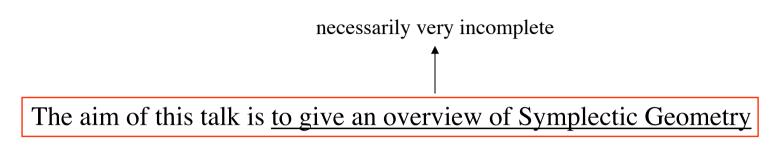
Symplectic Geometry versus Riemannian Geometry

Inês Cruz, CMUP

1

2010/10/20 - seminar of PIUDM



(there is no intention of giving a list of <u>recent results</u> or <u>open problems</u>)

Notation: throughout the talk:

-
$$M$$
 - real, finite-dim^{al}, differentiable manifold without boundary
- $C^{\infty}(M) = \{f : M \to \mathbb{R} : f \text{ is smooth}\}$
- $\chi(M) = \{X : M \to TM : X \text{ is a vector field}\}$
- $\Omega^{k}(M) = \{\omega : TM \times \cdots \times TM \to \mathbb{R}\}$
 $\omega(p; v_{1}, \dots, v_{k}) \in \mathbb{R}$

or
$$\Omega^{k}(M) = \{\omega : \chi(M) \times \cdots \times \chi(M) \to C^{\infty}(M)\}$$

 $\omega(X_1,\ldots,X_k) \in C^{\infty}(M)$ given by: $\omega(X_1,\ldots,X_k)(p) = \omega(p;X_{1_p},\ldots,X_{k_p})$

1. Symplectic Manifolds

<u>Def</u>: Symplectic manifold is a pair (M, ω) , where: (a) $\omega \in \Omega^2(M)$ i.e., $\omega(Y, X) = -\omega(X, Y)$ $\omega(fX + gY, Z) = f\omega(X, Z) + g\omega(Y, Z)$

(b) ω is <u>nondegenerate</u>, i.e.: $\omega(X,Y) = 0, \forall X \in \chi(M) \iff Y = 0$

(c) ω is <u>closed</u>, i.e. $d\omega = 0$

We call ω a symplectic form.

which manifolds "qualify" for being symplectic?

Necessary conditions:

(N1) dim M = 2n

consider local coordinates $(x_1,...,x_m)$ and build the matrix *A* with entries:

1. Riemannian Manifolds

Def: Riemannian manifold is a pair (M, <, >), where: (a) $<, >: \chi(M) \times \chi(M) \rightarrow C^{\infty}(M)$ satisfies: < Y, X > = < X, Y > < fX + gY, Z > = f < X, Z > +g < Y, Z >(b) <, > is positive definite. Consequence: <, > is nondegenerate.

which manifolds "qualify" for being Riemannian?

all smooth manifolds!

$$a_{ij} = \omega \left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_i} \right)$$

then (a) and (b) imply: $A^{T} = -A$ and $det(A) \neq 0$ $\downarrow \downarrow$ m = 2n

(N2) *M* is oriented

consider the *n*th exterior power:

 $\boldsymbol{\omega}^{\scriptscriptstyle (n)} = \boldsymbol{\omega} \wedge \ldots \wedge \boldsymbol{\omega} \in \Omega^{^{2n}}(\boldsymbol{M})$

then (b) implies $\omega^{(n)}$ is a volume form on *M*.

 $\omega^{(n)}$ is called symplectic volume.

(N3) if *M* is compact then

$$H^{2}_{DR}(M,\mathbb{R}) \neq 0$$

$$\omega = d\alpha \Rightarrow \omega^{(n)} = d(\alpha \land \omega \land \dots \land \omega)$$

$$\downarrow$$

$$\operatorname{vol}(M) = \int_{M} \omega^{(n)} = \int_{M} d\beta = \int_{\partial M} \beta = 0$$

 S^{2n} is not symplectic, for any n > 1(S^2 <u>is</u> symplectic)

2. Examples

example 1: $M = \mathbb{R}^{2n}$ with coords: $\{x_1, \dots, x_n, y_1, \dots, y_n\}$ and symplectic structure given by: $\omega_0 = \sum_{i=1}^n dx_i \wedge dy_i = dx \wedge dy$

example 2: $M = T^*N$ with symplectic form: $\omega = d\lambda$

(λ is the Liouville 1-form on M: $\lambda_{(p,\alpha)}(X) = < \alpha, d\pi_{(p,\alpha)}(X) >)$

- The importance of example 1 will be clear soon.
- example 2 is behind the Hamiltonian formulation of *Conservative Mechanics*.

