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Repeses, 3504-510 Viseu, Portugal
2 CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal

E-mail: mnasce@estv.ipv.pt and josep@mat.uc.pt

Received 6 March 2011, in final form 29 July 2011

Published 22 August 2011

Online at stacks.iop.org/JPhysA/44/375203

Abstract
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1. Introduction and preliminaries

In this paper, we study spectral properties of Jacobi operators related to certain polynomial

mappings. We are particularly interested in the description of the essential spectra of such

operators. Let H be a Hilbert space and T a bounded and self-adjoint linear operator in H.

Under such conditions, it is well known that the spectrum of T, σ (T), is a subset of R, and it

can be decomposed as

σ (T) = σc(T) ∪ σp(T),

where σc(T) denotes the continuum spectrum and σp(T) is the point spectrum. Recall that

λ ∈ σp(T) if and only if Tλ := T − λI is not one to one (I is the identity operator in H), and

λ ∈ σc(T) if and only if Tλ is one to one and T−1
λ is not a bounded operator in H. Moreover,

if Tλ is one to one, then the range of Tλ, Tλ(H), is a dense subset of H. A limit point of the

spectrum of T is any point in σc(T), or any accumulation point of σ (T), or an eigenvalue of

T with infinite multiplicity. The set of limit points of the spectrum of T is called the essential

spectrum of T and it is denoted by σess(T). Therefore, σ (T) also admits the decomposition

σ (T) = σess(T) ∪ σ f
p (T)

(a disjoint union), where σ
f

p (T) := σ (T)\σess(T) is a set of real numbers which contains only

isolated points of the spectrum which are eigenvalues of finite multiplicity. σ
f

p (T) is called the

discrete spectrum. It is well known that the essential spectrum of a bounded and self-adjoint
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linear operator may be described by using the associated spectral family. This fact can be used

to prove the following characterization of the essential spectrum.

Theorem 1.1 (Weyl’s criterium). Let T be a bounded and self-adjoint linear operator in a

Hilbert space H, and let λ be a real number. Then λ ∈ σess(T) if and only if there exists

a sequence ( fn)n in H such that ‖ fn‖ = 1 for all n and the following conditions hold as

n → +∞:

fn ⇀ 0 weakly in H, (T − λI) fn → 0 strongly in H.

Weyl’s criterium implies the following two useful propositions.

Theorem 1.2 (Weyl’s theorem). Let H be a Hilbert space, T a bounded and self-adjoint linear

operator in H, and K a compact operator in H. Then

σess(T + K) = σess(T).

Theorem 1.3. If T is a bounded self-adjoint linear operator in a Hilbert space, then

q(σess(T)) = σess(q(T))

for any nonzero polynomial q.

The above results (and some of their extensions to non-self-adjoint linear operators) can

be found e.g. in the books by Riesz and Nagy [29, section 133] and Reed and Simon [27,

section VII.3], [28, section XIII.4].

Let us consider a Jacobi operator J acting on the complex Hilbert space of the square

summable sequences ℓ2 ≡ ℓ2(C) represented in the canonical basis of ℓ2 by the infinite and

symmetric tridiagonal matrix (which we also denote by J)

J :=




b
(0)
0 c

(1)
0 0 · · · 0 0 0 0 · · ·

c
(1)
0 b

(1)
0 c

(2)
0 · · · 0 0 0 0 · · ·

0 c
(2)
0 b

(2)
0 · · · 0 0 0 0 · · ·

...
...

...
. . .

...
...

...
...

. . .

0 0 0 · · · b
(k−2)
0 c

(k−1)
0 0 0 · · ·

0 0 0 · · · c
(k−1)
0 b

(k−1)
0 c

(0)
1 0 · · ·

0 0 0 · · · 0 c
(0)
1 b

(0)
1 c

(1)
1 · · ·

0 0 0 · · · 0 0 c
(1)
1 b

(1)
1 · · ·

...
...

...
. . .

...
...

...
...

. . .




, (1.1)

where b(i)
n ∈ R and c(i)

n > 0 for all 0 6 i 6 k − 1 and n = 0, 1, 2, . . . , with k being a fixed

positive integer number, with

Bi := sup
n∈N0

∣∣b(i)
n

∣∣ < ∞, Ci := sup
n∈N0

c(i)
n < ∞, 0 6 i 6 k − 1. (1.2)

Under such conditions, J is a symmetric bounded linear operator on ℓ2(C) with

‖J‖ := sup
‖x‖=1

‖Jx‖ 6 sup
06i6k−1

{Bi + 2Ci}.

If J is a bounded and self-adjoint Jacobi operator, then the eigenspace associated with any

eigenvalue is one dimensional [15, theorem 5.1]; hence, there are no eigenvalues with infinite

multiplicity. Furthermore, σc(J) ⊂ σ (J)′. Therefore, we may write

σess(J) = σ (J)′,
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so that σess(J) becomes the set of accumulation points of σ (J), and σ
f

p (J) the set of isolated

points of σ (J). We mention the work [17] by Koelink for background on the spectral theory

of Jacobi operators.

Our aim in this paper is to characterize the spectrum and the essential spectrum of J in a

special situation where this operator can be related to a certain polynomial mapping. The study

of polynomial mappings in the framework of orthogonal polynomial sequences (OPS) theory

has been a subject which attracted several researchers, especially after an important work by

Bessis and Moussa [3]. The subject has been treated for general polynomial transformations

by Geronimo and Van Assche [10], by Charris, Ismail and Monsalve [5, 6] (in the more

general framework of the so-called blocks of orthogonal polynomials), and by Peherstorfer

[24]. Applications of this type of polynomials have appeared in quantum chemistry and physics

(see e.g. Wheeler [30] and Pettifor andWeaire [25]), as well as in quantum physics in the study

of the so-called chain models (Álvarez-Nodarse et al [2])—concerning information about the

chain model, see the papers by Haydock [13, 14]. More recently [8, 9], characterization

results have been stated in order to ensure that a given OPS is obtained via another OPS via

a polynomial mapping. In order to describe this mapping, denote by ( p̃n)n the sequence of

orthonormal polynomials associated with J, so that(
x − b( j)

n

)
p̃nk+ j(x) = c( j+1)

n p̃nk+ j+1(x) + c( j)
n p̃nk+ j−1(x),

(1.3)
j = 0, 1, . . . , k − 1; n = 0, 1, 2, . . . ,

with the convention c(k)
n = c

(0)
n+1 for all n = 0, 1, 2, . . . , and satisfying initial conditions

p̃−1(x) = 0 and p̃0(x) = 1. The monic OPS corresponding to this orthonormal sequence

