▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Semigroup invariants of symbolic dynamical systems

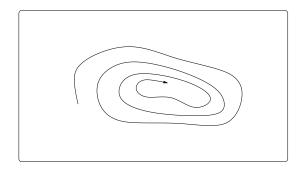
Alfredo Costa

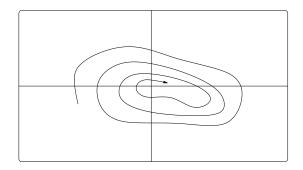
Centro de Matemática da Universidade de Coimbra

Coimbra, October 6, 2010

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

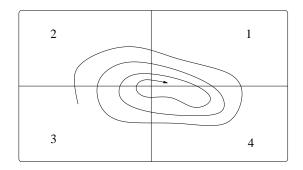
Discretization



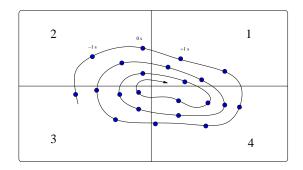


<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

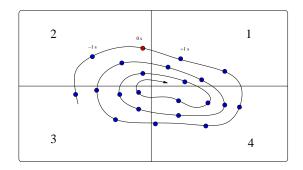
Discretization



Discretization

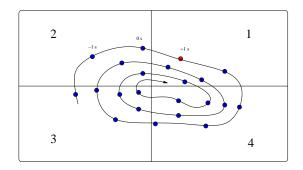


Discretization



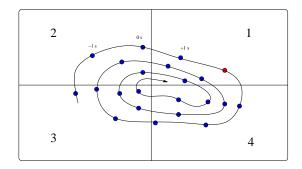
2

Discretization



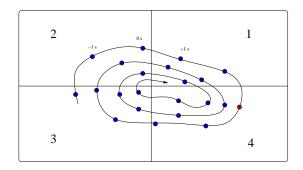
21

Discretization



211

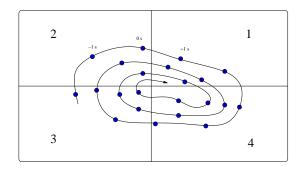
Discretization



2114

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

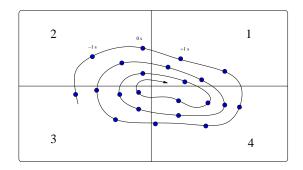
Discretization



211444333211443321443...

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

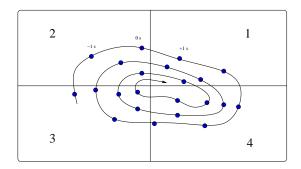
Discretization



....32.211444333211443321443....

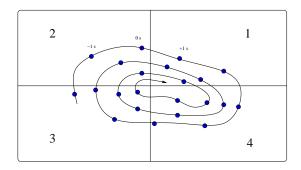
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Discretization



... 32.211444333211443321443...

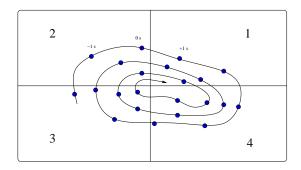
This bi-infinite sequence is an element of $\{1,2,3,4\}^{\mathbb{Z}},$ i.e., a mapping from \mathbb{Z} to $\{1,2,3,4\}.$



....32.211444333211443321443....

This bi-infinite sequence is an element of $\{1, 2, 3, 4\}^{\mathbb{Z}}$, i.e., a mapping from \mathbb{Z} to $\{1, 2, 3, 4\}$.

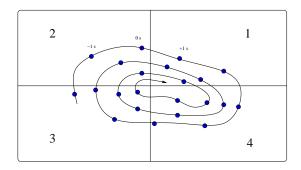
...***32.211444333211443321443*...



....32.211444333211443321443....

This bi-infinite sequence is an element of $\{1,2,3,4\}^{\mathbb{Z}},$ i.e., a mapping from \mathbb{Z} to $\{1,2,3,4\}.$

...**322.11444333211443321443 **... (ロト (お) (ま) (ま) (ま) (ま) (ま) (ま)



....32.211444333211443321443....

This bi-infinite sequence is an element of $\{1, 2, 3, 4\}^{\mathbb{Z}}$, i.e., a mapping from \mathbb{Z} to $\{1, 2, 3, 4\}$.

... * 3221.1444333211443321443 * * * ...

イロト 不得 とう アイヨン

э

Sac

Subshifts

Let A be a finite alphabet.

A symbolic dynamical system of $A^{\mathbb{Z}}$, also called subshift or just shift, is a nonempty subset \mathcal{X} of $A^{\mathbb{Z}}$ such that

• \mathcal{X} is topologically closed,

•
$$\sigma(\mathcal{X}) = \mathcal{X}$$
 $\sigma((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}}, \quad x_i \in A.$

The language of a subshift

$$L(\mathcal{X}) = \{ u \in A^+ : u = x_i x_{i+1} \dots x_{i+n} \text{ for some } x \in \mathcal{X}, i \in \mathbb{Z}, n \ge 0 \}$$

The elements of $L(\mathcal{X})$ are the blocks of \mathcal{X} .

Let \mathcal{X} be the least subshift containing

 $x = \cdots 32.211444333211443321443 \cdots$

 $L(\mathcal{X}) = L(\mathcal{Y})$ if and only if $\mathcal{X} = \mathcal{Y}$.

Irreducible subshifts:

The language of a subshift

$$L(\mathcal{X}) = \{ u \in A^+ : u = x_i x_{i+1} \dots x_{i+n} \text{ for some } x \in \mathcal{X}, i \in \mathbb{Z}, n \ge 0 \}$$

The elements of $L(\mathcal{X})$ are the blocks of \mathcal{X} .

