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a b s t r a c t

We introduce the notion of (M,N)−coherent pair of measures as a generalization
of the concept of coherent pair of measures introduced by Iserles et al. [A. Iserles,
P.E. Koch, S.P. Nørsett, J.M. Sanz-Serna, On polynomials orthogonal with respect to certain
Sobolev inner products, J. Approx. Theory 65(2) (1991) 151–175], and subsequently
generalized by several authors. A pair of measures (dµ0, dµ1) is called (M,N)-coherent
if the corresponding orthogonal polynomial sequences (Pn)n and (Qn)n (resp.) satisfy a
(non-zero) structure relation such as

N
i=0

ri,n Pn−i(x) =

M
i=0

si,nQ ′

n−i+1(x)

for all n = 0, 1, 2, . . ., where M and N are fixed non-negative integer numbers, and ri,n
and si,n are given real parameters satisfying some natural conditions. We prove that the
regular moment linear functionals associated to an (M,N)-coherent pair are semiclassical
and they are related by a rational modification (in the usual sense of distribution theory).
We also discuss the converse statement. Under the assumption that (dµ0, dµ1) form an
(M,N)-coherent pair, we study the sequence (Sλn )n of the monic orthogonal polynomials
with respect to the Sobolev inner product

⟨f , g⟩λ :=


+∞

−∞

fg dµ0 + λ


+∞

−∞

f ′g ′ dµ1,

defined in the space of all polynomials with real coefficients, where λ ≥ 0. An efficient
algorithm is stated to compute the coefficients in the Fourier–Sobolev type series f (x) ∼

∞

n=0 c
λ
n Sλn (x) with respect to ⟨·, ·⟩λ for suitable smooth functions f such that f ∈ L2µ0

(R)
and f ′

∈ L2µ1
(R). Finally, some illustrative computational examples are presented.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, we use the notations OP, OPS, and MOPS for orthogonal polynomial, orthogonal polynomial
sequence, and monic orthogonal polynomial sequence (respectively). The theory of the so-called Sobolev OPs has been a
subject of great research interest. These are sequences of polynomials, (Sn)n, such that Sn has degree n for each n, and (Sn)n
is an orthogonal setwith respect to a Sobolev inner product, i.e., an inner product defined in the spaceP of all polynomials as

⟨f , g⟩S :=

m
k=0

⟨f (k), g(k)⟩k, f , g ∈ P ,
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and extended to an appropriate space of functions (e.g. the completion of P with respect to the norm induced by this inner
product). For a brief history on the theory of Sobolev OPs we refer to the paper [1] by Meijer and the doctoral dissertation
in [2], as well as the introduction in the paper [3] by Gautschi and Zhang. A large list of references on this subject was
compiled in [4].

In this paper, we consider the sequence (Sλn )n of the monic Sobolev OPs with respect to a special Sobolev inner product
of the form

⟨f , g⟩λ =


+∞

−∞

f g dµ0 + λ


+∞

−∞

f ′ g ′ dµ1, (1)

under the assumption that (dµ0, dµ1) is an (M,N)-coherent pair of measures in the following sense: if (Pn)n and (Qn)n
denote the standardMOPSs with respect to themeasures dµ1 and dµ0 (resp.), then (dµ0, dµ1) is called an (M,N)-coherent
pair if a linear algebraic structure relation such as

N
i=0

ri,n Pn−i(x) =

M
i=0

si,n
Q ′

n−i+1(x)
n − i + 1

(2)

holds for all n = 0, 1, 2, . . . , whereM and N are fixed non-negative integers, and ri,n and si,n are real parameters satisfying
some appropriate conditions.

The case (M,N) = (1, 0) corresponds to the concept of coherence introduced in [5] by Iserles et al., which has been
extensively studied by several authors, both from the algebraic and the analytical point of view. The case (M,N) = (2, 0)
corresponds to the concept of generalized coherence introduced in [6,7], also studied in [8]. When (M,N) = (k + 1, 0),
with k a fixed nonnegative integer number, one obtains the so-called k-coherence, introduced in [9]. Marcellán and
Delgado [10]made a very detailed study of the case (M,N) = (1, 1), by determining all the (1, 1)-coherent pairs ofmeasures
(see also [11]).

Among other results, we show that the standard MOPSs (Pn)n and (Qn)n associated to an (M,N)-coherent pair of
measures belong to the semiclassical class, thus generalizing to (M,N)-coherent pairs of measures, a well-known property
for coherent pairs. In fact, this is a consequence of the results in [12] where we considered a more general relation than (2),
namely a structure relation involving derivatives of arbitrary ordersm and k such as

N
i=0

ri,n P
(m)
n−i+m(x) =

M
i=0

si,nQ
(k)
n−i+k(x) (3)

for all n = 0, 1, 2, . . . . If we take k = m + 1 in (3) then, by [12, Theorem 5.1], both (Pn)n and (Qn)n are semiclassical OPSs.
(M,N)-coherence fits into this situation, since it corresponds to takem = 0 and k = 1 in (3).

One of our main purposes is the effective computation, in the framework of (M,N)-coherence, of the Fourier–Sobolev
series for functions f living in appropriate function spaces in terms of the Sobolev OPs (Sλn )n,

f (x) ∼

∞
n=0

fn
sn

Sλn (x), (4)

where sn := ∥Sλn∥
2
λ ≡ ⟨Sλn , S

λ
n ⟩λ and fn := ⟨f , Sλn ⟩λ. Among other results, we state that both (sn)n and (fn)n satisfy the non-

homogeneous linear difference equation with variable coefficients of order K := max{M,N}, which allows us to give an
algorithm for the computation of the Fourier–Sobolev coefficients cλn := fn/sn in (4). This extends to (M,N)-coherent pairs,
the algorithms presented in [5,8] for coherent and generalized coherent pairs.

The structure of the paper is as follows. In Section 2, we recall some basic tools concerning the general theory of
standard OPs. In Section 3, we review some results stated in our previous work [12] concerning the analysis of the structure
relation (3). In Section 4, we focus on the notion of (M,N)-coherent pair, in the more general setting of moment linear
functions (not only for positive Borel measures), characterizing explicitly the moment linear functionals such that the
corresponding OPSs fulfill the structure relation (2). In Section 5, we consider Sobolev OPs arising from (M,N)-coherent
pairs, and in Section 6 we concentrate on the effective computation of the Fourier–Sobolev series (4). Finally, in Section 7,
we present some examples of the developed theory.

As a last remarkwemention that the asymptotic properties of coherent pairs have been a subject of considerable research
along the years. In a future work we will consider the asymptotic aspects in the framework of (M,N)-coherence.

2. Basic tools

All the notions and results presented in this section can be found, e.g., in Refs. [13–15]. The space of all polynomials
with complex coefficients will be denoted by P and the corresponding dual space by P ∗. If u ∈ P ∗, then a sequence of
polynomials (Pn)n is called an orthogonal polynomial sequence (OPS) with respect to u if deg Pn = n for all n = 0, 1, 2, . . .
and

⟨u, PnPm⟩ =


kn, if n = m
0, if n ≠ m (n,m = 0, 1, 2, . . .)
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where (kn)n is a sequence of nonzero complex numbers, and ⟨·, ·⟩ is the duality bracket. u is regular or quasi-definite if there
exists an OPS with respect to it.

Let u ∈ P ∗ (not necessarily regular) and φ ∈ P . The left-multiplication of the functional u by the polynomial φ is the
linear functional, denoted by φu, defined in the usual sense of distribution theory by

⟨φu, q⟩ := ⟨u, φq⟩, q ∈ P .

The (distributional) derivative of u is the functional Du ∈ P ∗ defined by

⟨Du, q⟩ := −⟨u, q′
⟩, q ∈ P .

