An algorithm to compute generalised Feng-Rao numbers of a numerical semigroup

Manuel Delgado

Seminar of the PHD program Coimbra, February 11th, 2011

(Joint work with J. I. Farrán, P. A. García-Sánchez and D. Llena)

Manuel Delgado

Motivation 00000 00	Divisors 000 00000	Feng Rao 0000 00000000	Algorithm 000000 00	Application 000 0000000
Numerical semigroups A classical problem	Sylvester solve dimension 2, b higher embedd	d the case of numerical se ut no (polynomial) formul ing dimension.	emigroups of emb la is known for se	edding migroups of
	For much more Ramírez Alfons	e on the Frobenius problen sín.	n, one may consu	lt a book by
	J. L. Ram <i>Oxford Le</i> Oxford Ur	írez Alfonsín, The Diopha <i>ctures Series in Mathema</i> niversity Press, (2005).	ntine Frobenius P tics and its Applic	Problem, cations 30 ,
Ν	/Januel Delgado	Feng Rao numbers	Coimbra, Febru	uary 11th, 2011 9 / 52
Motivation 00000 00	Divisors 000 00000	Feng Rao 0000 00000000	Algorithm 000000 00	Application 000 0000000
A convenient visualisation of the integers Divisors			Outline	I
	 Motivation Numerica A classica 	l semigroups		
	 2 Visualisation • A conven • Divisors 	n and divisors ient visualisation of the in	tegers	
	Feng Rao dFeng RaoAmenable	istances and amenable set numbers e sets	S	
	4 generic al• The grou• An algorities	lgorithm nd thm to compute generalize	ed Feng Rao num	ibers
	5 Semigroups• Semigrou• pictures	generated by intervals ps generated by intervals		
Λ	Aanuel Delgado	Feng Rao numbers	Coimbra, Februa	ary 11th, 2011 10 / 52

Motivation	Divisors	Feng Rao	Algorithm	Application
00000	000	0000	000000	000
00		0000000	00	0000000

A convenient visualisation of the integers Divisors

We shall use this type of drawings to depict the most relevant parts of the sets considered. For instance, if we want to highlight the elements of a numerical semigroup, we do not add any information by depicting the points below 0 and those above the conductor.

The following parallelograms highlight the elements of the semigroup $S = \langle 9, 13, 15 \rangle$, and the elements of 60 - S, respectively.

Figure: $S = \langle 9, 13, 15 \rangle$ and 60 - S, respectively

00000		0000 000000000	000000	000 0000000				
A convenient visualisation of the integers Divisors	We observe th compute the o the following:	nat elements greater thar divisors of x. Denoting S	x need not to be use $x_x = \{n \in S \mid n \leq x\}, y$	ed to we get				
	Corollary 3	Corollary 3						
	$\mathrm{D}(x) = S_x \cap ($	$(x-S_x).$						
	The computation implemented of	tion of the divisors of an due to this consequence	element can be easily of Lemma 2.					
	Algorithm 1:	Divisors						
	Input : Α nι Output : The	imerical semigroup S , x divisors of x	∈ <i>S</i>					
	1 $S_x := \{s \in S \}$	$\mid s \leq x \}$ /* Compute the	e elements of S s	maller				
	2 return $\{s \in$	$S_x \mid x - s \in S_x \}$		*/				
1	Manuel Delgado	Feng Rao numbers	Coimbra, February 11	1th, 2011 15 / 52				

Figure: The divisors of 60 in the semigroup $S=\langle 9,13,15
angle$

A convenient visualisation of the integers **Divisors**

Let S be a numerical semigroup with conductor c and let $x \ge 2c - 1$. Observe that x - S contains all the integers not greater that x - cand that the number of integers smaller than x not belonging to x - S is precisely the genus of S.

As the number of non-negative integers not greater than x is x + 1, one gets immediately the well known fact:

Proposition 4

If $x \ge 2c - 1$, then $\#D(x) = \#S \cap (x - S) = x + 1 - 2g$.