Let \mathcal{X} be the least subshift containing

 $x = \cdots 32.211444333211443321443\cdots$

Then $L(X) = \{..., 3221, ...\}$

 $L(\mathcal{X}) = L(\mathcal{Y})$ if and only if $\mathcal{X} = \mathcal{Y}$.

Irreducible subshifts:

The language of a subshift

$$L(\mathcal{X}) = \{ u \in A^+ : u = x_i x_{i+1} \dots x_{i+n} \text{ for some } x \in \mathcal{X}, i \in \mathbb{Z}, n \ge 0 \}$$

The elements of $L(\mathcal{X})$ are the blocks of \mathcal{X} .

Let \mathcal{X} be the least subshift containing

 $x = \cdots 32.211444333211443321443\cdots$

Then $L(\mathcal{X}) = \{\dots, 3221, 32, 22, 1, 2, 3, \dots\}$

 $L(\mathcal{X}) = L(\mathcal{Y})$ if and only if $\mathcal{X} = \mathcal{Y}$.

Irreducible subshifts:

The language of a subshift

$$L(\mathcal{X}) = \{ u \in A^+ : u = x_i x_{i+1} \dots x_{i+n} \text{ for some } x \in \mathcal{X}, i \in \mathbb{Z}, n \ge 0 \}$$

The elements of $L(\mathcal{X})$ are the blocks of \mathcal{X} .

Let \mathcal{X} be the least subshift containing

 $x = \cdots 32.211444333211443321443\cdots$

Then $L(\mathcal{X}) = \{\dots, 3221, 32, 22, 1, 2, 3, 2114433, 4, 21, 11, \dots\}$

 $L(\mathcal{X}) = L(\mathcal{Y})$ if and only if $\mathcal{X} = \mathcal{Y}$.

Irreducible subshifts:

The language of a subshift

$$L(\mathcal{X}) = \{ u \in A^+ : u = x_i x_{i+1} \dots x_{i+n} \text{ for some } x \in \mathcal{X}, i \in \mathbb{Z}, n \ge 0 \}$$

The elements of $L(\mathcal{X})$ are the blocks of \mathcal{X} .

Let \mathcal{X} be the least subshift containing

 $x = \cdots 32.211444333211443321443\cdots$

 $L(\mathcal{X}) = L(\mathcal{Y})$ if and only if $\mathcal{X} = \mathcal{Y}$.

Irreducible subshifts:

The language of a subshift

$$L(\mathcal{X}) = \{ u \in A^+ : u = x_i x_{i+1} \dots x_{i+n} \text{ for some } x \in \mathcal{X}, i \in \mathbb{Z}, n \ge 0 \}$$

The elements of $L(\mathcal{X})$ are the blocks of \mathcal{X} .

Let \mathcal{X} be the least subshift containing

 $x = \cdots 32.211444333211443321443\cdots$

 $L(\mathcal{X}) = L(\mathcal{Y})$ if and only if $\mathcal{X} = \mathcal{Y}$.

Irreducible subshifts:

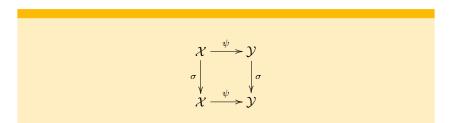
$$u, v \in L(\mathcal{X}) \Rightarrow \exists w : uwv \in L(\mathcal{X})$$

Profinite semigroups

э

Sac

Morphisms between subshifts



Isomorphic subshifts are called *conjugate*. An isomorphism is called *conjugacy*.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

Sliding block codes

Let $x \in A^{\mathbb{Z}}$. Given a map $g : A^m \to B$, we can code x through g:

• we make
$$y_i = g(x_{[i-k,i+l]})$$
.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

Sliding block codes

Let $x \in A^{\mathbb{Z}}$. Given a map $g : A^m \to B$, we can code x through g:

• we make
$$y_i = g(x_{[i-k,i+l]})$$
.
 $\dots x_{i-4} \boxed{x_{i-3}x_{i-2}x_{i-1}x_i} x_{i+1}x_{i+2}x_{i+3} \dots$

$$g \downarrow$$
 $\dots y_{i-2} \boxed{y_{i-1}} y_i y_{i+1}y_{i+2} \dots$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

Sliding block codes

Let $x \in A^{\mathbb{Z}}$. Given a map $g : A^m \to B$, we can code x through g:

• we make
$$y_i = g(x_{[i-k,i+l]})$$
.
 $\dots x_{i-4}x_{i-3} \boxed{x_{i-2}x_{i-1}x_{i}x_{i+1}} x_{i+2}x_{i+3} \dots$

$$g \downarrow$$
 $\dots y_{i-2}y_{i-1} \boxed{y_i} y_{i+1}y_{i+2} \dots$

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

Sliding block codes

Let $x \in A^{\mathbb{Z}}$. Given a map $g : A^m \to B$, we can code x through g:

• we make
$$y_i = g(x_{[i-k,i+l]})$$
.
 $\dots x_{i-4}x_{i-3}x_{i-2} \boxed{x_{i-1}x_ix_{i+l}x_{i+2}} x_{i+3} \dots$

$$g \downarrow$$
 $\dots y_{i-2}y_{i-1}y_i \boxed{y_{i+1}} y_{i+2} \dots$

ション ふゆ アメリア メリア しょうくしゃ

Sliding block codes

Let $x \in A^{\mathbb{Z}}$. Given a map $g : A^m \to B$, we can code x through g:

• we choose integers $k, l \ge 0$ such that m = k + l + 1;

• we make
$$y_i = g(x_{[i-k,i+l]})$$
.
 $\dots x_{i-4}x_{i-3}x_{i-2} \boxed{x_{i-1}x_ix_{i+1}x_{i+2}} x_{i+3} \dots$

$$g \downarrow$$
 $\dots y_{i-2}y_{i-1}y_i \boxed{y_{i+1}} y_{i+2} \dots$

If \mathcal{X} is a subshift of $A^{\mathbb{Z}}$ then the map $G : \mathcal{X} \to B^{\mathbb{Z}}$ defined by g is continuous and commutes with the shift operation; its image \mathcal{Y} is a subshift of $B^{\mathbb{Z}}$. We say that $G : \mathcal{X} \to \mathcal{Y}$ is a *sliding block code* with block map g, memory k and anticipation I, and we write $G = g^{[-k,I]}$.

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー つくで

Sliding block codes

Let $x \in A^{\mathbb{Z}}$. Given a map $g : A^m \to B$, we can code x through g:

• we choose integers $k, l \ge 0$ such that m = k + l + 1;

• we make
$$y_i = g(x_{[i-k,i+l]})$$
.
 $\dots x_{i-4}x_{i-3}x_{i-2} \boxed{x_{i-1}x_ix_{i+1}x_{i+2}} x_{i+3} \dots$

$$g \downarrow$$
 $\dots y_{i-2}y_{i-1}y_i \boxed{y_{i+1}} y_{i+2} \dots$

If \mathcal{X} is a subshift of $A^{\mathbb{Z}}$ then the map $G: \mathcal{X} \to B^{\mathbb{Z}}$ defined by g is continuous and commutes with the shift operation; its image \mathcal{Y} is a subshift of $B^{\mathbb{Z}}$. We say that $G: \mathcal{X} \to \mathcal{Y}$ is a *sliding block code* with block map g, memory k and anticipation I, and we write $G = g^{[-k,I]}$.

Theorem (Curtis-Hedlund-Lyndon, 1969)

The morphisms between subshifts are precisely the sliding block codes.

・ロト ・ 一下 ・ ト ・ 日 ・

Э

SQA

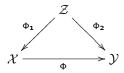
Decomposition Theorem

A sliding block code (respectively, a conjugacy) with memory and anticipation zero is called an 1-code (respectively, an 1-conjugacy).

Theorem (Williams, 1973)

Every code is the composition of an 1*-code with the inverse of an* 1*-conjugacy.*

 $\Phi=\Phi_2\circ\Phi_1^{-1}$



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Some conjugacy invariants

- The number $p_n(\mathcal{X})$ of points with period n.
- The zeta function

$$\zeta_{\mathcal{X}}(z) = \exp\left(\sum_{n=1}^{+\infty} \frac{p_n(\mathcal{X})}{n} z^n\right).$$

■ The *entropy*

$$h(\mathcal{X}) = \lim \frac{1}{n} \log_2 |L(\mathcal{X}) \cap A^n|.$$

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト

= 900

Edge shifts

- A subshift that is the set of bi-infinite paths on a graph is called an *edge subshift*.
- Vertices that are not in a bi-infinite path do not intervene in the definition of an edge subshift. Graphs without such vertices are called *essential graphs*.

 An edge subshift is irreducible if and only if the corresponding essential graph is strongly connected.

・ロト ・ 一下 ・ ト ・ 日 ・

Matrices of non-negative integers

An edge subshift is determined by its adjacency matrix.

Essential graphs correspond to matrices without null rows and null columns. Consider this kind of matrices only.

Let A be a square matrix of nonnegative integers and let Λ be the list of its non-zero eigenvalues, with corresponding multiplicities.

- If $\lambda_A = \max\{|\lambda| : \lambda \in \Lambda\}$ then $\lambda_A \in \Lambda$ and $h(\mathcal{X}_A) = log(\lambda_A)$;

• $\zeta_{\mathcal{X}_{\mathbf{A}}}$ and Λ determine each other.

・ロト ・ 日本 ・ 日本 ・ 日本 ・ 日本

Matrices of non-negative integers

An edge subshift is determined by its adjacency matrix.

Essential graphs correspond to matrices without null rows and null columns. Consider this kind of matrices only.

Let A be a square matrix of nonnegative integers and let Λ be the list of its non-zero eigenvalues, with corresponding multiplicities.

- If $\lambda_A = \max\{|\lambda| : \lambda \in \Lambda\}$ then $\lambda_A \in \Lambda$ and $h(\mathcal{X}_A) = log(\lambda_A)$;
- $\zeta_{\mathcal{X}_{\mathcal{A}}}(z) = [\det(I zA)]^{-1};$
- $\zeta_{\mathcal{X}_{\mathbf{A}}}$ and Λ determine each other.

・ロット (四) ・ (日) ・ (日)

Matrices of non-negative integers

An edge subshift is determined by its adjacency matrix.

Essential graphs correspond to matrices without null rows and null columns. Consider this kind of matrices only.

Let A be a square matrix of nonnegative integers and let Λ be the list of its non-zero eigenvalues, with corresponding multiplicities.