A functional u ∈ P ∗ is called semiclassical if u is regular and there exist two polynomials φ and ψ , with degψ ≥ 1, such
that

D(φu) = ψu. (5)

If u is semiclassical, the class of u is the nonnegative integer number

s := min
(φ,ψ)∈A

max {degφ − 2, degψ − 1} ,

whereA is the set of all pairs of polynomials (φ, ψ), with degψ ≥ 1,which fulfill the distributional differential equation (5).
We also say that an OPS associated to a semiclassical linear functional is a semiclassical OPS. When s = 0 we obtain the
classical OPSs of Hermite, Laguerre, Jacobi and Bessel.

Any MOPS (Pn)n with respect to a functional u can be characterized by a three-term recurrence relation (TTRR)

P0 = 1, P1(x) = x − β0

Pn+1(x) = (x − βn)Pn(x)− γnPn−1(x), n = 1, 2, . . .
(6)

where (βn)n and (γn)n are sequences of complex numbers with γn ≠ 0 for all n = 1, 2, . . . . When βn is real and γn > 0
for all n then there exists a positive Borel measure dµ, whose support is an infinite subset of the real line and with finite
moments of all orders, such that the corresponding regular functional admits an integral representation such as

⟨u, q⟩ =


R
q dµ, q ∈ P .

In such a case we say that u is positive-definite and (Pn)n is orthogonal in the positive-definite sense, or (Pn)n is orthogonal
w.r.t. the measure dµ.

3. Linearly related sequences of derivatives of OPs

Direct and inverse problems (in the sense of the theory of OPs) involving linear relations between two OPSs, or their
derivatives of fixed orders, have been studied by several authors. For instance, we mention the works [16–20,12,21]. In
this section, we recall some results on this subject stated in [12], which will be applied later to (M,N)-coherent pairs. For
simplicity, we write

P [m]

n (x) :=
P (m)n+m(x)
(n + 1)m

(n,m = 0, 1, 2, . . .),

where P (m)n+m ≡
dm
dxm Pn+m and (a)n denotes the Pochhammer symbol: for a > 0 and n a nonnegative integer number,

(a)0 := 1, (a)n :=
0(a + n)
0(a)

= a(a + 1) · · · (a + n − 1),

where0 denotes the Gamma function. Notice that P [m]
n (x) is amonic polynomial in x of degree n. If n < 0we set P [m]

n (x) := 0.
We begin by recalling the following general result.

Theorem 3.1 ([12, Theorem 3.1]). Let u and v be two regular linear functionals in P ∗, and let (Pn)n and (Qn)n be the
corresponding MOPSs. Assume that there exist two nonnegative integer numbers N and M, and complex numbers ri,n and
sj,n (i = 1, . . . ,N; j = 1, . . . ,M; n = 0, 1, . . .), with the conventions ri,n = 0 if n < i and sj,n = 0 if n < j, such that

P [m]

n (x)+

N
i=1

ri,nP
[m]

n−i(x) = Q [k]
n (x)+

M
j=1

sj,nQ
[k]
n−j(x) (7)

holds for all n = 0, 1, 2, . . . . Define the matrix AN+M ≡

ai,j
N+M
i,j=1 as

ai,j =

rj−i,j−1, if 1 ≤ i ≤ M and i ≤ j ≤ N + i
sj−i+M,j−1, if M + 1 ≤ i ≤ M + N and i − M ≤ j ≤ i
0, otherwise

(8)
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with r0,κ = s0,ν = 1 (κ = 0, . . . ,M − 1; ν = 0, . . . ,N − 1). Assume that

rN,M+N+i sM,M+N+i ≠ 0 (i = 0, 1) and det AN+M ≠ 0.

Without loss of generality, suppose 0 ≤ m ≤ k. Then there exist polynomials ΦM+m+i and ΨN+k+i, of degrees M + m + i and
N + k + i, such that

Dk−m (ΦM+m+iu) = ΨN+k+iv, i = 0, 1. (9)

The case k = m + 1 in Theorem 3.1 is of particular interest, because in this situation both u and v are semiclassical
moment linear functionals. Indeed, we have the following.

Theorem 3.2 ([12, Theorem 5.1]). Under the conditions of Theorem 3.1, if k = m + 1 and (Pn)n ≡ (Qn)n (so that u and v
coincide up to a constant factor), then

D(ΦM+mu) = ΨN+m+1u;

hence u is semiclassical of class at most max{M + m − 2,N + m}.

Theorem 3.3 ([12, Theorem 5.2]). Under the conditions of Theorem 3.1, if k = m + 1 and (Pn)n ≢ (Qn)n, then u and v are
semiclassical linear functionals of classes at most N + M + 2m and N + 3M + 4m (respectively), which are also connected by a
rational modification. More precisely, we have

Λu = Φv, (10)
D (Φu) = Ψu, (11)

D
Φv


= Ψ v, (12)

where, being Pn the set of all polynomials of degree less than or equal to n,

Λ := ΦM+mΦ
′

M+1+m − ΦM+1+mΦ
′

M+m ∈ P2(M+m),

Φ := ΦM+mΨN+2+m − ΦM+1+mΨN+1+m ∈ PN+M+2m+2,

Ψ := Ψ ′

N+2+mΦM+m − Ψ ′

N+1+mΦM+1+m ∈ PN+M+2m+1,Φ := ΛΦ ∈ PN+3M+4m+2, Ψ := 2Λ′Φ +Λ(Ψ − Φ ′) ∈ PN+3M+4m+1.

Remark 3.1. The numbers N +M+2m and N +3M+4m are upper bounds for the classes of the semiclassical functionals u
and v in Theorem 3.3. For concrete families of OPSs, the classes of u and v can be computed applying a well known reduction
process described in [14].

4. (M,N)-coherent pairs

4.1. Definition

Definition 4.1. Let u and v be two regular linear functionals in P ∗ and let (Pn)n and (Qn)n be the corresponding MOPSs
(respectively). Let M and N be nonnegative integer numbers. We call (v,u) an (M,N)-coherent pair if there exist complex
numbers r1,n, . . . , rN,n and s1,n, . . . , sM,n, such that the structure relation

Pn(x)+

N
i=1

ri,nPn−i(x) =
Q ′

n+1(x)
n + 1

+

M
j=1

sj,n
Q ′

n−j+1(x)

n − j + 1
(13)

holds for all integer numbers n = 0, 1, 2, . . . , with the conditions

rN,n ≠ 0 if n ≥ N; sM,n ≠ 0 if n ≥ M, (14)

and the conventions

ri,n = 0 if n < i ≤ N; sj,n = 0 if n < j ≤ M. (15)

Under these conditions we also call ((Qn)n, (Pn)n) an (M,N)-coherent pair.

Remark 4.1. In the positive-definite case, both functionals u and v admit integral representations in terms of positive Borel
measures dµ1 and dµ0 (respectively). Under such conditions, being (v,u) an (M,N)-coherent pair, we say that (dµ0, dµ1)
is an (M,N)-coherent pair of measures.
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As pointed out in the introduction, when (M,N) = (1, 0) we get the concept of coherence introduced in [5]. One of
the most important results on coherent pairs is due to Meijer [22] who found all the possible coherent pairs of measures,
by showing that at least one of the measures in a coherent pair must be a classical measure and then giving a complete
classification of the coherent pairs (see also [23]). As a nice extension of this result, Marcellán and Delgado [10] determined
all the (1, 1)-coherent pairs of measures. Indeed, these authors first showed that at least one of the moment linear
functionals associated to a (1, 1)-coherent pair of measures is semiclassical of class at most one, and then to describe all
the (1, 1)-coherent pairs they only needed to consider the cases when one of the functionals is classical or semiclassical of
class one.

4.2. What is beyond (M,N)-coherent pairs?

In [24], the authors raised the question ‘‘What is beyond coherent pairs of orthogonal polynomials?’’ The answer
is [23,24,22]: coherent pairs belong to the semiclassical families of OPSs and the associated linear functionals are related
by a rational factor. Furthermore [22]: at least one of these families is classical. Concerning (M,N)-coherent pairs, as an
immediate consequence of Theorem 3.3 form = 0, we may state the following proposition.

Theorem 4.1. Let (v,u) be an (M,N)-coherent pair. Then the linear functionals u and v are semiclassical of classes at most
N + M and N + 3M (respectively), provided that the condition det AN+M ≠ 0 holds, where AN+M is the matrix of order N + M
defined as in (8). Further, the functionals u and v are related by a rational factor.