( p̃n)n is the sequence (pn)n characterized by(
x − b( j)

n

)
pnk+ j(x) = pnk+ j+1(x) + a( j)

n pnk+ j−1(x),
(1.4)

j = 0, 1, . . . , k − 1 ; n = 0, 1, 2, . . . ,

where the relation between a
( j)
n and c

( j)
n is given by

a( j)
n :=

[
c( j)

n

]2
( j = 0, 1, . . . , k − 1; n = 0, 1, 2, . . .), (1.5)

and satisfying initial conditions p−1(x) = 0 and p0(x) = 1. Without loss of generality, we

will take a
(0)
0 = 1, and polynomials p j with degree j 6 −1 will always be defined as the zero

polynomial. With these numbers b
( j)
n and a

( j)
n , we may construct the determinants 1n(i, j; x)

as in [5, 6], so that

1n(i, j; x) :=





0 if j < i − 2
1 if j = i − 2

x − b(i−1)
n if j = i − 1

(1.6)

and, if j > i > 1,

1n(i, j; x) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

x − b(i−1)
n 1 0 . . . 0 0

a(i)
n x − b(i)

n 1 . . . 0 0

0 a(i+1)
n x − b(i+1)

n . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . x − b
( j−1)
n 1

0 0 0 . . . a
( j)
n x − b

( j)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣

(1.7)

for every n = 0, 1, 2, . . . , where the order of this last determinant is j − i + 2. Taking into

account that 1n(i, j; ·) is a polynomial whose degree may exceed k, and since in (1.4) the

a
( j)
n s and b

( j)
n s were defined only for 0 6 j 6 k − 1, we adopt the convention

b(k+ j)
n := b

( j)

n+1, a(k+ j)
n := a

( j)

n+1 (1.8)
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for all i, j = 0, 1, 2, . . . and n = 0, 1, 2, . . . , and so the useful equality

1n(k + i, k + j; x) = 1n+1(i, j; x) (1.9)

holds for every i, j = 0, 1, 2, . . . and n = 0, 1, 2, . . . .

Theorem 1.4 ([9, theorem 2.1]). Let k ∈ N and (pn)n be a monic OPS characterized by the

general block of recurrence relations (1.4). Fix an integer number m such that 0 6 m 6 k −1,
and put

θm(x) := 10(1, m − 1; x) ≡ pm(x).

Assume that, for all n = 0, 1, 2, . . . , the following four conditions hold:

(i) b(m)
n is independent of n;

(ii) 1n(m + 2, m + k − 1; x) is independent of n for every x;

(iii) 10(m + 2, m + k − 1; ·) is divisible by θm, i.e. there exists a polynomial ηk−1−m with

degree k − 1− m such that

10(m + 2, m + k − 1; x) = θm(x)ηk−1−m(x);

(iv) the expression

rn := a(m+1)
n 1n(m + 3, m + k − 1; x) − a

(m+1)
0 10(m + 3, m + k − 1; x)

+ a(m)
n 1n−1(m + 2, m + k − 2; x) − a

(m)

0 10(1, m − 2; x)ηk−1−m(x)

is a constant with respect to x for every n = 1, 2, . . . .

Consider the polynomial πk of degree k defined as

πk(x) = 10(1, m; x) ηk−1−m(x) − a
(m+1)
0 10(m + 3, m + k − 1; x), (1.10)

and let (qn)n be the monic OPS generated by the recurrence relation

qn+1(x) = (x − rn) qn(x) − snqn−1(x), n = 0, 1, 2, . . . , (1.11)

with initial conditions q−1(x) = 0 and q0(x) = 1 , where

r0 := 0, sn := a(m)
n a

(m+1)
n−1 · · · a

(m+k−1)
n−1 , n = 1, 2, . . . . (1.12)

Then, for each j = 0, 1, 2, . . . , k − 1 and all n = 0, 1, 2, . . . ,

pkn+m+ j+1(x) =
1

ηk−1−m(x)

{
1n(m + 2, m + j; x) qn+1(πk(x))

+
(

j+1∏

i=1

a(m+i)
n

)
1n(m + j + 3, m + k − 1; x) qn(πk(x))

}
. (1.13)

In particular, for j = k − 1,

pkn+m(x) = θm(x) qn(πk(x)), n = 0, 1, 2, . . . . (1.14)

Remark 1.5. In [9], we have indeed stated a more general result, by showing that the four

conditions (i)–(iv) appearing in theorem1.4 are also necessary for the existence of a polynomial

mapping in the sense of (1.14), provided that we assign q1(0) = 0. The result remains true

without imposing the conditions

b( j)
n ∈ R, a( j)

n > 0 ( j = 0, 1, . . . , k − 1; n = 0, 1, 2, . . .),

i.e. without assuming that (pn)n is orthogonal in the positive-definite sense (by simply assuming

that the a
( j)
n s and the b

( j)
n s are complex numbers with a

( j)
n 6= 0 for all n and j).

4



J. Phys. A: Math. Theor. 44 (2011) 375203 M N de Jesus and J Petronilho

Theorem 1.6 ([9, theorem 3.4]). Under the conditions of theorem 1.4, with the monic OPS

(pn)n being orthogonal in the positive-definite sense with respect to some positive measure

dµ , (qn)n is also a monic OPS in the positive-definite sense, orthogonal with respect to a

measure dτ . Further, assume that the following four conditions hold:

(i) [ξ, η] := co (supp(dτ )) is a compact set;

(ii) if m > 1,

∫ η

ξ

dτ (x)

|x − πk(zi)|
< ∞, i = 1, 2, . . . , m,

where z1 < z2 < · · · < zm are the zeros of θm ;

(iii) either πk(y2i−1) > η and πk(y2i) 6 ξ (for all possible i) if k is odd, or πk(y2i−1) 6 ξ and

πk(y2i) > η if k is even, where y1 < · · · < yk−1 denote the zeros of π ′
k ;

(iv) θmηk−1−m and π ′
k have the same sign at each point of the set π−1

k
([ξ, η]).