3. Special vector fields

• Nondegeneracy of ω implies that the following is an isomorphism:

 $I: \chi(M) \to \Omega^1(M)$ $X \to i_X \omega = \omega(X, \cdot)$

<u>Def</u>: Given $f \in C^{\infty}(M)$ its Hamiltonian vector field is:

 $\mathbf{X}_f = I^{-1}(df)$

(in other words: $\omega(X_f, \cdot) = df(\cdot)$)

Lemma X_f is tangent to the level surface: $\Sigma_C = \{ p \in M : f(p) = C \}$

(equivalently f is constant on the flow of X_f) note that: $v \in T\Sigma_c \Leftrightarrow df(v) = 0$ and: $df(X_f) = \omega(X_f, X_f) = 0$

3. Special vector fields

• Nondegeneracy of < , > implies that the following is an isomorphism:

 $I: \chi(M) \to \Omega^1(M)$ $X \to < X, :>$

<u>Def</u>: Given $f \in C^{\infty}(M)$ its gradient vector field is: $\nabla f = I^{-1}(df)$

(in other words: $\langle \nabla f, \cdot \rangle = df(\cdot)$)

Lemma ∇f is normal to the level surface: $\Sigma_C = \{ p \in M : f(p) = C \}$

$$v \in T\Sigma_C$$
 then:
 $\langle \nabla f, v \rangle = df(v) = 0$

if

Other important vector fields:

<u>Def</u>: A vector field *X* is said to be symplectic if I(X) is closed. In other words: $\mathbf{\Lambda} \nabla f$

 $di_x \omega = 0$

- Hamiltonian vector fields are symplectic, since *ddf*=0.
- Condition (c) implies that the flow of any symplectic vector field "preserves" ω:

$$L_X \omega = \underbrace{di_X \omega}_{= 0} + i_X \underbrace{d\omega}_{= 0} = 0$$
 because of (c)

4. Poisson bracket

One can use Hamiltonian vector fields to define an "operation" between smooth functions:

<u>Def</u>: Poisson bracket on M is: $\{,\}: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ $(f,g) \rightarrow \omega(X_f, X_g) = df(X_g)$

• Condition (c) implies this bracket satisfies Jacobi's identity:

 ${f,{g,h}} + {g,{h,f}} + {h,{f,g}} = 0$

which, together with obvious properties of {,}, implies that:

 $(C^{\infty}(M), \{,\})$

is an infinite-dimensional Lie algebra.

5. Equivalence

<u>Def</u>: Two symplectic manifolds (M, ω) and (M', ω') are symplectomorphic if there exists a C^1 map:

 $\varphi: M \to M'$

satisfying:

 $\varphi^*\omega' = \omega$

i.e.,

 $\omega'_{\varphi(p)}(d\varphi_p(X),d\varphi_p(Y)) = \omega_p(X,Y)$

 φ is called a symplectic map and necessarily $d\varphi_p$ is injective, for all p so:

$\dim M \leq \dim M'$

A symplectomorphism is a symplectic diffeomorphism of *M*.
 Symplectomorphisms form an (infinite dimensional) subgroup of the group *diff(M)*.