Remark 4.2. When (M,N) = (0, 0), Theorem 4.1 implies Hahn’s characterization for the classical functionals [25], and
when (M,N) = (2, 0) it gives Theorem 3.3 in [8]. When (M,N) = (1, 1) some results in [10] are recovered.

Theorem 4.1 shows that if (v,u) is an (M,N)-coherent pair then both u and v are semiclassical functionals and they are
related by a rational factor (up to some natural conditions). The next result shows that the converse statement holds under
some appropriate conditions.

Theorem 4.2. Let u and v be two regular functionals. Suppose that u is semiclassical and u and v are related by a rational factor,
so there exist monic polynomialsΦ andΩ , and nonzero polynomials Ψ andΛ, with degΨ ≥ 1, such that

D (Φu) = Ψu, (16)
Λu = Ωv. (17)

Let (Pn)n and (Qn)n be the MOPS with respect to u and v (respectively), and set

p := degΦ, q := degΨ , ℓ := degΩ, t := degΛ.

Then the structure relation (13) holds with the conventions (15), being M and N given by

M := t + 2p + ℓ, N := s + p + 2ℓ. (18)

Moreover, if q ≥ p− 1 then conditions (14) hold, provided whenever q = p− 1 the condition p− b ∉ N ∪ {0} is fulfilled, where
b denotes the leading coefficient of Ψ , so that (v,u) is an (M,N)-coherent pair and if q < p − 1 then the following conditions
hold:

rN,n ≠ 0 if n ≥ N + p + 1; sM,n ≠ 0 if n ≥ M. (19)

Proof. From the general theory of semiclassical OPs (see e.g. [14]) we know that the MOPS (Pn)n w.r.t. u fulfills a structure
relation of the form

ΦP ′

n+1 =

n+p
i=n−s

an,iPi, n ≥ 0, (20)

where s := max{p − 2, q − 1} and the an,i’s are complex numbers fulfilling the convention an,i = 0 if i < 0. Notice that,
using (16) and the rules of the distributional calculus, for all n ≥ swe may write

⟨u, P2
n−s⟩an,n−s = ⟨u,ΦP ′

n+1Pn−s⟩ = −⟨u,

ΦP ′

n−s + Ψ Pn−s

Pn+1⟩.

Hence

an,n−s =


−b γn+1,s+1, if q > p − 1
−(n − s + b) γn+1,s+1, if q = p − 1
−(n − s) γn+1,s+1, if q < p − 1



88 M.N. de Jesus, J. Petronilho / Journal of Computational and Applied Mathematics 237 (2013) 83–101

for all n ≥ s, where

γm,k :=
⟨u, P2

m⟩

⟨u, P2
m−k⟩

=

m
i=m−k+1

γi, m ≥ k (21)

(if k = 0, empty product equals one), (γn)n≥1 being the sequence of parameters appearing in the three-term recurrence
relation (6) satisfied by (Pn)n. Moreover, an,n+p = n + 1 for all n ≥ 0. Now, from (17) we deduce

ΩPn =

n+ℓ
i=n−t

bn,iQi, n ≥ 0, (22)

where the bn,i’s are complex numbers fulfilling bn,i = 0 whenever i < 0 (by convention). Moreover, bn,n+ℓ = 1 for all n ≥ 0,
and it is easy to see that bn,n−t = λ ⟨u, P2

n ⟩/⟨v,Q
2
n−t⟩ ≠ 0 for all n ≥ t , where λ denotes the leading coefficient ofΛ. Notice

also that

ΦQn =

n+p
j=n−p

cn,jQj, n ≥ 0, (23)

where the cn,j’s are complex numbers satisfying cn,j = 0 if j < 0, being cn,n+p = 1 for all n ≥ 0, and cn,n−p =

⟨v,Q 2
n ⟩/⟨v,Q 2

n−p⟩ ≠ 0 for all n ≥ p. Next, consider the obvious equality

(ΩΦPn+1)
′
= (ΩΦ)′Pn+1 +ΩΦP ′

n+1, n ≥ 0. (24)

Then, using (22) and (23) on the left-hand side of (24), we obtain

(ΩΦPn+1)
′
=

n+1+ℓ
i=n+1−t

bn+1,i (ΦQi)
′
=

n+1+ℓ
i=n+1−t

bn+1,i

i+p
j=i−p

ci,jQ ′

j .

Hence

(ΩΦPn+1)
′
=

n+ℓ+p
i=n−t−p

dn,i
Q ′

i+1

i + 1
, n ≥ 0, (25)

where dn,i = 0 if i < 0, dn,n+ℓ+p = n + 1 + ℓ+ p ≠ 0 for all n ≥ 0, and

dn,n−t−p = (n + 1 − t − p)bn+1,n+1−tcn+1−t,n+1−t−p ≠ 0, n ≥ t + p. (26)

On the other hand, we may write

ΩPn =

n+ℓ
j=n−ℓ

en,jPj, n ≥ 0,

where en,j = 0 if j < 0, en,n+ℓ = 1 for n ≥ 0, en,n−ℓ = γn,ℓ ≠ 0 for all n ≥ ℓ, and γn,ℓ is defined by (21). Therefore, taking
into account (20), we deduce

ΩΦP ′

n+1 =

n+p
i=n−s

an,iΩPi =

n+p
i=n−s

an,i
i+ℓ

j=i−ℓ

ei,jPj =

n+ℓ+p
i=n−s−ℓ

fn,iPi, (27)

where fn,i = 0 if i < 0, fn,n+ℓ+p = n+1 for all n ≥ 0, and fn,n−s−ℓ = an,n−sen−s,n−s−ℓ for all n ≥ s+ℓ. Indeed, for all n ≥ s+ℓ,

fn,n−s−ℓ =


−b γn+1,s+1γn−s,ℓ, if q > p − 1
−(n − s + b) γn+1,s+1γn−s,ℓ, if q = p − 1
−(n − s) γn+1,s+1γn−s,ℓ, if q < p − 1.

On the other hand, similarly as before, we can write

(ΩΦ)′Pn+1 =

n+ℓ+p
i=n−ℓ−p+2

gn,iPi, n ≥ 0, (28)

where empty sum equals zero if ℓ+ p = 0, and whenever ℓ+ p ≥ 1 the following holds: gn,i = 0 if i < 0, gn,n+ℓ+p = ℓ+ p
for all n ≥ 0, and gn,n−ℓ−p+2 = (ℓ+ p) γn+1,ℓ+p−1 ≠ 0 for all n ≥ ℓ+ p − 2.
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As a consequence, substituting the right-hand sides of (25), (27) and (28) in (24), and taking into account that s ≥ p− 2,
we obtain

n+ℓ+p
i=n−s−ℓ

hn,iPi =

n+ℓ+p
i=n−t−p

dn,i
Q ′

i+1

i + 1
, n ≥ 0, (29)

where hn,i = 0 if i < 0, and hn,n+ℓ+p := fn,n+ℓ+p + gn,n+ℓ+p = n + 1 + ℓ+ p for all n ≥ 0. Furthermore, for n ≥ s + ℓ,

hn,n−ℓ−s =


fn,n−ℓ−s, if s > p − 2
fn,n−ℓ−s + gn,n−ℓ−s, if s = p − 2

=


−b γn+1,s+1γn−s,ℓ, if q > p − 1
−(n − s − ℓ− p + b) γn+1,s+1γn−s,ℓ, if q = p − 1
−(n − s − ℓ− p) γn+1,s+1γn−s,ℓ, if q < p − 1,

and so, taking into account thatwe are assuming the hypothesis p−b ∉ N0 whenever q = p−1, aswell as the definition (21)
of the γm,k’s, we deduce

hn,n−s−ℓ ≠ 0, n ≥ s + ℓ, if q ≥ p − 1;
hn,n−s−ℓ ≠ 0, n ≥ s + ℓ+ p + 1, if q < p − 1.