Then the Stieltjes transforms F(·; dµ) and F(·; dτ ) are related by

F(z; dµ) =
−v010(2, m − 1; z) +

(∏m
j=1 a

( j)

0

)
ηk−1−m(z)F(πk(z); dτ )

θm(z)
,

z ∈ C \
(
π−1

k ([ξ, η]) ∪ {z1, . . . , zm}
)

,

where the normalization condition v0 :=
∫ η

ξ
dτ =

∫
supp(dσ )

dµ =: u0 is assumed. Further, the

measure dµ can be obtained from dτ by

dµ(x) =
m∑

i=1

Mi δ(x − zi) dx +
∣∣∣∣
ηk−1−m(x)

θm(x)

∣∣∣∣
dτ (πk(x))

π ′
k
(x)

(1.15)

(up to overall constant factors), where, if m > 1,

Mi :=
v0 10(2, m − 1; zi)/

(∏m
j=1 a

( j)

0

)
− ηk−1−m(zi) F(πk(zi); dτ )

θ ′
m(zi)

> 0 (1.16)

for all i = 1, . . . , m. The support of dµ is contained in the set

π−1
k ([ξ, η]) ∪ {z1, . . . , zm},

a union of k intervals and m possible mass points.

Remark 1.7. In statement (i), co(A) means the convex hull of a set A. Under the conditions

of theorem 1.6, if dτ is an absolutely continuous measure with density wτ (weight function),

then the absolutely continuous part of dµ has the density

wµ(x) :=
∣∣∣∣
ηk−1−m(x)

θm(x)

∣∣∣∣ wτ (πk(x))

with support contained in a union of at most k closed intervals, and it may have mass points

at the zeros of θm.

In the following sections, we will study the spectral properties of the operator J in (1.1),

assuming the hypothesis of theorem 1.4.

5
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2. Spectra of Jacobi operators via polynomial mappings

We begin with the following useful

Lemma 2.1. Let k be a fixed positive integer number and (rn)n and (sn)n two bounded

sequences of real numbers with sn > 0 for all n. Denote by JQ and J0,k the linear operators

defined in ℓ2(C) by the infinite band matrices

JQ =




r0
√

s1√
s1 r1

√
s2√

s2 r2
√

s3√
s3 r3

√
s4

. . .
. . .

. . .




and

J0,k =




r0Ik

√
s1Ik√

s1Ik r1Ik

√
s2Ik√

s2Ik r2Ik

√
s3Ik√

s3Ik r3Ik

√
s4Ik

. . .
. . .

. . .




,

where Ik is the identity matrix of order k. Then JQ and J0,k are bounded self-adjoint operators

and their spectra, point spectra, essential spectra and discrete spectra coincide respectively:

(i) σ (J0,k) = σ (JQ) (ii) σp(J0,k) = σp(JQ)

(iii) σess(J0,k) = σess(JQ) (iv) σ
f

p (J0,k) = σ
f

p (JQ).

Proof. It is clear that JQ and J0,k are bounded self-adjoint operators in ℓ2(C). For the proof

of (i)–(iv), we make use of the notion of tensor product of operators (see e.g. Reed and Simon

[27, section II.4 and VIII.10], [28, section XIII.9] and Prugovečki [26]). A different proof

is presented in the appendix, without using tensor products. We begin by noting that J0,k
is equivalent (via a unitary operator) to the tensor product JQ ⊗ Ik, where Ik is the identity

operator in C
k (regarded as a vector space over C) which is represented by the matrix Ik with

respect to the canonical basis of C
k. Clearly, σ (Ik) = σp (Ik) = {1} and, since C

k has finite

dimension, σess (Ik) = ∅ . Therefore, on the first hand, to prove (i) we just need to take into
account that the spectrum of the tensor product of two operators acting in the tensor product

of two separable Hilbert spaces is equal to the product of the spectra of the two involved

operators (this is a classical result due to Brown and Pearcy [4]; see also Reed and Simon

[28, theorem XIII.34]), so that

σ (J0,k) = σ (JQ ⊗ Ik) = σ (JQ)σ (Ik) = σ (JQ).

On the other hand, (iii) may be proved as follows:

σess(J0,k) = σess(JQ ⊗ Ik) = σess(JQ)σ (Ik) ∪ σ (JQ)σess(Ik) = σess(JQ),

where the second equality may be justified by theorem 4.2 in [16] by Ichinose (note that our

operators are self-adjoint; hence all the different notions of essential spectra considered in

[16] coincide—cf [16, p 79]). Statement (iv) is an immediate consequence of (i) and (iii), so

it remains to prove (ii). Indeed, from the general theory of tensor products, we have (see e.g.

Kubrusly and Duggal [18, proposition 0])

σp(J0,k) = σp(JQ ⊗ Ik) ⊇ σp(JQ)σp(Ik) = σp(JQ).

6
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The reverse inclusion also holds, because Ik is the identity matrix of finite size k and so it may

be readily verified that σp(JQ ⊗ Ik) ⊆ σp(JQ). ¤

Returning to the Jacobi operator J in (1.1), it is clear that we can write

πk(J) = J0,k +




A0 B1
Bt
1 A1 B2

Bt
2 A2 B3

Bt
3 A3 B4
. . .

. . .
. . .




, (2.1)

where the last matrix is an infinite tridiagonal block matrix with (An)n and (Bn)n uniquely

determined sequences of matrices of order k, each Bn being a lower triangular matrix. Note that

the explicit expressions for the entries of the matrices An and Bn are achieved by computing

the difference πk(J) − J0,k. We are ready to state our main result.

Theorem 2.2. Let J be the Jacobi operator in (1.1) and assume that the conditions

b( j)
n ∈ R, c( j)

n > 0 ( j = 0, 1, . . . , k − 1; n = 0, 1, 2 . . .)

as well as (1.2) hold, so that J is bounded and self-adjoint in ℓ2(C). Assume that the hypothesis

of theorem 1.4 holds and suppose that

An → 0, Bn → 0 (as n → +∞), (2.2)

where An and Bn are the matrices of order k defined by (2.1). Let JQ be the infinite Jacobi

matrix defined in lemma 2.1 with the numbers rn and sn appearing in the entries of JQ defined

by (1.12). Then the following holds.

(i) The essential spectra of J and JQ satisfy the relation

πk(σess(J)) = σess(JQ). (2.3)

(ii) In addition, if we also assume that the hypothesis of theorem 1.6 holds together with the

condition

C := min
x∈π−1

k
(σ (JQ))

ηk−1−m(x)

θm(x)π ′
k
(x)

> 0, (2.4)

then the following holds:

σp(J) = π−1
k (σp(JQ)) ∪ 4, (2.5)

σc(J) = π−1
k (σc(JQ)) ∩ ( R \ 4 ) , (2.6)

σ (J) = π−1
k (σ (JQ)) ∪ 4, (2.7)

where 4 is the subset of {z1, . . . , zm} (set of the zeros of θm) characterized by the condition

zi ∈ 4 if and only if Mi > 0 (i = 1, . . . , m),

with Mi being defined by (1.16).

