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(there is no intention of giving a list of recent results or open problems)

The aim of this talk is to give an overview of Symplectic Geometry

necessarily very incomplete
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Notation: throughout the talk:

- M - real, finite-dimal, differentiable manifold without boundary

 
C∞ M( ) = f :M →  :  f  is smooth{ }- 

- χ M( ) = X :M → TM :  X  is a vector field{ }

- 
 
Ωk M( ) = ω :TM ×× TM → { }

 
or  Ωk M( ) = ω : χ M( ) ×× χ M( )→ C∞ M( ){ }

 
ω p;v1,…,vk( )∈

 
ω X1,…,Xk( )∈C∞ M( )   given by:  ω X1,…,Xk( ) p( ) =ω p;X1p

,…,Xkp( )
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Def: Symplectic manifold is a pair 
M ,ω( )          , where: 

ω X,Y( ) = 0,  ∀X ∈χ M( )   ⇔   Y = 0

(a)                  i.e.,  ω ∈Ω2 M( )

(b)     is nondegenerate, i.e.:ω

(c)     is closed, i.e. dω = 0ω

ω Y ,X( ) = −ω X,Y( )
ω fX + gY ,Z( ) = fω X,Z( ) + gω Y ,Z( )

(b) < , > is positive definite. 

Def: Riemannian manifold is a pair 
             , where: M ,<,>( )

< Y ,X >  =  < X,Y >

Consequence:  < , > is nondegenerate.

< fX + gY ,Z >  = f < X,Z > +g < Y ,Z >

(a)                                         satisfies:<,>: χ(M ) × χ(M )→ C∞ M( )

which manifolds “qualify” for being 
symplectic?

Necessary conditions:

 
x1,…, xm( )consider local coordinates                and build 

the matrix A with entries:

which manifolds “qualify” for being 
Riemannian?

1. Symplectic Manifolds 1. Riemannian Manifolds

(N1) dim M = 2n
all smooth manifolds!

We call     a symplectic form.ω
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then (a) and (b) imply:
AT = −A   and    det A( ) ≠ 0

⇓
m = 2n

(N2) M  is oriented
consider the nth exterior power:

 
ω (n) =ω ∧…∧ω ∈Ω2n M( )

then (b) implies        is a volume form on M.ω (n)

(N3) if M  is compact then 

 
H 2

DR M ,( ) ≠ 0
 
ω = dα ⇒ω (n) = d α ∧ω ∧…∧ω( )

vol M( ) = ω (n) =
M∫ dβ =

M∫ β =
∂M∫ 0

⇓

S2n is not symplectic, for any n >1

aij =ω
∂
∂xi
, ∂
∂xi

⎛
⎝⎜

⎞
⎠⎟

ω n( ) is called symplectic volume.

(S2 is symplectic)
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2. Examples

example 1:                 with coords:  M = 2n

 
x1,…, xn , y1,…, yn{ }

and symplectic structure given by:

example 2:                  with symplectic 
form:

M = T *N

ω = dλ

(     is the Liouville 1-form on M :λ
λ p,α( ) X( ) =<α,dπ p,α( ) X( ) > )

The importance of example 1 will be 
clear soon.
example 2 is behind the Hamiltonian 
formulation of Conservative 
Mechanics.

ω0 = dxi ∧ dyi
i=1

n

∑ = dx ∧ dy
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3. Special vector fields

Nondegeneracy of       implies that the 
following is an isomorphism:

ω

I : χ M( )→Ω1 M( )
X→ iXω =ω X,⋅( )

Def: Given                   its Hamiltonian 
vector field is:

f ∈C∞ M( )

X f = I
−1 df( )

(in other words:                      )ω X f ,⋅( ) = df ⋅( )

Lemma
      is tangent to the level surface:X f

ΣC = p ∈M : f p( ) = C{ }
(equivalently f  is constant on the flow of Xf ) 

df X f( ) =ω X f ,X f( ) = 0

3. Special vector fields

Nondegeneracy of < , >  implies that 
the following is an isomorphism:

I : χ M( )→Ω1 M( )
X→< X,⋅ >

Def: Given                    its gradient 
vector field is:

f ∈C∞ M( )

∇f = I −1 df( )

(in other words:                       )< ∇f ,⋅ >= df ⋅( )

Lemma
      is normal to the level surface:

ΣC = p ∈M : f p( ) = C{ }
∇f

note that:                                and:v ∈TΣC ⇔ df v( ) = 0
if               then:v ∈TΣC

