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Double infinite Toda Lattice

The Toda lattice

We study the construction of some solutions
{an(t), An(t)}, n € Z, of the Toda complex lattice
n(t) = Apya(t) —A3(1)

- Anpi(t , nES, (1)
foa(®) = 22 () (o)
from another given solution {a,(t), Aa(t)}, n € Z.

We consider:

1. the semi-infinite problem: S=N, A\ =0,
2. the infinite problem: S =12,

In [P] the semi-infinite complex problem was analyzed. In the real,
infinite case, sufficient conditions for the existence of a new
solution were given in [GHSZ].

The problem: obtain a similar result to the complex infinite Toda
lattice.
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Double infinite Toda Lattice

The generalized Toda lattice

In a more general way, when S = N we consider the generalized
Toda lattice of order p € N (see [AB]),

Jnn(t) = Jn,n+1(t)-/rl73,n+1(t) - Jn—l,n(t)-/ﬁ—l,n(t)
Jnnir(®) = 3nnia(€) [JBispia(8) = JEa(2)]
where we denote by J; j(t) (respectively Jﬁj(t)) the entry in the

(i 4+ 1)-row and (j + 1)-column of matrix J(t) (respectively (J(t))P,
oq(t) /\g(t)

J(t) =1 Xa(t) ax(t) - , teR.

()

The generalized Toda lattice admits a Lax pair representation, i.e.
a formulation in terms of the commutator of two operators,

J(t) = [J(1), K(1)] = J(t)K (1) — K(£)J(t),
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Double infinite Toda Lattice

The generalized Toda lattice (cont.)

where for t € R

0 () e S 0
Jor (1) 0 —Jp(t) '
1 : | '
K= | &0
0 prﬂ(t)
0

In [Theorem 1.1, ABM], given a solution J(t) of (2), for each
C € C verifying

det(Jn(t) — CL,) £0, neN, (3)

we prove the existence of
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Double infinite Toda Lattice

The generalized Toda lattice (cont.)

verifying
é%-}-l(t) = Vo (t)V3na(t) s an(t) =73, 1(t) +73,(t) + C
M1 (1) = Vp1 (DV3n12(t) s n(t) = 23,(t) +23,,1(t) + C

such that _T(t) is another solution of (2), and I'(t) is a solution of
the Volterra lattice:

Fo1n(t) = Fn-1a(t) [(P2(0) + €T3 — (P2(0) + CVEy o]
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Double infinite Toda Lattice

The new solutions and the Darboux transformation

The matrix J(t) t defines the sequence of polynomials given by

Pa(t,z) = (z — an(t))Pa-1(t, z) — N2(t)Pp_o(t,z), nEN,
P_i(t,z) =0, Py(t,z) = 1.
The main tools in the proof of [Theorem 1.3, ABM]:

a. We have established the dynamic behavior of Pj(t, z),
P.(t, z) Z P i (OAnji2(t) o Anga(t)Poj(t, 2)

b. As was proposed in [P], we use the kernel polynomials (cf. [C])
P C
Vt.2) = Poa(t,z) — Bt p (1 7)

Pn(t,C)
z—C

where C € C verifies (3). The sequence Q,(,C)(t, C) satisfies a

three-term recurrence relation whose coefficients define the

new generalized solution J(t) = J(t, C)
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The new solutions and the Darboux transformation

If we define JA)(t) := .| and

C € C verifies (3), then there exist L(t) =
%5(t) , 1 2(t) 2
1 (1) . U(t) = 1 s(t)

such that J(t) — CI = L(t)U(t). The new solution is defined by
the Darboux transformation of J)(t) — CT1 = U(t)L(t), where

a(t) M(t)?
JO(t) = 1 () As(t)?
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The infinite Toda lattice

Let us consider (1) with S = Z and take the infinite matrix

a—1(t)  Ao(t)
J = /\o(t) ao(t) )\1(1‘)

The infinite Toda lattice admits also a Lax pair representation.
Taking R, := (f, f_n+1)T , n €N, itis possible to change the
infinite recurrence relation for n € Z

Ant1(t)fno1(t, 2) + (ane1 — 2)fa(t, 2) + Ang2(t) far1(t,z) =0,

to a semi-infinite recurrence relation for n € N

En(t)Rn-1(t,z) + (Va(t) — zk) Rn(t, z) + Ent1(t)Rp+1(t, z) =0,
where E,,, V., m € N, are 2 x 2-finite matrices.
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The infinite Toda lattice (cont.)

