Numerical Approximation of Mean Curvature Flow

Adérito Araújo, Marta Cavaleiro

CONUC

Centre for Mathematics, University of Coimbra

Seminar of the Mathematics PhD Program UCoimbra-UPorto Coimbra, November 3th, 2010

Outline

(1) Introduction

- Parkinson's Disease
- Level Sets Method
(2) Existence and unicity
- Viscosity solutions
- Energy estimate
(3) Numerical Analysis
- Numerical IMEX Method
- Parallel Splitting Algorithm
(4) Segmentation Model
- Chan and Vese Model
- Numerical Results
(5) Conclusions and Future Work

Outline

(1) Introduction

- Parkinson's Disease
- Level Sets Method
(2) Existence and unicity
- Viscosity solutions
- Energy estimate
(3) Numerical Analysis
- Numerical IMEX Method
- Parallel Splitting Algorithm
(4) Segmentation Model
- Chan and Vese Model
- Numerical Results
(5) Conclusions and Future Work

Parkinson disease

What is it?

- Degenerative disorder of the central nervous system that affects the control of muscles and so may affect movement, speech and posture
- Caused by insufficient formation and action of dopamine

Parkinson disease

What is it?

- Degenerative disorder of the central nervous system that affects the control of muscles and so may affect movement, speech and posture
- Caused by insufficient formation and action of dopamine

Diagnoses

- There are currently no blood or laboratory tests that have been proven to help in diagnosing the disease
- 75\% of clinical diagnoses of Parkinson disease are confirmed at autopsy

Parkinson disease

Pathology

- The symptoms of Parkinson disease result from the loss of dopaminergic cells and subsequent loss of melanin
- The neurons project to the striatum and their loss leads to alteration in the activity of neural circuits within the basal ganglia

Credits: Wikipedia, the free encyclopedia

Parkinson disease

- Decreased dopamine activity in the basal ganglia, a pattern which aids in diagnosing Parkinson disease
- PET and SPECT images may help

Credits: European Parkinson's Disease Association

Level Sets Method

$\Gamma(t)$ is implicitly represented by the zero level set of a higher dimension function ϕ :

$$
\Gamma(t)=\{(x, y) \in \Omega: \phi(t, x, y)=0\}
$$

Credits: Oleg Alenxandrov, en.wikipedia.org

- Notions of interior and exterior of a curve are immediate
- Union and division of curves are automatic

Level Sets Method

- Evolve the curve in the direction of the normal with speed $v \Leftrightarrow$ solving a PDE

$$
\frac{\partial \phi}{\partial t}=v|\nabla \phi|, \quad \phi(0, x, y)=\phi_{0}(x, y)
$$

with suitable boundary conditions

Level Sets Method

- Evolve the curve in the direction of the normal with speed $v \Leftrightarrow$ solving a PDE

$$
\frac{\partial \phi}{\partial t}=v|\nabla \phi|, \quad \phi(0, x, y)=\phi_{0}(x, y)
$$

with suitable boundary conditions

- Motion by mean curvature

$$
v=\operatorname{div}\left(\frac{\nabla \phi}{|\nabla \phi|}\right)
$$

Level Sets Method

- Evolve the curve in the direction of the normal with speed $v \Leftrightarrow$ solving a PDE

$$
\frac{\partial \phi}{\partial t}=v|\nabla \phi|, \quad \phi(0, x, y)=\phi_{0}(x, y)
$$

with suitable boundary conditions

- Motion by mean curvature

$$
v=\operatorname{div}\left(\frac{\nabla \phi}{|\nabla \phi|}\right)
$$

- For $\left.\phi \in C^{2,1}(\mathrm{~J} 0, T] \times \Omega\right)$ and $\nabla \phi \neq 0$ in a neighborhood of $\Gamma(t)$:
(IBVP)

$$
\begin{cases}\phi_{t}=|\nabla \phi| \operatorname{div}\left(\frac{\nabla \phi}{|\nabla \phi|}\right) & (x, y) \in \Omega, t>0 \\ \phi(0, x, y)=\phi_{0}(x, y) & (x, y) \in \bar{\Omega} \\ \phi(t, x, y)=0 & (x, y) \in \partial \Omega, t>0\end{cases}
$$

with Ω a bounded open set of \mathbb{R}^{2} and $\phi_{0} \in C(\Omega)$.

