DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA Teste de Probabilidades

Duração: 45 m

Observação: A resolução completa das questões apresentadas inclui a justificação do raciocínio utilizado e a apresentação dos cálculos efectuados.

- 1. Considere um espaço de probabilidade (Ω, \mathcal{A}, P) e sejam A, B e C acontecimentos deste espaço.
 - a) Prove que se $A, B \in C$ são acontecimentos independentes entre si então A é independente de $B^c \cap C^c$.
 - b) Suponha que A e B são acontecimentos incompatíveis e que C é independente de A e C é independente de B. Prove que os acontecimentos C e $A \cup B$ são independentes.
 - c) Considere a experiência aleatória \mathcal{E} : "Lançamento de um dado duas vezes consecutivas e observação da face exposta". Sejam E, F e G os seguintes acontecimentos:
 - E: "A face com o número 4 não ocorre no primeiro lançamento";
 - F: "A face com o número 3 não ocorre no segundo lançamento";
 - $G: "{\mathcal O}$ total de pontos obtidos nos dois lançamentos é 7".
 - i. Construa o espaço de probabilidade associado à experiência aleatória considerada e identifique nesse espaço os acontecimentos $E, F \in G$.
 - ii. Prove que o acontecimento G é independente do acontecimento E e do acontecimento F.
 - iii. Mostre que G não é independente do acontecimento $F \cup G$.
 - iv. Justifique e afirmação: "Os acontecimentos E, F e G não são independentes entre si nem contradizem a propriedade expressa na alínea b)".
- 2. Numa região sujeita a determinada doença epidémica, vacinou-se 25% da população contra essa doença. Durante uma epidemia verificou-se que, entre as pessoas que contraíram a doença, 20% estavam vacinadas e que uma em cada doze das pessoas vacinadas contraiu a doença.
 - a) Qual a percentagem de pessoas doentes durante a epidemia?
 - **b)** Qual a probabilidade de que um indivíduo não vacinado tenha contraído a doença?