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Summary

Network optimisation is a branch of optimisation the problems of which
are modelled over a valued graph, that is, a network. We briefly present
introductory concepts in this field and discuss connections between
network optimisation and related subjects. Classical methods applied in
this area assume that deterministic information is associated with the
graph structure, however, in real problems these parameters are often
incomplete, inaccurate or stochastic. We describe some of the possible
formulations of network optimisation problems when uncertainty is
present.
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Discrete mathematics and optimisation

Discrete mathematics

◮ Euler circuits: In order to minimise cost, how should garbage
collection routes be designed for 100 000 households?

◮ Traveling salesman problem: In a wharehouse for documentation
storage a list of tasks is issued daily. The tasks can be locations for
new documents to be dropped, locations of documents to be picked
up, and a set of documents to be moved from one location to
another. How can they compute a good delivery plan for each day?

◮ Telecommunications routing: How do telecommunication companies
determine how to route millions of long-distance calls using the land
lines, repeater amplifiers, and satellite terminals?

The modelling can be done using graphs, where the nodes represent
objects and the arcs represent relationships between them. Matrices are a
data structure used to store the graph, in order to take advantage of the
power of computers to search for a solution.
Many algorithms can be developed for finding solutions for the problems.
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Discrete mathematics

The nature of the problems associated with the afore mentioned
applications of Discrete Mathematics involves questions such as:

◮ Existence of solutions

◮ Number of solutions

◮ Algorithms for generating solutions

◮ Optimisation
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Discrete mathematics and optimisation

Optimisation

Optimisation models intend to solve a problem in the “best” way.
Let f : IR

n → IR be an objective function and x ∈ IR
n be the decision

variables:

◮ Unconstrained problem,

minimise f (x)
subject to x ∈ IR

n ,

or simply, min f (x).

◮ Constrained problem,

minimise f (x)
subject to x ∈ S

,

where S = {x ∈ IR : gi(x) = 0, i ∈ E and gi(x) ≥ 0, i ∈ I} is the
feasible region, or set of constraints.
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Optimisation

Nonlinear optimisation (aka nonlinear programming):

◮ any of the functions (objective or constraints) may be nonlinear.

Linear optimisation (or linear programming):

◮ all functions (objective and constraints) are linear.

Integer programming

◮ some of the decision variables are integer.

Network optimisation (or network programming)

◮ at least part of the constraints define a graph.
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Given
min f (x)
s.t. x ∈ S

◮ A feasible solution is a point that satisfies the constraints, ie, any
x ∈ S .

◮ An optimal solution is x∗ ∈ S such that f (x∗) ≤ f (x), for all x ∈ S
(and, in this case, a global minimiser).
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Nonlinear optimisation
Assuming f is differentiable, then the optimal solution is a stationary
point of f , that is, a point x∗ such that

∇f (x∗) = 0,

and thus we apply iterative methods to approximately solve this system
of nonlinear equations.
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Discrete mathematics and optimisation

Nonlinear optimisation
Algorithm:

Take an initial guess of the solu-
tion, x0

k ← 0
While xk is not optimal Do

xk+1 ← new estimate of the
solution, “better than” xk

k ← k + 1
x

y

z

x0•
x1•

x2
••

Questions:

◮ Does the method converge? How fast? . . .
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Theorem (Sufficiency conditions)
Let x̄ be a feasible solution of min{f (x) : Ax ≥ 0}. Suppose there exists
a vector λ̄ such that

◮ ∇f (x̄) = AT λ̄, λ̄ ≥ 0, “strict complementarity holds”, and

◮ ZT∇2f (x̄)Z is positive definite,

where Z+ is a basis for the null space of a “certain” sub-matrix of A.
Then x̄ is a strict local minimiser.