In this way, we can study the infinite case as a semi-infinite
vectorial case. The vectors R, are not polynomials, but we can
prove R, = (Ez--- E,,)_1 CoR1,
where the sequence {C,} of 2 x 2 matrices verifies for all n € N
Egcnfl + (Vn(t) - 2/2) Cn + Cn+1 =0 }
CG=0, GG=bh

e, C,— ( cn(t,z) cma(t,2) >

cn3(t,z) cpa(t, 2)
and for each i = 1,2,3,4, cy,; is a polynomial in z, degc,; < n—1.
Taking -1 := < é _01 ) , W, =1_1V,, n€ N, we can show

W, = E2,—E? }
. n n n=2.3,... 4
En+1 = %En—&—l(Wn—H - Wn) ( )
This is, {W,, E,} is a solution of a semi-infinite matricial Toda

lattice, like (1).
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The infinite Toda lattice and the Darboux transformation

We define

Vi E2

b Vo EZ
JB) .~ ’

L V3

Let C € C be such that
det (Jéf)(t) - Clgn) #0, teR,neN. Then, we know (see
[IB]) that there exist two blocked matrices

A h T1

L A h T»

B) ._ B) ._
1(B) .— b As , UB .=

)

such that J(B) — CI = L(B)y(B).
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The infinite Toda lattice and the Darboux transformation

(cont.)

We define the blocked Darboux transformation of J(B) — CI as
JB) _ ¢l .= yBIB) =
Vi — Ch E?
I Vo — Ch E32

b Vs — Ch

We are researching the two following questions:

1. Can we construct a vectorial solution of the Toda lattice,
like (4), from J(B) — CI?

2. Are the (scalar) entries of J(B) a new solution of the Toda
lattice (1)7
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Bogoyavlenskii lattice

Characterization of solutions of some integrable systems by using
matrical moments

Bogoyavlenskii lattice: Systems is given by
J=[J,M] =JIM — MJ, with:

0 1
M = (i)
o o 0 1 {0, i<
J=1a 0o - 0 1 "Y’J_{ﬁ,-j L P>
a 0 -+ 0 1
where JPT1 = (8;)
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Introduction

We study the Bogoyavlenskii lattice
P P

an(t) = an(t) Z an+i(t) — Z 3n—i(t)] (5)
i=1 i=1

& J=[J,M]=JM—MJ, J,M given above.

@ We analyze the relationship between the solutions of (5) and the
dynamic behavior of (zZ — J(t))™* .

e We use, as a main tool, the sequence {P,} of polynomials given by
the recurrence relation
ZPn(Z):Pn+1(z)+an—p+lpn—P(z)? n:p7p+17-" (6)
Pi(z)=2'", i=0,1,...,p

@ The method of investigation is based on the analysis of the
moments for J. We study the dynamic behavior of the moments.
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Bogoyavlenskii lattice

Vector orthogonality

From the recurrence relation (6) we have
2Pnp(2) = Prp+1(2) + a(m-1)p+1P(m-1)p(2)

ZP(erl)p,l(Z) = P(m+1)p(2) + ammep_l(z) .

Then, denoting Bm(z) = (Pmp(2), Pmp1(2)s - -+ Pms1)p-1(2))
we can rewrite (6) as

zBm(z) = ABmi1(2) + BBm(2) + CBm-1(z), m e N, ;
871:(0,...,0)7-,Bo(z):(l,z,...,zp_l)T (7)

where  Cp, = diag {a(m—1)p+1> Am—1)p+2 - - - » amp }»

00 --- 0 0 1

U TP I
00 --- 0 0 1
1 0 0 0
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Vector orthogonality

