h is the finite element space introduced above and u_h denotes the finite element approximation to u in V_h , show that:

- (a) $||u u_h||_1 \le K_2 h |u|_2$, where K_2 is a positive constant, independent of u, u_h and h;
- (b) $||u u_h||_0 \le K_2 h^2 |u|_2$, where K_2 is a positive constant, independent of u, u_h and h.