(iii) Under the conditions of (ii),

σess(J) = π−1
k (σess(JQ)). (2.8)

7
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Proof. Note that hypothesis (2.2) ensures that the infinite banded matrix appearing in the

second term on the right-hand side of equality (2.1) is a compact operator (see e.g. [12,

theorem 16.4]). Thus, it follows from theorem 1.3, lemma 2.1 and Weyl’s theorem that the

equalities

πk(σess(J)) = σess(πk(J)) = σess(J0,k) = σess(JQ)

hold. This gives (2.3). Note also that (2.3) implies

σess(J) ⊂ π−1
k (σess(JQ)). (2.9)

Next we prove (2.5). Let x ∈ σp(J). Then

∞∑

n=0

p2n(x) < ∞.

Therefore, if x is a zero of θm, say x = zi for some i ∈ {1, . . . , m}, then the orthogonality
measure for the sequence (pn)n has a mass point at x = zi; hence, the corresponding mass Mi

is a positive number, and so x ∈ 4; otherwise, if x is not a zero of θm, we may write (using

theorem 1.4)
∞∑

n=0

q2n (πk(x)) =
1

θ2m(x)

∞∑

n=0

θ2m(x)q2n (πk(x)) =
1

θ2m(x)

∞∑

n=0

p2kn+m(x) < ∞;

hence, πk(x) ∈ σp(JQ), i.e. x ∈ π−1
k

(σp(JQ)). Therefore, σp(J) ⊂ π−1
k

(σp(JQ)) ∪ 4.

Further, it is clear that 4 ⊂ σp(J). Hence, to prove (2.5) it remains to demonstrate that

π−1
k

(σp(JQ)) ⊂ σp(J). Let x ∈ π−1
k

(σp(JQ)). Then

∞∑

n=0

q2n (πk(x)) < ∞. (2.10)

We need to prove that
∑∞

n=0 p2n(x) < ∞. Note that
∞∑

n=0

p2n(x) =
m∑

n=0

p2n(x) +
k−1∑

j=0

∞∑

n=0

p2kn+m+ j+1(x);

hence, we have to show that
∞∑

n=0

p2kn+m+ j+1(x) < ∞, j = 0, 1, . . . , k − 1. (2.11)

Indeed, according to theorem 1.4, we may write

pkn+m+ j+1(x) = K1, j(x; n)qn+1(πk(x)) + K2, j(x; n)qn(πk(x))

for all j = 0, 1, . . . , k − 1, where
K1, j(x, n) := 1n(m+2,m+ j;x)

ηk−1−m(x)
,

K2, j(x, n) :=
(

j+1∏

i=1

a(m+i)
n

)
1n(m+ j+3,m+k−1;x)

ηk−1−m(x)
.

Since πk(x) ∈ σp(JQ), (2.4) implies that ηk−1−m(x) 6= 0.Moreover, since the sequences (a
( j)
n )n

and (b
( j)
n )n are bounded, we conclude from the definition of the determinants1n(i, j; x)s that

there exist continuous functions 11, j(x) and 12, j(x), independent of n, such that

|Ki, j(x, n)| 6

∣∣∣∣
1i, j(x)

ηk−1−m(x)

∣∣∣∣ (i = 1, 2; j = 0, 1, . . . , k − 1).

8
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•
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•
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x0

π3

Figure 1. A situation s.t. πk(x0) = maxπk(I); σ (JQ) is represented in the y-axis.

It follows that

p2kn+m+ j+1(x) 6 2K2j (x)
{

q2n+1(πk(x)) + q2n(πk(x))
}

(2.12)

for all j = 0, 1, . . . , k − 1, being K j(x) := max{|11, j(x)|, |12, j(x)|}/ηk−1−m(x). (Of course,

if needed, we may redefine K j(x) at each zero x of ηk−1−m in such a way that (2.12) holds

for all such values of x.) Thus, (2.11) follows, taking into account (2.10). This completes the

proof of (2.5).

Next we prove (2.6). Note first that, taking into account (2.9), we may write

σc(J) ⊂ σess(J) ⊂ π−1
k (σess(JQ)) ⊂ π−1

k (σ (JQ)). (2.13)

Let x ∈ σc(J). Then x 6∈ σp(J) and so, by (2.5), πk(x) 6∈ σp(JQ) and x 6∈ 4. Since

πk(x) 6∈ σp(JQ) and, by (2.13), πk(x) ∈ σ (JQ), it follows that πk(x) ∈ σc(JQ), i.e.

x ∈ π−1
k

(σc(JQ)). Therefore, we conclude that σc(J) ⊂ π−1
k

(σc(JQ)) ∩ ( R \ 4 ). To

prove that the reverse inclusion also holds, let x ∈ π−1
k

(σc(JQ)) ∩ (R \ 4). Then x 6∈ 4

and πk(x) ∈ σc(JQ); hence, πk(x) 6∈ σp(JQ). It follows from (2.5) that x 6∈ σp(J). As a

consequence, if we can prove that

π−1
k (σ (JQ)) ⊂ σ (J), (2.14)

then from πk(x) ∈ σc(JQ) we may write x ∈ π−1
k

(σc(JQ)) ⊂ π−1
k

(σ (JQ)) ⊂ σ (J), and so

x ∈ σ (J) \ σp(J) = σc(J), concluding the proof of (2.6).

To prove (2.14), take x0 ∈ π−1
k

(σ (JQ)) and let us prove that x0 ∈ σ (J). Since we are

assuming the hypothesis of theorem 1.6, then

σ (J) = supp (dµ) , σ (JQ) = supp (dτ ) .

Thus, we need to prove that x0 ∈ supp (dµ), i.e.

µ (]x0 − δ, x0 + δ[) > 0, ∀δ > 0.

Fix δ > 0 and set I :=]x0 − δ, x0 + δ[. Then, according to (1.15),

µ (I) =
∫

I

dµ(x) >

∫

I

∣∣∣∣
ηk−1−m(x)

θm(x)

∣∣∣∣
dτ (πk(x))

π ′
k
(x)

> C

∫

I

sgn(π ′
k(x)) dτ (πk(x)),

where the last inequality is justified by (2.4) and by hypothesis (iv) in theorem 1.6. Therefore,

making the change of variables y = πk(x), we obtain

µ (I) > C

∫

πk(I)

dτ (y) = Cτ (πk(I)) > 0.