Motivation 00000 00	Divisors 000 00000	Feng Rao 0000 000000	Algor 000 000 00	ithm 9000	Application 000 0000000
Feng Rao numbers Amenable sets			(Dutline I	
	 Motivation Numerion A classion 	n cal semigroups cal problem			
	2 Visualisati• A conve• Divisors	on and divisors enient visualisation	of the integers		
	 3 Feng Rao • Feng Rao • Amenal 	distances and ame ao numbers ble sets	nable sets		
	4 A generic• The gro• An algo	algorithm ound rithm to compute ;	generalized Feng	Rao numbers	
	5 Semigroup• Semigroup• pictures	os generated by inte oups generated by i	ervals ntervals		
Ν	Manuel Delgado	Feng Rao nur	nbers	Coimbra, February 11th, 201	1 19 / 52

Motivation	Divisors	Feng Rao	Algorithm 000000	Application
Feng Rao numbers Amenable sets	In the framework of Rao introduced a ne rational point of an It is a purely combinumerical semigrou is used not only in the cryptography.	f the Theory of Error- otion of distance for t algebraic curve, with natorial concept that p. Later on, that not the theory of error co	Correcting Codes the Weirstrass sem decoding purpos can be defined fo ion has been gene rrecting codes, bu	, Feng and higroup at a es. or any eralised and it also in

where

$$\delta_{FR}^r(m) = \min\{ \sharp \mathrm{D}(m_1,\ldots,m_r) \mid m \leq m_1 < \cdots < m_r, \ m_i \in S \}.$$

Example 12

Let S be a numerical semigroup with conductor c. Let $m \geq 2c - 1$, and r a non negative integer. Then the interval $[m, m + r - 1] \cap \mathbb{N}$ is a(S, m, r)-amenable set.

(240)

00000	000		000000	000 0000000
Feng Rao numbers Amenable sets	If M is not m -clos $i \in \{1, \ldots, r\}$ there $m_i - t \in S$) and m_i have $\mathrm{D}(m_i - t) \subset \mathbb{I}$ $\mathrm{D}(m_1, \ldots, m_i)$ In other words, we divisors does not interval.	ed under division, we exists $t \in S$ such th $t - t \notin \{m_1, \ldots, m_r\}$ $D(m_i)$, and thus $m_{i-1}, m_i - t, m_{i+1}, \ldots$ can substitute m_i by crease.	e may assume that f at $m_i - t > m$ (wh . As $m_i - t$ divides $(m_r) \subseteq D(m_1, \dots, m_i)$ $m_i - t$ and the nur	or some ich implies <i>m_i</i> , we <i>m_r</i>). mber of
	Now we can repeat <i>m</i> -closed under divi number of steps (ℕ	the process with the sion set. Note that t ^r has no infinite desc	set obtained until whis must happen in cending chains).	we reach a a finite □

Motivation 00000 00	Divisors 000 00000	Feng Rao ○○○○ ○○○○●○○	Algorithm 000000 00	Application 000 0000000
Feng Rao numbers Amenable sets	Proof. (a) Suppose $m_{i_0} - \rho_{i_0} > m$. Let of <i>D</i> are bigger than using Lemma 2, <i>D</i> \subseteq $D \subseteq D(m_{i_0}) \cap (m, \circ)$ since $m_1 = m$. But have the same cardi	that there exists i_0 $D = \{m_{i_0} - \rho_j \mid j \in M$ m_i , that is, $D \subseteq (m_i)$ $\subseteq D(m_{i_0})$. Thus $p(m_i) = \{m_1, \dots, m_{i_0}\}$. this is absurd, since nality.	$\in \{1, \ldots, r\}$ such $\{1, \ldots, i_0\}\}$. All th n, ∞). On the other The containment the two ends of the	that ne elements er hand, is strict ne chain
	(b) Note that m_{i+1} $m_{i+1} - \rho_2 \ge m$, the there is no element must be non greater The following result	$- \rho_2$ is a divisor of r n $m_{i+1} - \rho_2 \in M$. A in M strictly betwee r than m_i . is important for effi	m_{i+1} . This implies as $m_{i+1} - \rho_2 < m_{i-1}$ n m_i and m_{i+1} , m_i ciency reasons.	that, if $_{+1}$ and $_{i+1} - \rho_2$

