Rolling Pseudo-Riemannian Manifolds

Fátima Pina

DMUC, University of Coimbra, Portugal (Seminar supervised by Professor Fátima Silva Leite)

May 2011

(本間) (本語) (本語)

æ

Contents

- Rolling Maps for Euclidean Manifolds
- **2** Notions of Pseudo-Riemannian Manifolds
- **③** Rolling Maps for Pseudo-Riemannian Manifolds

Rolling the Hyperbolic *n*-sphere over its affine tangent space at a point, both embedded in the generalized Minkowski space \mathbb{R}_1^{n+1} :

- Geodesics
- The Kinematic Equations
- Paralell Transport

白 と く ヨ と く ヨ と …

Rolling Motions in Euclidean Space

Some Notations

- SO_N (Special Orthogonal Group) → connected component of the orthogonal group O_N containing the identity matrix.
- SE_N=SO_N Kℝ^N (Special Euclidean Group) → group of isometries preserving orientations, also called rigid motions (these include rotations, translations and combinations of them).

Action of SE_N on \mathbb{R}^N

 $(R,s) \in SE_N$:

- $(R,s) \circ p = Rp + s \rightsquigarrow$ action of (R,s) on points $p \in \mathbb{R}^N$
- The action of SE_N on \mathbb{R}^N induces a linear map between tangent spaces, sending η to $R\eta$

 M_1 and $M_0 \rightsquigarrow$ manifolds of the same dimension embedded in $(\mathbb{R}^N, \langle ., . \rangle)$

A rolling map of M_1 on M_0 , without slipping or twisting over a curve $\alpha : [0, \tau] \to M_1$ ($\tau > 0$) is a smooth map:

$$\begin{array}{rccc} h: & [0,\tau] & \to & \mathsf{SE}_N \!=\! \mathsf{SO}_N \ltimes \mathbb{R}^N \\ & t & \mapsto & h(t) \!=\! (R(t),s(t)) \end{array}$$

satisfying, for each $t \in [0, \tau]$, the following (RMC) conditions:

- Rolling conditions
- One No-slip condition
- Ontwist conditions

Rolling conditions

• $h(t) \circ \alpha(t) =: \alpha_{dev}(t) \in M_0$

•
$$T_{h(t)\circ\alpha(t)}(h(t)\circ M_1) = T_{h(t)\circ\alpha(t)}M_0$$

- α is called rolling curve on M_1
- $\alpha_{\rm dev}$ is called development of α on M_0

No-slip condition

 $h(t) \circ M_1$ and M_0 have the same velocity at the contact point, that is:

Tangential Part

Any tangent vector field X(t) along $\alpha(t)$ is parallel along $\alpha(t)$ iff $h(t) \circ X(t)$ is parallel along $\alpha_{dev}(t)$.

$$\label{eq:relation} \begin{split} & \\ \dot{R}(t) R^\top(t) \mathcal{T}_{\alpha_{\mathrm{dev}}(t)} \mathcal{M}_0 \subset (\mathcal{T}_{\alpha_{\mathrm{dev}}(t)} \mathcal{M}_0)^\perp \end{split}$$

Normal Part

Any normal vector field Z(t) along $\alpha(t)$ is normal parallel along $\alpha(t)$ iff $h(t) \circ Z(t)$ is normal parallel vector field along $\alpha_{dev}(t)$.

$$(t) \hat{R}^{ op}(t) (T_{lpha_{ ext{dev}}(t)} M_0)^{ot} \subset T_{lpha_{ ext{dev}}(t)} M_0$$

▲圖▶ ▲屋▶ ▲屋▶

No-twist conditions

Remarks:

- Tangential Part is always satisfied for manifolds of dimension 1
- Normal Part is always satisfied for manifolds of codimension 1 (such as Euclidean sphere Sⁿ, hyperbolic sphere Hⁿ)

Example: S^2

Is to generalize the concept of rolling for pseudo-Riemannian manifolds

₩

the metric fails to be positive definite

- 4 回 2 - 4 回 2 - 4 回 2 - 4

æ

Pseudo-Riemannian Manifold

Smooth manifold \overline{M} furnished with a metric tensor \overline{g} (a symmetric nondegenerate (0,2) tensor field on \overline{M} of constant index.)