Theorem (Sufficiency conditions)
Let x̄ be a feasible solution of min{f (x) : g(x) ≥ 0}. Suppose there
exists a vector λ̄ such that

◮ ∇xL(x̄ , λ̄) = 0, λ̄ ≥ 0, λ̄Tg(x̄) = 0,

◮ Z+(x̄)T∇2
xxL(x̄ , λ̄)Z+(x̄) is positive definite,

where Z+ is a basis for the null space of the Jacobian matrix of “some of
the constraints”. Then x̄ is a strict local minimiser.
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Linear optimisation
The feasible points of

min cT x
s. t. Ax = b

x ≥ 0

can be rewritten as basic solutions, x =
(

B−1b 0
)T

, associated with
each partition A = [B | N ] and B is not singular.
Such solutions correspond to vertices of the polyhedron defined by
Ax = b, one of them being an optimal solution (when the problem is
finite).
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Discrete mathematics and optimisation

Linear optimisation

Simplex method:

Take an initial basic solution, x0

k ← 0
While xk is not optimal Do

xk+1 ← basic solution, adja-
cent to xk and “better than” xk

k ← k + 1 x

y

z z z

•

Questions:

◮ How to deal with degeneracy and “cycling”?
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Integer programming

Branch-and-bound method:

Solve the LP relaxation of the pro-
blem (P)
While the solution is fractional Do

Let xi = ǫ 6∈ ZZ

Consider (P) and xi ≥ ⌊ǫ⌋
Consider (P) and xi ≥ ⌈ǫ⌉

x

y

•
•
•

•
•
•

•
•
•

• •

•

•

◦

x ≤ 3 x ≥ 4z z

•

x ≤ 3 x ≥ 4

...
...

Questions:

◮ Relies on having good lower bounds on the integer solutions.

◮ How fast is the method and up to what size of problems can it
solve? . . .
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Network optimisation
A network is a graph the arcs or nodes of which are valuated.

If all functions are linear the network simplex method can be applied,
however these problems are highly degenerate.
Methods that use the solutions’ graph structure are usually more efficient.

◮ Network flow problem

◮ Transportation problems

◮ Assignment problems

◮ Minimum spanning tree problem

◮ Maximum flow problem

◮ Shortest path problem, . . .

1-2 2
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Discrete mathematics and optimisation

Multi-criteria optimisation
The objective function is f : IR

n → IR
r , thus usually the functions fi are

conflicting and there is no “optimal solution”.

Instead, a partial order is defined in order to
compare solutions.

◮ Given a, b ∈ S , a ≺ b iff f (a) ≤ f (b)
and a 6= b.

◮ If a ≺ b it is said that a dominates b.

◮ When there is no b ∈ S that dominates
a this is called a non-dominated
solution.

x

y

y∗

ŷ

x∗ x̂

•
•
• •

•

• • •
• •

• •

•

•

• Pareto-frontier images

• dominated images
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Dealing with uncertainty

Uncertainty
Classical formulations assume deterministic and fixed parameters.
However, in a more precise representation of reality those parameters may
be subjective, or may be subject to sources of uncertainty, imprecision
and inaccurate determination,

◮ parameters may vary dynamically, or may result from a measuring
instrument or from a statistic measure (which usually involve some
imprecision),

◮ knowing a parameter accurately can be costly,

◮ a decision group may not agree on the values that each parameter
should take, . . .
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Dealing with uncertainty

Some possible models

◮ “Approximate” model. The “most likely” value is assigned to each
parameter, it is complemented by sensitivity analysis.

◮ Probabilistic model. Requires probability distributions (and
correlation among parameters) for the unknown values and leads to
a solution based on its expected cost, and perhaps its variance.

Both prematurely focus on a single solution, which is as arbitrary as the
“most likely” values or the probabilities chosen, and the DMs tend to
disregard other potential solutions.

◮ Robust model. We admit multiple instances of the model, each
defined by an acceptable combination of values for the parameters.
The “robustness analysis” approach, where we focus on identifying
conclusions that are valid for every instance of the model is then
appropriate.
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Dealing with uncertainty

Relative robust path problem

The relative robust path problem

Models,

◮ scenario model, a set of alternative graphs are considered at the
same time, and

◮ interval data model, where an interval of possible values is
associated with each arc.

Given the interval data model,

◮ a relative robust shortest path (or simply robust shortest path) is a
path which minimises the maximum deviation from the optimal
shortest path over all realisations of arc costs.
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Dealing with uncertainty

Relative robust path problem

Let (N ,A) be a directed network where:

◮ N denotes the set of n nodes, and A denotes the set of m arcs,

◮ arc (i , j) is associated with the interval [lij , uij ].

