

Duração: 2h 30m 22-01-03

Observação: Na resolução das questões deverá justificar o raciocínio utilizado e apresentar todos os cálculos efectuados.

1

1. Seja Q uma lei de probabilidade sobre (\mathbb{R}, \mathcal{B}), absolutamente contínua, de densidade

$$f(x) = \begin{cases} 1/4, & x \in]-1,0[\\ 3/4, & x \in [0,1[\\ 0, & x \in \mathbb{R} \setminus]-1,1[\end{cases}$$

Considere uma sucessão de elementos de \mathcal{B} , $(B_n)_{n\in\mathbb{N}}$, tal que

$$B_n = \left[-\frac{1}{2n}, 1 - \frac{1}{n} \right].$$

- \mathbb{P} a) Verifique se existe $\lim_{n\to+\infty} B_n$ e, em caso afirmativo, calcule a sua probabilidade.
- b) Que pode dizer acerca de $\lim_{n\to+\infty} Q(B_n)$? Justifique a sua resposta.
- 2. Num inquérito feito em determinada cidade para avaliar as audiências de um programa de televisão, concluiu-se que 40% dos inquiridos são espectadores assíduos do programa, 40% assistem ao programa algumas vezes e os restantes nunca viram o programa.

Relativamente à faixa etária, verificou-se que 80% dos telespectadores assíduos do programa têm 40 anos ou mais e que 50% dos telespectadores com menos de 40 anos vêem o programa apenas algumas vezes. Verificou-se ainda que 8% dos inquiridos nunca viram o programa e têm 40 anos ou mais.

- Qual a probabilidade de que um dos indivíduos inquiridos tenha menos de 40 anos?
- b) Determine a probabilidade de que um dos inquiridos que vê o programa apenas algumas vezes tenha 40 anos ou mais.
- Ø) Supondo que a cidade em causa tem 50 000 habitantes dos quais 0.03% nunca ouviram sequer falar do programa referido, calcule a probabilidade de haver pelo menos 20 habitantes da cidade nessas condições.

 $\mathbf{\Pi}$

- 1. Sejam X_1, X_2, \ldots, X_n n variáveis aleatórias reais independentes e identicamente distribuídas com uma variável aleatória real (v.a.r.) X de lei Q, com função característica Φ .
 - Supondo que X admite valor médio, que pode concluir sobre o valor médio da v.a.r. $Z = \prod_{i=1}^{n} X_i$?

- b) Supondo Q absolutamente contínua, prove o resultado obtido na alínea a).
- $\not q$) Determine, em função de Φ , a função característica da v.a.r. $U = \sum_{j=1}^n a_j X_j + b$, com $a_1, a_2, \ldots, a_n, b \in \mathbb{R}$.
- 2. Seja $(X_1, X_2, ..., X_n)$ um vector aleatório real (ve.a.r.) absolutamente contínuo de densidade f tal que

$$\forall (x_1, x_2, \dots, x_n) \in \mathbb{R}^n, \ f(x_1, x_2, \dots, x_n) = \exp\left(\sum_{i=1}^n (x_i - e^{x_i})\right).$$

 γ a) Prove que as margens do vector (X_1, X_2, \dots, X_n) são identicamente distribuídas com uma v.a.r. X absolutamente contínua de densidade

$$g(x) = \exp(x - e^x), \quad x \in \mathbb{R}.$$

-) by Determine a lei de probabilidade da v.a.r. $Z = e^X$.
 - c) Calcule o valor médio da v.a.r. $Y = \exp\left(\sum_{i=1}^{n} X_i\right)$.
 - \not d) Determine a função característica da v.a.r. Z, Φ_Z .
 - e) Deduza a função característica do ve.a.r. (Z_1, Z_2, \ldots, Z_n) , com $Z_i = e^{X_i}$, $i = 1, 2, \ldots, n$.

Nota:

Se na alínea b) desta questão não obteve a lei de Z, assuma na resolução das alíneas seguintes que esta lei é absolutamente contínua de densidade

Section 2

$$h(x) = \lambda e^{-\lambda x} \mathbf{1}_{]0,+\infty[}(x), x \in \mathbb{R}, (\lambda > 0, \text{ arbitrariamente fixo}).$$

Cotação

- I-1. 3.5 valores
 - 2. 4.5 valores
- II-1. 4.5 valores
 - 2. 7.5 valores