If $(\overline{M}, \overline{g})$ is a pseudo-Riemannian manifold and $v \in T_p \overline{M}$, then:

- v is spacelike if $\overline{g}(v, v) > 0$ or v = 0
- v is <u>timelike</u> if $\overline{g}(v, v) < 0$
- v is lightlike if $\overline{g}(v,v) = 0$ and $v \neq 0$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Rolling Map – Pseudo-Riemannian Case

 M_1 and $M_0 \rightsquigarrow$ manifolds of the same dimension embedded in a pseudo-Riemannian space $(\overline{M}, \overline{g})$

A rolling motion of M_1 over M_0 , without slipping or twisting is described by a smooth mapping:

$$egin{array}{rcl} h:&[0, au]&
ightarrow&\overline{G}\ t&\mapsto&h(t) \end{array}$$

that satisfies the (RMC) conditions, where:

- \overline{G} is now the connected group of orientation preserving isometries of \overline{M}
- orthogonality being taken with respect to the pseudo-Riem. metric \overline{g}
- \circ being the action of \overline{G} on our manifolds

ロトス回とスヨトスヨト

$$N = n + 1$$

 $\overline{M} = \mathbb{R}_1^{n+1} \rightsquigarrow$ denotes \mathbb{R}^{n+1} equipped with the pseudo-Riemannian metric:

$$\overline{g}(x,y) := \langle x,y \rangle_J = \langle x,Jy \rangle = x^\top Jy$$
, with $J = \text{diag}(I_n,-1)$

 $M_1 := H^n \rightsquigarrow n$ -dimensional hyperbolic sphere (connected component)

$$H^n = \{ p \in \mathbb{R}^{n+1} : \langle p, p \rangle_J = -1 \text{ and } p_{n+1} > 0 \}$$

$$T_{p_0}H^n = \{ v \in \mathbb{R}^{n+1} : v = \Omega p_0, \ \Omega \in \mathfrak{so}(n,1) \}$$
$$\mathfrak{so}(n,1) = \{ A \in \mathfrak{gl}(n+1) : A^\top J = -JA \}$$
$$SO(n,1) = \{ X \in \mathsf{GL}(n+1) : X^\top J X = J \text{ and } \det(X) = 1 \}$$

Rolling the Hyperbolic *n*-sphere

$$M_0 := T_{p_0}^{\text{aff}} H^n = \{ x \in \mathbb{R}^{n+1} : x = p_0 + \Omega p_0, \ \Omega \in \mathfrak{so}(n, 1) \}$$

 $(T_{p_0}H^n)^{\perp} = \mathbb{R}p_0$ (codimension 1)

 $\frac{\text{Example: } n = 2}{M_1 = H^2}$ $M_0 = T_{p_0}^{\text{aff}} H^2$

→ 同 → → 三 →

 $SE(n+1) \rightsquigarrow$ is the connected group of orientation preserving isometries of the Euclidean space \mathbb{R}^{n+1}

Question

What is the connected group of orientation preserving isometries of the Minkowski space $\mathbb{R}_1^{n+1}?$

Answer:

$$\overline{G} = \mathsf{SO}_o(n,1) \ltimes \mathbb{R}^{n+1}$$

where

$$SO_o(n,1) = \{ R \in GL(n+1) : R^{\top}JR = J, R_{n+1,n+1} > 0 \}$$

▲ 同 ▶ | ▲ 臣 ▶

Rolling the Hyperbolic *n*-sphere - Remarks

Elements in \overline{G} are pairs (R, s), $R \in SO_o(n, 1)$, $s \in \mathbb{R}_1^{n+1}$

Group Operations

$$(I,0)$$
 is the identity and:
• $(R_1, s_1)(R_2, s_2) := (R_1R_2, R_1s_2 + s_1)$
• $(R, s)^{-1} := (R^{-1}, -R^{-1}s)$

Action of \overline{G} on \mathbb{R}^{n+1}

$$(R,s)\circ x = Rx + s$$

this induces a linear map between $T_x \mathbb{R}^{n+1}$ and $T_{Rx+s} \mathbb{R}^{n+1}$, sending every η to $R\eta$

