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The Toda lattice

We study the construction of some solutions

{∼αn(t) ,
∼
λn(t)} , n ∈ Z , of the Toda complex lattice

α̇n(t) = λ2
n+1(t)− λ2

n(t)

λ̇n+1(t) =
λn+1(t)

2
[αn+1(t)− αn(t)]

 , n ∈ S , (1)

from another given solution {αn(t) , λn(t)} , n ∈ Z.
We consider:

1. the semi-infinite problem: S = N, λ1 = 0,
2. the infinite problem: S = Z,

In [P] the semi-infinite complex problem was analyzed. In the real,
infinite case, sufficient conditions for the existence of a new
solution were given in [GHSZ].
The problem: obtain a similar result to the complex infinite Toda
lattice.

Aḿılcar Branquinho Integrable systems and multiple orthogonal polynomials



Double infinite Toda Lattice Bogoyavlenskii lattice Full Kostant-Toda lattice

The generalized Toda lattice

In a more general way, when S = N we consider the generalized
Toda lattice of order p ∈ N (see [AB]),

.
J nn(t) = Jn,n+1(t)Jp

n,n+1(t)− Jn−1,n(t)Jp
n−1,n(t)

.
J n,n+1(t) = 1

2 Jn,n+1(t)
[
Jp
n+1,n+1(t)− Jp

n,n(t)
]  (2)

where we denote by Ji ,j(t) (respectively Jp
i ,j(t)) the entry in the

(i + 1)-row and (j + 1)-column of matrix J(t) (respectively (J(t))p,

J(t) =


α1(t) λ2(t)

λ2(t) α2(t)
. . .

. . .
. . .

 , t ∈ R .

The generalized Toda lattice admits a Lax pair representation, i.e.
a formulation in terms of the commutator of two operators,
.

J (t) = [J(t),K (t)] = J(t)K (t)− K (t)J(t) ,
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The generalized Toda lattice (cont.)

where for t ∈ R

K (t) =
1

2



0 −Jp
01(t) · · · −Jp

0p(t) 0 · · ·

Jp
01(t) 0 −Jp

12(t) · · · . . .
...

. . .
. . .

. . .

Jp
0p(t)

0 Jp
1,p+1(t)

. . .

... 0
. . .


.

In [Theorem 1.1, ABM], given a solution J(t) of (2), for each
C ∈ C verifying

det(Jn(t)− C In) 6= 0 , n ∈ N , (3)

we prove the existence of
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The generalized Toda lattice (cont.)

∼
J (t) =


∼
α1(t)

∼
λ2(t)

∼
λ2(t)

∼
α2(t)

. . .
. . .

. . .

 Γ(t) =


0 γ2(t)

γ2(t) 0
. . .

. . .
. . .


verifying

λ2
n+1(t) = γ2

2n(t)γ2
2n+1(t) , αn(t) = γ2

2n−1(t) + γ2
2n(t) + C

∼
λ2

n+1(t) = γ2
2n+1(t)γ2

2n+2(t) ,
∼
αn(t) = γ2

2n(t) + γ2
2n+1(t) + C

}
such that

∼
J (t) is another solution of (2), and Γ(t) is a solution of

the Volterra lattice:

Γ̇n−1,n(t) =
1

2
Γn−1,n(t)

[
(Γ2(t) + C I)p

nn − (Γ2(t) + C I)p
n−1,n−1

]
.
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The new solutions and the Darboux transformation

The matrix J(t) t defines the sequence of polynomials given by

Pn(t, z) = (z − αn(t))Pn−1(t, z)− λ2
n(t)Pn−2(t, z), n ∈ N ,

P−1(t, z) ≡ 0, P0(t, z) ≡ 1 .

