1. Consider the following non-cooperative bimatrix game, where Player 1 chooses one of the three rows and Player 2 chooses one of the three columns:

R_{1}
R_{2}
R_{3}

(-1,1) \& (0,2) \& (0,2) \\
(2,1) \& (1,-1) \& (0,0) \\
(0,0) \& (1,1) \& (1,2)\end{array}\right]\).
(a) Find the safety levels and the maxmin strategies for both players.
(b) Find as many strategic equilibria as you can, including the mixed one.

Solution:

(a) The game is defined by the following matrices,

$$
A=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], \quad B=\left[\begin{array}{rrr}
1 & 2 & 2 \\
1 & -1 & 0 \\
0 & 1 & 2
\end{array}\right]
$$

In the A matrix, the top row is dominated by the second row. Hence, we may assume Player I plays the following game

$$
\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] .
$$

Now, we see that middle column is dominated by the third column (i.e., Player I's opponent prefers to play the third column rather than the second). The resulting matrix is

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] .
$$

Now, since this is a two-by-two nonzero sum game without a saddle point, the minimax strategies are the equalizing strategies. Player I's safety level is $2 / 3$, and his maxmin strategy is $p=(0,1 / 3,2 / 3)$.
Now, to compute Player II's safety level, we must consider the matrix

$$
B^{T}=\left[\begin{array}{rrr}
1 & 1 & 0 \\
2 & -1 & 1 \\
2 & 0 & 2
\end{array}\right]
$$

In the B^{T} matrix, the first column (by the second) and, then, the second row is dominated (by the third). The resulting matrix is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] .
$$

Again, since this is a two-by-two nonzero sum game without a saddle point, the minimax strategies are the equalizing strategies. Player II's safety level is $2 / 3$, and her maxmin strategy is $q=(2 / 3,0,1 / 3)$.
(b) The top row of the matrix A is dominated by the second row. Hence, we may assume that Player I will never choose the top row. Then, the game becomes

$$
\left.\begin{array}{l}
\\
R_{2} \\
R_{3}
\end{array} \begin{array}{ccc}
C_{1} & C_{2} & C_{3} \\
{[(2,1)} & (1,-1) & (0,0) \\
(0,0) & (1,1) & (1,2)
\end{array}\right] .
$$

Now, we see that Player II will never choose C_{2} because her payoffs are always strictly higher if she chooses C_{2}. Hence, the game becomes

$$
\left.\begin{array}{l}
\\
R_{2} \\
R_{3}
\end{array} \quad \begin{array}{cc}
C_{1} & C_{3} \\
{[(2,1)} & (0,0) \\
(0,0) & (1,2)
\end{array}\right],
$$

the Battle of the Sexes. There are two PSE's, one at (second row, first column), and the other at (third row, third column).
There is therefore a third SE given by the equalizing strategies in the Battle of the Sexes. Let's find it. The game is defined by the pair of matrices

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

Let $\left(p_{1}, q_{1}\right)$ be a pair of equalizing strategies for B, which are defined by

$$
p_{1}=\left(\frac{2}{3}, \frac{1}{3}\right), \quad q_{1}=(\cdot, \cdot)
$$

Denoting by $g_{2}(p, q)$ the average payoff to Player II if Player I uses the mixed strategy p and Player II uses the mixed strategy q then, from the definition of equalizing strategy,

$$
g_{2}\left(p_{1}, q_{1}\right)=g_{2}\left(p_{1}, q\right), \quad \text { for every mixed strategy } q
$$

Now, let $\left(p_{2}, q_{2}\right)$ be a pair of equalizing strategies for

$$
A^{T}=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$

which are defined by

$$
p_{2}=\left(\frac{1}{3}, \frac{2}{3}\right), \quad q_{2}=(\cdot, \cdot)
$$

Denoting by $g_{1}(p, q)$ the average payoff to Player I if Player I uses the mixed strategy p and Player II uses the mixed strategy q then, from the definition of equalizing strategy,

$$
g_{1}\left(q_{2}, p_{2}\right)=g_{1}\left(q, p_{2}\right), \quad \text { for every mixed strategy } q
$$

Hence, $\left(p_{1}, p_{2}\right)$ is a Nash equilibrium. In other words, the mixed Nash equilibrium is to play

$$
\left(\frac{2}{3} R_{2}+\frac{1}{3} R_{3} ; \frac{1}{3} C_{1}+\frac{2}{3} C_{3}\right)
$$

2. Suppose in the Cournot duopoly model that the two firms have different production costs and different set-up costs. Suppose Player I's cost of producing x is $x+2$, and II's cost of producing y is $3 y+1$. Suppose also that the price function is $P(x, y)=17-x-y$, where x and y are the amounts produced by I and II respectively. What is the equilibrium production, and what are the players' equilibrium profits?

Solution: The player's profits are

$$
u_{1}(x, y)=x(17-x-y)-(x+2), \quad u_{2}(x, y)=y(17-x-y)-(3 y+1)
$$

To find the equilibrium production, we set the partial derivatives to zero:

$$
\begin{aligned}
& \frac{\partial u_{1}}{\partial x}=16-2 x-y=0 \\
& \frac{\partial u_{1}}{\partial y}=14-x-2 y=0
\end{aligned}
$$

which gives $(x, y)=(6,4)$ as the equilibrium production. The equilibrium profits are

$$
\left(u_{1}(6,4), u_{2}(6,4)\right)=(34,15)
$$

3. Consider the cooperative TU bimatrix game:

$$
\left[\begin{array}{lll}
(1,5) & (2,2) & (0,1) \\
(4,2) & (1,0) & (2,1) \\
(5,0) & (2,3) & (0,0)
\end{array}\right]
$$

(a) Find the TU-values.
(b) Find the associated side payment.
(c) Find the optimal threat strategies.

Solution:

(a) The maximum total payoff is $\sigma=6$, with payoff $(1,5)^{1}$ The difference matrix is

$$
\left[\begin{array}{rrr}
-4 & 0 & -1 \\
2 & 1 & 1 \\
5 & -1 & 0
\end{array}\right]
$$

which has a saddle point in the second row and third column. Hence, $\delta=1$ so that the TU solution is

$$
\varphi=\left(\frac{\sigma+\delta}{2}, \frac{\sigma-\delta}{2}\right)=\left(\frac{7}{2}, \frac{5}{2}\right)
$$

(b) Once the game is played and the outcome is $(1,5)$, Player II should pay $5 / 2$ to Player I.
(c) The threat strategies are $p=(0,1,0)$ and $q=(0,0,1)$.

[^0]
[^0]: ${ }^{1}$ or $(4,2)$, alternatively.