• If
$$\lambda_A = \max\{|\lambda| : \lambda \in \Lambda\}$$
 then $\lambda_A \in \Lambda$ and $h(\mathcal{X}_A) = log(\lambda_A)$;

- $= \zeta_{\mathcal{X}_{A}}(z) = [\det(I zA)]^{-1};$
- $\zeta_{\mathcal{X}_{A}}$ and Λ determine each other.

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Matrices of non-negative integers

An edge subshift is determined by its adjacency matrix.

Essential graphs correspond to matrices without null rows and null columns. Consider this kind of matrices only.

Let A be a square matrix of nonnegative integers and let Λ be the list of its non-zero eigenvalues, with corresponding multiplicities.

• If $\lambda_A = \max\{|\lambda| : \lambda \in \Lambda\}$ then $\lambda_A \in \Lambda$ and $h(\mathcal{X}_A) = log(\lambda_A)$;

•
$$\zeta_{\mathcal{X}_{A}}(z) = [\det(I - zA)]^{-1}$$

• $\zeta_{\mathcal{X}_{\mathbf{A}}}$ and Λ determine each other.

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Matrices of non-negative integers

An edge subshift is determined by its adjacency matrix.

Essential graphs correspond to matrices without null rows and null columns. Consider this kind of matrices only.

Let A be a square matrix of nonnegative integers and let Λ be the list of its non-zero eigenvalues, with corresponding multiplicities.

• If $\lambda_A = \max\{|\lambda| : \lambda \in \Lambda\}$ then $\lambda_A \in \Lambda$ and $h(\mathcal{X}_A) = log(\lambda_A)$;

•
$$\zeta_{\mathcal{X}_{A}}(z) = [\det(I - zA)]^{-1};$$

• $\zeta_{\mathcal{X}_{\mathbf{A}}}$ and Λ determine each other.

The conjugacy problem

Two square matrices of nonnegative integers are *elementary strong shift equivalent* if

A = RS and B = SR

for some matrices R, S of nonnegative integers. The transitive closure of this relation is called *strong shift equivalence*.

Theorem (Williams, 1973)

 \mathcal{X}_A and \mathcal{X}_B are conjugate if and only if A and B are strong shift equivalent.

Two square matrices of nonnegative integers are shift equivalent if

$$A^{l} = RS$$
 $B^{l} = SR$
 $AR = RB$ $SA = BS$

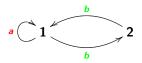
for some matrices R, S of nonnegative integers.

(Kim & Roush, 1990) Shift equivalence is decidable.
 (Kim & Roush, 1999) Strong shift equivalence implies shift equivalence, but the converse is false.

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Automata

- An automaton over an alphabet A is a semigroup action over a set Q of states.
- The graphical representation of an automaton is that of a labeled graph.
- The automaton is finite if A and Q are finite.
- A subshift \mathcal{X} is *sofic* if and only if it is *recognized* by an *essential* automaton.
- A sofic subshift is irreducible if and only if it is presented by a *strongly connected* essential automaton.

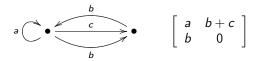


・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

5900

Symbolic matrices



Э

Sac

Fischer cover

Theorem

Every irreducible sofic subshift has a unique minimal strongly connected, deterministic, reduced presentation.

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

Back to symbolic matrices

Two symbolic adjacency matrices A and B are strong shift equivalent within Fischer covers if there is a sequence of symbolic adjacency matrices of Fischer covers

$$A = A_0, A_1, \ldots, A_{l-1}, A_l = B$$

such that for $1 \le i \le l$ the matrices A_{i-1} and A_i are elementary strong shift equivalent.

Theorem (Nasu, 1986)

Let \mathcal{X} and \mathcal{Y} be irreducible sofic subshifts and let A and B be the symbolic adjacency matrices of the Fischer covers of \mathcal{X} and \mathcal{Y} , respectively. Then \mathcal{X} and \mathcal{Y} are conjugate if and only if A and B are strong shift equivalent within Fischer covers.

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

Syntactic congruence

Let L be a language of A^+ . The *context of u in L* is the set

$$C_L(u) = \{(x, y) \in A^* \mid xuy \in L\}$$

Define

$$u \equiv_L v$$
 if and only if $C_L(u) = C_L(v)$.

Then \equiv_L is a congruence, the syntactic congruence of L. The quotient

$$S(L) = A^+ / \equiv_L$$

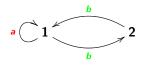
is the syntactic semigroup of L. The semigroup S(L) is finite if and only if it is recognized by a finite automata.

We denote by $S(\mathcal{X})$ the syntactic semigroup of $L(\mathcal{X})$. The semigroup $S(\mathcal{X})$ is finite if and only if it \mathcal{X} is sofic.

Transition semigroup

Each automaton has a transition semigroup defined by the action of the alphabet.

The transition semigroup of the Fischer cover of \mathcal{X} is $S(\mathcal{X})$.



Some elements of $S(\mathcal{X})$:

$$a = [1, _] = a^2, \quad b = [2, 1], \quad b^2 = [1, 2],$$

 $ab = [2, _], \quad aba = [_, _] = ab^3a.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

Green's relations

- Two elements s and t in a semigroup R are \mathcal{J} -equivalent if they generate the same principal ideal: $R^1 s R^1 = R^1 t R^1$.
- Two elements s and t in a semigroup R are \mathcal{R} -equivalent if they generate the same principal right ideal: $sR^1 = tR^1$.
- Two elements s and t in a semigroup R are \mathcal{L} -equivalent if they generate the same principal left ideal: $R^1 s = R^1 t$.
- $\bullet \ \mathcal{H} = \mathcal{R} \cap \mathcal{L}$
- $\mathcal{D} = \mathcal{R} \lor \mathcal{L}$. If S is finite then $\mathcal{J} = \mathcal{D}$.