}
The main tools in the proof of [Theorem 1.3, ABM]:

a. We have established the dynamic behavior of Pn(t, z),

Ṗn(t, z) = −
p∑

j=1

Jp
n,n−j(t)λn−j+2(t) . . . λn+1(t)Pn−j(t, z) ,

b. As was proposed in [P], we use the kernel polynomials (cf. [C])

Q
(C)
n (t, z) =

Pn+1(t, z)− Pn+1(t,C)
Pn(t,C) Pn(t, z)

z − C
.

where C ∈ C verifies (3). The sequence Q
(C)
n (t,C ) satisfies a

three-term recurrence relation whose coefficients define the
new generalized solution J̃(t) = J̃(t,C )
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The new solutions and the Darboux transformation

If we define J(1)(t) :=


α1(t) λ2(t)2

1 α2(t) λ3(t)2

1 α3(t)
. . .

. . .
. . .

 and

C ∈ C verifies (3), then there exist L(t) = γ2
2(t)
1 γ2

4(t)
. . .

. . .

 , U(t) =

 1 γ2
3(t)
1 γ2

5(t)
. . .

. . .


such that J(1)(t)− C I = L(t)U(t) . The new solution is defined by
the Darboux transformation of J(1)(t)− C I = U(t)L(t) , where

J̃(1)(t) :=

 α̃1(t) λ̃2(t)2

1 α̃2(t) λ̃3(t)2

. . .
. . .

. . .

 .
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The infinite Toda lattice

Let us consider (1) with S = Z and take the infinite matrix

J =



. . .
. . .

. . . α−1(t) λ0(t)

λ0(t) α0(t) λ1(t)

λ1(t) α1(t)
. . .

. . .
. . .


The infinite Toda lattice admits also a Lax pair representation.
Taking Rn := (fn f−n+1)T , n ∈ N , it is possible to change the
infinite recurrence relation for n ∈ Z
λn+1(t)fn−1(t, z) + (αn+1 − z)fn(t, z) + λn+2(t)fn+1(t, z) = 0 ,
to a semi-infinite recurrence relation for n ∈ N
En(t)Rn−1(t, z) + (Vn(t)− zI2)Rn(t, z) + En+1(t)Rn+1(t, z) = 0 ,
where Em , Vm , m ∈ N , are 2× 2-finite matrices.
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The infinite Toda lattice (cont.)

In this way, we can study the infinite case as a semi-infinite
vectorial case. The vectors Rn are not polynomials, but we can
prove Rn = (E2 · · ·En)−1 CnR1 ,
where the sequence {Cn} of 2× 2 matrices verifies for all n ∈ N

E 2
n Cn−1 + (Vn(t)− zI2) Cn + Cn+1 = 0

C0 = O2 , C1 = I2

}
i.e., Cn =

(
cn1(t, z) cn2(t, z)
cn3(t, z) cn4(t, z)

)
and for each i = 1, 2, 3, 4, cni is a polynomial in z , deg cni ≤ n− 1.

Taking I−1 :=

(
1 0
0 −1

)
, Wn := I−1Vn , n ∈ N , we can show

Ẇn = E 2
n+1 − E 2

n

Ėn+1 = 1
2 En+1(Wn+1 −Wn)

}
, n = 2, 3, . . . (4)

This is, {Wn,En} is a solution of a semi-infinite matricial Toda
lattice, like (1).
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The infinite Toda lattice and the Darboux transformation

We define

J(B) :=


V1 E 2

2

I2 V2 E 2
3

I2 V3
. . .

. . .
. . .

 .

Let C ∈ C be such that
det
(

J
(B)
2n (t)− CI2n

)
6= 0 , t ∈ R , n ∈ N . Then, we know (see

[IB]) that there exist two blocked matrices

L(B) :=


A1

I2 A2

I2 A3

. . .
. . .

 , U(B) :=


I2 Γ1

I2 Γ2

I2
. . .
. . .


such that J(B) − CI = L(B)U(B).
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The infinite Toda lattice and the Darboux transformation
(cont.)

We define the blocked Darboux transformation of J(B) − CI as
J̃(B) − CI := U(B)L(B) =

Ṽ1 − CI2 Ẽ 2
2

I2 Ṽ2 − CI2 Ẽ 2
3

I2 Ṽ3 − CI2
. . .

. . .
. . .

 .