(30)

Finally, we may rewrite (29) as (13), withM and N as in (18), and

ri,n := hn−p−ℓ,n−i/(n + 1), 1 ≤ i ≤ N, n ≥ 0;
sj,n := dn−p−ℓ,n−j/(n + 1), 1 ≤ j ≤ M, n ≥ 0.

Notice that (26) and (30) ensure that conditions (14) hold if q ≥ p − 1, and conditions (19) hold if q < p − 1. It is also clear
that relations (15) hold. This completes the proof. �

Remark 4.3. The proof of Theorem 4.2 is constructive. Moreover, by direct inspection of the proof, one sees that when
Ω ≡ Φ it simplifies and in place of (18) we can takeM = t + p and N = s + p.

Remark 4.4. Notice that Eqs. (16) and (17) imply

D(Φv) = Ψ v, Φ := ΛΩΦ, Ψ :=

2Λ′Φ +ΛΨ


Ω,

so, under the conditions of Theorem 4.2, v is also a semiclassical functional. Thus, Theorems 4.1 and 4.2 show that, up to
certain natural conditions, a structure relation like (13) with the conventions (15) holds if and only if the moment linear
functionals with respect to which (Pn)n and (Qn)n are orthogonal are semiclassical functionals related by a rational factor.

5. Sobolev OPs arising from (M,N)-coherent pairs

In this section, we assume that dµ0 and dµ1 are given positive Borel measures, with finite moments of all orders and
such that their supports coincide with the same interval I ⊂ R. Then we may define the following Sobolev inner product in
the space P of all polynomials with real coefficients:

⟨f , g⟩λ =


+∞

−∞

f g dµ0 + λ


+∞

−∞

f ′ g ′ dµ1. (31)

It is assumed that λ ≥ 0. Completion of P with respect to the norm

∥ · ∥λ := ⟨·, ·⟩
1/2
λ

leads to the appropriate Sobolev space of functions. Notice that (31) can be rewritten as

⟨f , g⟩λ = ⟨f , g⟩0 + λ⟨f ′, g ′
⟩1,

where ⟨·, ·⟩0 and ⟨·, ·⟩1 are the inner products induced by dµ0 and dµ1, i.e.,

⟨f , g⟩i =


+∞

−∞

f g dµi, i = 0, 1. (32)

Let (Sλn )n be the monic Sobolev OPS for the Sobolev inner product ⟨·, ·⟩λ, obtained by applying the Gram–Schmidt process
to the canonical basis of P . Our next result extends to (M,N)-coherent pairs, a fundamental algebraic property known for
coherent, generalized coherent and k-coherent pairs of measures, as stated in [5,6,8,9].
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Theorem 5.1. Let (dµ0, dµ1) be an (M,N)-coherent pair of measures, so that (13) holds for all n = 0, 1, . . . . Set K :=

max{M,N}. Then there exist numbers tλ1,n, . . . , t
λ
K ,n such that

Qn+1(x)+

M
j=1

sj,n
n + 1

n − j + 1
Qn−j+1(x) = Sλn+1(x)+

K
j=1

tλj,nS
λ
n−j+1(x) (33)

for all n = 0, 1, 2, . . . , with

tλj,n = 0 if n < j ≤ K . (34)

Furthermore, the following holds:

(i) if N ≠ M then tλK ,n ≠ 0 for all n ≥ K;
(ii) if N = M(=K) then tλK ,n ≠ 0 for all n ≥ K if and only if λ satisfies

λ ≠ −
sK ,n
rK ,n

∥Qn−K+1∥
2
0

(n − K + 1)2 ∥Pn−K∥
2
1

for all n ≥ K . (35)

Proof. The proof is similar to the proof of [9, Proposition 1]. It is well known that the coefficients of any Sobolev OP Sλn are
rational functions of λ, where the numerator and the denominator in each of these rational functions are polynomials in λ
of the same degree; hence there exists

Rn(x) := lim
λ→+∞

Sλn (x), n = 0, 1, 2, . . . .

For each n, Rn is a polynomial of degree n. Further [26]

⟨Rn, 1⟩0 = 0, n ≥ 1, (36)

⟨R′

n+1, x
m
⟩1 = 0, 0 ≤ m ≤ n − 1, n ≥ 1. (37)

The last equality may be justified as follows. Taking into account the relation
Sλn+1,

xm+1

m + 1


0
+ λ


Sλn+1

′
, xm


1

=


Sλn+1,

xm+1

m + 1


λ

= 0, 0 ≤ m ≤ n − 1,

we obtain
Sλn+1

′
, xm


1

= −
1
λ


Sλn+1,

xm+1

m + 1


0
, 0 ≤ m ≤ n − 1,

and so we deduce

⟨R′

n+1, x
m
⟩1 = − lim

λ→+∞

1
λ


Sλn+1,

xm+1

m + 1


0

= 0, 0 ≤ m ≤ n − 1.

From (37) we get

R′

n+1 = (n + 1)Pn, n ≥ 1. (38)

Therefore (13) can be rewritten as

R′

n+1

n + 1
+

N
i=1

ri,n
R′

n−i+1

n − i + 1
=

Q ′

n+1

n + 1
+

M
j=1

sj,n
Q ′

n−j+1

n − j + 1

for all n = 0, 1, 2, . . . . Integrating both sides of this equality and taking into account (36) we find

Rn+1

n + 1
+

N
i=1

ri,n
Rn−i+1

n − i + 1
=

Qn+1

n + 1
+

M
j=1

sj,n
Qn−j+1

n − j + 1
(39)

for all n = 0, 1, 2, . . . . Now, the Fourier expansion of the left-hand side of (39) in the basis {Sλν }
n+1
ν=0 gives

Rn+1

n + 1
+

N
i=1

ri,n
Rn−i+1

n − i + 1
=

Sλn+1

n + 1
+

n+1
k=1

tλk,n
n + 1

Sλn−k+1,
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for all n = 0, 1, 2, . . . , where the numbers tλk,n (k = 1, . . . , n + 1) are given by

Sλn−k+1

2
λ

tλk,n
n + 1

=


Rn+1

n + 1
+

N
i=1

ri,n
Rn−i+1

n − i + 1
, Sλn−k+1


λ

. (40)

From (39), (37) and (38) we deduce

Sλn−k+1

2
λ

tλk,n
n + 1

=

M
j=1

sj,n
n − j + 1


Qn−j+1, Sλn−k+1


0 + λ

N
i=1

ri,n

Pn−i,


Sλn−k+1

′
1

(41)

for all n = 0, 1, 2, . . . and k = 1, . . . , n + 1. Therefore, for fixed n, we derive tλk,n = 0 for all k > K . This proves (33) for
all n = 0, 1, 2 . . . . Now, starting with (40), which holds for all n ≥ 0, and taking into account (36) and (38), one easily sees
that (34) must hold. Finally, for k = K := max{M,N} we get

tλK ,n
n + 1

=



sM,n
n − M + 1

∥Qn−M+1∥
2
0Sλn−M+1

2
λ

if N < M

λ rN,n(n − N + 1)
∥Pn−N∥

2
1Sλn−N+1

2
λ

if N > M

sN,n ∥Qn−N+1∥
2
0 + λ rN,n(n − N + 1)2 ∥Pn−N∥

2
1

(n − N + 1)
Sλn−N+1

2
λ

if N = M,

(42)

from which (i) and (ii) are deduced. �

Remark 5.1. Condition (35) holds, for instance, if λ > 0 and sK ,nrK ,n > 0 for all n ≥ K .