Let *H* be an *H*-class. The subsemigroup T(H) of R^1 such that $H \cdot T(H) \subseteq H$ acts on *H*. If we identify elements of T(H) with the same action, we get a group $\Gamma(H)$, called the Schützenberger group of *H*.

- If H is a group then $\Gamma(H) \simeq H$
- If H_1 and H_2 are contained in the same \mathcal{D} -class then $\Gamma(H_1) \simeq \Gamma(H_2)$.

Egg-Box Diagram of a \mathcal{D} -class

	*						*
	*		*			*	
*				*			
*		*					
			*		*		

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

Structural invariants

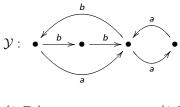
Given two \mathcal{D} -classes D_1 and D_2 , let $D_1 \prec D_2$ if the principal ideal generated by D_1 is contained in that generated by D_2 . The relation \prec is a pre-order (i.e. reflexive and transitive). If the semigroup is finite, then it is a partial order (i.e. reflexive, transitive, and anti-symmetric).

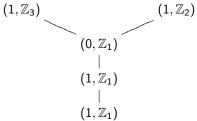
- Let $LU(\mathcal{X})$ be the set of *local units* of $S(\mathcal{X})$, that is, of elements s of $S(\mathcal{X})$ such that s = esf for some idempotents e and f.
- Let $(D(\mathcal{X}), \prec)$ be the partial pre-ordered set of the *D*-classes of $S(\mathcal{X})$ contained in $D(\mathcal{X})$.
- Label each element D of D(X) with the pair (ε, H), where ε = 1 if D contains an idempotent, ε = 0 if not, and H is the Schützenberger group of D.

Theorem (AC, 2006 + AC & B. Steinberg, ongoing)

The labeled pre-ordered set $D(\mathcal{X})$ is a conjugacy invariant.

Example





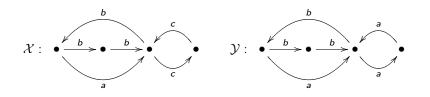
[2	$\begin{array}{c} 1, 2, 3, _ \\ 2, 3, 1, _ \\ 3, 1, 2, _ \\ \hline \\$		
*[1,_,_,1]	*[4,_,_,4]	[2, _, _, 2]	[3, _, _, 3]
*[1, _, _, _]	[4, _, _, _]	[2, _, _, _]	[3, _, _, _]
[_, 1, _, _]	[_, 4, _, _]	*[_, 2, _, _]	[_, 3, _, _]
[_,_,1,_]	[_, _, 4, _]	[_, _, 2, _]	*[_, _, 3, _]
	*[_,_	, _, _]	

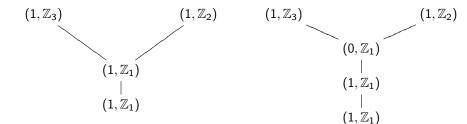
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

æ

5900

Example





◆ロト ◆聞ト ◆注ト ◆注ト

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

Key idea

To code words as we code bi-infinite sequences...

... and to see the effect in the syntactic congruence...

Often, it suffices to consider 1-conjugacies. The coding of words is then just a homomorphism between free semigroups.

Lemma

Let $\Phi = \phi^{[0,0]} \colon \mathcal{X} \to \mathcal{Y}$ be a conjugacy. Suppose Φ^{-1} has memory and anticipation k. Let u, v be words of length greater or equal than 2k such that

$$\mathbf{i}_{2k}(u) = \mathbf{i}_{2k}(v), \quad \mathbf{t}_{2k}(u) = \mathbf{t}_{2k}(v).$$

Suppose $v \in L(\mathcal{X})$. If $C_{L(\mathcal{Y})}(\phi(u)) \subseteq C_{L(\mathcal{Y})}(\phi(v))$ then $C_{L(\mathcal{X})}(u) \subseteq C_{L(\mathcal{X})}(v)$.

Proof.

• Let $(x, y) \in C_{L(\mathcal{X})}(u)$; this means $xuy \in L(\mathcal{X})$;

- $x'xuyy' \in L(\mathcal{X});$
- $\phi(x'xuyy') \in L(\mathcal{Y});$
- $\phi(x'x)\phi(u)\phi(yy') \in L(\mathcal{Y});$
- $\phi(x'x)\phi(v)\phi(yy') \in L(\mathcal{Y});$
- $\phi(x'xvyy') \in L(\mathcal{Y});$
- $\psi\phi(x'xvyy') \in L(\mathcal{X});$
- $\bullet \psi \phi(x' x v y y') = x v y.$

Lemma

Let $\Phi = \phi^{[0,0]} \colon \mathcal{X} \to \mathcal{Y}$ be a conjugacy. Suppose Φ^{-1} has memory and anticipation k. Let u, v be words of length greater or equal than 2k such that

$$\mathbf{i}_{2k}(u) = \mathbf{i}_{2k}(v), \quad \mathbf{t}_{2k}(u) = \mathbf{t}_{2k}(v).$$

Suppose $v \in L(\mathcal{X})$. If $C_{L(\mathcal{Y})}(\phi(u)) \subseteq C_{L(\mathcal{Y})}(\phi(v))$ then $C_{L(\mathcal{X})}(u) \subseteq C_{L(\mathcal{X})}(v)$.