Outline

(1) Introduction

- Parkinson's Disease
- Level Sets Method
(2) Existence and unicity
- Viscosity solutions
- Energy estimate
(3) Numerical Analysis
- Numerical IMEX Method
- Parallel Splitting Algorithm
(4) Segmentation Model
- Chan and Vese Model
- Numerical Results
(5) Conclusions and Future Work

Viscosity solution (Evans \& Spruck, 1991)

$$
\text { Let } \left.\phi \in C(] 0, T] \times \Omega) \cap L^{\infty}(10, T] \times \Omega\right) \text {. }
$$

- ϕ is a viscosity sub-solution (super-solution) of (IBVP) if for all $\left.v \in C^{2}(10, T], \Omega\right), \phi-v$ has a local maximum (minimum) in $\left(t_{0}, x_{0}, y_{0}\right)$ then $\left(\nabla \phi\left(t_{0}, x_{0}, y_{0}\right) \neq 0\right)$

$$
v_{t}\left(t_{0}, x_{0}, y_{0}\right) \leq(\geq)\left|\nabla \phi\left(t_{0}, x_{0}, y_{0}\right)\right| \operatorname{div}\left(\frac{\nabla \phi\left(t_{0}, x_{0}, y_{0}\right)}{\left|\nabla \phi\left(t_{0}, x_{0}, y_{0}\right)\right|}\right)
$$

- ϕ is a viscosity solution of (IBVP) if it simultaneity a viscosity sub and super-solution.

Results

- Under certain conditions, the viscosity solution of (IBVP) exists and its unique (Evans \& Spruck, 1991)
- The curves $\Gamma(t)$ are independent of the initial choice ϕ_{0} (Evans \& Spruck, 1991)
- The following stability result holds (Caselles et al., 1993)

$$
\sup _{0 \leq s \leq t}\|\phi(s)-\hat{\phi}(s)\|_{L^{\infty}} \leq\left\|\phi_{0}-\hat{\phi}_{0}\right\|_{L^{\infty}} \quad \forall t \in[0, T]
$$

Motion by Mean Curvature

Determine ϕ from the initial boundary value problem (IBVP):

$$
\begin{cases}\frac{\phi_{t}}{|\nabla \phi|}=\nabla^{T}\left(\frac{\nabla \phi}{|\nabla \phi|}\right) & (x, y) \in \Omega, t>0 \\ \phi(0, x, y)=\phi_{0}(x, y) & (x, y) \in \bar{\Omega} \\ \phi(t, x, y)=0 & (x, y) \in \partial \Omega, t>0\end{cases}
$$

Motion by Mean Curvature

Determine ϕ from the initial boundary value problem (IBVP):

$$
\begin{cases}\frac{\phi_{t}}{|\nabla \phi|}=\nabla^{T}\left(\frac{\nabla \phi}{|\nabla \phi|}\right) & (x, y) \in \Omega, t>0 \\ \phi(0, x, y)=\phi_{0}(x, y) & (x, y) \in \bar{\Omega} \\ \phi(t, x, y)=0 & (x, y) \in \partial \Omega, t>0\end{cases}
$$

Theorem

$$
\underbrace{\|\phi(t)\|_{L^{1}}+\|\nabla \phi(t)\|_{L^{1}}}_{\|\phi(t)\|_{W^{1}, 1}} \leq C(\underbrace{}_{\left\|\phi_{0}\right\|_{W^{1}, 1}}
$$

Proof:

- $\|\nabla \phi(t)\|_{L^{1}}+\int_{0}^{t} \int_{\Omega} \frac{\phi_{t}^{2}}{|\nabla \phi|} d x d y d s=\left\|\nabla \phi_{0}\right\|_{L^{1}} \quad$ (Walkington, 1996)
- $\|\nabla \phi(t)\|_{L^{1}} \leq\left\|\nabla \phi_{0}\right\|_{L^{1}}$
- Poincaré inequality in $L^{1}:\|\phi\|_{L^{1}} \leq C^{*}\|\nabla \phi\|_{L^{1}}$

Outline

(1) Introduction

- Parkinson's Disease
- Level Sets Method
(2) Existence and unicity
- Viscosity solutions
- Energy estimate
(3) Numerical Analysis
- Numerical IMEX Method
- Parallel Splitting Algorithm
(4) Segmentation Model
- Chan and Vese Model
- Numerical Results
(5) Conclusions and Future Work

IMEX Method: time discretization

$$
\frac{1}{\left|\nabla \phi^{n}\right|} \frac{\phi^{n+1}-\phi^{n}}{\Delta t}=\operatorname{div}\left(\frac{\nabla \phi^{n+1}}{\left|\nabla \phi^{n}\right|}\right)
$$

- $t^{n}=n \Delta t, n=0, \ldots, N$, with $t_{0}=0$ and $t_{N}=T$
- $\phi^{n} \approx \phi(n \Delta t, x, y), \forall(x, y) \in \Omega$

IMEX Method: time discretization

$$
\frac{1}{\left|\nabla \phi^{n}\right|} \frac{\phi^{n+1}-\phi^{n}}{\Delta t}=\operatorname{div}\left(\frac{\nabla \phi^{n+1}}{\left|\nabla \phi^{n}\right|}\right)
$$

- $t^{n}=n \Delta t, n=0, \ldots, N$, with $t_{0}=0$ and $t_{N}=T$
- $\phi^{n} \approx \phi(n \Delta t, x, y), \forall(x, y) \in \Omega$

Theorem

$$
\left\|\phi^{n+1}\right\|_{W^{1,1}} \leq C\left\|\phi^{n}\right\|_{W^{1,1}} \quad \forall n=0,1, \ldots, N-1
$$

Proof:

- Multiply the equation by $\phi^{n+1}-\phi^{n}$ with respect to the L^{2} inner product and integrate by parts
- $\left\|\nabla \phi^{n+1}\right\|_{L^{1}} \leq\left\|\nabla \phi^{n}\right\|_{L^{1}} \quad \forall n=0,1, \ldots, N-1$
- Poincaré inequality in L^{1}

IMEX Method: full discretization

$$
\frac{1}{\left|\nabla_{h} \phi_{i j}^{n}\right|} \frac{\phi_{i j}^{n+1}-\phi_{i j}^{n}}{\Delta t}=D_{x}^{+}\left(\frac{D_{x}^{-} \phi_{i j}^{n+1}}{\left|\nabla_{h} \phi_{i j}^{n}\right|}\right)+D_{y}^{+}\left(\frac{D_{y}^{-} \phi_{i j}^{n+1}}{\left|\nabla_{h} \phi_{i j}^{n}\right|}\right)
$$

- $\bar{\Omega}_{h}=$ grid in $\bar{\Omega}$ with space step h
- Finite differences: D_{x}^{+}, D_{y}^{+}(forward); D_{x}^{-}, D_{y}^{-}(backward)
- $\phi_{i j}^{n} \approx \phi\left(n \Delta t, x_{i}, y_{j}\right), \forall\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{h}$
- $\left|\nabla_{h} \phi_{i j}^{n}\right|=\sqrt{\left(D_{x}^{-} \phi_{i j}^{n}\right)^{2}+\left(D_{y}^{-} \phi_{i j}^{n}\right)^{2}}$
- Norm in the discrete $W^{1,1}$ space

$$
\|\phi\|_{1,1}=\sum_{i, j} h^{2}\left|\phi_{i j}\right|+\sum_{i, j} h^{2}\left|\nabla_{h} \phi_{i j}\right|
$$

IMEX Method: full discretization

Theorem

$$
\left\|\phi^{n+1}\right\|_{1,1} \leq C\left\|\phi^{n}\right\|_{1,1} \quad \forall n=0, \ldots, N-1
$$