Note that the last inequality holds since πk(x0) ∈ σ (JQ) = supp (dτ ) and we have only

two possibilities (figure 1 illustrates a situation such that πk(x0) = maxπk(I), with the set

σ (JQ) being represented in the y-axis):

9
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(i) if π ′
k(x0) 6= 0, then we choose δ1 > 0 such that πk(I) ⊃]πk(x0) − δ1, πk(x0) + δ1[; hence

τ (πk(I)) > 0;

(ii) if π ′
k(x0) = 0, then either πk(x0) = maxπk(I) or πk(x0) = minπk(I); hence, either there

exists δ1 > 0 such that πk(I) ⊃]πk(x0) − δ1, πk(x0)] (in this case, ]πk(x0), πk(x0) +
δ1[∩πk(I) = ∅) or there exists δ1 > 0 such that πk(I) ⊃ [πk(x0), πk(x0) + δ1[ (in this

case, πk(I)∩]πk(x0) − δ1, πk(x0)[= ∅) and so, assuming without loss of generality that
the first of these situations holds, we deduce τ (πk(I)) > τ (]πk(x0) − δ1, πk(x0)]) =
τ (]πk(x0) − δ1, πk(x0) + δ1[) > 0.

Next, we note that (2.7) is an immediate consequence of (2.5) and (2.6):

σ (J) = σp(J) ∪ σc(J) = π−1
k (σp(JQ)) ∪ π−1

k (σc(JQ)) ∪ 4 = π−1
k (σ (JQ)) ∪ 4.

Finally, we will prove (2.8). Taking into account (2.9), we need only to show that

π−1
k

(σess(JQ)) ⊂ σess(J). Indeed, to prove this relation, we first show that

π−1
k (σ (JQ)′) ⊂ σ (J)′. (2.15)

To prove this relation, let x ∈ π−1
k

(σ (JQ)′). Then πk(x) ∈ σ (JQ)′ and so there exists a

sequence (zn)n ⊂ σ (JQ) such that zn → πk(x) as n → +∞. Let
{
ϕ−1

j

}k

j=1 be a complete
set of inverse branches of πk (this set exists, according to the hypothesis of theorem 1.6—cf

[10, 21]). Then there exists j ∈ {1, . . . , k} such that ϕ−1
j (πk(x)) = x. Set yn := ϕ−1

j (zn)

for each n = 1, 2, . . . . Note that yn ∈ π−1
k

({z1, z2, z3, . . .}) ⊂ π−1
k

(σ (JQ)) ⊂ σ (J) for all

n = 1, 2, . . . . Therefore, as n → +∞, we have yn := ϕ−1
j (zn) → ϕ−1

j (πk(x)) = x; hence

x ∈ σ (J)′. This proves (2.15). Therefore, we may write

π−1
k (σess(JQ)) = π−1

k (σ (JQ)′) ⊂ σ (J)′ = σess(J).

This completes the proof of the theorem. ¤

In the next sections, we will analyze some special cases, involving a periodic Jacobi

operator, as well as Jacobi operators related to quadratic and cubic polynomial mappings. For

convenience, we set

Ãn := rnIk + An, B̃n :=
√

sn Ik + Bn, (2.16)

so that (2.1) can be rewritten as

πk(J) =




Ã0 B̃1
B̃t
1 Ã1 B̃2

B̃t
2 Ã2 B̃3

B̃t
3 Ã3 B̃4
. . .

. . .
. . .




. (2.17)

We also need the following useful result due to Chihara [7] (see also Last and Simon

[20, theorem 7.2]).

Theorem 2.3 ([7, 20]). Under the conditions of lemma 2.1, if sn → 0 and R is the set of limit

points of (rn)n, then

σess(JQ) = R.

Remark 2.4. We recall that a real number x is called a limit point of a real sequence (xn)n if

there exists a subsequence of (xn)n which converges to x.

10
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3. Essential spectrum of a periodic Jacobi operator revisited

In this section, we consider a periodic Jacobi operator. Such an operator may be represented

by the infinite tridiagonal matrix

Jk :=




b0 c1 0 · · ·
c1 b1 c2 · · ·
0 c2 b2 · · ·
...

...
...

. . .




, (3.1)

where (bn)n>0 and (cn)n>1 are sequences of real numbers such that

b0 = bk, bnk+ j = b j, cnk+ j = c j ( j = 1, . . . , k; n = 0, 1, 2, . . .). (3.2)

It is assumed that

b j ∈ R, c j > 0 ( j = 1, . . . , k). (3.3)

The spectrum of Jk is well known (cf [11, 23, 22, 19, 1, 9]). In what followswewill characterize

it using results in the framework of polynomial mappings.

Theorem 3.1. Let Jk be the periodic Jacobi operator defined by (3.1) and (3.2) such that

conditions (3.3) hold (hence Jk defines a bounded self-adjoint linear operator in ℓ2(C)). Set

Di, j(x) = 1 if i > j and, for i 6 j,

Di, j(x) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

x − bi ci+1 0 · · · 0 0

ci+1 x − bi+1 ci+2 · · · 0 0

0 ci+2 x − bi+2 · · · 0 0

· · · · · · · · ·
. . . · · · · · ·

0 0 0 · · · x − b j−1 c j

0 0 0 · · · c j x − b j

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Let πk be the polynomial of degree k defined by

πk(x) := D0,k−1(x) − c2kD1,k−2(x)

and let 6 and 4 be the subsets of R defined as

6 := π−1
k

([−2c, 2c]) , c :=
∏k

j=1 c j,

4 :=
{
x ∈ R | D0,k−2(x) = 0, D0,k−1(x)/D1,k−2(x) > −c2k

}
.

Then the following holds:

σ (Jk) = 6 ∪ 4, σc(Jk) = σess(Jk) = 6, σp(Jk) = σ f
p (Jk) = 4.

Remark 3.2. The set6 is a union of at most k disjoint intervals, and4 is a finite set (possibly

the empty set) containing at most k−1 points taken from the set of the zeros of the polynomial
θk−1(x) := D0,k−2(x).

Proof. Note first that in the present situation, we have

rn = 0, sn = c2 (n = 0, 1, 2, . . .);

11
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hence, qn(x) = cnUn

(
x
2c

)
for all n = 0, 1, 2, . . . , where (Un)n is the sequence of the Chebyshev

polynomials of the second kind. Moreover,

JQ =




0 c

c 0 c

c 0 c

c 0
. . .

. . .
. . .




, πk(Jk) =




Gk cIk

cIk 0k cIk

cIk 0k cIk

cIk 0k

. . .