Let P be the space of polynomials. We know (see Theorem 3.2 in
[¥]) that there exist p linear moment functionals u?, ..., uP from P
to C such that for each s € {0,1,..., p — 1} the following
orthogonality relations are satisfied

ny i =0,1,....mi=1,...
U2 Prpas(2)] = 0 for {7 = o= s (8)
j=01...m—1i=s+1....p

[¥] J. Van Iseghem, Vector orthogonal relations. Vector
Q@D-algorithm, J. Comput. Appl. Math. 19 (1987), 141-150.
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Vector orthogonality

We consider PP := {(q1,...qp)" : i polynomial, i =1,...,p},
Mpxp = (p X p)-matrices with complex entries. We define

q1 ull] .. wPlai]
W:PP— Mpxp, WL | = : - :
ap “1[qp] oo UP[gp)
In particular, for m,j € {0,1,...} we have
U 2 Prp(2)] . UP[Z Prp(2)]
W (2/Bn) = : : :
ul[sz(m+1)p_1(z)] . up[sz(m+1)P_1(z)]

Then, the orthogonality conditions (8) can be reinterpreted as
W(#ZB,)=0, j=01,....m—1.
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Vector orthogonality

For a fixed M € M, we define the function

qi q1
U/\/I:Pp—>./\/lp><p, Upm | =W| : M.
dp dp

(Briefly, we write Upy = WM .) For any M € My p, from
W(2B,)=0,j=0,1,...,m—1, we have

Un(ZBm) =0, j=0,1,....m—1. (9)

Definition

We say that Uy, verifying (9), is a vector of functionals defined by
the sequence {B,}. Also, we say that {85,} is a sequence of
vectorial polynomials orthogonal with respect to Uy.
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Vector orthogonality

More generally, let {v!,... vP} be a set of linear functionals.

The function V : PP — My, given by

q via] ... vPlad]
visl=1 ¢+ - i M
dp Vl[qp] o vP[gp]
for each (qu,. .., qp)T € PP is called vector of functionals

associated with the linear functionals v!,..., v and with the
regular matrix My, € M.

It is easy to see that, for any vector of functionals V, we have
V(Q1+ Q2) =V(Q1) +V(Q2), for Q1,Q9, € PP, (10)
V(M Q) = MV(Q), for Q€ PP and M € Mpy,. (11)
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Vector orthogonality

As a consequence of (10)-(11), if Uy is a vector of functional
defined by the sequence {B,}, using the recurrence relation (7)
and the orthogonality we have:

Un (2"Bp) = Un (27 ABmy1 + 2" BBy + 2™ 1 CnBm-—1)
=AUy (mel Bm+1) + BUp (mel Bm) + Clpm (mel Bm_l)
= CmUn (2" 1 Bm_1) = (iterating ) = CnCrm_1--- C1Unm (Bo)

In the sequel we assume W (By) a regular matrix, U := Uy for

M = (W(Bo)) ™ . Then, U is the vector of functionals determined
by the conditions

U(ZBpm) =Dmbmj, m=12..., j=01,...,m,
Ap=CnCn1-C, UBo)=1I,.
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Vectorial moments

We will use the vectorial polynomials
-
Pn="Pn(z) = (z”p,z"”H, e ,z("H)p*l) , n=0,1,....

(In particular, Py = By.)

Definition

Given a vector of functionals V, for each m =0, 1, ..., the matrix
V (z™Py) is called moment of order m for V.

We are going to use the moments associated with the vector of
functionals U.

For each n=0,1,... we have
U (2" Po) = Ji1 , where JJ} is the finite matrix formed by the first
p rows and columns of J".

Amilcar Branquinho Integrable systems and multiple orthogonal polynomials



Bogoyavlenskii lattice

Connection with operator theory

We assume J = J(t) be a bounded operator. Then we know:

Jn
CZT-J)"t= ZWa 1<l >[I
n>0
We take Jn
R =T -Dyq =) <n1+11 .Sl > I
n>0

where (¢Z — J)l_l1 denotes the finite matrix given by the first p
rows and columns of (¢Z — J)~ .