Proof:

- Multiply

$$
\frac{1}{\left|\nabla_{h} \phi_{i j}^{n}\right|} \frac{\phi_{i j}^{n+1}-\phi_{i j}^{n}}{\Delta t}=D_{x}^{+}\left(\frac{D_{x}^{-} \phi_{i j}^{n+1}}{\left|\nabla_{h} \phi_{i j}^{n}\right|}\right)+D_{y}^{+}\left(\frac{D_{y}^{-} \phi_{i j}^{n+1}}{\left|\nabla_{h} \phi_{i j}^{n}\right|}\right)
$$

by $\phi_{i j}^{n+1}-\phi_{i j}^{n}$ with respect to the discrete L^{2} inner product and use summation by parts

- $\sum_{i j} h^{2}\left|\nabla_{h} \phi_{i j}^{n+1}\right| \leq \sum_{i j} h^{2}\left|\nabla_{h} \phi_{i j}^{n}\right| \quad \forall n=0, \ldots, N-1$
- Discrete Poincaré inequality in $\ell^{1}: \quad \sum_{i j} h^{2}\left|\phi_{i j}^{n}\right| \leq C^{*} \sum_{i j} h^{2}\left|\nabla_{h} \phi_{i j}^{n}\right|$

Parallel Splitting Algorithm

$$
\frac{\partial \phi}{\partial t}=\boldsymbol{A} \phi+f(t) \quad \text { in } \quad \Omega \times[0, T], \quad \phi(0)=\phi_{0}
$$

- $A=A_{1}+A_{2}+\cdots+A_{m}$ and $f=f_{1}+f_{2}+\cdots+f_{m}$
- A is time independent

Algorithm (Lu, Neittaanmaki and Tai, 1992)

At each level time $n=0, \ldots, N-1$ compute:
(1) $\frac{\phi^{n+\frac{k}{2 m}}-\phi^{n}}{m \Delta t}=A_{k} \phi^{n+\frac{k}{2 m}}+f_{k}\left(\left(n+\frac{1}{2}\right) \Delta t\right) \quad k=1, \ldots, m$
(2) $\phi^{n+1}=\frac{1}{m} \sum_{k=1}^{m} \phi^{n+\frac{k}{2 m}}$

Parallel Splitting Algorithm

Consider $\quad A_{1} \phi^{n+\frac{1}{4}}=D_{x}^{+}\left(\frac{D_{x}^{-} \phi_{i j}^{n+\frac{1}{4}}}{\left|\nabla \phi_{i j}^{n}\right|}\right) \quad$ and $\quad A_{2} \phi^{n+\frac{1}{2}}=D_{x}^{+}\left(\frac{D_{y}^{-} \phi_{i j}^{n+\frac{1}{2}}}{\left|\nabla \phi_{i j}^{n}\right|}\right)$

- Construction of A_{1}

$$
\frac{\phi^{n+\frac{1}{4}}-\phi^{n}}{2 \Delta t}=A_{1} \phi^{n+\frac{1}{4}} \Leftrightarrow
$$

$$
\frac{1}{\left|\nabla_{h} \phi_{i j}^{n}\right|} \frac{\phi_{i j}^{n+\frac{1}{4}}-\phi_{i j}^{n}}{2 \Delta t}=\frac{\phi_{i-1, j}^{n+\frac{1}{4}}}{h^{2}\left|\nabla_{h} \phi_{i, j}^{n}\right|}-\frac{2}{h^{2}} \phi_{i j}^{n+\frac{1}{4}}\left(\frac{1}{\left|\nabla_{h} \phi_{i+1, j}^{n}\right|}+\frac{1}{\left|\nabla_{h} \phi_{i, j}^{n}\right|}\right)+\frac{\phi_{i+1, j}^{n+\frac{1}{4}}}{h^{2}\left|\nabla_{h} \phi_{i+1, j}^{n}\right|}
$$