. . .
. . .




,

with the last equality being justified by [1, theorem 1], where Gk is a matrix of order k, Ik is

the identity matrix of order k and 0k is the null matrix of order k. Therefore, we see that the

matrices An and Bn in (2.16) are given by

A0 = Gk, An = Bn = 0k, n = 1, 2, 3, . . . .

Moreover, the polynomials θm and ηk−1−m appearing in theorems 1.4 and 1.6 are given by

(being m = k − 1)
θk−1(x) = D0,k−2(x), η0(x) = 1.

Thus, taking into account the results in [9] (cf theorems 5.1 and 7.1 therein, together with their

proofs), we see that all the hypotheses of theorem 2.2 are fulfilled. It is well known that

σ (JQ) = σc(JQ) = σess(JQ) = [−2c, 2c], σp(JQ) = ∅.

Moreover, according to [9, theorems 5.1 and 7.1], in the present situation the set 4 defined in

theorem 2.2 coincides with the set 4 defined above, and

6 ∩ 4 = ∅.

To see that this last equality holds, take x ∈ 6 and let us prove that x 6∈ 4. Indeed, if

x ∈ 6, then πk(x) ∈ [−2c, 2c]. Suppose that D0,k−2(x) = 0. Then πk(x) = ±2c. Without
lost of generality, assume that πk(x) = 2c. Then, taking into account that π2k (x) − 4c2 ={
2c2kD1,k−2(x) + πk(x)

}2
(see the proof of theorem 5.1 in [9]), we obtain D1,k−2(x) = −c/c2k

and so, by the definition of πk(x), we obtainD0,k−1(x) = c; henceD0,k−1(x)/D1,k−2(x) = −c2k ,

and so x 6∈ 4. The required equalities for the spectra follow now immediately from

theorem 2.2. ¤

Example 3.3. Let J4 be the 4-periodic Jacobi operator (3.1)–(3.2), with

b0 = −1, b1 = 0, b2 = 1, b3 = −a , c1 = c2 = 2, c3 = a, c4 = 4,

where a is a fixed positive number. In this case, (k, m) = (4, 3) and

σ (JQ) = [ξ, η] = [−32a, 32a],

π4(x) = x4 + ax3 − (a2 + 25)x2 − (a2 + 9a − 16)x + 4(a2 + 16),

θ3(x) := D0,2(x) = x3 − 9x,

R(x) :=
D0,3(x)

D1,2(x)
=

x4 + ax3 − (a2 + 9)x2 − a(a + 9)x + 4a2

x2 − x − 4
.

We have θ3(x) = 0 iff x ∈ {0,±3}, R(−3) = − a2

4
, R(0) = −a2 and R(3) = −4a2; hence,

4 = {−3, 0, 3} if 0 < a < 2; 4 = {−3, 0} if 2 6 a < 4;

4 = {−3} if 4 6 a < 8; 4 = ∅ if a > 8.

12
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−32
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Figure 2. Spectra of J4 for a = 1.

Moreover, from theorem 3.1,

σp(J4) = 4, σc(J4) = σess(J4) = 6 := π−1
4 ([−32a, 32a]), σ (J4) = 6 ∪ 4.

For instance, letting a = 1, we obtain

4 = {−3, 0, 3},

6 ≈ [−5.62,−5.39] ∪ [−1.91,−1.07] ∪ [1.4, 2.68] ∪ [3.62, 4.28].
This last example is illustrated in figure 2.

4. Essential spectra via quadratic polynomial mappings

Let J be the Jacobi operator in ℓ2(C) given by

J :=




b0 c1 0 0 0 · · ·
c1 b1 c2 0 0 · · ·
0 c2 b0 c3 0 · · ·
0 0 c3 b1 c4 · · ·
0 0 0 c4 b0 · · ·
...

...
...

...
...

. . .




, (4.1)

where we suppose

b0, b1 ∈ R, cn > 0 (n = 1, 2, 3, . . .), sup
n∈N

cn < ∞. (4.2)

Under such conditions, J is a bounded and self-adjoint Jacobi operator in ℓ2(C). This operator

can be studied using a polynomial mapping with k = 2 and m = 1. In fact, we have (take into

account (1.5))

b(0)
n = b0, b(1)

n = b1, a(0)
n = c22n, a(1)

n = c22n+1

for all n = 0, 1, 2, . . . and so we see that all the hypotheses of theorem 1.4 are satisfied, being

rn := c22n+2 + c22n+1 − c22 − c21, sn := c22nc22n+1

θ1(x) := x − b0, π2(x) := x2 − (b0 + b1)x + b0b1 − c21 − c22.
(4.3)

13
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Making the convenable choice c0 = 0 and computing π2(J), after straightforward

computations, we may identify the matrices Ãn and B̃n in (2.17) as

Ãn =
(

c22n − c22 + c22n+1 − c21 0

0 c22n+2 − c22 + c22n+1 − c21

)
, n = 0, 1, 2, . . . ,

and

B̃n =
(

c2n−1c2n 0

0 c2nc2n+1

)
, n = 1, 2, . . . .

Consequently, according to (2.16), we find

An =
(

c22n − c22n+2 0

0 0

)
, Bn = c2n

(
c2n−1 − c2n+1 0

0 0

)
(4.4)

for all n. Hence by theorem 2.2, we may state the following proposition.

Theorem 4.1. Let J be the Jacobi operator defined by (4.1) and (4.2). Let π2 be the quadratic

polynomial in (4.3) and Y the set of limit points of (c2n−1)n. If c2n → 0 as n → +∞, then

π2(σess(J)) = S :=
{
x = y2 −

(
c21 + c22

)∣∣y ∈ Y
}
.

Example 4.2. Let {α1, α2, α3, . . .} be the set of rational numbers in the interval ]0, 1[, and set
in (4.1)

b0 = b1 = 0, c2n = 1/n, c2n−1 = αn (n = 1, 2, . . .).

Then we have π2(x) = x2 − 1− α21 , Y = [0, 1] and S =
[
− 1− α21,−α21

]
; hence,

π2 (σess(J)) =
[
−1− α21,−α21

]
, σess(J) ⊂ [−1, 1].

5. Essential spectra via cubic polynomial mappings

Let J be the Jacobi operator in ℓ2(C) given by

J :=




b0 c1 0 0 0 · · ·
c1 b1 c2 0 0 · · ·
0 c2 b2 c3 0 · · ·
0 0 c3 b3 c4 · · ·
0 0 0 c4 b4 · · ·
...