< ∇f ,v >= df v( ) = 0
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Other important vector fields:

Def: A vector field X is said to be 
symplectic if I(X) is closed. In other 
words:

diXω = 0

Hamiltonian vector fields are 
symplectic, since ddf=0.
Condition (c) implies that the flow 
of any symplectic vector field 
“preserves”     :ω

LXω = diXω + iXdω = 0
= 0 = 0 because of (c) 

X f

∇f
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One can use Hamiltonian vector fields 
to define an “operation” between 
smooth functions:

Condition (c) implies this bracket 
satisfies Jacobi’s identity:

4. Poisson bracket

Def: Poisson bracket on M  is:
,{ } :C∞ M( ) × C∞ M( )→ C∞ M( )

f ,g( )→ω X f ,Xg( ) = df Xg( )

f , g,h{ }{ } + g, h, f{ }{ } + h, f ,g{ }{ } = 0
which, together with obvious 
properties of  {,}, implies that:

C∞ M( ), ,{ }( )
is an infinite-dimensional Lie algebra.
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5. Equivalence 5. Equivalence

ϕ :M → M '
satisfying:

ϕ *ω ' =ω
i.e.,

ω 'ϕ p( ) dϕ p X( ),dϕ p Y( )( ) =ω p X,Y( )

Def: Two Riemannian manifolds                    
             and                are isometric 
if there exists a C1 map: 
M ,<,>( ) M ',<,> '( )

ϕ :M → M '
satisfying:

< dϕ p X( ),dϕ p Y( ) > 'ϕ p( )  =  < X,Y > p

M ,ω( )Def: Two symplectic manifolds              
and              are symplectomorphic if 
there exists a      map: 

M ',ω '( )
C1

    is called a symplectic map and 
necessarily         is injective, for all p 
so:

ϕ
dϕ p

dimM ≤ dimM '
A symplectomorphism is a symplectic 
diffeomorphism of M. 
Symplectomorphisms form an 
(infinite dimensional) subgroup of the 
group diff(M). 

    is called an isometry and 
necessarily         is injective, for all p 
so:

ϕ
dϕ p

dimM ≤ dimM '
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Therefore all symplectic manifolds are 
(locally) symplectomorphic to example 
1. Consequence:

there are no local invariants 
(apart from dimension) in 
Symplectic Geometry

curvature is a local invariant 
in Riemannian Geometry

Darboux-Weinstein theorem
Let p be any point on a symplectic 
manifold of dimension 2n. Then there 
exist local coordinates                        
(in U) such that:

ω U = dxi ∧ dyi
i=1

n

∑

 
x1,…, xn , y1,…, yn( )



12

6. Global Invariants

As seen before, a symplectic manifold carries a symplectic volume:

 ω
(n) =ω ∧…∧ω

If                     is a symplectic map, then it preserves (symplectic) 
volumes: 

ϕ :M → M '

 
ϕ *ω '(n) = ϕ * ω '∧…∧ω '( ) = ϕ * ω '( )∧…∧ϕ * ω '( ) =ω ∧…∧ω =ω (n)

example: take                                  and consider the map:
 

M ,ω( ) = 4 , dxi
i=1

2

∑ ∧ dyi
⎛
⎝⎜

⎞
⎠⎟

so what really characterizes symplectomorphisms?

ϕ x1, x2 , y1, y2( ) = 1
2
x1,2x2 ,

1
2
y1,2y2

⎛
⎝⎜

⎞
⎠⎟

This map preserves the symplectic volume                                but is not 
symplectic.

−2dx1 ∧ dx2 ∧ dy1 ∧ dy2

but the converse is not true for n > 1.
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6.1. Gromov’s Nonsqueezing Theorem

Nonsqueezing theorem - Gromov (1985)
There is a symplectic embedding:

if and only if 
 
ϕ : B2n r( ),ω0( ) Z 2n R( ),ω0( )

r ≤ R.

(where:

 

B2n r( ) = x, y( )∈2n : xi
2 + yi

2 < r2
i=1

n

∑⎧
⎨
⎩

⎫
⎬
⎭

 
Z 2n R( ) = x, y( )∈2n : x1

2 + y1
2 < R2{ }

open (symplectic) ball of radius r

open symplectic cylinder of radius R  )

The key theorem for characterizing symplectomorphisms (using 
symplectic invariants) is:

a symplectic embedding is just a symplectic map which is also an 
embedding. It is denoted by:                             .  