- Let $(x, y) \in C_{L(\mathcal{X})}(u)$; this means $xuy \in L(\mathcal{X})$;
- $x'xuyy' \in L(\mathcal{X});$
- $\phi(x'xuyy') \in L(\mathcal{Y});$
- $\phi(x'x)\phi(u)\phi(yy') \in L(\mathcal{Y});$
- $\phi(x'x)\phi(v)\phi(yy') \in L(\mathcal{Y});$
- $\phi(x'xvyy') \in L(\mathcal{Y});$
- $\psi\phi(x'xvyy') \in L(\mathcal{X});$
- $\bullet \ \psi \phi(x' x v y y') = x v y.$

Lemma

Let $\Phi = \phi^{[0,0]} \colon \mathcal{X} \to \mathcal{Y}$ be a conjugacy. Suppose Φ^{-1} has memory and anticipation k. Let u, v be words of length greater or equal than 2k such that

$$\mathbf{i}_{2k}(u) = \mathbf{i}_{2k}(v), \quad \mathbf{t}_{2k}(u) = \mathbf{t}_{2k}(v).$$

Suppose $v \in L(\mathcal{X})$. If $C_{L(\mathcal{Y})}(\phi(u)) \subseteq C_{L(\mathcal{Y})}(\phi(v))$ then $C_{L(\mathcal{X})}(u) \subseteq C_{L(\mathcal{X})}(v)$.

- Let $(x, y) \in C_{L(\mathcal{X})}(u)$; this means $xuy \in L(\mathcal{X})$;
- $x'xuyy' \in L(\mathcal{X});$
- $\phi(x'xuyy') \in L(\mathcal{Y});$
- $\phi(x'x)\phi(u)\phi(yy') \in L(\mathcal{Y});$
- $\phi(x'x)\phi(v)\phi(yy') \in L(\mathcal{Y});$
- $\phi(x'xvyy') \in L(\mathcal{Y});$
- $\psi\phi(x'xvyy') \in L(\mathcal{X});$
- $\bullet \ \psi \phi(x' x v y y') = x v y.$

Lemma

Let $\Phi = \phi^{[0,0]} \colon \mathcal{X} \to \mathcal{Y}$ be a conjugacy. Suppose Φ^{-1} has memory and anticipation k. Let u, v be words of length greater or equal than 2k such that

$$\mathbf{i}_{2k}(u) = \mathbf{i}_{2k}(v), \quad \mathbf{t}_{2k}(u) = \mathbf{t}_{2k}(v).$$

Suppose $v \in L(\mathcal{X})$. If $C_{L(\mathcal{Y})}(\phi(u)) \subseteq C_{L(\mathcal{Y})}(\phi(v))$ then $C_{L(\mathcal{X})}(u) \subseteq C_{L(\mathcal{X})}(v)$.

- Let $(x, y) \in C_{L(\mathcal{X})}(u)$; this means $xuy \in L(\mathcal{X})$;
- $x'xuyy' \in L(\mathcal{X});$
- $\phi(x'xuyy') \in L(\mathcal{Y});$
- $\phi(x'x)\phi(u)\phi(yy') \in L(\mathcal{Y});$
- $\phi(x'x)\phi(v)\phi(yy') \in L(\mathcal{Y});$
- $\phi(x'xvyy') \in L(\mathcal{Y});$
- $\psi\phi(x'xvyy') \in L(\mathcal{X});$
- $\bullet \ \psi \phi(x' x v y y') = x v y.$

Lemma

Let $\Phi = \phi^{[0,0]} \colon \mathcal{X} \to \mathcal{Y}$ be a conjugacy. Suppose Φ^{-1} has memory and anticipation k. Let u, v be words of length greater or equal than 2k such that

$$\mathbf{i}_{2k}(u) = \mathbf{i}_{2k}(v), \quad \mathbf{t}_{2k}(u) = \mathbf{t}_{2k}(v).$$

Suppose $v \in L(\mathcal{X})$. If $C_{L(\mathcal{Y})}(\phi(u)) \subseteq C_{L(\mathcal{Y})}(\phi(v))$ then $C_{L(\mathcal{X})}(u) \subseteq C_{L(\mathcal{X})}(v)$.

- Let $(x, y) \in C_{L(\mathcal{X})}(u)$; this means $xuy \in L(\mathcal{X})$;
- $x'xuyy' \in L(\mathcal{X});$
- $\phi(x'xuyy') \in L(\mathcal{Y});$
- $\phi(x'x)\phi(u)\phi(yy') \in L(\mathcal{Y});$
- $\phi(x'x)\phi(v)\phi(yy') \in L(\mathcal{Y});$
- $\phi(x'xvyy') \in L(\mathcal{Y});$
- $\psi\phi(x'xvyy') \in L(\mathcal{X});$
- $\psi\phi(x'xvyy') = xvy.$

Lemma

Let $\Phi = \phi^{[0,0]} \colon \mathcal{X} \to \mathcal{Y}$ be a conjugacy. Suppose Φ^{-1} has memory and anticipation k. Let u, v be words of length greater or equal than 2k such that

$$\mathbf{i}_{2k}(u) = \mathbf{i}_{2k}(v), \quad \mathbf{t}_{2k}(u) = \mathbf{t}_{2k}(v).$$

Suppose $v \in L(\mathcal{X})$. If $C_{L(\mathcal{Y})}(\phi(u)) \subseteq C_{L(\mathcal{Y})}(\phi(v))$ then $C_{L(\mathcal{X})}(u) \subseteq C_{L(\mathcal{X})}(v)$.