...
...

...
...

. . .




, (5.1)

where we suppose

bn ∈ R, cn > 0, sup
n∈N

{cn + |bn|} < ∞. (5.2)

Assume further that the conditions

(i) b3n+2 = b2 (iii) c23n+1 − b3nb3n+1 = c21 − b0b1

(ii) b3n + b3n+1 = b0 + b1 (iv) c23n + c23n−1 = c23 + c22
(5.3)

hold for all n = 1, 2, . . . . Under these conditions, J can be related to a polynomial mapping

with k = 3 and m = 2. In fact, we have

b( j)
n = b3n+ j, a( j)

n = c23n+ j ( j = 0, 1, 2)

14
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for every n, and conditions (5.3) ensure that all the hypotheses of theorem 1.4 are fulfilled,

being

rn := c23b4 + c22b0 − c23n+3b3n+4 − c23n+2b3n,

sn := c23nc23n+1c
2
3n+2,

θ2(x) := x2 − (b0 + b1)x + b0b1 − c21,

π3(x) := x3 − (b0 + b1 + b2)x
2 +

(
b0b1 + b0b2 + b1b2 − c21 − c22 − c23

)
x

+ c22b0 + c21b2 + c23b4 − b0b1b2.

(5.4)

We now compute π3(J), so that after straightforward computations, we can identify the

matrices Ãn and B̃n in (2.17) and then from (2.16) we compute

An =




c23n(b3n − b3n+1) + c23n+3(b3n+4 − b3n) c3n+1
(
c23n − c23n+3

)
0

c3n+1
(
c23n − c23n+3

)
c23n+3(b3n+4 − b3n+1) 0

0 0 0




for all n = 0, 1, 2, . . . (with the convention c0 = 0) and

Bn = c3n




c3n−2c3n−1 − c3n+1c3n+2 0 0

c3n−1 (b3n − b3n−3) c3n+1 (c3n−1 − c3n+2) 0

0 0 0




for all n = 1, 2, . . . . Therefore, we may state the following

Theorem 5.1. Let J be a Jacobi operator satisfying (5.1)–(5.3). Let π3 be the cubic polynomial

in (5.4) and Y the set of limit points of (b3n)n. If c3n → 0 as n → +∞, then

π3 (σess(J)) = S :=
{
x = c22b0 + c23b4 −

(
c22 + c23

)
y
∣∣y ∈ Y

}
.

Example 5.2. For the choice

bn = 0, c3n+1 = 1, c3n = 1/
√

n + 1, c3n−1 =
√

n/(n + 1),

we find π3(x) = x(x2 − 2), θ2(x) = x2 − 1, and S = {0}; hence,

π3 (σess(J)) = {0}, σess(J) ⊂ π−1
3 ({0}) = {−

√
2, 0,

√
2}.

Example 5.3. Fix arbitrarily b ∈ R and c > 0. Choosing

b3n = c sin2(n + 1), b3n+1 = c cos2(n + 1), b3n+2 = b,

c3n+1 = c
2
|sin(2n + 2)| , c3n = 1/

√
n + 1, c3n−1 =

√
n/(n + 1),

we find

θ2(x) = x(x − c),

π3(x) = x3 − (b + c)x2 + (bc − 1)x +
c

2
(sin2 1+ cos2 2).

Therefore, taking into account that {sin n | n ∈ N} is a dense subset of the interval [−1, 1], we
derive Y = [0, c], so that

π3 (σess(J)) = S :=
[ c

2
(sin2 1+ cos2 2) − c,

c

2
(sin2 1+ cos2 2)

]
;

hence

σess(J) ⊂ π−1
3 (S) = I1 ∪ I2 ∪ I3,
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θ2

ξ

η

π3

π3

Figure 3. b = 0 , c = 1
2
.

η

ξ

π3

π3

θ2

Figure 4. b = 1√
2
, c =

√
2.

where

I1 :=
[

b −
√

b2 + 4
2

,min

{
0,

c + b −
√

(c − b)2 + 4
2

}]
,

I2 :=
[
max

{
0,

c + b −
√

(c − b)2 + 4
2

}
,min

{
c,

b +
√

b2 + 4
2

}]
,

I3 :=
[
max

{
c,

b +
√

b2 + 4
2

}
,

c + b +
√

(c − b)2 + 4
2

]
.

In this example, we see that π−1
3 (S) is

(i) a union of three disjoint intervals if bc 6= 1 and c(b − c) 6= 1;
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(ii) a union of two disjoint intervals if bc 6= 1 and c(c−b) = 1, or if bc = 1 and c(c−b) 6= 1;

(iii) the single interval
[
−

√
2
2

, 3
√
2
2

]
if bc = c(c − b) = 1, i.e. c = 2b =

√
2 .

Figures 3 and 4 illustrate the set π−1
3 (S) for two particular choices of the parameters b

and c.
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Appendix

For the sake of completeness, we include an alternative proof of the basic lemma 2.1 for readers

not familiar with tensor products. Taking into account proposition VII.12 in [27], statement (i)

is a consequence of the proof of (iii) given below, and (iv) follows from (i) and (iii). Therefore,

we have to prove only (ii) and (iii).

First we shall prove (ii). Let any λ ∈ σp(J0,k). Then there exists x̃ = (ξ̃ j) j>0 ∈ ℓ2(C)\{0}
such that (J0,k − λI)̃x = 0, i.e.

√
sn ξ̃(n−1)k+ j + (rn − λ)ξ̃nk+ j + √

sn+1 ξ̃(n+1)k+ j = 0,
(A.1)

n = 0, 1, 2, . . . ; j = 0, 1, . . . , k − 1.

Since x̃ 6= 0, there exist n0 ∈ N0 and j0 ∈ {0, 1, . . . , k − 1} such that ξ̃n0k+ j0 6= 0. Define

ξn := ξ̃nk+ j0 for every n ∈ N0. Since ξn0 6= 0, x := (ξn)n ∈ ℓ2(C)\{0}, and from (A.1) for
j = j0, we obtain

√
snξn−1 + (rn − λ)ξn + √

sn+1ξn+1 = 0, n = 0, 1, 2, . . . ,

i.e. (JQ − λI)x = 0; hence λ ∈ σp(JQ). Therefore, σp(J0,k) ⊂ σp(JQ). Next we prove

the reverse inclusion. Let λ ∈ σp(JQ). Then there exists x = (ξn)n ∈ ℓ2(C)\{0} such that
(JQ − λI)x = 0, i.e.