Let:

◮ a path from s to t be a sequence p = 〈v1, v2, . . . , vℓ(p)〉, where
s = v1, t = vℓ(p), and (vk , vk+1) ∈ A, k = 1, . . . , ℓ(p)− 1,

◮ P be the set of paths in (N ,A),

◮ a scenario r be a snapshot of the arc costs, i.e., c r
ij ∈ [lij , uij ], for any

(i , j) ∈ A.

The robust deviation for path p in a scenario r is the difference between
the cost of p in r and the cost of the shortest path in scenario r .

A path is a robust shortest path if it has the smallest (among all paths)
maximum robust deviation (among all scenarios).
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Dealing with uncertainty

Relative robust path problem

Note
Given p ∈ P , the scenario r which maximises the robust deviation for p is
the one where c r

ij = uij , for (i , j) ∈ p, and c r
ij = lij for (i , j) 6∈ p.

The scenario derived from path p is called
the scenario induced by p.

1
2,2

4,6

2

1,7
2,2

34

4,8

3,5

i j
lij , uij

s

t
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Relative robust path problem

Mixed integer programming formulation
Let us consider the variables,

◮ yij =

{

1, (i , j) is on the robust shortest path from s to t
0, otherwise

◮ xi , the cost of the shortest path from s to i in the scenario induced
by the robust shortest path (defined by y).



Dealing with uncertainty in network optimisation

Dealing with uncertainty

Relative robust path problem

Mixed integer programming formulation

min
∑

(i ,j)∈A

uijyij − xi (1)

s. t. xj ≤ xi + lij + (uij − lij)yij , ∀(i , j) ∈ A (2)

∑

(j,k)∈A

yjk −
∑

(i ,j)∈A

yij =







1, j = s
0, j ∈ N − {s, t}
−1, j = t

(3)

xs = 0 (4)

yij ∈ {0, 1}, ∀(i , j) ∈ A (5)

xj ≥ 0, ∀j ∈ N (6)

◮ Constraints (2) link the variables x and y .

◮ The remaining are the usual constraints for the classic shortest path
problem formulation.
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Dealing with uncertainty

Relative robust path problem

Notation

◮ T (d): search-tree nodes contained in the subtree rooted in
search-tree node d ,

◮ RC (p): robustness cost of path p.

◮ Let r denote the scenario where c r
ij = uij , ∀(i , j) ∈ B, and c r

ij = lij ,
∀(i , j) ∈ A\B.
SP(B, I , O): is the cost of p, the path with the minimum cost in
scenario r among those which include the arcs in set I and do not
contain any arc from the set O; or +∞ if such a path does not exist.
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Dealing with uncertainty

Relative robust path problem

Structure of the search-tree node d

◮ I (d): set of arcs which must appear in all of the paths associated
with the nodes of T (d);

◮ O(d): set of arcs forbidden for all of the paths associated with the
nodes of T (d);

◮ P(d): path associated with the search-tree node d , with the
minimum cost in scenario u which contains the arcs in I (d) and does
not include the arcs in O(d);

◮ lb(d): lower bound for the robustness cost of the paths associated
with the search-tree nodes of T (d).
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Dealing with uncertainty

Relative robust path problem

Branching strategy

◮ The root, r , of the search-tree is such that I (r) = O(r) = ∅. Initially
r is the only node of the search-tree.

◮ At each iteration,
d ← the not yet scanned node with the smallest value of lb(d),
a← the first arc in P(d)\I (d).

◮ If P(d) 6= I (d), the search-tree nodes, d ′, d ′′, are created,

P(d), a ∈ P(d)\I (d)d

I (d), O(d) ∪ {a} I (d) ∪ {a}, O(d)

d ′ d ′′

If not dominated, d ′, d ′′ are inserted into the search-tree.