- Let $(x, y) \in C_{L(\mathcal{X})}(u)$; this means $xuy \in L(\mathcal{X})$;
- $x'xuyy' \in L(\mathcal{X});$
- $\phi(x'xuyy') \in L(\mathcal{Y});$
- $\phi(x'x)\phi(u)\phi(yy') \in L(\mathcal{Y});$
- $\phi(x'x)\phi(v)\phi(yy') \in L(\mathcal{Y});$
- $\phi(x'xvyy') \in L(\mathcal{Y});$
- $\psi\phi(x'xvyy') \in L(\mathcal{X});$
- $\bullet \psi \phi(x' x v y y') = x v y.$

Lemma

Let $\Phi = \phi^{[0,0]} \colon \mathcal{X} \to \mathcal{Y}$ be a conjugacy. Suppose Φ^{-1} has memory and anticipation k. Let u, v be words of length greater or equal than 2k such that

$$i_{2k}(u) = i_{2k}(v), \quad t_{2k}(u) = t_{2k}(v).$$

Suppose $v \in L(\mathcal{X})$. If $C_{L(\mathcal{Y})}(\phi(u)) \subseteq C_{L(\mathcal{Y})}(\phi(v))$ then $C_{L(\mathcal{X})}(u) \subseteq C_{L(\mathcal{X})}(v)$.

- Let $(x, y) \in C_{L(\mathcal{X})}(u)$; this means $xuy \in L(\mathcal{X})$;
- $x'xuyy' \in L(\mathcal{X});$
- $\phi(x'xuyy') \in L(\mathcal{Y});$
- $\phi(x'x)\phi(u)\phi(yy') \in L(\mathcal{Y});$
- $\phi(x'x)\phi(v)\phi(yy') \in L(\mathcal{Y});$
- $\phi(x'xvyy') \in L(\mathcal{Y});$
- $\psi\phi(x'xvyy') \in L(\mathcal{X});$
- $\bullet \psi \phi(x' x v y y') = x v y.$

Lemma

Let $\Phi = \phi^{[0,0]} \colon \mathcal{X} \to \mathcal{Y}$ be a conjugacy. Suppose Φ^{-1} has memory and anticipation k. Let u, v be words of length greater or equal than 2k such that

$$i_{2k}(u) = i_{2k}(v), \quad t_{2k}(u) = t_{2k}(v).$$

Suppose $v \in L(\mathcal{X})$. If $C_{L(\mathcal{Y})}(\phi(u)) \subseteq C_{L(\mathcal{Y})}(\phi(v))$ then $C_{L(\mathcal{X})}(u) \subseteq C_{L(\mathcal{X})}(v)$.

- Let $(x, y) \in C_{L(\mathcal{X})}(u)$; this means $xuy \in L(\mathcal{X})$;
- $x'xuyy' \in L(\mathcal{X});$
- $\phi(x'xuyy') \in L(\mathcal{Y});$
- $\phi(x'x)\phi(u)\phi(yy') \in L(\mathcal{Y});$
- $\phi(x'x)\phi(v)\phi(yy') \in L(\mathcal{Y});$
- $\phi(x'xvyy') \in L(\mathcal{Y});$
- $\psi\phi(x'xvyy') \in L(\mathcal{X});$
- $\psi \phi(x' x v y y') = x v y$.

Free profinite semigroup generated by A

A semigroup S is profinite if it is compact and residually finite as a topological semigroup.

The latter condition means that there is a continuous homomorphism $\varphi: S \to F$ onto a finite semigroup (endowed with the discrete topology) such that $\varphi(s) \neq \varphi(t)$ whenever $s \neq t$.

For every profinite semigroup S,

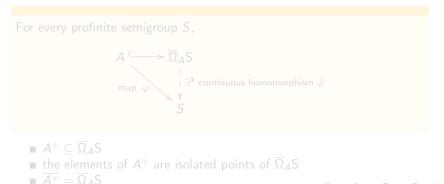
■ $A^+ \subseteq \overline{\Omega}_A S$ ■ the elements of A^+ are isolated points of $\overline{\Omega}_A S$ ■ $\overline{A^+} = \overline{\Omega}_A S$

ション ふゆ マ キャット トレート ション

Free profinite semigroup generated by A

A semigroup S is profinite if it is compact and residually finite as a topological semigroup.

The latter condition means that there is a continuous homomorphism $\varphi: S \to F$ onto a finite semigroup (endowed with the discrete topology) such that $\varphi(s) \neq \varphi(t)$ whenever $s \neq t$.



ション ふゆ マ キャット トレート ション

Free profinite semigroup generated by A

A semigroup S is profinite if it is compact and residually finite as a topological semigroup.

The latter condition means that there is a continuous homomorphism $\varphi: S \to F$ onto a finite semigroup (endowed with the discrete topology) such that $\varphi(s) \neq \varphi(t)$ whenever $s \neq t$.

For every profinite semigroup S, $A \xrightarrow{\frown} \overline{\Omega}_{A}S$ $\lim_{map \varphi} \int_{Y}^{|} \exists^{1} \text{ continuous homomorphism } \hat{\varphi}$ $A^{+} \subseteq \overline{\Omega}_{A}S$ $Ihe elements of A^{+} are isolated points of \overline{\Omega}_{A}S$

•
$$\overline{A^+} = \overline{\Omega}_A S$$

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト

3

SQA

Taking the topological closure

Let \mathcal{X} be a subshift of $A^{\mathbb{Z}}$. We can consider the topological closure of $L(\mathcal{X})$ in $\overline{\Omega}_A S$, denoted $\overline{L(\mathcal{X})}$.

