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1. What is diffusion?

Diffusion is one of the fundamental processes by which

material moves

Diffusion is a consequence of the constant motion of

atoms, molecules, and particles, and results in material

moving from areas of high to low concentration

Classical diffusion −→ Particle motion described by

Brownian motion

Brownian motion −→ Gaussian distribution increments
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2. Standard diffusion model

∂u

∂t
(x, t) = D

∂2u

∂x2
(x, t)

a < x < b, D > 0

Initial condition : u(x, 0) = f(x), a < x < b

Dirichlet boundary conditions:

u(a, t) = ga(t) and u(b, t) = gb(t)
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The effect of diffusion
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3. Finite difference schemes

Suppose there are approximations U
n := {Un

j } to the

values u(xj, tn) at the mesh points

xj = a + j∆x, j = 0, . . . , N

tn = n∆t, n ≥ 0

∆x space step; ∆t time step

Un
j ≈ u(xj, tn)
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u(x0, t1) = ga(t1)
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Discretization

Un+1
j − Un

j

∆t
= D

Un
j+1 − 2Un

j + Un
j−1

∆x2

Un+1
j s

s s s

Un
j−1 Un

j Un
j+1
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Un+1
j = Un

j + µδ2Un
j

δ2Un
j = Un

j+1 − 2Un
j + Un

j−1 µ = D
∆t

∆x2
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Matricial form

U
n+1 = MU

n + v
n

U
n – vector with the spatial discrete points

v
n – vector with discrete boundary values

M is the matrix iteration

M = I + µB

B – diffusion discretisations
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The matrix B is

B =

































−2 1 0 . . . 0

1 −2 1
. . .

...
...

. . .

1

0 . . . 1 −2
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4. Convergence of the numerical method

Assume that the initial value problem is approximated by

Un+1
j = QUn

j ,

where Q =
p
∑

j=−r

ajE
j, EUn

j = Un+1
j .

Previous example:

Un+1
j = QUn

j where Q = 1 + µδ2
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Discretization error – is the amount by which the

continuous solution fails to satisfy the discrete formula.

[Consistency]

Round off error – is due to the finite precision of computer.

It is the amount by which the computer fails to solve the

discrete formulas with infinite precision. [Stability]
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Consistency

Definition: A finite difference scheme is consistent up to

time T0 in the norm || · || with the respective equation if the

actual solution u to the initial value problem satisfies

un+1
j = Qun

j + ∆tT n,

where un
j = u(j∆x, n∆t), ||T n|| ≤ τ(∆x), n∆t < T0 and

τ(∆x) → 0 as ∆t → 0. Here is assumed that ∆x is defined

in terms of ∆t and goes to zero with ∆t.
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Stability

Definition: The finite difference method is called stable in

the norm || · || if there exist constants K and c such that

||Un|| ≤ Kecn∆t||U0|| = Kectn ||U0||

where tn = n∆t, and K > 0 and c are independent of the

space steps and time step.
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Lax Equivalence Theorem: Given a properly posed

initial-value problem for a linear partial differential equation

and a linear finite difference approximation to it that

satisfies the consistency condition, stability is the

necessary and sufficient condition for convergence.

Peter Lax (1926 – ) ; Wolf prize 1987; Abel prize 2005
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Convergence of the previous example

Consistency:

∆tT n = O(∆t) + O(∆x2)

Stability:

µ ≤ 1/2 µ = D
∆t

∆x2

∆t ≤
∆x2

2D
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5. What is fractional diffusion?

Fractional diffusion −→ Particle motion described by Lévy

flights

Lévy flights differ from Brownian motion in the probability

distribution of the jumps

Brownian motion −→ Gaussian distribution increments

Lévy flights −→ Power law distribution increments
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Brownian motion Lévy flights

Note the presence of large jumps compared to Brownian motion
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6. Fractional diffusion equation

Fractional diffusion equation describing superdiffusion

∂u

∂t
(x, t) = D

∂αu

∂xα
(x, t)

a < x < b, 1 < α ≤ 2, D > 0

Initial condition : u(x, 0) = f(x), a < x < b

Dirichlet boundary conditions:

u(a, t) = ga(t) and u(b, t) = gb(t)
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The effect of fractional diffusion