6. Computation of the Fourier–Sobolev coefficients

Let us consider the following Sobolev space of smooth functions

W 1,2
[I, dµ0, dµ1] :=


f : I → R | f ∈ L2µ0

(I), f ′
∈ L2µ1

(I)

,

where I is a given open interval. Every function f ∈ W 1,2
[I, dµ0, dµ1] generates a Fourier–Sobolev series with respect to

the monic Sobolev OPs (Sλn )n,

f (x) ∼

∞
n=0

fn
sn

Sλn (x), (43)

where

fn ≡ fn(λ) := ⟨f , Sλn ⟩λ, sn ≡ sn(λ) := ⟨Sλn , S
λ
n ⟩λ = ∥Sλn∥

2
λ (44)

for all n = 0, 1, 2, . . . . An efficient algorithm for computing the fn’s and sn’s, in the case when (dµ0, dµ1) is a coherent or
a generalized coherent pair of measures, was provided in [5,8]. Here we extend these algorithms to the general situation
when (dµ0, dµ1) is an (M,N)-coherent pair of measures. This algorithm is a consequence on the next two results, which
show how to compute the sequences (fn)n and (sn)n in (44); hence the Fourier–Sobolev coefficients cλn := fn/sn, for every n.
The proofs of these propositions are based on the algebraic property stated in Theorem 5.1.

Theorem 6.1. The sequence (fn)n, given by (44), satisfies

fn+1 +

K
j=1

tλj,nfn−j+1 = un (n = 0, 1, 2, . . .), (45)

where un ≡ uλn(f ) is defined by

un :=


f ,Qn+1 +

M
j=1

sj,nQn−j+1


0

+ λ(n + 1)


f ′, Pn +

N
i=1

ri,nPn−i


1

, (46)

withsj,n := (n + 1)sj,n/(n − j + 1).
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Proof. By Theorem 5.1, we have

⟨f , Sλn+1⟩0 =


f ,Qn+1 +

M
j=1

(n + 1)sj,n
n − j + 1

Qn−j+1


0

−

K
j=1

tj,n⟨f , Sλn−j+1⟩0 (47)

for all n = 0, 1, 2, . . . , with the conventions (15) and (34), where, for simplicity, we wrote tj,n instead of tλj,n. On the other
hand, by (13) and using again Theorem 5.1, we see that

(n + 1)


Pn +

N
i=1

ri,nPn−i


= (Sλn+1)

′
+

K
j=1

tj,n(Sλn−j+1)
′

for all n = 0, 1, 2, . . . . Hence

⟨f ′, (Sλn+1)
′
⟩1 = (n + 1)


f ′, Pn +

N
i=1

ri,nPn−i


1

−

K
j=1

tj,n⟨f ′, (Sλn−j+1)
′
⟩1 (48)

for all n = 0, 1, 2, . . . . From (47) and (48) we obtain (45). �

Notice that (45) is a non-homogeneous linear difference equation of order K with variable coefficients. Therefore, the
fn’s may be computed recursively, provided we know how to compute the tλj,n’s. We remark that the un’s are known, since
they are directly computed in terms of the data (the function f , the parameter λ, and the (M,N)-coherence relation (13)).
Next we show that the tj,n’s, together with the sn’s, satisfy a system of K + 1 difference equations from which they can be
computed (hence also the fn’s, and so a fortiori the Fourier–Sobolev coefficients). We make the convention

tλ0,n = 1 if n ≥ 0. (49)

Theorem 6.2. The relations

sn−K+ℓ+1 tλK−ℓ,n +

ℓ
i=1

tλi,n−K+ℓ t
λ
K−ℓ+i,nsn−K+ℓ−i+1 = cℓ,n (50)

hold for all ℓ = 0, 1, . . . , K and n = 0, 1, 2, . . . , where

cℓ,n :=

M
i=K−ℓ

si,nsi−K+ℓ,n−K+ℓ∥Qn−i+1∥
2
0 + λ(n + 1)(n − K + ℓ+ 1)

N
i=K−ℓ

ri,nri−K+ℓ,n−K+ℓ∥Pn−i∥
2
1 (51)

andsi,n := (n + 1)si,n/(n − i + 1).

Proof. Setting k = K − ℓ in (41) we obtain

sn−K+ℓ+1 tλK−ℓ,n =

M
j=K−ℓ

sj,n⟨Qn−j+1, Sλn−K+ℓ+1⟩0 + λ

N
j=K−ℓ

(n + 1)rj,n⟨Pn−j, (Sλn−K+ℓ+1)
′
⟩1 (52)

for all ℓ = 0, 1, . . . , K . Using the definition (13) of (M,N)-coherence and Theorem 5.1, from (52) we deduce, after
straightforward computations, that

sn−K+ℓ+1 tλK−ℓ,n =

M
j=K−ℓ

M
i=0

sj,nsi,n−K+ℓ⟨Qn−j+1,Qn−K+ℓ−i+1⟩0

−

M
j=K−ℓ

K
i=1

sj,ntλi,n−K+ℓ⟨Qn−j+1, Sλn−K+ℓ−i+1⟩0

+ λ(n + 1)(n − K + ℓ+ 1)
N

j=K−ℓ

N
i=0

rj,nri,n−K+ℓ⟨Pn−j, Pn−K+ℓ−i⟩1

− λ(n + 1)
N

j=K−ℓ

K
i=1

rj,ntλi,n−K+ℓ⟨Pn−j, (Sλn−K+ℓ−i+1)
′
⟩1 (53)
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for all ℓ = 0, 1, . . . , K . Next, the orthogonality implies that the first and the third terms on the right-hand side of (53) are
equal to

M
j=K−ℓ

sj,nsj−K+ℓ,n−K+ℓ∥Qn−j+1∥
2
0

and

λ(n + 1)(n − K + ℓ+ 1)
N

j=K−ℓ

rj,nrj−K+ℓ,n−K+ℓ∥Pn−j∥
2
1.

Furthermore, the second term on the right-hand side of (53) is equal to

ℓ
i=1

tλi,n−K+ℓ

M
j=K−ℓ+i

sj,n⟨Qn−j+1, Sλn−K+ℓ+1−i⟩0.

To prove this, notice that ⟨Qn−j+1, Sλn−K+ℓ−i+1⟩0 = 0 if j < K −ℓ+ i or if i > M−K +ℓ (for all ℓ ∈ {0, . . . , K}, i ∈ {1, . . . , K}

and j ∈ {K − ℓ, . . . ,M}); hence the second term in (53) is, in fact, equal to

M−K+ℓ
i=1

tλi,n−K+ℓ

M
j=K−ℓ+i

sj,n⟨Qn−j+1, Sλn−K+ℓ−i+1⟩0 =

ℓ
i=1

tλi,n−K+ℓ

M
j=K−ℓ+i

sj,n⟨Qn−j+1, Sλn−K+ℓ−i+1⟩0,

where the last equality follows from

ℓ
i=M−K+ℓ+1

tλi,n−K+ℓ

M
j=K−ℓ+i

sj,n⟨Qn−j+1, Sλn−K+ℓ−i+1⟩0 = 0.

This relation can be stated by distinguishing the two possible cases K = M and K = N . In the same way we can show that
the fourth term on the right-hand side of (53) is equal to

ℓ
i=1

tλi,n−K+ℓ

N
j=K−ℓ+i

rj,n⟨Pn−j, (Sλn−K+ℓ+1−i)
′
⟩1.

It follows that (53) can be rewritten as

sn−K+ℓ+1 tλK−ℓ,n =

M
i=K−ℓ

si,nsi−K+ℓ,n−K+ℓ∥Qn−i+1∥
2
0 + λ(n + 1)(n − K + ℓ+ 1)

N
i=K−ℓ

ri,nri−K+ℓ,n−K+ℓ∥Pn−i∥
2
1

−

ℓ
i=1

tλi,n−K+ℓ


M

j=K−ℓ+i

sj,n⟨Qn−j+1, Sλn−K+ℓ+1−i⟩0 + λ(n + 1)
N

j=K−ℓ+i

rj,n⟨Pn−j, (Sλn−K+ℓ+1−i)
′
⟩1


.

According to (52), the expression between the large brackets in the last sum is equal to tλK−ℓ+i,nsn−K+ℓ−i+1. Thus, we arrive
at the desired result. �

Remark 6.1. Taking ℓ = K in (50) and setting tj,n ≡ tλj,n we find that (sn)n satisfies the non-homogeneous linear difference
equation of variable coefficients of order K

sn+1 +

K
j=1

t2j,nsn+1−j = cn (n = 0, 1, 2, . . .), (54)

where

cn ≡ cK ,n :=

M
i=0

s 2
i,n∥Qn+1−i∥

2
0 + λ(n + 1)2

N
i=0

r2i,n∥Pn−i∥
2
1 > 0.

