## Métodos Numéricos para Equações com Derivadas Parciais (2009/2010)

1. Consider the inhomogeneous Dirichlet problem

$$
\begin{aligned}
-\nabla^{T}(A(x) \nabla u(x))+b^{T}(x) \nabla u(x)+d(x) & =f(x), \text { for } x \in \Omega, \\
u(x) & =g(x) \text { for } x \in \partial \Omega,
\end{aligned}
$$

with bounded and measurable functions $A: \Omega \longrightarrow \mathbb{R}^{n, n}, b: \Omega \longrightarrow \mathbb{R}^{n}, d: \Omega \longrightarrow \mathbb{R}, f \in L_{2}(\Omega)$, $g \in L_{2}(\partial \Omega)$. Let there be a function $w \in H^{1}(\Omega)$ such that $w(x)=g(x)$ for $x \in \partial \Omega$ and let $\widetilde{u}(x)=$ $u(x)-w(x)$.
(a) Derive a differential equation for $\widetilde{u}$.
(b) Derive the weak formulation of the differential equation of (a).
2. Let $\Omega=] 0,1\left[^{2}\right.$. Consider the finite element space $V_{h} \subset H^{1}(\Omega)$ consisting of all continuous piecewise linear functions on a triangulation of $\Omega$ obtained from a uniform square mesh of size $h=1 / N, N \geq 2$, by dividing each square into two triangles with the diagonal of negative slope. Given that $u \in H^{2}(\Omega)$ let $I_{h} u$ denote its continuous piecewise linear interpolant from $V_{h}$. You may take it for granted that

$$
\left\|u-I_{h} u\right\|_{1} \leq K_{1} h|u|_{2},
$$

where $K_{1}$ is a positive constant, independent of $u, u_{h}$ and $h$. (If you are really ambitious, you may try to prove this, but it is not compulsory; be warned: it is a hard work!).
Now consider the elliptic boundary value problem

$$
-\Delta u+u=f(x, y) \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega,
$$

where $f \in L_{2}(\Omega)$.
Given that $V_{h}$ is the finite element space introduced above and $u_{h}$ denotes the finite element approximation to $u$ in $V_{h}$, show that:
(a) $\left\|u-u_{h}\right\|_{1} \leq K_{2} h|u|_{2}$, where $K_{2}$ is a positive constant, independent of $u, u_{h}$ and $h$;
(b) $\left\|u-u_{h}\right\|_{0} \leq K_{2} h^{2}|u|_{2}$, where $K_{2}$ is a positive constant, independent of $u, u_{h}$ and $h$.