Motivation 00000 00	Divisors 000 00000	Feng Rao ○○○○ ○○○○○●○	Algorithm 000000 00	Application 000 0000000		
Feng Rao numbers Amenable sets	Proposition 15					
	A subset $M = \{r, (S, m, r)\}$ -amenab	$m=m_1,\ldots,m_r\}$ of a number of	numerical semigroup	o S is		
for all $i \in \{1,, r\}$ and g minimal generator of S, if $m_i - g \ge m$, then $m_i - g \in \{m_1,, m_r\}$.						
	Proof. Let $m_i \in M$ and $u \in D(m_i) \cap [m, \infty)$, with $u \neq m_i$. We sprove that if (2) holds, then $u \in M$, thus concluding that M is (S, m, r) -amenable. We can write $u = m_i - \gamma$. Assume as an hypothesis that $m_i - \alpha \in D(m_i) \cap [m, \infty)$ implies $m_i - \alpha \in M$, fo α with factorization length lesser than the factorization length of Let g be a minimal generator that divides γ . As $\gamma - g$ has smalle factorization length than γ , we have, by hypothesis, that $m_i - \gamma + g \in M$. But then, by (2), $m_i - \gamma = (m_i - \gamma + g) - g \in M$.					
М	anuel Delgado	Feng Rao numbers	Coimbra, February	11th, 2011 31 / 52		
Motivation 00000 00	Divisors 000 00000	Feng Rao ○○○○ ○○○○○●	Algorithm 000000 00	Application 000 0000000		
Feng Rao numbers	Algorithm 2: (S	, <i>m</i> , <i>r</i>)-amenable sets				
Amenable sets	Input : A nume Output: The set	rical semigroup <i>S</i> , <i>m</i> ≥ of (<i>S</i> , <i>m</i> , <i>r</i>)-amenable	≥ 2 <i>c</i> — 1 and <i>r</i> an ii sets	nteger		

SM := [[m]]/* the set of amenable sets */ Compute the generators $gens = \{n_1 < \cdots < n_e\}$ and the elements $\{0 = \rho_1 < \rho_2 < \cdots\}$ of *S*; for *i* in [2..*r*] do 1 *newM* := []; for x in SM do 2 $min := Minimum(x[Length(x)] + \rho_2, m + \rho_i);$ for m_j in [x[Length(x)] + 1..min] do 3 $divs := \{d \in m_j - gens \mid d > m\};$ 4 if $divs \subseteq x$ then 5 Append(newM, [Union(x, [mj])]) SM := newM;return SM;

Manuel Delgado

Motivation	Divisors	Feng Rao	Algorithm	Application
00000 00	000 00000	0000 0000000	00000 00	000 0000000
The ground				

The ground

We got an algorithm to compute generalized Feng Rao numbers: compute the amenable sets and then the divisors of each of these sets. Not all the amenable sets are needed as will be shown. We continue considering S a numerical semigroup minimally generated by $\{n_1 < \cdots < n_e\}$ with conductor c. Let $m \ge 2c - 1$. The set $\{m, \ldots, m + n_e - 1\}$ is called the (S, m)-ground, or, simply, ground.

The intersection of an (S, m, r)-amenable set M with the (S, m)-ground is called the **shadow** of M.

Note that the shadow of an amenable set is amenable.

An algorithm to compute generalized Feng Rao numbers

Motivation	Divisors	Feng Rao	Algorithm	Application
00000	000	0000	00●000	000
00	00000	0000000	00	0000000

The ground An algorithm to compute generalized Feng Rao numbers

Proof. The inclusion $(M \setminus L) \cup D(L) \subseteq D(M)$ is clear. For the other inclusion, let $x \in D(M) \setminus (M \setminus L) = (D(M) \setminus M) \cup L$. We want to prove that $x \in D(L)$. Since $L \subseteq D(L)$, we may assume that $x \in D(M) \setminus M$. Then $x \in D(m_i)$ for some $i \in \{1, ..., r\}$ and $m_i \ge m + n_e$. As $m_i - x \in S \setminus \{0\}$, there exists $j \in \{1, ..., e\}$ such that $m_i - x - n_j \in S$. Hence $x \in D(m_i - n_j)$. By hypothesis M is amenable and thus $m_i - n_j \in M$, since $m_i - n_j \in D(m_i) \cap [m, \infty)$. If needed, we can repeat the process until $m_i - n_j \in L$, that is, $x \in D(L)$. The second assertion follows easily since the above union is disjoint.