・ 同 ト ・ ヨ ト ・ ヨ ト

Rolling the Hyperbolic *n*-sphere - Remarks

- The Lie algebra of $SO_o(n, 1)$ is $\mathfrak{so}(n, 1)$
- $SO_o(n, 1)$ is a Lie subgroup of SO(n, 1) and

 $R \in SO_o(n,1)$ and $p \in H^n \Rightarrow Rp \in H^n$

the "rotational" part of the rolling map $\underline{\text{maintains}} H^n$ invariant

The restriction of $\langle ., . \rangle_J$ to $T_p H^n$ at any point $p \in H^n$ is positive definite

Although H^n is embedded in a pseudo-Riemannian manifold \mathbb{R}^{n+1}_1 , it is indeed a <u>Riemannian</u> manifold (all tangent vectors are spacelike)

Rolling the Hyperbolic *n*-sphere - Geodesics

Geodesics on H^n , with respect to the Riemannian metric $\langle ., . \rangle_J$, can be written explicitly:

Let $p \in H^n$ and $v \in T_p H^n$ with $\langle v, v \rangle_J = 1$. Then,

 $t \mapsto \gamma(t) = p \cosh t + v \sinh t$

is the geodesic in H^n satisfying $\gamma(0) = p$, $\dot{\gamma}(0) = v$.

Let $p, q \in H^n$. Then,

$$t \mapsto \gamma(t) = p\left(\cosh t - \frac{\cosh \theta}{\sinh \theta} \sinh t\right) + q \frac{\sinh t}{\sinh \theta},$$

where θ is defined by $\cosh \theta = -\langle p, q \rangle_J$ is the geodesic in H^n that joins the point p (at t = 0) to the point q (at $t = \theta$).

(1) マン・ション・

$$M_1 := H^n$$
 $M_0 := T_{p_0}^{\text{aff}} H^n = p_0 + T_{p_0} H^n$ rolling curve α s.t.
 $\alpha(0) = p_0$

 $\begin{array}{l} H^n \cap T_{p_0}^{\text{aff}} H^n = \{p_0\} \\ t \mapsto u(t) \in \mathbb{R}^{n+1} \text{ a piecewise smooth function s.t. } \langle u(t), p_0 \rangle_J = 0 \end{array}$

Kinematic Equations (KE)

$$\begin{cases} \dot{s}(t) = u(t) \\ \dot{R}(t) = R(t) \left(-u(t)p_0^\top + p_0 u^\top(t)\right) J \end{cases}$$

If $(R, s) \in \overline{G}$ is the solution of (KE) satisfying s(0) = 0, R(0) = I, then:

• $t \mapsto h(t) = (R^{-1}(t), s(t)) \in \overline{G} \rightsquigarrow$ rolling map of H^n over $T_{p_0}^{\operatorname{aff}} H^n$

• $t \mapsto \alpha(t) = R(t)p_0 \rightsquigarrow$ rolling curve

• $t\mapsto lpha_{ ext{dev}}(t)=p_0+s(t)\in \mathcal{T}^{ ext{aff}}_{
ho_0}\mathcal{H}^n\rightsquigarrow ext{development curve}$

A 3 3

Definition

$$\begin{array}{rcl} \Lambda : & \mathbb{R} & \to & \mathfrak{so}(n,1) \\ & t & \mapsto & A(t) = \left(-u(t)p_0^\top + p_0 u^\top(t)\right) J \end{array}$$

Assumptions: $u^{\top}(t)Jp_0 = 0$ $p_0^{\top}Jp_0 = -1$

$$A^{2j-1} = \left(u^{\top}(t) J u(t) \right)^{j-1} A(t); \qquad A^{2j} = \left(u^{\top}(t) J u(t) \right)^{j-1} A^{2}(t)$$

If u(t)=u (constant), then

$$e^{At} = I + rac{\cosh
ho t}{
ho^2} A^2 + rac{\sinh
ho t}{
ho} A_2$$

where $A = \left(-up_0^\top + p_0 u^\top\right) J \in \mathfrak{so}(n,1)$ and $\rho := (u^\top J u)^{\frac{1}{2}}$