Wemay now state bounds for the norm of the Sobolev polynomial Sλn arising from an (M,N)-coherent pair of measures
(dµ0, dµ1). In fact, setting

kn := ∥Pn∥2
1, k′

n := ∥Qn∥
2
0; , sn := ∥Sλn∥

2
λ,

we may state the following.
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Corollary 6.3. The inequalities

k′

n + λn2kn−1 ≤ sn ≤

M
j=0

s 2
j,n−1k

′

n−j + λn2
N
j=0

r2j,n−1kn−1−j (55)

hold for all n = 0, 1, 2, . . . , withsj,n−1 = nsj,n−1/(n − j) for all j and n.

Proof. The first inequality in (55) follows from the extremal property for OPs (we argue as in the proof of [26, Theorem 2];
cf. also [27, Theorem 3.1.2]):

sn = ∥Sλn∥
2
0 + λ∥(Sλn )

′
∥
2
1 ≥ ∥Qn∥

2
0 + λn2

∥Pn−1∥
2
1.

On the other hand, since cn > 0 for all n, from (54) we deduce sn+1 ≤ cn for all n. Thus, after changing n into n − 1, the
second inequality in (55) follows, taking into account that the right-hand side of (55) equals cn−1. �

Making the change of variables ℓ = K − j in Eq. (50) and then, in the resulting formula, changing n into n+ j− 1, we find

sn tλj,n+j−1 = cK−j,n+j−1 −

K−j
i=1

tλi,n−1t
λ
i+j,n−1+jsn−i (56)

for all j = 0, 1, . . . , K and n = 0, 1, 2, . . . . Relations (56) are the basis of the construction of the following algorithm
to compute all the Sobolev norms sn’s as well as all the linking coefficients tλj,n’s in the algebraic relation (33), for all
j = 0, 1, . . . , K and n = 0, 1, 2, . . . . As a consequence, and taking into account Theorem 6.1, the algorithm allows us
to compute the Fourier–Sobolev coefficients cλn := fn/sn appearing in (43).

Algorithm 6.1. The Fourier–Sobolev coefficients appearing in (43) may be computed using the following algorithm:

• starting data. We first write down the initial conditions

t0,n := 1, tj,n := 0 if j > K or n < j ≤ K (n = 0, 1, 2, . . .).

• step 1. Using the starting data and taking n = 1 in (56), we compute s1 and the diagonal elements tj,j for all j = 1, . . . , K .
In fact, we find s1tj,j = cK−j,j for all j = 0, 1, . . . , K , so that

s1 = cK ,0 = ∥Q1∥
2
0 + λ∥P0∥2

1,

tj,j = cK−j,j/s1, j = 1, 2, . . . , K .
(57)

• step 2. Using the starting data, the information given in step 1 and taking n = 2 in (56), we compute

s2 = cK ,1 − t21,1s1,

tj,j+1 =

cK−j,j+1 − t1,1tj+1,j+1s1


/s2, j = 1, 2, . . . , K .

(58)

• step 3. Using the starting data, the information in steps 1 and 2, and taking n = 3 in (56), we compute

s3 = cK ,2 − t21,2s2 − t22,2s1,

tj,j+2 =

cK−j,j+2 − t1,2tj+1,j+2s2 − t2,2tj+2,j+2s1


/s3, j = 1, . . . , K .

(59)

• Go on until step r: For any fixed positive integer number r , using the information obtained until step r − 1 and taking
n = r in (56), we compute sr and tj,j+r−1 for all j = 1, . . . , K .

• last steps. Steps 1 to r give sn and tj,j+n−1 for all j = 1, . . . , K and n = 1, 2, . . . , r . Since r may be chosen arbitrarily,
then the parameters sn and tj,n may be computed for all j = 1, . . . , K and n = 1, 2, . . . . Hence the fn’s may be computed
recurrently from (45), for all n = 1, 2, . . . . This gives all the Fourier–Sobolev coefficients fn/sn appearing in (43).

Remark 6.2. For coherent pairs, Iserles et al. [5] remarked that ‘‘to evaluate the Fourier–Sobolev coefficients there is
absolutely no need whatsoever to form Sobolev-orthogonal polynomials Sλn explicitly!’’. The previous algorithm shows that
a similar observation holds for (M,N)-coherent pairs.

7. Some special cases

In this section, we apply Algorithm 6.1 to some special cases, namely, when (M,N) is one of the pairs (1, 0), (1, 1), (2, 0)
or (2, 1).



M.N. de Jesus, J. Petronilho / Journal of Computational and Applied Mathematics 237 (2013) 83–101 95

7.1. (1, 1)-coherence

In this case N = M = K = 1, and relations (13) and (33) reduce to

Pn + r1,nPn−1 =
Q ′

n+1

n + 1
+ s1,n

Q ′
n

n
, (60)

Qn+1 +s1,nQn = Sλn+1 + t1,nSλn (61)

for all n = 0, 1, 2, . . . , being

s1,0 = 0, s1,n := s1,n
n + 1
n

(n = 1, 2, 3, . . .). (62)

Thus, after straightforward computations, from (56) we obtain the following system of difference equations
t1,nsn = an
sn+1 = bn − t1,nan

(63)

for all n = 0, 1, 2, . . . , where an ≡ an(λ) and bn ≡ bn(λ) are defined by

an :=s1,n∥Qn∥
2
0 + λ n(n + 1)r1,n∥Pn−1∥

2
1

bn := ∥Qn+1∥
2
0 +s21,n∥Qn∥

2
0 + λ(n + 1)2


∥Pn∥2

1 + r21,n∥Pn−1∥
2
1


.

(64)

In order to solve (63), notice that the first equation in (63) gives t1,n = an/sn, and substituting this into the second equation
we get

sn+1 − bn +
a2n
sn

= 0, n = 0, 1, 2, . . . . (65)

This gives all the sn’s recurrently and hence also all the t1,n’s. Then the Fourier–Sobolev coefficients can be computed.
However, we can say something more. Motivated by the theory of continued fractions, we introduce the MOPS (πn)n ≡

(πn(·; λ))n characterized by the three-term recurrence relation

πn+1(x; λ) = (x + bn)πn(x; λ)− a2nπn−1(x; λ), n = 0, 1, 2, . . . , (66)

with initial conditions π−1(x; λ) = 0 and π0(x; λ) = 1, where an ≡ an(λ) and bn ≡ bn(λ) are given by (64). Notice that,
when an and bn are real numbers, then a2n > 0 for all n = 1, 2, . . . ; hence (πn)n is orthogonal with respect to some positive
Borel measure. Thus we may state the following proposition:

Theorem 7.1. Let ((Qn), (Pn)) be a (1, 1)-coherent pair, so that (60) holds, and assume that (Pn)n and (Qn)n are orthogonal
w.r.t. positive Borel measures dµ1 and dµ0. Consider the associated Sobolev inner product (31) and let (Sλn ) be the corresponding
Sobolev OPS. Then the following holds:

(i) The (square of the) Sobolev-norm of Sλn is given by

sn = ∥Sλn∥
2
λ =

πn(0; λ)
πn−1(0; λ)

(n = 1, 2, . . .), (67)

where (πn)n is a MOPS, orthogonal w.r.t. some positive Borel measure, characterized by the three-term recurrence relation
(66), the recurrence coefficients an ≡ an(λ) and bn ≡ bn(λ) being given by (64). Further, setting

kn := ∥Pn∥2
1, k′

n := ∥Qn∥
2
0,

we have that sn satisfies the inequalities

k′

n + λn2kn−1 ≤ sn ≤ k′

n +s21,n−1k
′

n−1 + λn2 kn−1 + r21,n−1kn−2


(68)

for all n = 1, 2, 3, . . . .
(ii) Relation (61) holds with

t1,n = an
πn−1(0; λ)
πn(0; λ)

(n = 0, 1, 2, . . .). (69)

(iii) Let f ∈ W 1,2
[I, dµ0, dµ1]. Having determined sn and t1,n from (67) and (69), then the Fourier–Sobolev coefficients in the

expansion

f (x) ∼

∞
n=0

fn
sn

Sλn (x) (70)
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can be computed recurrently by solving the first order linear difference equation

fn+1 + t1,nfn = un (n = 0, 1, 2, . . .), (71)

where un ≡ un(λ) is defined by

un := ⟨f ,Qn+1 +s1,nQn⟩0 + λ (n + 1) ⟨f ′, Pn + r1,nPn−1⟩1 (72)

for all n = 0, 1, 2, . . . , and (s1,n)n is given by (62).