- A_{1} is tridiagonal and diagonally dominant with

$$
a_{i, i-1}=\frac{1}{h^{2}}, \quad a_{i, i}=-\frac{2}{h^{2}}\left(\frac{\left|\nabla_{h} \phi_{i, j}^{n}\right|}{\left|\nabla_{h} \phi_{i+1, j}^{n}\right|}+1\right), \quad a_{i, i+1}=\frac{\left|\nabla_{h} \phi_{i, j}^{n}\right|}{h^{2}\left|\nabla_{h} \phi_{i+1, j}^{n}\right|}
$$

- A similar construction can be made for A_{2}

Parallel Splitting Algorithm

Algorithm

At each level time $n=0, \ldots, N-1$ compute:
(1) Compute $\left|\nabla_{h} \phi_{i j}^{n}\right|=\sqrt{\left(D_{x}^{-} \phi_{i j}^{n}\right)^{2}+\left(D_{y}^{-} \phi_{i j}^{n}\right)^{2}}$
(2) Construct A_{1} and A_{2}
(3) Solve

$$
\left(I-2 \Delta t A_{1}\right) \phi^{n+\frac{1}{4}}=\phi^{n} \quad \text { and } \quad\left(I-2 \Delta t A_{2}\right) \phi^{n+\frac{1}{2}}=\phi^{n}
$$

(4) $\phi^{n+1}=\frac{\phi^{n+\frac{1}{4}}+\phi^{n+\frac{1}{2}}}{2}$

Parallel Splitting Algorithm

Theorem (Stability)

The algorithm is unconditionally stable in the $\|.\|_{\infty}$ norm.

Proof:

- $I-2 \Delta t A_{1}$ and $I-2 \Delta t A_{2}$ are M-matrices
- $\exists c_{1}, c_{2} \geq 0:\left\|\left(I-2 \Delta t A_{1}\right)^{-1}\right\|_{\infty} \leq c_{1}$ and $\left\|\left(I-2 \Delta t A_{2}\right)^{-1}\right\|_{\infty} \leq c_{2}$
- $\left\|\Phi^{n+1}\right\|_{\infty} \leq \frac{1}{2}\left(\left\|\Phi^{n+\frac{1}{4}}\right\|_{\infty}+\left\|\Phi^{n+\frac{1}{2}}\right\|_{\infty}\right) \leq \frac{1}{2}\left(c_{1}+c_{2}\right)\left\|\Phi^{n}\right\|_{\infty}$

Parallel Splitting Algorithm

Theorem (Stability)

The algorithm is unconditionally stable in the $\|\cdot\|_{\infty}$ norm.

Proof:

- $I-2 \Delta t A_{1}$ and $I-2 \Delta t A_{2}$ are M-matrices
- $\exists c_{1}, c_{2} \geq 0:\left\|\left(I-2 \Delta t A_{1}\right)^{-1}\right\|_{\infty} \leq c_{1}$ and $\left\|\left(I-2 \Delta t A_{2}\right)^{-1}\right\|_{\infty} \leq c_{2}$
- $\left\|\Phi^{n+1}\right\|_{\infty} \leq \frac{1}{2}\left(\left\|\Phi^{n+\frac{1}{4}}\right\|_{\infty}+\left\|\Phi^{n+\frac{1}{2}}\right\|_{\infty}\right) \leq \frac{1}{2}\left(c_{1}+c_{2}\right)\left\|\Phi^{n}\right\|_{\infty}$

Theorem (Convergence)

If $\left(-A_{k}\right), k=1, \ldots, m$, are irreducible M-matrices, then the algorithm is convergent of first order in Δt.