The ground	
An algorithm to	
compute	
generalized Feng	
Rao numbers	

In the cases where computing divisors is "easy", finding optimal configurations is as difficult as computing generalized Feng Rao numbers. Computing generalized Feng Rao numbers is referred to as difficult in the literature...

We got an algorithm to compute generalized Feng Rao numbers. Note that its efficiency depends on the number of amenable sets. Due to Corollary 17, our algorithm can be sharpened, since we only need to consider one amenable set for each possible shadow.

- The ground
- An algorithm to compute generalized Feng Rao numbers

5 Semigroups generated by intervals

- Semigroups generated by intervals
- o pictures

Manuel Delgado

Motivation 00000 00	Divisors 000 00000		Feng Rao 0000 0000000	Algorithm 000000 00	Application •00 •000000
Semigroups generated by intervals pictures	This algorithm used to perform ultimately led to numbers of num	(even preli n computat co discoveri merical sem	minary versions of tions which gave th ng a formula for th nigroups generated	it) has been extensi e intuition that e generalised Feng by intervals.	vely Rao
	Manuel Delgado	Fe	ng Rao numbers	Coimbra, February 11th. 201	.1 43 / 52
					- /

Motivation	Divisors	Feng Rao	Algorithm	Application
00000	000	0000	000000	000
00	00000	0000000	00	0000000

Semigroups generated by intervals pictures Finally, if we enumerate the elements of S in increasing order

$$S = \{\rho_1 = 0 < \rho_2 < \cdots\},\$$

we note that every $x \ge c$ is the (x+1-g)-th element of S, that is $x =
ho_{x+1-g}$.

The last part of this paper will be devoted to semigroups generated by intervals.

Let *a* be a positive integer and *b* an integer with 0 < b < a. Let $S = \langle a, a + 1, \dots, a + b \rangle$. Then *S* is a numerical semigroup with multiplicity *a* and embedding dimension b + 1. As usual, let *c* denote the conductor of *S* and $m \ge 2c - 1$. Membership problem for these semigroups is trivial as the following known result (and with many different formulations) shows.

Motivation 00000 00		Divisors 000 00000	Feng Rao 0000 00000000	Algorithm 000000 00	Application ○○○ ○○○○○●○
Semigroups generated by intervals pictures		The GAP Grou GAP – Groups, 2004. http://www.ga M. Delgado, P. "numericalsgps http://www.ga J.C. Rosales an "Numerical Ser Springer. 2009.	p. Algorithms, and Pro p-system.org A. García-Sánchez a '': a GAP package o p-system.org/Packag d P. A. García-Sánch nigroups'',	References ogramming, Version and J. Morais, in numerical semigro ges/numericalsgps.h hez,	oups. ntml
М	Manuel Delgad	lo	Feng Rao numbers	Coimbra February	11th. 2011 51 / 52
			0	combia, robiaaiy	/
Motivation	_	Divisors	Forg Pag	Algorithm	Application
Motivation 00000 00		Divisors 000 00000	Feng Rao 0000 0000000	Algorithm 000000 00	Application
Motivation 00000 00 Semigroups generated by intervals pictures		Divisors 000000 J. I. Farrán, P. On the Feng-Ra Seventh Confer Science, Castro Urdiales J. I. Farrán and Goppa-like bou	Feng Rao 0000 000000000 A. García-Sánchez a ao numbers, ence on Discrete Ma , 2010 I C. Munuera, nds for the generaliz	Algorithm 000000 oo and D. Llena, athematics and Con	Application ^{OOO} OOOOOOO OOOOOOO