

Ercília Sousa

Universidade de Coimbra

Outline

- 1. What is diffusion?
- 2. Standard diffusion model
- 3. Finite difference schemes
- 4. Convergence of the finite difference scheme
- 5. What is fractional diffusion?
- 6. Fractional diffusion model
- 7. Grunwald-Letnikov formula
- 8. Discretization of the fractional derivative
- 9. Riemann-Liouville formula
- 10. Final remarks

1. What is diffusion?

Diffusion is one of the fundamental processes by which material moves

Diffusion is a consequence of the constant motion of atoms, molecules, and particles, and results in material moving from areas of high to low concentration

Classical diffusion \longrightarrow Particle motion described by Brownian motion

Brownian motion — Gaussian distribution increments

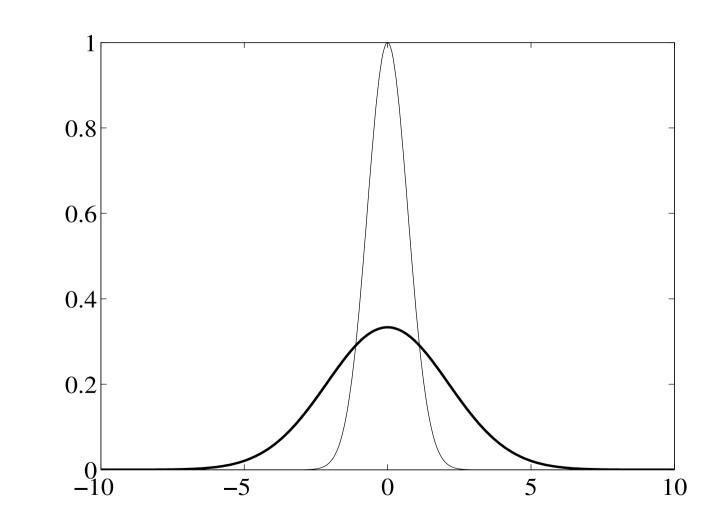
2. Standard diffusion model

$$\frac{\partial u}{\partial t}(x,t) = D \frac{\partial^2 u}{\partial x^2}(x,t)$$
$$a < x < b, \quad D > 0$$

Initial condition : u(x,0) = f(x), a < x < b

Dirichlet boundary conditions:

 $u(a,t) = g_a(t)$ and $u(b,t) = g_b(t)$



3. Finite difference schemes

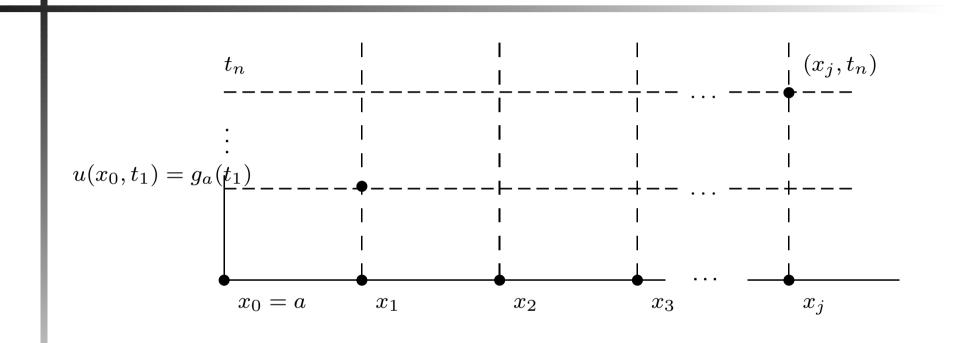
Suppose there are approximations $\mathbf{U}^n := \{U_j^n\}$ to the values $u(x_j, t_n)$ at the mesh points