5. Equivalence

<u>Def</u>: Two Riemannian manifolds (M, <, >) and (M', <, >') are isometric if there exists a C^1 map: $\varphi: M \to M'$ satisfying: $< d\varphi_p(X), d\varphi_p(Y) > '_{\varphi(p)} = < X, Y >_p$

 φ is called an isometry and necessarily $d\varphi_p$ is injective, for all pso:

 $\dim M \leq \dim M'$

Darboux-Weinstein theorem Let *p* be any point on a symplectic manifold of dimension 2n. Then there exist local coordinates $(x_1,...,x_n,y_1,...,y_n)$ (in *U*) such that:

$$\omega\Big|_U = \sum_{i=1}^n dx_i \wedge dy_i$$

Therefore all symplectic manifolds are (locally) symplectomorphic to example 1. Consequence:

there are no local invariants (apart from dimension) in Symplectic Geometry

curvature is a local invariant in Riemannian Geometry

6. Global Invariants

As seen before, a symplectic manifold carries a symplectic volume:

 $\boldsymbol{\omega}^{(n)} = \boldsymbol{\omega} \wedge \ldots \wedge \boldsymbol{\omega}$

If $\varphi: M \to M'$ is a symplectic map, then it preserves (symplectic) volumes:

$$\varphi^*\omega^{(n)} = \varphi^*(\omega' \wedge \ldots \wedge \omega') = \varphi^*(\omega') \wedge \ldots \wedge \varphi^*(\omega') = \omega \wedge \ldots \wedge \omega = \omega^{(n)}$$

but the converse is not true for n > 1.

example: take
$$(M, \omega) = \left(\mathbb{R}^4, \sum_{i=1}^2 dx_i \wedge dy_i\right)$$
 and consider the map:
 $\varphi(x_1, x_2, y_1, y_2) = \left(\frac{1}{2}x_1, 2x_2, \frac{1}{2}y_1, 2y_2\right)$

This map preserves the symplectic volume $-2dx_1 \wedge dx_2 \wedge dy_1 \wedge dy_2$ but is not symplectic.

so what really characterizes symplectomorphisms?

6.1. Gromov's Nonsqueezing Theorem

The key theorem for characterizing symplectomorphisms (using symplectic invariants) is:

Nonsqueezing theorem - Gromov (1985) There is a symplectic embedding: $\varphi: (B^{2n}(r), \omega_0) \nearrow (Z^{2n}(R), \omega_0)$ if and only if $r \leq R$

if and only if $r \leq R$.

(where:

$$B^{2n}(r) = \left\{ (x, y) \in \mathbb{R}^{2n} : \sum_{i=1}^{n} x_i^2 + y_i^2 < r^2 \right\}$$
$$Z^{2n}(R) = \left\{ (x, y) \in \mathbb{R}^{2n} : x_1^2 + y_1^2 < R^2 \right\}$$

open (symplectic) ball of radius r

open symplectic cylinder of radius R)

- a symplectic embedding is just a symplectic map which is also an embedding. It is denoted by: φ:(M,ω) ∧ (M',ω').
- if (M,ω) is a symplectic manifold and U is open in M, then $(U,\omega|_U)$ is also symplectic.

• The theorem is not valid if "symplectic cylinder" is replaced by "cylinder":

$$C^{2n}(R) = \left\{ (x, y) \in \mathbb{R}^{2n} : x_1^2 + x_2^2 < R^2 \right\}$$

<u>example</u>: the following is a symplectic embedding from $B^4(2)$ into $C^4(1)$:

$$\varphi(x_1, x_2, y_1, y_2) = \left(\frac{1}{2}x_1, \frac{1}{2}x_2, 2y_1, 2y_2\right)$$

6.2. Symplectic Invariants - Capacities

Using Gromov's nonsqueezing theorem, we will construct a symplectic invariant: Gromov's width. This is one of many symplectic invariants known as <u>symplectic capacities</u>.

Let M(2n) denote the set of all symplectic manifolds of dimension 2n.