We are researching the two following questions:

1. Can we construct a vectorial solution of the Toda lattice,
like (4), from J̃(B) − CI ?

2. Are the (scalar) entries of J̃(B) a new solution of the Toda
lattice (1)?
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Bogoyavlenskii lattice

Goal:

Characterization of solutions of some integrable systems by using
matrical moments

Bogoyavlenskii lattice: Systems is given by
J̇ = [J,M] = JM −MJ , with:

J =



0 1
...

. . .
. . .

0 · · · 0 1
a1 0 · · · 0 1

a2 0 · · · 0 1
. . .

. . .
. . .

. . .


,

M = (γij) ,

γij =

{
0 , i ≤ j
βij , i > j

where Jp+1 = (βij)
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Introduction

We study the Bogoyavlenskii lattice

ȧn(t) = an(t)

[
p∑

i=1

an+i (t)−
p∑

i=1

an−i (t)

]
(5)

⇔ J̇ = [J,M] = JM −MJ , J,M given above.

We analyze the relationship between the solutions of (5) and the
dynamic behavior of (zI − J(t))−1 .

We use, as a main tool, the sequence {Pn} of polynomials given by
the recurrence relation

zPn(z) = Pn+1(z) + an−p+1Pn−p(z) , n = p, p + 1, . . .
Pi (z) = z i , i = 0, 1, . . . , p

}
(6)

The method of investigation is based on the analysis of the
moments for J. We study the dynamic behavior of the moments.
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Vector orthogonality

From the recurrence relation (6) we have
zPmp(z) = Pmp+1(z) + a(m−1)p+1P(m−1)p(z)

...

zP(m+1)p−1(z) = P(m+1)p(z) + ampPmp−1(z) .

Then, denoting Bm(z) =
(
Pmp(z),Pmp+1(z), . . . ,P(m+1)p−1(z)

)T
,

we can rewrite (6) as

zBm(z) = ABm+1(z) + BBm(z) + CmBm−1(z), m ∈ N ,
B−1 = (0, . . . , 0)T , B0(z) =

(
1, z , . . . , zp−1

)T
}

(7)

where Cm = diag {a(m−1)p+1, a(m−1)p+2, . . . , amp},

A =


0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
1 0 . . . 0

 , B =


0 1

. . .
. . .

0 1
0
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Vector orthogonality

Let P be the space of polynomials. We know (see Theorem 3.2 in
[∗]) that there exist p linear moment functionals u1, . . . , up from P
to C such that for each s ∈ {0, 1, . . . , p − 1} the following
orthogonality relations are satisfied

ui [z jPmp+s(z)] = 0 for

{
j = 0, 1, . . . ,m, i = 1, . . . , s

j = 0, 1, . . . ,m − 1, i = s + 1, . . . , p
(8)

[∗] J. Van Iseghem, Vector orthogonal relations. Vector
QD-algorithm, J. Comput. Appl. Math. 19 (1987), 141-150.
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Vector orthogonality

We consider Pp := {(q1, . . . qp)T : qi polynomial, i = 1, . . . , p} ,
Mp×p ≡ (p × p)-matrices with complex entries. We define

W : Pp →Mp×p , W

q1
...

qp

 =

u1[q1] . . . up[q1]
...

. . .
...

u1[qp] . . . up[qp]

 .

In particular, for m, j ∈ {0, 1, . . .} we have

W
(
z jBm

)
=

 u1[z jPmp(z)] . . . up[z jPmp(z)]
...

. . .
...

u1[z jP(m+1)p−1(z)] . . . up[z jP(m+1)p−1(z)]

 .

Then, the orthogonality conditions (8) can be reinterpreted as
W(z jBm) = 0 , j = 0, 1, . . . ,m − 1 .

Aḿılcar Branquinho Integrable systems and multiple orthogonal polynomials
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Vector orthogonality

For a fixed M ∈Mp×p we define the function

UM : Pp −→Mp×p , UM

q1
...

qp

 =W

q1
...

qp

M .