$$x_j = a + j\Delta x, \ j = 0, \dots, N$$

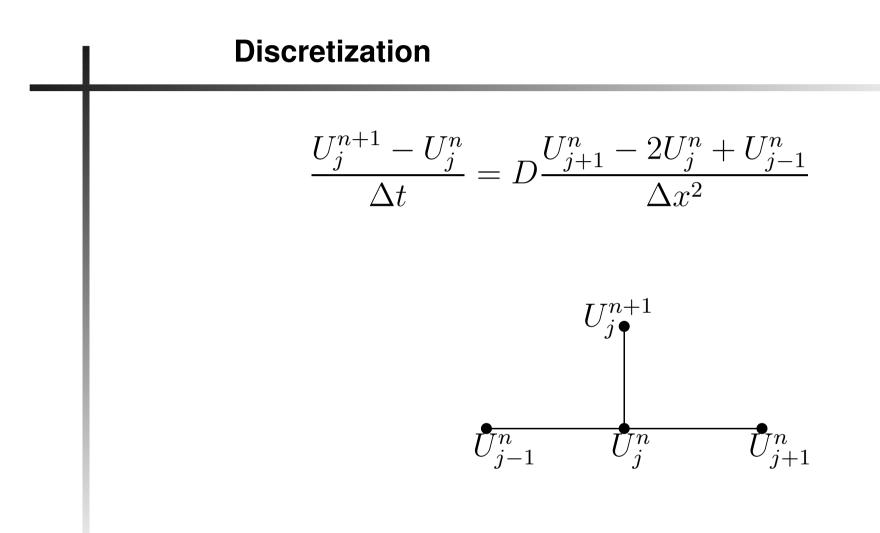
$$t_n = n\Delta t, \ n \ge 0$$

 Δx space step; Δt time step

$$U_j^n \approx u(x_j, t_n)$$



 $u(x_j, 0) = f(x_j)$



$$\begin{split} U_j^{n+1} &= U_j^n + \mu \delta^2 U_j^n \\ \delta^2 U_j^n &= U_{j+1}^n - 2U_j^n + U_{j-1}^n \qquad \mu = D \frac{\Delta t}{\Delta x^2} \end{split}$$

Matricial form

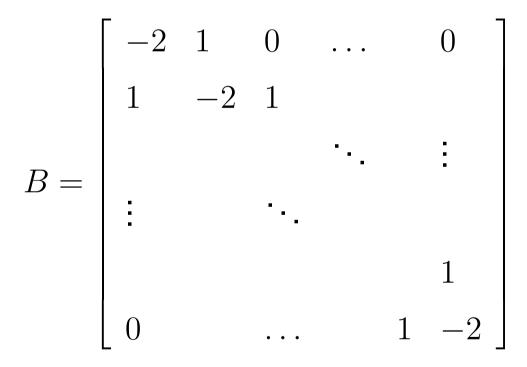
$$\mathbf{U}^{n+1} = M\mathbf{U}^n + \mathbf{v}^n$$

 \mathbf{U}^n – vector with the spatial discrete points \mathbf{v}^n – vector with discrete boundary values

M is the matrix iteration

$$M = I + \mu B$$

B – diffusion discretisations



4. Convergence of the numerical method

Assume that the initial value problem is approximated by

$$U_j^{n+1} = QU_j^n,$$

where
$$Q = \sum_{j=-r}^{p} a_{j} E^{j}$$
, $EU_{j}^{n} = U_{j}^{n+1}$.

Previous example:

$$U_j^{n+1} = QU_j^n$$
 where $Q = 1 + \mu \delta^2$

Discretization error – is the amount by which the continuous solution fails to satisfy the discrete formula. [Consistency]

Round off error – is due to the finite precision of computer. It is the amount by which the computer fails to solve the discrete formulas with infinite precision. [Stability]

Consistency

Definition: A finite difference scheme is consistent up to time T_0 in the norm $|| \cdot ||$ with the respective equation if the actual solution u to the initial value problem satisfies

$$u_j^{n+1} = Qu_j^n + \Delta t T^n,$$

where $u_j^n = u(j\Delta x, n\Delta t)$, $||T^n|| \leq \tau(\Delta x)$, $n\Delta t < T_0$ and $\tau(\Delta x) \to 0$ as $\Delta t \to 0$. Here is assumed that Δx is defined in terms of Δt and goes to zero with Δt .

Stability

Definition: The finite difference method is called stable in the norm $|| \cdot ||$ if there exist constants *K* and *c* such that

$||U^{n}|| \le K e^{cn\Delta t} ||U^{0}|| = K e^{ct_{n}} ||U^{0}||$

where $t_n = n\Delta t$, and K > 0 and c are independent of the space steps and time step.

Lax Equivalence Theorem: Given a properly posed initial-value problem for a linear partial differential equation and a linear finite difference approximation to it that satisfies the consistency condition, stability is the necessary and sufficient condition for convergence.