Outline

(1) Introduction

- Parkinson's Disease
- Level Sets Method

2 Existence and unicity

- Viscosity solutions
- Energy estimate
(3) Numerical Analysis
- Numerical IMEX Method
- Parallel Splitting Algorithm
(4) Segmentation Model
- Chan and Vese Model
- Numerical Results
(5) Conclusions and Future Work

CV model (Chan and Vese, 2001)

- Find the curve that minimizes:

$$
\begin{gathered}
F\left(c_{1}, c_{2}, \phi\right)=\mu \int_{\Omega} \delta_{0}(\phi)|\nabla \phi| d x d y+\nu \int_{\Omega} H(\phi) d x d y \\
+\lambda_{1} \int_{\Omega}\left|u_{0}-c_{1}\right|^{2} H(\phi) d x d y+\lambda_{2} \int_{\Omega}\left|u_{0}-c_{2}\right|^{2}(1-H(\phi)) d x d y
\end{gathered}
$$

- It reduces to the resolution of a PDE:

$$
\frac{\partial \phi}{\partial t}=\delta_{0}(\phi)\left(\mu \operatorname{div}\left(\frac{\nabla \phi}{|\nabla \phi|}\right)-\nu-\lambda_{1}\left(u_{0}-c_{1}\right)^{2}+\lambda_{2}\left(u_{0}-c_{2}\right)^{2}\right)
$$

CV model (Chan and Vese, 2001)

- Find the curve that minimizes:

$$
\begin{gathered}
F\left(c_{1}, c_{2}, \phi\right)=\mu \int_{\Omega} \delta_{0}(\phi)|\nabla \phi| d x d y+\nu \int_{\Omega} H(\phi) d x d y \\
+\lambda_{1} \int_{\Omega}\left|u_{0}-c_{1}\right|^{2} H(\phi) d x d y+\lambda_{2} \int_{\Omega}\left|u_{0}-c_{2}\right|^{2}(1-H(\phi)) d x d y
\end{gathered}
$$

- It reduces to the resolution of a PDE:

$$
\frac{\partial \phi}{\partial t}=\delta_{0}(\phi)\left(\mu \operatorname{div}\left(\frac{\nabla \phi}{|\nabla \phi|}\right)-\nu-\lambda_{1}\left(u_{0}-c_{1}\right)^{2}+\lambda_{2}\left(u_{0}-c_{2}\right)^{2}\right)
$$

All the previous results could be generalized for

$$
\phi_{t}=g(\phi) \operatorname{div}\left(\frac{\nabla \phi}{|\nabla \phi|}\right) \quad(x, y) \in \Omega, t>0, \quad g>0
$$

SPECT Images (given by IBILI)

Numerical Results

Numerical Results

$\mathrm{t}=0$

$t=0.1$

$$
t=0.2
$$

Evolution of the zero level set in the iteration for $\mu=0.05$

Numerical Results

Results of segmentation algorithm for $\mu=0.05$ (left) and $\mu=0.001$ (right)

Outline

(1) Introduction

- Parkinson's Disease
- Level Sets Method
(2) Existence and unicity
- Viscosity solutions
- Energy estimate
(3) Numerical Analysis
- Numerical IMEX Method
- Parallel Splitting Algorithm
(4) Segmentation Model
- Chan and Vese Model
- Numerical Results
(5) Conclusions and Future Work

Conclusions and Future Work

Conclusions

- IMEX method with good stability properties
- A parallel splitting algorithm

Conclusions and Future Work

Conclusions

- IMEX method with good stability properties
- A parallel splitting algorithm

Future Work

- Higher order splitting
- Optical Coherence Tomography (OCT) images

References

围 T．F．Chan and L．A．Vese
Active Contour Without Edges．
IEEE Trans．Image Processing 10，266－277， 2001.
嗇 L．C．Evans and J．Spruck
Motion of level sets by mean curvature I．
J．Differential Geometry 33，635－681， 1991.
固 V．Caselles，F．Catté，T．Coll and F．Dibos
A geometric model for active contours in image processing．
Numerische Mathematik 66，1－31， 1993.
國 T．Lu，P．Neittaanmaki and X．C．Tai
A parallel splitting－up method for PDEs and its applications to Navier－Stokes equations．
RAIRO Math．Model Numer．Anal．26（6），673－708， 1992.
囯 N．J．Walkington
Algorithms for computing motion by mean curvature．
SIAM J．Numer．Anal．33（6），2215－2238， 1996.

