Departamento de Matemática da Universidade de Coimbra

Teoria dos Números

Exame final - 3 de Fevereiro de 2003

- 1. Sejam b e c inteiros não ambos nulos e seja (b,c)=d. Prove que, se um inteiro t for soma de um múltiplo de b com um múltiplo de c (isto é, se existirem inteiros x e y tais que bx + cy = t), então $d \mid t$.
- 2. Um número natural n tem como divisores primos apenas os números 2 e 5. Se dividirmos n por 25 obtemos um número inteiro cujo número de divisores é metade do número de divisores de n. Determine o menor valor que n pode tomar.
- 3. (a) Sendo m um número natural, defina sistema reduzido de resíduos módulo m.
 - (b) Se $\{r_1, r_2, \ldots, r_k\}$ for um sistema reduzido de resíduos módulo m e a um inteiro tal que (a, m) = 1, prove que $\{ar_1, ar_2, \ldots, ar_k\}$ é um sistema reduzido de resíduos módulo m.
 - (c) Enuncie e demonstre o Teorema de Euler (ou Grande Teorema de Fermat).

 Le (a,m) = 1, $a^{\varphi(m)} = 1$ (mod m)
- 4 Prove que $11 \cdot 31 \cdot 61 \mid 20^{15} 1$.
- 5. Determine todos os inteiros u compreendidos entre 2000 e 3000 que satisfazem simultaneamente $5u \equiv 3 \pmod{4}$, $3u \equiv 1 \pmod{5}$ e $u \equiv 6 \pmod{7}$.
- 6. Sejam a e b dois números naturais primos entre si, de paridades diferentes e com a > b. Ponhamos

$$x = a^2 - b^2$$
, $y = 2ab$, $z = a^2 + b^2$.

Prove que, então, (x, y, z) é um trio pitagórico primitivo.

Teoria dos Números

Resumo da resolução do exame de 3/2/2003

- 1. Como $d \mid b \in d \mid c$, tem-se que $d \mid bx + cy$.
- 2. Como os únicos divisores primos de n são 2 e 5, n é da forma $2^{\alpha}5^{\beta}$, com $\alpha, \beta \in \mathbb{N}$. Daqui segue-se que o número de divisores de n é $(\alpha + 1)(\beta + 1)$

Como ao dividirmos n por 25 obtemos um número inteiro, podemos afirmar que $\beta \geq 2$, tendo-se

$$\frac{n}{25}=2^{\alpha}5^{\beta-2}.$$

Daqui segue-se que o número de divisores de $\frac{n}{25}$ é $(\alpha + 1)(\beta - 1)$.

Como este número é metade do número de divisores de n, temos que

$$(\alpha+1)(\beta-1) = \frac{(\alpha+1)(\beta+1)}{2}$$

donde se tira que $\beta = 3$. O menor valor possível para n obtém-se tomando $\alpha = 1$.

O menor valor que n pode tomar satisfazendo as condições indicadas é então

$$n = 2 \cdot 5^3 = 250.$$

- 3. Pergunta teórica directa.
- 4. Como 11, 31 e 61 são primos (bastaria serem primos dois a dois), o seu produto divide um número se e só se cada um deles divide esse número.

Vejamos primeiro que 11 | $20^{15}-1$. Como $20 \equiv -2 \pmod{11}$, tem-se $20^{15} \equiv -2^{15} \pmod{11}$. Como $2^5 \equiv -1 \pmod{11}$, tem-se $2^{15} \equiv -1 \pmod{11}$. Segue-se que $20^{15} \equiv 1 \pmod{11}$, c.q.d.

Vejamos agora que 31 | $20^{15}-1$. Como $31\cdot 13=403$, tem-se $20^2\equiv -3\ (\text{mod}\ 31)$, donde $20^{14}\equiv -3^7\ (\text{mod}\ 31)$. Como $3^3\equiv -4\ (\text{mod}\ 31)$, tem-se $3^6\equiv 16\ (\text{mod}\ 31)$. Segue-se que $20^{15}\equiv (-3)\cdot 10\cdot 2\cdot 3^6\equiv -30\equiv 1\ (\text{mod}\ 31)$, c.q.d.