Peter Lax (1926 –); Wolf prize 1987; Abel prize 2005

Convergence of the previous example

Consistency:

$$\Delta t T^n = \mathcal{O}(\Delta t) + \mathcal{O}(\Delta x^2)$$

Stability:

$$\mu \le 1/2$$
 $\mu = D \frac{\Delta t}{\Delta x^2}$

$$\Delta t \le \frac{\Delta x^2}{2D}$$

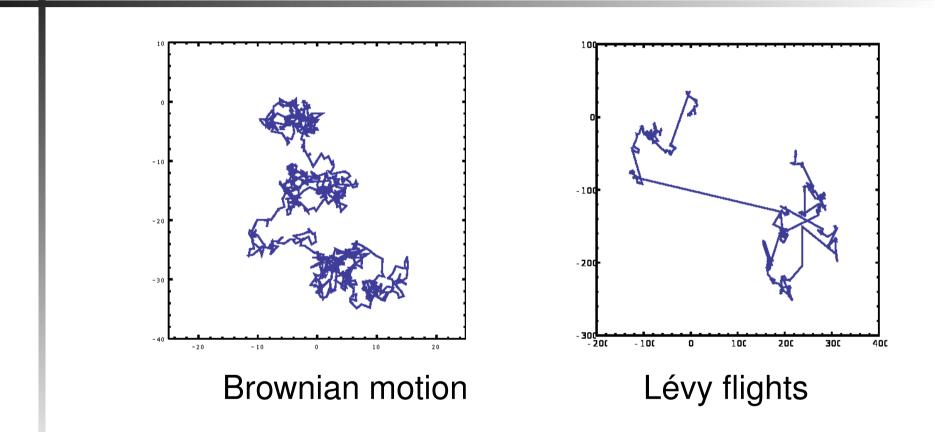
5. What is fractional diffusion?

Fractional diffusion \longrightarrow Particle motion described by Lévy flights

Lévy flights differ from Brownian motion in the probability distribution of the jumps

Brownian motion \longrightarrow Gaussian distribution increments

Lévy flights — Power law distribution increments



Note the presence of large jumps compared to Brownian motion

6. Fractional diffusion equation

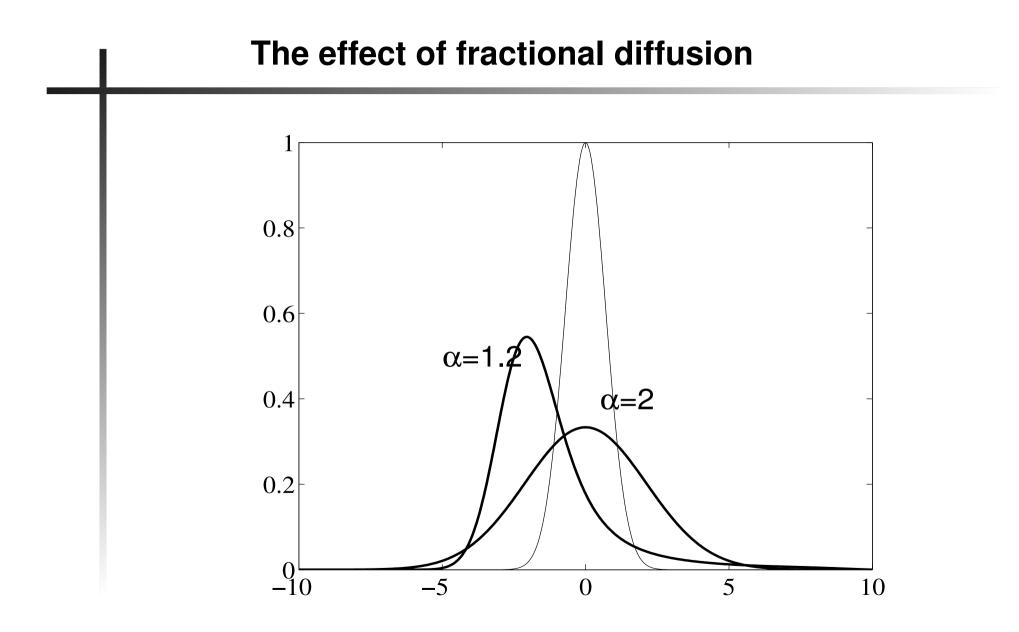
Fractional diffusion equation describing superdiffusion

$$\frac{\partial u}{\partial t}(x,t) = D \frac{\partial^{\alpha} u}{\partial x^{\alpha}}(x,t)$$
$$a < x < b, \quad 1 < \alpha \le 2, \quad D > 0$$