<u>Def</u> Symplectic capacity is a map:

 $c: M(2n) \to \mathbb{R}^+_0 \cup +\infty$

satisfying all three properties:

(1) monotonicity - if there is a symplectic embedding:

 $\varphi:(M_1,\omega_1)\nearrow(M_2,\omega_2)$

then $c(M_1, \omega_1) \leq c(M_2, \omega_2)$

(2) conformality - $c(M, \lambda \omega) = |\lambda| c(M, \omega) \quad \forall \lambda \neq 0$

(3) (strong) nontriviality - $c(B^{2n}(1),\omega_0) = \pi = c(Z^{2n}(1),\omega_0)$

- If n = 1 then "(absolute value of) total volume of *M*" is a symplectic capacity.
- If *n* > 1 then "(absolute value of) total volume of *M*" is <u>not</u> a symplectic capacity (nontriviality fails).

Theorem

Any symplectic capacity is a symplectic invariant, i.e., if there is a symplectomorphism:

$$\varphi: (M_1, \omega_1) \leftrightarrow (M_2, \omega_2)$$

then $c(M_1, \omega_1) = c(M_2, \omega_2)$.

(proof: monotonicity in both ways)

Lemma

Any symplectic capacity satisfies:

$$c(B^{2n}(r),\boldsymbol{\omega}_0) = \pi r^2 = c(Z^{2n}(r),\boldsymbol{\omega}_0).$$

(proof: previous theorem+conformality+nontriviality)

Theorem

The existence of a symplectic capacity is equivalent to **Gromov's nonsqueezing theorem**.

 \Rightarrow suppose *c* exists and that:

 $\varphi:(B^{2n}(r),\omega_0)\nearrow(Z^{2n}(R),\omega_0)$

is a symplectic embedding. Then monotonicity+previous lemma imply:

 $\pi r^{2} = c \left(B^{2n}(r), \boldsymbol{\omega}_{0} \right) \leq c \left(Z^{2n}(R), \boldsymbol{\omega}_{0} \right) = \pi R^{2}$

SO $r \leq R$.

⇐ define the Gromov's width of a symplectic manifold:

$$W_{G}(M,\omega) = \sup_{r>0} \left\{ \pi r^{2} : \exists \varphi : \left(B^{2n}(r), \omega_{0} \right) \nearrow (M,\omega) \right\}$$

(the area of the disk of the bigger ball one can symplectically-embed on (M,ω))

If Gromov's nonsqueezing theorem holds (<u>it does</u>!) then Gromov's width is a symplectic capacity.

Theorem Gromov's width W_G is the smallest of all capacities: $W_G(M,\omega) \le c(M,\omega)$, for any capacity *c* and any (M,ω) .

(proof: let c be any capacity and fix r such that there is an embedding:

$$\varphi:(B^{2n}(r),\omega_0)\nearrow(M,\omega)$$

Then monotonicity of c implies:

$$\pi r^2 = c(B^{2n}(r), \omega_0) \le c(M, \omega)$$

Since this holds for all r and $c(M,\omega)$ is independent of r:

$$\sup_{r>0} \left\{ \pi r^2 : \exists \varphi : \left(B^{2n}(r), \omega_0 \right) \nearrow (M, \omega) \right\} \leq c(M, \omega)$$

proving the result).

6.3. Back to Symplectomorphisms

We go back to the question:

so what really characterizes symplectomorphisms?

It turns out that symplectomorphisms of \mathbb{R}^{2n} are (almost) characterized by the property of "preserving capacity of ellipsoids⁽¹⁾":

Theorem (Eliashberg, 1987) (Hofer, 1990) Let $\varphi : (\mathbb{R}^{2n}, \omega_0) \to (\mathbb{R}^{2n}, \omega_0)$ be a diffeomorphism and *c* a capacity. Then: $c(\varphi(E, \omega_0)) = c(E, \omega_0)$ for any ellipsoid $E \subset \mathbb{R}^{2n}$ if and only if φ is symplectic or anti-symplectic⁽²⁾.

⁽¹⁾ ellipsoid is the image of a ball by a linear/affine diffeomorphism

⁽²⁾ meaning that $\varphi^* \omega_0 = -\omega_0$