(Briefly, we write UM =WM .) For any M ∈Mp×p, from
W(z jBm) = 0 , j = 0, 1, . . . ,m − 1 , we have

UM(z jBm) = 0 , j = 0, 1, . . . ,m − 1 . (9)

Definition

We say that UM , verifying (9), is a vector of functionals defined by
the sequence {Bn}. Also, we say that {Bn} is a sequence of
vectorial polynomials orthogonal with respect to UM .

Aḿılcar Branquinho Integrable systems and multiple orthogonal polynomials
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Vector orthogonality

More generally, let {v 1, . . . , vp} be a set of linear functionals.

Definition

The function V : Pp −→Mp×p given by

V

q1
...

qp

 =

v 1[q1] . . . vp[q1]
...

. . .
...

v 1[qp] . . . vp[qp]

MV

for each (q1, . . . , qp)T ∈ Pp is called vector of functionals
associated with the linear functionals v 1, . . . , vp and with the
regular matrix MV ∈Mp×p.

It is easy to see that, for any vector of functionals V, we have
V(Q1 +Q2) = V(Q1) + V(Q2) , for Q1,Q2 ∈ Pp, (10)
V(M Q) = M V(Q) , for Q ∈ Pp and M ∈Mp×p . (11)

Aḿılcar Branquinho Integrable systems and multiple orthogonal polynomials
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Vector orthogonality

As a consequence of (10)-(11), if UM is a vector of functional
defined by the sequence {Bn}, using the recurrence relation (7)
and the orthogonality we have:

UM (zmBm) = UM

(
zm−1ABm+1 + zm−1BBm + zm−1CmBm−1

)
= AUM

(
zm−1 Bm+1

)
+ B UM

(
zm−1 Bm

)
+ Cm UM

(
zm−1 Bm−1

)
= Cm UM

(
zm−1 Bm−1

)
= ( iterating ) = CmCm−1 · · ·C1 UM (B0) .

In the sequel we assume W (B0) a regular matrix, U := UM for
M = (W(B0))−1 . Then, U is the vector of functionals determined
by the conditions

U
(
z j Bm

)
= ∆mδmj , m = 1, 2, . . . , j = 0, 1, . . . ,m ,

∆m = CmCm−1 · · ·C1 , U (B0) = Ip .

}
Aḿılcar Branquinho Integrable systems and multiple orthogonal polynomials
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Vectorial moments

We will use the vectorial polynomials

Pn = Pn(z) =
(

znp, znp+1, . . . , z(n+1)p−1
)T

, n = 0, 1, . . . .

(In particular, P0 = B0.)

Definition

Given a vector of functionals V, for each m = 0, 1, . . ., the matrix
V (zmP0) is called moment of order m for V.

We are going to use the moments associated with the vector of
functionals U .

Lemma 1

For each n = 0, 1, . . . we have
U (zn P0) = Jn

11 , where Jn
11 is the finite matrix formed by the first

p rows and columns of Jn.
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Connection with operator theory

We assume J = J(t) be a bounded operator. Then we know:

(ζI − J)−1 =
∑
n≥0

Jn

ζn+1
, |ζ| > ‖J‖ .

We take

RJ(ζ) := (ζI − J)−1
11 =

∑
n≥0

Jn
11

ζn+1
, |ζ| > ‖J‖ ,

where (ζI − J)−1
11 denotes the finite matrix given by the first p

rows and columns of (ζI − J)−1 .
We are interested in studying the evolution of RJ(ζ) . In the
sequel, we assume

an(t) 6= 0 , |an(t)| ≤ M , for all n ∈ N and t ∈ R .

Aḿılcar Branquinho Integrable systems and multiple orthogonal polynomials
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The main results

Theorem 1

In the above conditions, the following statements are equivalent:

(a) ȧn(t) = an(t)

[
p∑

i=1

an+i (t)−
p∑

i=1

an−i (t)

]
, n ∈ N .

(b) For each m, k = 0, 1, . . . , we have

d

dt
U
(

zk Pm

)
= U

(
zk+1 Pm+1

)
− U

(
zk Pm

)
U (z P1).