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

α=1.2

α=2

. – p.21/34



Evidence of fractional diffusion models

Numerical results are in agreement with experimental

results

• Benson et al, 2000 −→ Transport processes with heavy tailed

plumes

• Pachepsky et al, 2000 −→ Solute transport in soils

• Zhou and Selin, 2003 −→ Porous media

• Huang et al , 2006 −→ Solute transport in soils
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7. Grünwald-Letnikov formula, α > 0

∂αu

∂xα
(x, t) = lim

∆x→0

1

∆xα

[x−a

∆x ]
∑

k=0

(−1)k







α

k





u(x − k∆x, t)

gk = (−1)k







α

k







= (−1)k α(α − 1) . . . (α − k + 1)

k!
=

Γ(k − α)

Γ(−α)Γ(k + 1)

This is a non-local property
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α = 1

g0 = 1 g1 = −α = −1 gk = 0, k ≥ 2

∂αu

∂xα
(x, t) = lim

∆x→0

1

∆x
(u(x) − u(x − ∆x))
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α = 2

g0 = 1 g1 = −α = −2 g2 = 1 gk = 0, k ≥ 3

∂αu

∂xα
(x, t) = lim

∆x→0

1

∆x2
(u(x) − 2u(x − ∆x) + u(x − 2∆x))

= lim
∆x→0

1

∆x
(u′(x) − u′(x − ∆x))
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8. Discretization of the fractional derivative

(

∂αu

∂xα

)n

j

≃
1

∆xα

j+1
∑

k=0

gkU
n
j+1−k

gk = (−1)k





α

k



 =
Γ(k − α)

Γ(−α)Γ(k + 1)

Un+1
j s

s s s s

Un
0 . . . Un

j−1 Un
j Un

j+1
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Classical scheme

Un+1
j = Un

j + µδ2Un
j

Fractional scheme

Un+1
j = Un

j + µαδαUn
j

δαUn
j =

j+1
∑

k=0

gkU
n
j+1−k µα = D

∆t

∆xα

. – p.27/34



Matricial form

U
n+1 = MU

n + v
n

U
n – vector with the spatial discrete points

v
n – vector with discrete boundary values

M is the matrix iteration

M = I + µαB

B – diffusion discretisations
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The matrix B is

B =

































g1 g0 0 . . . 0

g2
. . .

...
...

. . . 0

g0

g2N−1 . . . g2 g1
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Consistency and Stability

This approximation of the fractional derivative, for

1 < α < 2, is first order accurate

δαun
j

∆xα
=

(

∂αu

∂xα

)n

j

+ O(∆x) (Meerschaert and Tadjeran, JCP, 2004)

Consistency: ∆tT n = O(∆t) + O(∆x)

Stability condition:

2α−1µα ≤ 1 ∆t ≤
∆xα

2α−1D
(Sousa, JCP, 2009)
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Some comments

• Although the standard operator is second order accurate,

the fractional operator is only first order

• Being first order is the main disadvantage of using this

definition of the fractional derivative

• We need new numerical methods based on the integral

formulas of the fractional derivative
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9. Riemann-Liouville formula

∂αu

∂xα
(x, t) =

1

Γ(n − α)

∂n

∂xn

∫ x

a

u(ξ, t)

(x − ξ)α−n+1
dξ

a < x < b, n = [α] + 1

For 1 < α < 2,

∂αu

∂xα
(x, t) =

1

Γ(2 − α)

∂2

∂x2

∫ x

a

u(ξ, t)

(x − ξ)α−1
dξ
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Why is difficult to handle the integral form?

∂αu

∂xα
(x, t) =

1

Γ(2 − α)

∂2

∂x2

∫ x

a

u(ξ, t)

(x − ξ)α−1
dξ
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10. Final Remarks

• We have a non-local derivative

• The definition using the limit only allows first order

accuracy. Not enough for many problems

• The integral definition has an improper integral, which is

difficult to handle.

• Many physical models involving fractional derivatives are

waiting to be solved with high accuracy.
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