One-to-one mappings

 $\mathcal{X} \mapsto \mathcal{L}(\mathcal{X}) \mapsto \overline{\mathcal{L}(\mathcal{X})} \mapsto \overline{\mathcal{L}(\mathcal{X})} \setminus \mathcal{A}^+$

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

The $\mathcal J$ -class associated to $\mathcal X$

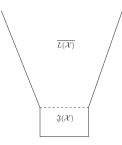
Irreducible subshifts:

$$u, v \in L(\mathcal{X}) \Rightarrow \exists w : uwv \in L(\mathcal{X})$$

As a subset of $\overline{\Omega}_A S$, the set $\overline{L(\mathcal{X})}$ contains a unique \mathcal{J} -minimal class, denoted $\mathcal{J}(\mathcal{X})$, which is regular.

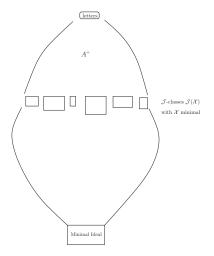
One-to-one mapping

 $\mathcal{X}\mapsto\mathcal{J}(\mathcal{X})$



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

590



ション ふゆ アメリア メリア しょうくしゃ

The maximal subgroup

Theorem (AC (2006) but announced by J. Almeida (2003))

The maximal subgroup $G(\mathcal{X})$ of $\mathcal{J}(\mathcal{X})$ is a conjugacy invariant.

The group $G(\mathcal{X})$ was determined for several classes of minimal shifts:

- (J. Almeida, 2005) If \mathcal{X} is Arnoux-Rauzy of degree $k \in \mathbb{N}$ then $G(\mathcal{X})$ is free profinite of finite rank k.
- (J. Almeida, 2005) Examples were given such that $G(\mathcal{X})$ is not free profinite, and...
- (J. Almeida & AC, 2010)... a presentation was given in some of these cases (e.g. Prouhet-Thue-Morse shift)

・ロト ・得ト ・ヨト ・ヨト ・ヨ

Sac

Sofic case

Theorem (AC & B. Steinberg, 2010)

If \mathcal{X} is an irreducible non-periodic sofic subshift then $G(\mathcal{X})$ is a free profinite group of countable rank.

The proof of this result relies on a refinement of arguments used in the proof by B. Steinberg of the particular case concerning the maximal subgroup of the minimal ideal.

- A subset Y of a profinite group G converges to the identity if each neighborhood of the identity contains all but finitely many elements of Y.
- A free profinite group on a subset Y converging to the identity is a profinite group $F := \overline{\Omega}_Y G$ generated by Y (with the further demand that Y is converging to the identity), such that every continuous map τ from Y into a profinite group H such that $\tau(Y)$ converges to the identity can be extended to a unique continuous group homomorphism $\hat{\tau} : \overline{\Omega}_Y G \to H$.

To prove a metrizable profinite group G is a free of countable rank:

For every finite group H, and every α , φ continuous onto homomorphisms, there is a continuous homomorphism $\tilde{\varphi}$...

- A subset Y of a profinite group G converges to the identity if each neighborhood of the identity contains all but finitely many elements of Y.
- A free profinite group on a subset Y converging to the identity is a profinite group $F := \overline{\Omega}_Y G$ generated by Y (with the further demand that Y is converging to the identity), such that every continuous map τ from Y into a profinite group H such that $\tau(Y)$ converges to the identity can be extended to a unique continuous group homomorphism $\hat{\tau} : \overline{\Omega}_Y G \to H$.

To prove a metrizable profinite group G is a free of countable rank:

For every finite group H, and every α , φ continuous onto homomorphisms, there is a continuous homomorphism $\tilde{\varphi}$...

・ロト ・ 一下 ・ ト ・ 日 ・

э.

SQA

Reduction on the type of subshift to be considered

Lemma

Let \mathcal{Y} be an irreducible sofic subshift of $B^{\mathbb{Z}}$. Then there is a conjugate irreducible sofic subshift \mathcal{X} of $A^{\mathbb{Z}}$, an idempotent $e \in J(\mathcal{X})$ and a word z so that $e = z^{\omega}e$ and $alphabet(z) \subsetneq alphabet(\mathcal{X})$.

Since $G(\mathcal{X})$ is a conjugacy invariant:

We can suppose

 $alphabet(z) \subsetneq alphabet(\mathcal{X})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Open problems and bibliography

- To investigate the dynamical meaning of the semigroup invariants.
- To compute the profinite group *G*(*X*) for more subshifts. When is it decidable?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Bibliography

- D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1996.
- J. Almeida, *Profinite semigroups and applications*, Structural Theory of Automata, Semigroups and Universal Algebra (New York) (V. B. Kudryavtsev and I. G. Rosenberg, eds.), Springer, 2005, pp. 1–45.
- Rhodes and Steinberg:2009, The q-theory of finite semigroups, Springer Monographs in Mathematics, Springer, New York, 2009.
- A. Costa, Conjugacy invariants of subshifts: an approach from profinite semigroup theory, Int. J. Algebra Comput. 16 (2006), no. 4, 629–655.
- A. Costa and B. Steinberg, *Profinite groups associated to sofic shifts are free*, Proc. London Math. Soc., (2010); doi: 10.1112/plms/pdq024.
- J. Almeida and A. Costa, Presentations of schützenberger groups of minimal subshifts, arXiv:1001.1475v1 [math.GR].