(c) We have

d

dt
RJ(ζ) = RJ(ζ)

[
ζp+1Ip − U(z P1)

]
−

p∑
k=0

ζp−k U
(

zk P0

)
for all ζ ∈ C such that |ζ| > ‖J‖.
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The main results

We can obtain explicitly the resolvent function in a neighborhood
of ζ =∞. Let S(ζ) = (sij(ζ)) be the (p × p)-matrix with entries

sij(ζ) :=

p∑
k=0

ζp−k

∫ (
Jk

11

)
ij

e−ζ
p+1te

∫
(Jp+1

11 )
jj
dt

dt ,

i , j = 1, . . . , p , where (Jn
11)ij is the entry corresponding to the row

i and the column j in the (p × p)-block Jn
11.

We have:

Theorem 2

Under the conditions of Theorem 1, if (a) holds, then

RJ(ζ) = −eζ
p+1tS(ζ)e−

∫
Jp+1

11 dt

for each ζ ∈ C such that |ζ| > ‖J‖.

Aḿılcar Branquinho Integrable systems and multiple orthogonal polynomials
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Full Kostant-Toda lattice

Goal:

Characterization of solutions of some integrable systems by using
matrical moments

Full Kostant-Toda lattice: Systems is given by
J̇ = [J,M] = JM −MJ , with:

J =



a1 1
b1 a2 1

c1 b2 a3
. . .

0 c2 b3
. . .

. . .
. . .

. . .


, M =


0
b1 0
c1 b2 0

0 c2 b3
. . .

. . .
. . .

. . .

 .

Aḿılcar Branquinho Integrable systems and multiple orthogonal polynomials
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The full Kostant-Toda lattice

We consider the system

ȧn = bn − bn−1

ḃn = bn(an+1 − an) + cn − cn−1

ċn = cn(an+2 − an)

 , n ∈ N . (12)

We assume b0 ≡ 0 , cn 6= 0. We can write (12) as J̇ = JJ− − J−J,
where

J =



a1 1
b1 a2 1

c1 b2 a3
. . .

0 c2 b3
. . .

. . .
. . .

. . .


, J− =


0
b1 0
c1 b2 0

0 c2 b3
. . .

. . .
. . .

. . .

 .
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Notation

We use a similar notation as before. We consider the sequence of
polynomials {Pn} given by

cn−1Pn−2 + bnPn−1 + (an+1 − z)Pn + Pn+1 = 0, n = 0, 1, . . .
P0 = 1 , P−1 = P−2 = 0

}
(13)

Taking Bm = (P2m,P2m+1)T , we can rewrite (13) as

CnBn−1 + (Bn+1 − zI2)Bn + ABn+1 = 0 , n = 0, 1, . . .
B−1 = 0 , B0 = (1, z − a1)T

}
where, for n ∈ N ,

A =

(
0 0
1 0

)
, Cn =

(
c2n−1 b2n

0 c2n

)
, Bn =

(
a2n−1 1
b2n−1 a2n

)
and C0 is an arbitrary 2× 2 matrix.

Aḿılcar Branquinho Integrable systems and multiple orthogonal polynomials
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Main results: Theorem 3

We want to study the solutions of the full Kostant-Toda system in
terms of J and the polynomials {Pn} , {Bn}.

Theorem 3

Assume K ∈ R+ such that máx{|an(t)| , |bn(t)| , |cn(t)|} ≤ M for
all n ∈ N and t ∈ R . Then, the following conditions are equivalent:

(a) {an , bn , cn} is a solution of the full Kostant-Toda system.

(b)
d

dt
Jn

11 = Jn+1
11 − Jn

11B1 + [Jn
11, (J−)11] , n = 0, 1, . . . .

(c) ṘJ(ζ) = RJ(ζ)(ζI2 − B1)− I2 + [RJ(ζ), (J−)11] , |ζ| > ‖J‖ .

(d) Ḃn = −CnBn−1 − DnBn , where Dn =

(
0 0

b2n+1 0

)
.