Alternativa: Como $20^3 \equiv 2 \pmod{31}$, tem-se $20^{15} \equiv 2^5 \pmod{31}$, e $2^5 \equiv 1 \pmod{31}$, c.g.d.

Provemos finalmente que 61 | $20^{15}-1$. Como $3^4\equiv 20\,(\text{mod}\,61)$, tem-se $20^{15}\equiv 3^{60}\,(\text{mod}\,61)$. Como $\varphi(61)=60$, pelo Pequeno Teorema de Fermat tem-se $3^{60}\equiv 1\,(\text{mod}\,61)$, c.q.d.

Alternativa: Como $20^3 \equiv 9 \pmod{61}$, tem-se $20^{15} \equiv 9^5 \pmod{61}$. Ora $9^5 \equiv 1 \pmod{61}$, pelo que $20^{15} \equiv 1 \pmod{61}$, c.q.d.

5. A primeira observação é que não se pode aplicar directamente o teorema chinês dos resíduos, porque este só se refere a sistemas de congruências em que o coeficiente da incógnita é igual a 1. Comecemos então por analisar separadamente as duas primeiras congruências.

Resolvendo-as, vemos que

$$5u \equiv 3 \pmod{4} \iff u \equiv 3 \pmod{4}$$
 e $3u \equiv 1 \pmod{5} \iff u \equiv 2 \pmod{5}$.

Interessam-nos assim os inteiros u que satisfazem simultaneamente

$$\begin{cases} u \equiv 3 \pmod{4} \\ u \equiv 2 \pmod{5} \\ u \equiv 6 \pmod{7} \end{cases}$$

A este sistema já se pode aplicar o teorema chinês dos resíduos (note-se que 4, 5 e 7 são primos dois a dois).

Ponhamos $m_1=4$, $m_2=5$, $m_3=7$ e $m=m_1m_2m_3=140$. Resolvendo as três congruências $\frac{m}{m_j}b_j\equiv 1\ (\mathrm{mod}\ m_j),\ j=1,2,3,$ obtemos $b_1=3,\ b_2=2$ e $b_3=6$.

Uma solução comum das três congruências iniciais é então

$$\frac{m}{m_1}3b_1 + \frac{m}{m_2}2b_2 + \frac{m}{m_3}6b_3 = 1147.$$

O conjunto completo das soluções é a classe de congruência $[1147]_{140} = \{1147 + k.140 : k \in \mathbb{Z}\}$. Entre 2000 e 3000 há exactamente sete soluções: 2127, 2267, 2407, 2547, 2687, 2827 e 2967.

6. x, y e z constituem um trio pitagórico se $x^2 + y^2 = z^2$. Verifiquemos se os números dados satisfazem essa condição:

$$x^{2} + y^{2} = (a^{2} - b^{2})^{2} + (2ab)^{2} = a^{4} - 2a^{2}b^{2} + b^{4} + 4a^{2}b^{2} = a^{4} + 2a^{2}b^{2} + b^{4} = (a^{2} + b^{2})^{2} = z^{2}.$$

Um trio pitagórico diz-se primitivo se os três números em causa forem primos entre si. Verifiquemos se os números dados satisfazem essa condição. Seja d o máximo divisor comum de x, y e z. Como $d \mid a^2 - b^2$ e $d \mid a^2 + b^2$, tem-se que $d \mid 2a^2$ e $d \mid 2b^2$. Logo, $d \mid 2(a^2, b^2)$. Como a e b são primos entre si, a^2 e b^2 também o são, pelo que $d \mid 2$. Mas d não pode ser igual a 2, porque d divide x e z e estes são ímpares. Logo, tem-se d = 1 e, portanto, x, y e z constituem um trio pitagórico primitivo.

Cotação:

- 1. 2
- 2. 3
- 3. (a) 1.5
 - (b) 2
 - (c) 2
- 4. 3.5
- 5. 3.5
- 6. 2.5