Initial condition : $u(x,0) = f(x), \ a < x < b$

Dirichlet boundary conditions:

$$u(a,t) = g_a(t)$$
 and $u(b,t) = g_b(t)$



. – p.21/34

Evidence of fractional diffusion models

Numerical results are in agreement with experimental results

 \bullet Benson et al, 2000 \longrightarrow Transport processes with heavy tailed plumes

- Pachepsky et al, 2000 \longrightarrow Solute transport in soils
- \bullet Zhou and Selin, 2003 \longrightarrow Porous media
- Huang et al , 2006 \longrightarrow Solute transport in soils

7. Grünwald-Letnikov formula, $\alpha > 0$

$$\frac{\partial^{\alpha} u}{\partial x^{\alpha}}(x,t) = \lim_{\Delta x \to 0} \frac{1}{\Delta x^{\alpha}} \sum_{k=0}^{\left[\frac{x-a}{\Delta x}\right]} (-1)^{k} \begin{pmatrix} \alpha \\ k \end{pmatrix} u(x-k\Delta x,t)$$
$$g_{k} = (-1)^{k} \begin{pmatrix} \alpha \\ k \end{pmatrix}$$
$$= (-1)^{k} \frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!} = \frac{\Gamma(k-\alpha)}{\Gamma(-\alpha)\Gamma(k+1)}$$

This is a non-local property

$$\alpha = 1$$

 $g_0 = 1$ $g_1 = -\alpha = -1$ $g_k = 0, \ k \ge 2$

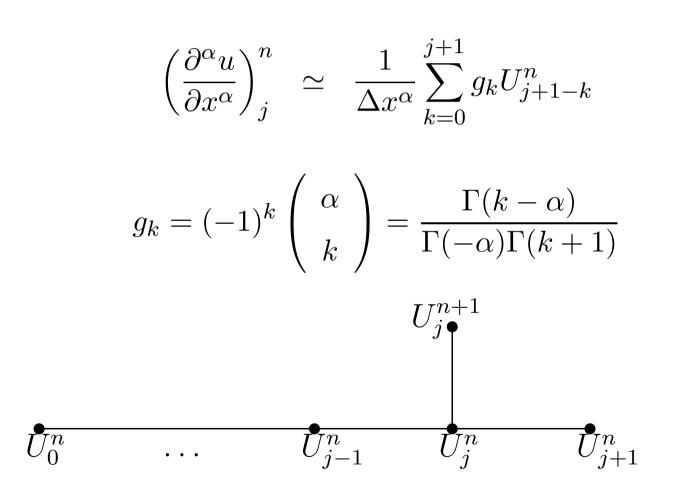
$$\frac{\partial^{\alpha} u}{\partial x^{\alpha}}(x,t) = \lim_{\Delta x \to 0} \frac{1}{\Delta x} (u(x) - u(x - \Delta x))$$

$$\alpha = 2$$

$$g_0 = 1$$
 $g_1 = -\alpha = -2$ $g_2 = 1$ $g_k = 0, k \ge 3$

$$\frac{\partial^{\alpha} u}{\partial x^{\alpha}}(x,t) = \lim_{\Delta x \to 0} \frac{1}{\Delta x^2} (u(x) - 2u(x - \Delta x) + u(x - 2\Delta x))$$
$$= \lim_{\Delta x \to 0} \frac{1}{\Delta x} (u'(x) - u'(x - \Delta x))$$