Aḿılcar Branquinho Integrable systems and multiple orthogonal polynomials
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Vector orthogonality

From the recurrence relation for {Pn} we know: There exist linear
functionals u1, u2 such that{

ui [z jP2m] = ui [z jP2m+1] = 0, j = 0, 1, . . . ,m − 1, i = 1, 2,

u1[zmP2m+1] = 0.
(14)

Definition

If the functionals u1, u2 verify (14), then we say that the function
W : P2 →M2×2 given by

W
(

q1

q2

)
=

(
u1[q1] u2[q1]
u1[q2] u2[q2]

)
is a vector of functionals associated with {Pn}.

Aḿılcar Branquinho Integrable systems and multiple orthogonal polynomials
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Vector orthogonality

W is a vector of functionals associated with {Pn}
⇒ W(z jBm) = 0 , j = 0, 1, . . . ,m − 1 . (15)

Definition

A function W : P2 →M2×2 verifying (15) is called orthogonality
vector of functionals for the sequence {Bn}.

If W is a vector of functionals associated with {Pn}
⇒ W is an orthogonality vector of functionals associated with
{Bn}

⇒ WM

(
q1

q2

)
:=W

(
q1

q2

)
M is an orthogonality vector of

functionals associated with {Bn} .
We assume W a fixed vector of functionals associated with {Pn}
such that W (B0) is an invertible matrix.

Aḿılcar Branquinho Integrable systems and multiple orthogonal polynomials



Double infinite Toda Lattice Bogoyavlenskii lattice Full Kostant-Toda lattice

Vector orthogonality

In the sequel we take

C0 =

(
1 0
−a1 1

)
, M = (W (B0))−1 C0 , U =WM

⇒ U(B0) = C0 . (16)

From the recurrence relation for {Bn},

U(zmBm) = Cm U(zm−1Bm−1) , m ∈ N . (17)

Using (16) and (17)

U(z jBm) =

{
0 , j = 0, 1, . . . ,m − 1
CmCm−1 · · ·C0 , j = m .
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Matrical moments

We use the vectors Pm = Pm(z) =
(
z2m, z2m+1

)T
.

Definition

For each m = 0, 1, . . ., the matrix U (zmP0) is called moment of
order m for the vector of functionals U .

In particular: B0 = C0P0 ⇒ U (P0) = I2 .

We define the derivative of U = Ut as usual,

dU
dt

(B) = ĺım∆t→0
U{t + ∆t}(B)− U{t}(B)

∆t
⇒ d

dt (U(B)) = dU
dt (B) + U(Ḃ) , ∀B ∈ P2 .

We define the function of the moments as
FJ(ζ) = C−1

0 RJ(ζ)C0 , |ζ| > ‖J‖ .
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Main results: Theorem 4

We will see that Theorem 3 is a direct consequence of the
following result:

Theorem 4

In the conditions of Theorem 3, assume ȧ1 = b1. Then, the
following assertions are equivalent:

(e) {an , bn , cn} , n ∈ N , is a solution of the full Kostant-Toda
system.

(f)
d

dt
U (znP0) = U

(
zn+1P0

)
−U (znP0)U (zP0) , n = 0, 1, . . . .

(g) ḞJ(ζ) = FJ(ζ) (ζI2 − U(zP0))− I2 , |ζ| > ‖J‖ .

(h)

(
d

dt
U
)

(B) = U(zB)− U(B)U(zP0) , B ∈ P2 .

(i) Ḃn = −CnBn−1 − DnBn , n = 0, 1, . . . .
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On the relation between the full Kostant-Toda lattice and
multiple orthogonal polynomials, Accepted for publications on
J. Math. Anal. Appl., DOI: 10.1016/j.jmaa.2010.10.044.

O.I. Bogoyavlenskii, Some constructions of integrable
dynamical systems, Izv. Akad. Nauk SSSR, Ser Mat. 51(4)
(1987), 737-766 (in Russian); Math. USSR Izv. 31(1) (1988),
47-75.
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