Property
Each set I (d) contains a chain of arcs which form a sub-path starting
from s.
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Relative robust path problem

Lower bound lb(d) = SP(A, I (d), O(d))− SP(A\O(d), ∅, ∅)
Lemma
SP(A, I (d), O(d)) ≤ SP(A, I (f ), O(f )), for all f ∈ T (d).

I (d) ⊆ I (f ), ∀f ∈ T (D), and O(d) ⊆ O(f ), ∀f ∈ T (D), thus
the path P(f ) is subject to more constraints than P(d).

Lemma
SP(A\O(d), ∅, ∅) ≥ SP(P(f ), ∅, ∅), for all f ∈ T (d).

Similar.

Theorem
SP(A, I (d), O(d)) − SP(A\O(d), ∅, ∅) ≤ RC (P(f )), for all f ∈ T (d).

It results from RC (P(f )) = SP(A, I (f ), O(f ))− SP(P(f ), ∅, ∅),
together with the lemmas above.
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Dealing with uncertainty

Relative robust path problem

Reduction rules
In order to speed up the evaluation of SP(A, I (d), O(d)) it is enough to
compute the shortest path from the last node of the chain starting in s
to t, according to I (d), O(d), and to add it the cost of the arcs in I (d).

Theorem
Given a search-tree node d, if (i , j) ∈ I (d) then ∀(i , k) ∈ A\{(i , j)} and
∀f ∈ T (d), (i , k) ∈ P(f ).

(i , j) ∈ I (d) ⊆ P(f ), thus if (i , k) 6= (i , j) then (i , j) 6∈ P(f ).

Proposition (R1)
If (i , j) ∈ I (d) then ∀(i , k) ∈ A\{(i , j)}, (i , k) can be inserted into O(d).

Proposition (R2)
If (i , j) ∈ I (d) then ∀(k , j) ∈ A\{(i , j)}, (k , j) can be inserted into O(d).
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Dealing with uncertainty

Relative robust path problem

B & B algorithm
I (r)← O(r)← ∅; lb(r)← 0;
S ← {r}; ub ← RC (P(r)); ubPath← P(r);
While S 6= ∅ Do

d ← argmin{lb(f ) : f ∈ S}; S ← S\{d};
If I (d) 6= P(d) Then

a← first arc in p(d) not contained in I (d);
I (d ′)← I (d); O(d ′)← O(d) ∪ {a};
If RC (P(d ′)) < ub Then

ub ← RC (P(d ′)); ubPath← RC (P(d ′));
S ← S\{f : f ∈ S and lb(f ) ≥ ub};

lb(d ′)← SP(A, I (d ′), O(d ′))− SP(A\O(d ′), ∅, ∅);
If lb(d ′) < ub Then S ← S ∪ {d ′};
Apply the reductions rules R1 and R2;
I (d ′′)← I (d) ∪ {a}; O(d ′′)← O(d);
lb(d ′′)← SP(A, I (d ′′), O(d ′′))− SP(A\O(d ′′), ∅, ∅);
If lb(d ′′) < ub Then S ← S ∪ {d ′′};
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Stochastic path problem

The stochastic path problem

There are various types of path problems over random probabilistic
networks, the nodes or arcs may be randomly connecting, or the values
associated with each arc may be stochastic.

◮ determination of the probability distribution of the shortest path,

◮ maximisation of the expected value of a utility function,

◮ expected shortest path: minimisation of the path’s expected value,

E
(

∑

(i ,j)∈p Xij

)

,

◮ most shortest path: maximisation of the probability that the optimal
path length does not exceed a specified value, P0,

P
(

∑

(i ,j)∈p Xij ≤ P0

)

,

◮ α-shortest path: path that satisfies some constraints with probability
of at least α,

min
{

P̄ : P
(

∑

(i ,j)∈p Xij ≤ P̄
)

≥ α
}

.
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Dealing with uncertainty

Stochastic path problem

Let (N ,A) be a directed network where:

◮ arc (i , j) is associated with:
◮ the mean value, µij , and
◮ the variance, σ

2
ij ,

of a real random variable (r.r.v.) Xij , called the random cost of (i , j).

Let:

◮ the r.r.v. Xp =
∑

(i ,j)∈p Xij is the random cost of p, p ∈ P .