We are interested in studying the evolution of R ({). In the
sequel, we assume

an(t) #0, |an(t)] < M, foralneNand t €R.
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The main results

In the above conditions, the following statements are equivalent:

(a) a = ap(t [Z anti(t) — Za,,_,-(t)] , neN.
i=1

(b) For each m,k=0,1,..., we have

Ly (24 Pm) =t (272 P ) — U (2 Pm) U (2 P1).

dt
(c) We have
ERA) = RAQ) [T, (= Pr)] = Do ok uh (4P
k=0

for all ¢ € C such that |¢]| > ||J]|.
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The main results

We can obtain explicitly the resolvent function in a neighborhood
of ( = o0o. Let S(¢) = (s;(¢)) be the (p x p)-matrix with entries

¢ (Pl

k=0
i,j=1,...,p, where (Jfl),.j is the entry corresponding to the row
i and the column j in the (p x p)-block J{}.

We have:

Under the conditions of Theorem 1, if (a) holds, then

Ry(Q) =~ eS(()e T
for each ¢ € C such that [¢] > ||J]|.
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Full Kostant-Toda lattice

Characterization of solutions of some integrable systems by using
matrical moments

Full Kostant-Toda lattice: Systems is given by
J=1[J,M] = JIM — MJ, with:

a 1 0

by a 1 by O
J=|a b a | pm=|a by 0

0 o bz . 0 c b3
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The full Kostant-Toda lattice

We consider the system

én = bn_bnfl

b, = bn(ant1 — an) + o — Cn—1 , neN. (12)
‘.:n - Cn(an+2 - an)
We assume by =0, ¢, # 0. We can write (12) as J = JJ_ — J_J,
where
ail 1 0
b1 an 1 bl 0
J=| a b a3 =@ k0
0 o b3 0 o b3
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Notation

We use a similar notation as before. We consider the sequence of
polynomials {P,} given by

ch-1Pn_2 + byPn_1 + (a,,+1 — Z)Pn + Pn+1 =0,n=0,1,... (13)
Po=1, P.1=P =0

Taking B, = (Pam, P2m+1)T, we can rewrite (13) as
CoBno1 + (Bn+1 - ZI2)Bn +ABp1 =0, n=0,1,... }

B.1=0, Bo=(lLz-a)"
where, for n € N,

_ (00 _ [ cn-1 ban [ am 1
A_<1 O>’C”_< 0 ) P by a
and (p is an arbitrary 2 x 2 matrix.
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Main results: Theorem 3

We want to study the solutions of the full Kostant-Toda system in
terms of J and the polynomials {P,}, {B,}.

Theorem 3

Assume K € R, such that max{|an(t)|, |bn(t)|, |ca(t)|} < M for
all n € N and t € R. Then, the following conditions are equivalent:

{an, bn, cp} is a solution of the full Kostant-Toda system.

(3)
(b) < = S — B+ [y, (D )agl n =01,

(©) Ry(0) = RAQCT2 — Br) — To + [Ry(0), (U )l €] > 1]
(d)

d) By = —C,B,_1 — D,B, . where D, — < U ) .
bont1 O

a

b
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Vector orthogonality

From the recurrence relation for {P,} we know: There exist linear
functionals u!, u? such that

(14)

U2 Pom) = U'[ZPamy1] =0,/ =0,1,...,m—1,i = 1,2,
ul[ZmP2m+1] =0.

Definition
If the functionals u?, u? verify (14), then we say that the function
W : P2 — Moyo given by

w (%)= (sl clal)

is a vector of functionals associated with {Pp}.
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Vector orthogonality

W is a vector of functionals associated with {P,}
= W(ZB,)=0, j=0,1,....,m—1. (15)

Definition

A function W : P2 — Moy verifying (15) is called orthogonality
vector of functionals for the sequence {B,}.

If W is a vector of functionals associated with {P,}
= W is an orthogonality vector of functionals associated with

{Bn}

— Wy <Zl) =W (Zl> M is an orthogonality vector of
) 2

functionals associated with {B,} .
We assume W a fixed vector of functionals associated with {P,}

such that W (Bp) is an invertible matrix.
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Vector orthogonality

In the sequel we take

Co = < _131 ° ) . M=(W(Bo) G, U=Wny
= U(Bo) = . (16)
From the recurrence relation for {B,},

U(z"Bm) = Cud (2" 1Brm_1), meN. (17)
Using (16) and (17)

. 0 j=
J — )
“(ZB"’)‘{ CnCmn Co o j=m.
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Matrical moments

We use the vectors Pp, = Pm(z) = (22™, 22™11) T

Definition

For each m=0,1,..., the matrix U (z™Pp) is called moment of
order m for the vector of functionals U/.