7.2. Coherence

As remarked before, coherence is (1, 0)-coherence. In this caseN = 0 andM = K = 1, and relations (13) and (33) reduce
to

Pn =
Q ′

n+1

n + 1
+ s1,n

Q ′
n

n
, Qn+1 +s1,n Qn = Sλn+1 + t1,nSλn

for all n = 0, 1, 2, . . . , being (s1,n)n as in (62). In this case one can easily state a result similar to Theorem 7.1. In fact,
such a result follows immediately by taking (formally) r1,n = 0 in all formulas in Theorem 7.1. This gives the results
stated in [5, Section 6]. We notice that, taking r1,n = 0 in (68), we obtain the inequalities for the Sobolev norm stated
in [26, Theorem 2] for coherent pairs. Further, when we take r1,n = 0 in (64) we see that an is independent of λ and
bn ≡ bn(λ) becomes a linear function of λ. Therefore, for any fixed x, πn(x; λ) can be regarded as a polynomial in λ of
degree n. In particular,

πn+1(0; λ) = bn(λ)πn(0; λ)− a2nπn−1(0; λ),

bn(λ) = (n + 1)2∥Pn∥2
1(λ+ cn), cn :=

∥Qn+1∥
2
0 +s21,n∥Qn∥

2
0

(n + 1)2∥Pn∥2
1

> 0.

Therefore, setting

γn(λ) := πn(0; λ)/ϵn, ϵn := (n!)2
n−1
j=0

∥Pj∥2
1 (n = 1, 2, . . .),

(γn(λ))n becomes a MOPS in the variable λ, satisfyingγn+1(λ) = (λ+ cn)γn(λ)− dnγn−1(λ)

for all n = 0, 1, 2, . . . , with initial conditionsγ−1(λ) = 0 andγ0(λ) = 1, and

dn :=
s21,n ∥Qn∥

4
0

n4 ∥Pn∥2
1 ∥Pn−1∥

2
1
> 0.

Hence (γn(λ))n is a MOPS with respect to some positive Borel measure. (γn(λ))n is the OPS introduced in the proof of
Theorem 1 in [28] to show that

t1,n =
γn−1(λ)

γn(λ)
(n = 0, 1, 2, . . .), (73)

(γn(λ))n being an OPS defined as an appropriate normalization of (γn(λ))n, sayγn(λ) = θnγn(λ), with (θn)n a sequence of
nonzero real numbers. Indeed, if (θn)n is chosen so that θ0 = 1 and θn/θn−1 = anϵn−1/ϵn for all n = 0, 1, 2, . . . , then we see
that (73) follows from (69), implying Theorem 1 in [28].

7.3. (2, 1)-coherence

In this case, N = 1 andM = K = 2, so relations (13) and (33) reduce to

Pn + r1,nPn−1 =
Q ′

n+1

n + 1
+ s1,n

Q ′
n

n
+ s2,n

Q ′

n−1

n − 1
, (74)

Qn+1 +s1,nQn +s2,nQn−1 = Sλn+1 + t1,nSλn + t2,nSλn−1 (75)

for all n = 0, 1, 2, . . . , wheres1,0 =s2,0 =s2,1 = 0,

s1,n := s1,n
n + 1
n

if n ≥ 1, s2,n := s2,n
n + 1
n − 1

if n ≥ 2.
(76)
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Hence, applying (56), after straightforward computations we obtaint2,nsn−1 = an
t1,nsn = bn − ant1,n−1
sn+1 = cn − bnt1,n + an(t1,nt1,n−1 − t2,n)

(77)

for all n = 0, 1, 2, . . . , where an, bn ≡ bn(λ) and cn ≡ cn(λ) are defined by

an :=s2,n ∥Qn−1∥
2
0

bn :=s1,n∥Qn∥
2
0 +s2,ns1,n−1∥Qn−1∥

2
0 + λn(n + 1)r1,n∥Pn−1∥

2
1

cn := ∥Qn+1∥
2
0 +s21,n∥Qn∥

2
0 +s22,n∥Qn−1∥

2
0 + λ(n + 1)2


∥Pn∥2

1 + r21,n∥Pn−1∥
2
1


.

(78)

We now assume t1,n ≠ 0 for all n ≥ 1. Then, from the second equations in (77) we see that also bn − ant1,n−1 ≠ 0 for all
n ≥ 1. Hence from the first and the second equations in (77) we may write t2,n = an/sn−1 = ant1,n−1/(bn−1 − an−1t1,n−2)
and sn+1 = (bn+1 − an+1t1,n)/t1,n+1. Replacing these expressions in the third equation in (77) we obtain

t1,n+1 =


bn+1 − an+1t1,n

 
bn−1 − an−1t1,n−2


cn −


bn − ant1,n−1


t1,n
 

bn−1 − an−1t1,n−2

− a2nt1,n−1

(79)

for all n = 2, 3, . . . . We notice that the denominator on the right-hand side of (79) never vanishes since, using (77), one
easily sees that it is equal to sn+1sn−1t1,n−1 for all n ≥ 2. From (79)we determine recurrently all the t1,n’s, taking into account
the initial conditions

t1,0 = 0, t1,1 = b1/s1, t1,2 = (s1b2 − a2b1)/(s1c1 − b21).

Notice that s1 is computed by using (57). We then determine all the sn’s from the second equation in (77), and then the t2,n’s
from the first one. Hence, for a given f ∈ W 1,2

[I, dµ0, dµ1], the Sobolev–Fourier coefficients fn/sn in the expansion (43) can
be computed recurrently using (45) applied to this particular situation, i.e., from the second order linear difference equation

fn+1 + t1,nfn + t2,nfn−1 = un (n = 0, 1, 2, . . .), (80)

where

un = ⟨f ,Qn+1 +s1,nQn +s2,nQn−1⟩0 + λ (n + 1) ⟨f ′, Pn + r1,nPn−1⟩1. (81)

Further, since ((Qn), (Pn)) is a (2, 1)-coherent pair then the Sobolev-norm sn := ∥Sλn∥
2
λ satisfies the inequalities

k′

n + λn2kn−1 ≤ sn ≤ k′

n +s21,n−1k
′

n−1 +s22,n−1k
′

n−2 + λn2 kn−1 + r21,n−1kn−2


for all n = 2, 3, . . . , where kn := ∥Pn∥2
1 and k′

n := ∥Qn∥
2
0.

7.4. (2, 0)-coherence

In this case relations (13) and (33) reduce to

Pn =
Q ′

n+1

n + 1
+ s1,n

Q ′
n

n
+ s2,n

Q ′

n−1

n − 1
,

Qn+1 +s1,nQn +s2,nQn−1 = Sλn+1 + t1,nSλn + t2,nSλn−1

(82)

for all n = 0, 1, 2, . . . , with (s1,n)n and (s2,n)n as in (76). The Fourier–Sobolev coefficients can be computed as in the
(2, 1)-coherent case. Indeed, the formulas for the (2, 0)-coherent case follow by taking (formally) r1,n = 0 in the formulas
for the (2, 1)-coherent case. This leads to the algorithm presented in [8, Section 5].

8. Fourier–Sobolev series: numerical experiments

In order to illustrate the algorithm presented above, in this section we give some examples involving the construction
of the Fourier–Sobolev series with respect to Sobolev inner products of the type (31) where (dµ0, dµ1) is some concrete
(M,N)-coherent pair of measures.