ϕ : M ,ω( ) M ',ω '( )

if              is a symplectic manifold and U is open in M, then               is 
also symplectic.

M ,ω( ) U,ω U( )
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The theorem is not valid if “symplectic cylinder” is replaced by 
“cylinder”:

 
C 2n R( ) = x, y( )∈2n : x1

2 + x2
2 < R2{ }

example: the following is a symplectic embedding from B4(2) into C4(1):

ϕ x1, x2 , y1, y2( ) = 1
2
x1,
1
2
x2 ,2y1,2y2

⎛
⎝⎜

⎞
⎠⎟
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6.2. Symplectic Invariants - Capacities

Using Gromov’s nonsqueezing theorem, we will construct a symplectic 
invariant: Gromov’s width. This is one of many symplectic invariants 
known as symplectic capacities.

Let M(2n) denote the set of all symplectic manifolds of dimension 2n.

Def Symplectic capacity is a map:

satisfying all three properties:
(1) monotonicity - if there is a symplectic embedding:

 
ϕ : M1,ω1( ) M 2 ,ω2( )

then  c M1,ω1( ) ≤ c M 2 ,ω2( )
(2) conformality -  c M ,λω( ) = λ c M ,ω( )      ∀λ ≠ 0

(3) (strong) nontriviality - c B2n 1( ),ω0( ) = π = c Z 2n 1( ),ω0( )

 
c :M 2n( )→  0

+ ∪ +∞
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If n = 1 then “(absolute value of) total volume of M” is a symplectic capacity. 
If n > 1 then “(absolute value of) total volume of M” is not a symplectic 
capacity (nontriviality fails). 

Theorem
Any symplectic capacity is a symplectic invariant, i.e., if there is a 
symplectomorphism:

ϕ : M1,ω1( )↔ M 2 ,ω2( )
then                                  . c M1,ω1( ) = c M 2 ,ω2( )

(proof: monotonicity in both ways)

Lemma
Any symplectic capacity satisfies:

c B2n r( ),ω0( ) = πr2 = c Z 2n r( ),ω0( ).
(proof: previous theorem+conformality+nontriviality)
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Theorem
The existence of a symplectic capacity is equivalent to Gromov’s 
nonsqueezing theorem.

suppose c exists and that:⇒

is a symplectic embedding. Then monotonicity+previous lemma imply:

 
ϕ : B2n r( ),ω0( ) Z 2n R( ),ω0( )

πr2 = c B2n r( ),ω0( ) ≤ c Z 2n R( ),ω0( ) = πR2

so         .r ≤ R

⇐ define the Gromov’s width of a symplectic manifold:

(the area of the disk of the bigger ball one can symplectically-embed on         ) M ,ω( )

If Gromov’s nonsqueezing theorem holds (it does!) then Gromov’s width is a symplectic 
capacity.

 

WG M ,ω( ) = sup
r>0

πr2 :∃ϕ : B2n r( ),ω0( ) M ,ω( ){ }
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(proof: let c be any capacity and fix r such that there is an embedding:

Then monotonicity of c implies:

proving the result). 

Theorem
Gromov’s width WG is the smallest of all capacities:

WG M ,ω( ) ≤  c M ,ω( ),  for any capacity c and any M ,ω( ).

 
ϕ : B2n r( ),ω0( ) M ,ω( )

πr2 = c B2n r( ),ω0( ) ≤ c M ,ω( )

 

sup
r>0

πr2 :∃ϕ : B2n r( ),ω0( ) M ,ω( ){ } ≤ c M ,ω( )

Since this holds for all r and              is independent of r:c M ,ω( )
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6.3. Back to Symplectomorphisms

We go back to the question:

so what really characterizes symplectomorphisms?

Theorem (Eliashberg, 1987) (Hofer, 1990)
Let                                     be a diffeomorphism and c a capacity. Then:

if and only if     is symplectic or anti-symplectic(2).ϕ
 
c ϕ E,ω0( )( ) = c E,ω0( )  for any ellipsoid E ⊂ 2n

 
ϕ : 2n ,ω0( )→ 

2n ,ω0( )

(1) ellipsoid is the image of a ball by a linear/affine diffeomorphism  

It turns out that symplectomorphisms of         are (almost) characterized by 
the property of “preserving capacity of ellipsoids(1)”:

 
2n

(2) meaning that  ϕ *ω0 = −ω0