・ロン ・回 と ・ ヨ と ・ ヨ と

Example 1

$$u(t) = u$$
 (constant) s.t. $u^{\top} J p_0 = 0$ and $(u^{\top} J u)^{\frac{1}{2}} = 1$

Solution of KE, with initial conditions s(0) = 0, R(0) = I

$$\left\{ egin{array}{l} s(t) = ut \ R(t) = e^{At} \end{array}
ight.$$

•
$$\alpha(t) = e^{At}p_0 = p_0 \cosh t + u \sinh t$$

(geodesic in H^n passing through p_0 at t = 0 with initial velocity u)

•
$$\alpha_{\text{dev}}(t) = p_0 + ut$$

(geodesic in $T_{p_0}^{aff}H^n$)

イロン イ部ン イヨン イヨン 三日

Example 2

$$p_0 = e_{n+1} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ u = \begin{bmatrix} u_1 & u_2 & \dots & u_n & 0 \end{bmatrix}^\top$$
, then we must have

Solution of KE

$$\begin{cases} \dot{s}(t) = u(t) \\ \dot{R}(t) = R(t) \left(\sum_{i=1}^{n} u_i(t) (E_{i,n+1} + E_{n+1,i}) \right) \end{cases}$$

where the matrices $E_{i,j}$ have all entries equal to zero except the entry (i, j) which is equal to 1.

- These (KE) can be rewitten as a right-invariant control system evolving on SO_o(n, 1) ⋉ ℝⁿ⁺¹.
- For $n \ge 2$, this system is controllable.

Idea:

The tangent (resp. normal) parallel transport of a vector Y_0 , tangent (resp. normal) to a manifold at a point p_0 , along a curve α , s.t. $\alpha(0) = p_0$, can be accomplished by rolling (without slip or twist) along that curve.

Rolling the Hyperbolic *n*-sphere - Parallel Transport

Let $h(t) = (R^{-1}(t), s(t)) \in \overline{G}$ be a rolling map for H^n , with rolling curve α satisfying $\alpha(0) = p_0$.

Tangent Parallel Transport

If $\Omega p_0 \in T_{p_0}H^n$, then

$$Y(t) = R(t)\Omega p_0$$

defines the unique tangent parallel vector field along α , satisfying $Y(0) = \Omega p_0$.

Normal Parallel Transport

If $Z_0 \in T_{p_0}^{\perp} H^n$, then $Z(t) = R(t) Z_0$

defines the unique normal parallel vector field along α , satisfying $Z(0) = Z_0$.

- Lorentzian manifolds their applications to theory of general relativity
- Stiefel Manifolds
- S^n , SO_n and Grassmann Manifolds
- Quadratic Lie groups
- Riemannian manifolds
- Controllability

● ▶ 《 三 ▶

→ 注→ 注

References

Principal:

F. Silva Leite, P. Crouch. Rolling maps for pseudo-Riemannian manifolds. Preprint, 2010.

Others:

- J. Zimmerman. Optimal control of the Sphere Sⁿ Rolling on Eⁿ. Math. Control Signals Systems, 17 (2005), 14-37.
- V. Jurdjevic, J.A. Zimmerman. Rolling Sphere Problems on Spaces of Constant Curvature. Math. Proc. Camb. Phil. Soc., 144 (2008), 729-747.
- K. A. Krakowski, F. Silva Leite, P. Crouch. Rolling maps in Riemannian manifolds. In Proceedings CONTROLO'2010, 8-10 September 2010, University of Coimbra, Portugal.
- K. Hüper e F. Silva Leite. On the Geometry of Rolling and Interpolation Curves on Sⁿ, SO_n and Grassmann Manifolds. Journal of Dynamical and Control Systems, 13(4) (Outubro 2007), 467-502.
- K. Hüper, M. Kleinsteuber e F. Silva Leite. Rolling Stiefel Manifolds. Submitted to International Journal of Systems Science, Vol. 39, No. 9 (September 2008) 881887.
- B. O'Neill. Semi-Riemannian Geometry with applications to relativity. Pure and Applied Mathematics, 103 Academic Press, Inc.
- R. W. Sharpe. Differential Geometry. Springer, New York, 1996.

・ロン ・回と ・ヨン ・ヨン

э