In particular: By = CoPo = U (Po) =

We define the derivative of & = U; as usual,

dﬂ(B) T U{t+ At}(fz —U{t}(B)

= L (U(B) =Y B)+UB), VBeTP?.

We define the function of the moments as
FiQ) = CG'RH)G, ¢ >[I
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Main results: Theorem 4

We will see that Theorem 3 is a direct consequence of the
following result:

Theorem 4

In the conditions of Theorem 3, assume a; = b;. Then, the
following assertions are equivalent:

(e) {an, bn, cn}, n € N, is a solution of the full Kostant-Toda
system.

) d

(g) Fu(C) = Fy(¢) (CTr —U(zPo)) — T2, ¢ > ] -
) (Su4) (B) = uGeB) ~u(B (P, B < P

B

n— —Cabn1 — DB, n=0,1,....

Amilcar Branquinho Integrable systems and multiple orthogonal polynomials



Full Kostant-Toda lattice

References

[§ A.l Aptekarev, A. Branquinho, F. Marcelldn, 1997, Toda-type
differential equations for the recurrence coefficients of

orthogonal polynomials and Freud transformation, J. Comput.
Appl. Math. 78, 139-160

4 A.l Aptekarev, A. Branquinho, 2003, Padé approximants and
complex high order Toda lattices, J. Comput. Appl. Math.
155, 231-237

ERY Aptekarev, V. Kaliaguine, and J. Van Iseghem, The Genetic
Sums’ Representation for the Moments of a System of Stieltjes
Functions and its Application, Constr. Approx. 16(4) (2000),
487-524.

[§ D. Barrios Rolanfa and A. Branquinho, Complex high order
Toda lattices, J. Difference Equations and Applications, 15(2)
(2009), 197-213.

Amilcar Branquinho Integrable systems and multiple orthogonal polynomials



Full Kostant-Toda lattice

References

@ D. Barrios Rolania, A. Branquinho, and A. Foulquié Moreno,
Dynamics and interpretation of some integrable systems via
multiple orthogonal polynomials, J. Math. Anal. Appl., 361(2)
(2010), 358-370.

@ D. Barrios Rolania, A. Branquinho, and A. Foulquié Moreno,
On the relation between the full Kostant-Toda lattice and
multiple orthogonal polynomials, Accepted for publications on
J. Math. Anal. Appl., DOI: 10.1016/j.jmaa.2010.10.044.

[§ O.1. Bogoyavlenskii, Some constructions of integrable
dynamical systems, lzv. Akad. Nauk SSSR, Ser Mat. 51(4)
(1987), 737-766 (in Russian); Math. USSR Izv. 31(1) (1988),
47-75.

Amilcar Branquinho Integrable systems and multiple orthogonal polynomials



Full Kostant-Toda lattice
References

[ Chihara, T. S., 1978, An Introduction to Orthogonal
Polynomials. New York, Gordon and Breach Science Pub.

[§ F. Gesztesy, H. Holden, B. Simon, and Z. Zhao. On the Toda
and Kac-van Moerbeke systems. Trans. Am. Math. Soc.,
339(2) (1993) 849-868.

@ E. Isaacson, H. Bishop Keller, Analysis of Numerical Methods.
New York, Courant Inst. of Math. Sci., John Wiley & Sons,
Inc.

[ M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials
in one variable, Encyclopedia of Mathematics and its
Applications 98, Cambridge Univ. Press, 2005, Cambridge.

[4 F. Peherstorfer, On Toda lattices and orthogonal polynomials,
J. Comput. Appl. Math. 133 (2001) 519-534.

Amilcar Branquinho Integrable systems and multiple orthogonal polynomials



	Double infinite Toda Lattice
	Bogoyavlenskii lattice
	Full Kostant-Toda lattice