√
sn ξn−1 + (rn − λ)ξn + √

sn+1 ξn+1 = 0, n = 0, 1, 2, . . . . (A.2)

Define x̃ := (ξ̃n)n by

ξ̃nk+ j :=
{
0 if j ∈ {1, . . . , k − 1}
ξn if j = 0

(n = 0, 1, 2, . . .).

Then of course x̃ ∈ ℓ2(C)\{0} and from (A.2), we obtain
√

snξ̃(n−1)k+ j + (rn − λ)ξ̃nk+ j + √
sn+1ξ̃(n+1)k+ j = 0,

n = 0, 1, 2, . . . ; j = 0, 1, . . . , k − 1,
i.e. (J0,k − λI)̃x = 0, or λ ∈ σp(J0,k). Hence, σp(JQ) ⊆ σp(J0,k). Thus (ii) is proved.

Now we shall prove (iii). We begin by showing that σess(J0,k) ⊆ σess(JQ). Let

λ ∈ σess(J0,k). Then by Weyl’s criterium, there exists f̃n ≡
(

f̃
(n)
j

)
j>0

∈ ℓ2(C) such that

‖ f̃n‖ = 1 for all n = 0, 1, 2, . . . and

f̃n ⇀ 0 weakly in ℓ2(C), ‖(J0,k − λI) f̃n‖ → 0 (as n → +∞).
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Since 1 = ‖ f̃n‖2 =
∑k−1

i=0
( ∑∞

j=0
∣∣ f̃

(n)

jk+i

∣∣2), there exists i0 ∈ {0, 1, . . . , k − 1} such that
∑∞

j=0
∣∣ f̃

(n)

jk+i0

∣∣2 > 1
k
for all n = 0, 1, 2, . . . . Define f̂n ≡

(
f̂

(n)
j

)
j
∈ ℓ2(C) by f̂

(n)
j := f̃

(n)

jk+i0
.

Note that ‖ f̂n‖2 =
∑∞

j=0 | f̂
(n)
j |2 > 1

k
for all n. Now, set

fn :=
f̂n

‖ f̂n‖
(n = 0, 1, 2, . . .).

Clearly, fn ∈ ℓ2(C) and ‖ fn‖ = 1 for all n. To prove that fn ⇀ 0 weakly in ℓ2(C), we need

to show only that

〈 fn, h〉 → 0 as n → +∞ (A.3)

for all h ∈ ℓ2(C), where 〈·, ·〉 means the usual inner product in ℓ2(C). In fact, take arbitrarily

h ≡ (hn)n ∈ ℓ2(C). Define g ≡ (gn)n by

g jk+i :=
{

h j if i = i0

0 if i ∈ {0, 1, . . . , k − 1}\{i0}
( j = 0, 1, 2, . . .).

Then g ∈ ℓ2(C) and

〈 fn, h〉 =
1

‖ f̂n‖

∞∑

j=0

f̃
(n)

jk+i0
g jk+i0 =

1

‖ f̂n‖

∞∑

ν=0

f̃ (n)
ν gν =

1

‖ f̂n‖
〈 f̃n, g〉;

hence

|〈 fn, h〉| 6
√

k |〈 f̃n, g〉|, n = 0, 1, 2, . . . .

This proves (A.3), taking into account that f̃n ⇀ 0, which implies 〈 f̃n, g〉 → 0. To conclude

that λ ∈ σess(JQ), it remains to show that ‖(JQ − λI) fn‖ → 0. Indeed,

‖ f̂n‖2‖(JQ − λI) fn‖2=
∞∑

j=0

∣∣√s j f̂
(n)

j−1 + (r j − λ) f̂
(n)
j + √

s j+1 f̂
(n)

j+1
∣∣2

=
∞∑

j=0

∣∣√s j f̃
(n)

( j−1)k+i0
+ (r j − λ) f̃

(n)

jk+i0
+ √

s j+1 f̃
(n)

( j+1)k+i0

∣∣2

6 ‖(J0,k − λI) f̃n‖2;

hence, ‖(JQ − λI) fn‖ 6
√

k ‖(J0,k − λI) f̃n‖ → 0 as n → +∞. Therefore, λ ∈ σess(JQ) and

so σess(J0,k) ⊆ σess(JQ).

Conversely, let us prove that σess(JQ) ⊆ σess(J0,k). Let λ ∈ σess(JQ). Then there exists

fn ≡
(

f
(n)
j

)
j
∈ ℓ2(C) such that ‖ fn‖ = 1 for all n and

fn ⇀ 0, ‖(JQ − λI) fn‖ → 0 (as n → +∞).

Define f̃n ≡
(

f̃
(n)
j

)
j
∈ ℓ2(C) by

f̃
(n)

jk+i
:=

{
f
(n)
j if i = 0

0 if i ∈ {1, . . . , k − 1}
( j = 0, 1, 2, . . .).

Then ‖ f̃n‖2 =
∑∞

j=0
∣∣ f̃

(n)
j

∣∣2 =
∑k−1

i=0
∑∞

j=0
∣∣ f̃

(n)

jk+i

∣∣2 =
∑∞

j=0
∣∣ f

(n)
j

∣∣2 = ‖ fn‖2; hence,
‖ f̃n‖ = ‖ fn‖ = 1 for all n. Next take arbitrarily f ≡ ( f j) j ∈ ℓ2(C) and set f̂ ≡ ( f̂ j) j

with f̂ j := f jk for all j = 0, 1, 2, . . . . Then f̂ ∈ ℓ2(C) and

〈 f̃n, f 〉 =
∞∑

j=0

f̃
(n)
j f j =

k−1∑

i=0

∞∑

j=0

f̃
(n)

jk+i
f jk+i =

∞∑

j=0

f
(n)
j f jk = 〈 fn, f̂ 〉 → 0;
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hence, f̃n ⇀ 0 weakly in ℓ2(C). Finally, we prove that ‖(J0,k − λI) f̃n‖ → 0. In fact,

‖(J0,k − λI) f̃n‖2 =
k−1∑

i=0

∞∑

j=0

∣∣√s j f̃
(n)

( j−1)k+i
+ (r j − λ) f̃

(n)

jk+i
+ √

s j+1 f̃
(n)

( j+1)k+i

∣∣2

=
∞∑

j=0

∣∣√s j f
(n)

j−1 + (r j − λ) f
(n)
j + √

s j+1 f
(n)

j+1
∣∣2

= ‖(JQ − λI) fn‖2 → 0.

We may conclude that λ ∈ σess(J0,k) and so σess(JQ) ⊆ σess(J0,k).
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