Example 1. Consider the Jacobi weight

dµα,β(x) := (1 − x)α(1 + x)βχ(−1,1)(x) dx,

which is well defined provided α, β > −1. The corresponding MOPS will be denoted by (P (α,β)n )n. Choosing α and β such
that α, β > 1, we may consider measures dµ0 and dµ1 as

dµ0 := dµα−1,β−2, dµ1 := dµα−2,β (α, β > 1).
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Table 1
The first 20 Fourier–Sobolev coefficients for function f in Example 1.

n t1,n t2,n sn fn fn/sn

0 0 0 1 −0.302 −0.302
1 −0.095 0 0.204 0.252 1.235
2 0.015 0.025 0.075 0.001 0.013
3 0.077 0.015 0.023 0.024 1.043
4 0.123 0.011 0.007 0.002 0.286
5 0.159 0.009 0.002 0.004 2
6 0.188 0.007 0.001 4.9×10−4 0.49
7 0.212 0.006 1.6 × 10−4 7.5×10−4 4.688
8 0.233 0.005 4.6 × 10−5 1.2×10−4 2.609
9 0.251 4.4 × 10−3 1.3 × 10−5 1.5×10−4 11.539

10 0.266 3.8 × 10−3 3.6 × 10−6 3.0×10−5 8.333
11 0.280 3.4 × 10−3 1.0 × 10−6 3.1×10−5 31
12 0.292 3.0 × 10−3 2.7 × 10−7 7.2×10−6 26.667
13 0.302 2.7 × 10−3 7.6 × 10−8 6.9×10−6 90.79
14 0.312 2.4 × 10−3 2.1 × 10−8 1.7×10−6 80.952
15 0.321 2.2 × 10−3 5.7 × 10−9 1.5×10−6 263.158
16 0.329 2.0 × 10−3 1.5 × 10−9 4.1×10−7 273.333
17 0.336 1.8 × 10−3 4.1×10−10 3.4×10−7 829.268
18 0.343 1.6 × 10−3 1.1×10−10 9.9×10−8 900
19 0.349 1.5 × 10−3 3.0×10−11 7.8×10−8 2600

Then (dµ0, dµ1) is a (2, 1)-coherent pair of measures, being

Pn :=P (α−2,β)
n , Qn :=P (α−1,β−2)

n .

In fact, this follows from the relation (see p. 390 in [21] and compare with (19) therein, taking into account that the relation
(P (a,b)n+1 )

′
= (n + 1)P (a+1,b+1)

n holds for the monic Jacobi polynomials)

P (α−2,β)
n + r1,nP (α−2,β)

n−1 =

P (α−1,β−2)
n+1

 ′

n + 1
+ s1,n

P (α−1,β−2)
n

 ′

n
+ s2,n

P (α−1,β−2)
n−1

 ′

n − 1

(n = 0, 1, 2, . . .), where

r1,n :=
2n(n + α − 2)

(2n + α + β − 3)(2n + α + β − 2)
,

s1,n := −
4n(n + β − 1)

(2n + α + β − 1)(2n + α + β − 3)
,

s2,n :=
4n(n − 1)(n + β − 2)(n + β − 1)

(2n + α + β − 4)(2n + α + β − 3)2(2n + α + β − 2)
.

Now, consider the function f : (−1, 1) → R defined by

f (x) :=
sin(x)

√
1 − x2

, −1 < x < 1.

Since f ∈ L2µ0
(−1, 1) if α > 1 and β > 2, and f ′

∈ L2µ1
(−1, 1) if α > 4 and β > 2, then choosing, for instance,

(α, β) = (5, 4), the theory developed in the previous sections may be used to determine the Fourier–Sobolev series of
f with respect to the Sobolev MOPS associated to the Sobolev inner product (31) defined by the (2, 1)-coherent pair

(dµ0, dµ1) ≡

dµ4,2, dµ3,4 .

In fact, for this choice, applying Algorithm 6.1, or the results obtained in Section 7.3, we determine the Fourier–Sobolev
coefficients of f (with the help of MAPLE), as well as the sequences (t1,n)n and (t2,n)n appearing in (75). In particular, if
λ = 0.1, we obtain the values contained in Table 1 from which we may determine the first 20 Fourier–Sobolev coefficients
fn/sn.

Example 2. We analyze in an alternative way (using the theory developed in the previous sections) an example presented
by Iserles et al. in [29, Section 4]. Let

dµ(x) := χ(−1,1)(x) dx
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Fig. 1. Graphs of f (bold) and of the partial sums of degrees n = 3, 6, 9, 12, 15, 18 of the Fourier–Legendre series of f .

Fig. 2. Graphs of f ′ (bold) and of the derivatives of the partial sums of degrees n = 3, 6, 9, 12, 15, 18 of the Fourier–Legendre series of f .

(the Lebesgue measure supported on (−1, 1), so that the corresponding monic OPs are Legendre polynomials, Pn :=P (0,0)n ).
Then (dµ0, dµ1) := (dµ, dµ) is a (2, 0)-coherent pair. This fact is a consequence of the following well known relation for
the (monic) Legendre polynomials:

Pn =
P ′

n+1

n + 1
−

nP ′

n−1

(2n − 1)(2n + 1)
(n = 0, 1, 2, . . .).

Let f : (−1, 1) → R be the function considered in [29, Section 4], defined by

f (x) := e−100

x− 1

5

2
, −1 < x < 1.

Obviously, f ∈ L2µ0
(−1, 1) and f ′

∈ L2µ1
(−1, 1). Therefore the theory developed in the previous sections applies to find

the Fourier–Sobolev series of f w.r.t. the monic Sobolev OPS associated to the Sobolev inner product (31) defined by the
(2, 0)-coherent pair (dµ, dµ). In fact, if we proceed as in Example 1, applying Algorithm 6.1, or the results contained in
Section 7.4, we find the Fourier–Sobolev coefficients of f , as well as the sequences (t1,n)n and (t2,n)n appearing in (82).
Therefore, we may obtain the four plots contained in [29, Figure 1]: a first plot (Fig. 1) including the graphs of f and of the
partial sums of degrees n = 3, 6, 9, 12, 15, 18 of the Fourier–Legendre series of f (which coincide with the Fourier–Sobolev
series for λ = 0), in the interval [−1, 1]; a second plot (Fig. 2) including the graphs of f ′ and of the derivatives of the
partial sums of degrees n = 3, 6, 9, 12, 15, 18 of the Fourier–Legendre series of f and a third (Fig. 3) and a fourth (Fig. 4)
plots including the graphical representations corresponding to the previous two ones but w.r.t. the partial sums of the
Fourier–Sobolev series for λ = 0.01.

Remark 8.1. We considered many examples for different choices of λ (‘‘large’’ and ‘‘small’’) and we found numerical
evidences that the results do not change significatively. However, we have not amathematical explanation for this behavior,
so the role that the parameter λ plays in the Fourier–Sobolev series remains open. For instance, Fig. 5 presents a plot of the
function difference between the twopartial sums of degree 18 for the Fourier–Sobolev series for f corresponding toλ = 0.01
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Fig. 3. Graphs of f (bold) and of the partial sums of degrees n = 3, 6, 9, 12, 15, 18 of the Fourier–Sobolev series of f for λ = 0.01.

Fig. 4. Graphs of f ′ (bold) and of the derivatives of the partial sums of degrees n = 3, 6, 9, 12, 15, 18 of the Fourier–Sobolev series of f for λ = 0.01.

Fig. 5. Graph of the function difference between the partial sums of degree 18 of the two Fourier–Sobolev series for f corresponding to λ = 0.01 and
λ = 106 (respectively).

and λ = 106 (respectively). Similarly, Fig. 6 presents a plot of the function difference between the derivatives of the partial
sums of degree 18 of the two Fourier–Sobolev series of f corresponding to the same choices of λ.
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Fig. 6. Graph of the function difference between the derivatives of the partial sums of degree 18 of the two Fourier–Sobolev series of f corresponding to
λ = 0.01 and λ = 106 (respectively).
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