1
0,0.5

-1,1000

2

1,0.5 1,150
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i j
µij , σ2

ij
s

t
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Assuming that Xij ∼ N(µij , σ
2
ij) are independent, and that paths have no

repeated nodes, by the stability of the normal distribution,
Xp ∼ N

(

µp, σ
2
p

)

, where

µp =
∑

(i ,j)∈p

µij , σp =
∑

(i ,j)∈p

σ2
ij .

We consider a utility function U : P → IR, such that U(p) depends on
Xij , for any (i , j) ∈ p.

In the stochastic shortest path problem we aim to

max
p∈P

E (U(p)).
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Stochastic path problem

Let

U(Xp) =

{

a− bXp, Xp ≤ d
0, Xp > d

, a, b, d > 0, a− bd ≥ 0.

The density function of p ∈ P is

gp(x) =
1√

2πσp

exp

(

−1

2

(

x − µp

σp

)2
)

, x ∈ IR,

thus

E (U(Xp)) =

∫

IR

U(x)gp(x)dx

· · ·
= (a− bµp)G

(

d − µp

σp

)

+ bσpg

(

d − µp

σp

)

,

with G the cumulative distribution function, and g the probability density
function, of a standard normal r.r.v..
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Stochastic path problem

Thus, we aim to

max
p∈P

{

(a− bµp)G

(

d − µp

σp

)

+ bσpg

(

d − µp

σp

)}

(1)

Principle of optimality
The optimal solution is formed by optimal subsolutions

Counter-example
This principle is not valid for (1).

1
0,0.5

-1,1000

2
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0,100

s

t
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382.7 4 98 3 89.2
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This means that we cannot use a classic labeling method. Instead,

∂E (U(Xp))

∂µp

= −bG

(

d − µp

σp

)

− a− bd

σp

g

(

d − µp

σp

)

≤ 0, always

∂E (U(Xp))

∂σ2
p

= g

(

d − µp

σp

)

(a − bd)µp + bσ2
p − d(a − bd)

2(σ2
p)

3/2

If a, b, d are such that

1.
∂E(U(Xp))

∂σ2
p

> 0, then the optimal path satisfies

Xp ∼ N

(

min
∑

p

µij , max
∑

p

σ2
ij

)

.

2.
∂E(U(Xp))

∂σ2
p

< 0, then the optimal path satisfies

Xp ∼ N

(

min
∑

p

µij , min
∑

p

σ2
ij

)

.



Dealing with uncertainty in network optimisation

Dealing with uncertainty

Stochastic path problem

For case 1. (case 2. is similar) we have,

Theorem
The bicriteria optimisation problem

max
p∈P

f (p), with f (p) =

(

min
∑

p

µij , max
∑

p

σ2
ij

)

satisfies the principle of optimality if there are no positive or negative
cycles in (N ,A).

By contradiction, assuming that a non-dominated path contains
a subpath that is dominated by another.

Thus,

1. the subproblem can be solved by a labeling algorithm,

2. for the sake of space and time efficiency, the algorithm should
eliminate the subsolutions that are “dominated” by others.
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Stochastic path problem

Algorithm

Find all non-dominated solutions of
(

min
∑

p µij , max
∑

p σ2
ij

)

Find all non-dominated solutions of
(

min
∑

p µij , min
∑

p σ2
ij

)

Select the previously obtained paths p, such that Xp maximises

(a − bµp)G
(

d−µij

σp

)

+ bσpg
(

d−µij

σp

)

with the general bicriteria path algorithm,

For all i ∈ N Do L(i)← ∅
L(s)← {(0, 0)}; X ← {s}
While X 6= ∅ Do

Select node i in X ; X ← X − {i}
For all (i , j) ∈ A Do

For all πx ∈ L(i) Do
If πx + (µij , σ

2
ij) is not dominated in L(j) Then

Insert new label, πx + (µij , σ
2
ij), into L(j)

Delete all labels in L(j) that became dominated
If L(j) has changed Then X ← X ∪ {j}
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Conclusion

Further details at Office 4.4 or at: www.mat.uc.pt/∼marta/.

Thanks for the attention.
Questions?
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