8. Discretization of the fractional derivative



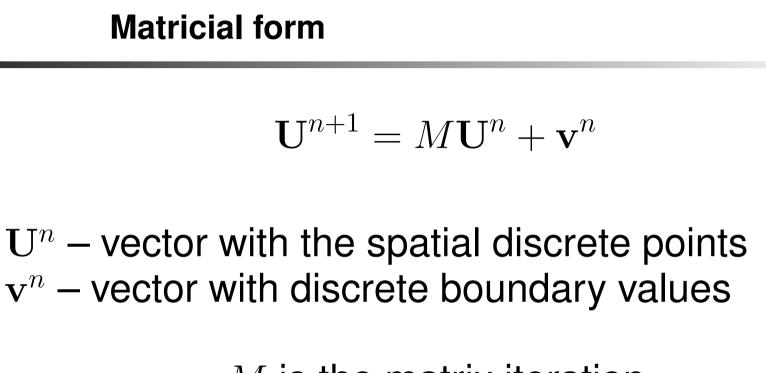
Classical scheme

$$U_j^{n+1} = U_j^n + \mu \delta^2 U_j^n$$

Fractional scheme

$$U_j^{n+1} = U_j^n + \mu_\alpha \delta^\alpha U_j^n$$

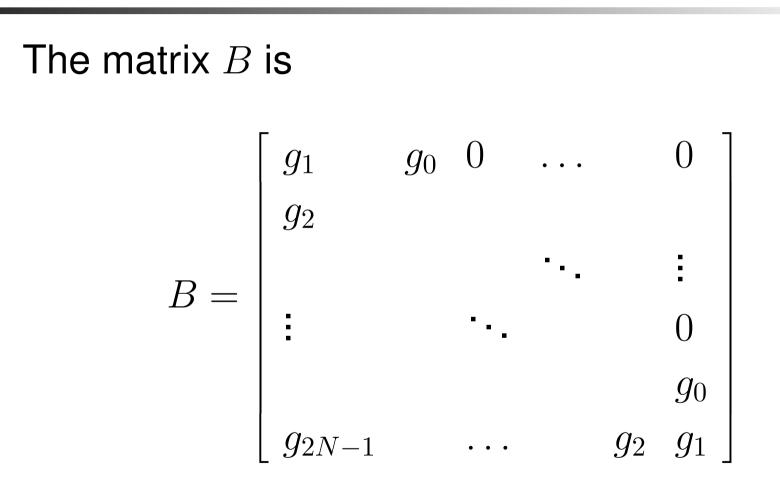
$$\delta^{\alpha} U_j^n = \sum_{k=0}^{j+1} g_k U_{j+1-k}^n \qquad \mu_{\alpha} = D \frac{\Delta t}{\Delta x^{\alpha}}$$



M is the matrix iteration

$$M = I + \mu_{\alpha} B$$

B – diffusion discretisations



Consistency and Stability

This approximation of the fractional derivative, for $1 < \alpha < 2$, is first order accurate

$$\frac{\delta^{\alpha} u_{j}^{n}}{\Delta x^{\alpha}} = \left(\frac{\partial^{\alpha} u}{\partial x^{\alpha}}\right)_{j}^{n} + \mathcal{O}(\Delta x) \quad (\mathsf{M})$$

(Meerschaert and Tadjeran, JCP, 2004)

Consistency: $\Delta t T^n = \mathcal{O}(\Delta t) + \mathcal{O}(\Delta x)$

Stability condition:

$$2^{\alpha-1}\mu_{\alpha} \leq 1$$
 $\Delta t \leq \frac{\Delta x^{\alpha}}{2^{\alpha-1}D}$ (Sousa, JCP, 2009)

Some comments

• Although the standard operator is second order accurate, the fractional operator is only first order

• Being first order is the main disadvantage of using this definition of the fractional derivative

• We need new numerical methods based on the integral formulas of the fractional derivative

9. Riemann-Liouville formula

$$\frac{\partial^{\alpha} u}{\partial x^{\alpha}}(x,t) = \frac{1}{\Gamma(n-\alpha)} \frac{\partial^{n}}{\partial x^{n}} \int_{a}^{x} \frac{u(\xi,t)}{(x-\xi)^{\alpha-n+1}} d\xi$$

$$a < x < b, \quad n = [\alpha] + 1$$

For $1 < \alpha < 2$,

$$\frac{\partial^{\alpha} u}{\partial x^{\alpha}}(x,t) = \frac{1}{\Gamma(2-\alpha)} \frac{\partial^2}{\partial x^2} \int_a^x \frac{u(\xi,t)}{(x-\xi)^{\alpha-1}} d\xi$$

~

Why is difficult to handle the integral form?

$$\frac{\partial^{\alpha} u}{\partial x^{\alpha}}(x,t) = \frac{1}{\Gamma(2-\alpha)} \frac{\partial^2}{\partial x^2} \int_a^x \frac{u(\xi,t)}{(x-\xi)^{\alpha-1}} d\xi$$

10. Final Remarks

- We have a non-local derivative
- The definition using the limit only allows first order accuracy. Not enough for many problems
- The integral definition has an improper integral, which is difficult to handle.
- Many physical models involving fractional derivatives are waiting to be solved with high accuracy.