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Quadratic Lie superalgebras
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By a quadratic Lie superalgebra we mean a Lie superalgebra g carrying a bilinear
form B on g such that B is non-degenerate, supersymmetric, even, and g-invariant.
In this case, B is called an invariant scalar product on g.

S. Benayadi presented an inductive description of quadratic Lie superalgebras
with reductive even part and the action of the even part on the odd part completely
reducible, using a particular type of double extension, namely elementary double
extension [4].

We improve the result by dropping the condition of the action completely re-
ducible. In [1], to describe inductively quadratic Lie superalgebras with even part a
reductive Lie algebra, we have to use the concept of double extension of quadratic
Lie superalgebras (introduced in [3]) and the notion of generalized double extension
of quadratic Lie superalgebras given in [2]. Our main result says that a quadratic Lie
superalgebra with a reductive even part is either {0}, basic classical Lie superalge-
bras and one-dimensional Lie algebra, or obtained from a finite number of previous
elements by a finite sequence of double extensions by the one-dimensional Lie alge-
bra, and/or generalized double extensions by the one-dimensional Lie superalgebra,
and/or by orthogonal direct sums.
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2Laboratoire de Mathématiques et Applications de Metz
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