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0. Symmetric functions

Let (x1, x2, · · · ) be a (infinite) list of indeterminates, and let n ∈ N. A
homogeneous symmetric function of degree n over Q is a formal power
series

f (x) =
X

α

cαxα,

where

(i) α ranges over all nonnegative integer vectors α = (α1, α2, · · · )
whose sum of the entries is n;
(ii) cα ∈ Q;
(iii) xα stands for the monomial xα1

1 xα2
2 · · · ; and

(iv) f (x1, x2, · · · ) = f (xω(1), xω(2), · · · ) for every permutation ω.

The set of all homogeneous symmetric functions of degree n form a vector
space over Q.
The space of symmetric functions has several bases. Schur functions
constitute one of the most important bases. Most of their importance
arises from their relationship with other areas of mathematics such as
representation theory, algebraic geometry and combinatorics.
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1. Schur functions

Partitions and Young diagrams

Fix a positive integer r ≥ 1.

λ = (λ1, . . . , λr ), with λ1 ≥ · · · ≥ λr > 0 positive integers, is a
partition of length l(λ) = r .
Each partition λ is identified with a Young (Ferrers) diagram λ
consisting of |λ| = λ1 + · · ·+ λr boxes arranged in r bottom left
adjusted rows of lengths λ1 ≥ · · · ≥ λr > 0.

Example

λ = (4, 3, 2), |λ| = 9, l(λ) = 3

λ =

λ′ = (3, 3, 2, 1).

The partition λ′ conjugate of λ is such that its Ferrers shape is
obtained from λ by interchanging rows and columns.
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Young Tableaux

n ≥ r , λ = (λ1, . . . , λr ), l(λ) = r .

A semistandard tableau T of shape λ is a filling of the boxes of the
Ferrer diagram λ with elements i in {1, . . . , n} which is

I weakly increasing across rows from left to right
I strictly increasing up columns

T has type α = (α1, . . . , αn) if T has αi entries equal i .

Example

λ = (4, 3, 2), l(λ) = 3, n = 6

T =

5 6
4 4 6
2 3 4 6

semistandard tableau T of shape λ = (4, 3, 2), α = (0, 1, 1, 3, 1, 3).
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Schur functions

Example

n = 7

T =

5 6
4 4 6
2 3 4 6 xα(T ) = x0

1x2x3x3
4x5x3

6x0
7

α(T )=(0,1,1,3,1,3,0)
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Schur functions continued
Let x = (x1, . . . , xn) be a sequence of variables.

Given the partition λ, the Schur function (polynomial) sλ(x)
associated with the partition λ is the homogeneous polynomial of
degree |λ| on the variables x1 . . . , xn

sλ(x) =
X

T

Xα(T )

where T runs over all semistandard tableaux of shape λ on the
alphabet {1, . . . , n}.

Example

λ = (2, 1), |λ| = 3

n = 3

2
1 1

3
1 1

2
1 2

3
1 2

2
1 3

3
1 3

3
2 2

3
2 3 .

sλ(x1, x2, x3) = x2
1x2 + x2

1x3 + x1x2
2 + 2x1x2x3 + x1x2

3 + x2
2x3 + x2x2

3 .

d = 2, sλ(x1, x2) = x2
1x2 + x1x2

2 .

16 / 40



Schur functions continued
Let x = (x1, . . . , xn) be a sequence of variables.
Given the partition λ, the Schur function (polynomial) sλ(x)
associated with the partition λ is the homogeneous polynomial of
degree |λ| on the variables x1 . . . , xn

sλ(x) =
X

T

Xα(T )

where T runs over all semistandard tableaux of shape λ on the
alphabet {1, . . . , n}.

Example

λ = (2, 1), |λ| = 3

n = 3

2
1 1

3
1 1

2
1 2

3
1 2

2
1 3

3
1 3

3
2 2

3
2 3 .

sλ(x1, x2, x3) = x2
1x2 + x2

1x3 + x1x2
2 + 2x1x2x3 + x1x2

3 + x2
2x3 + x2x2

3 .

d = 2, sλ(x1, x2) = x2
1x2 + x1x2

2 .

17 / 40



Schur functions continued
Let x = (x1, . . . , xn) be a sequence of variables.
Given the partition λ, the Schur function (polynomial) sλ(x)
associated with the partition λ is the homogeneous polynomial of
degree |λ| on the variables x1 . . . , xn

sλ(x) =
X

T

Xα(T )

where T runs over all semistandard tableaux of shape λ on the
alphabet {1, . . . , n}.

Example

λ = (2, 1), |λ| = 3

n = 3

2
1 1

3
1 1

2
1 2

3
1 2

2
1 3

3
1 3

3
2 2

3
2 3 .

sλ(x1, x2, x3) = x2
1x2 + x2

1x3 + x1x2
2 + 2x1x2x3 + x1x2

3 + x2
2x3 + x2x2

3 .

d = 2, sλ(x1, x2) = x2
1x2 + x1x2

2 .

18 / 40



Schur functions continued
Let x = (x1, . . . , xn) be a sequence of variables.
Given the partition λ, the Schur function (polynomial) sλ(x)
associated with the partition λ is the homogeneous polynomial of
degree |λ| on the variables x1 . . . , xn

sλ(x) =
X

T

Xα(T )

where T runs over all semistandard tableaux of shape λ on the
alphabet {1, . . . , n}.

Example

λ = (2, 1), |λ| = 3

n = 3

2
1 1

3
1 1

2
1 2

3
1 2

2
1 3

3
1 3

3
2 2

3
2 3 .

sλ(x1, x2, x3) = x2
1x2 + x2

1x3 + x1x2
2 + 2x1x2x3 + x1x2

3 + x2
2x3 + x2x2

3 .

d = 2, sλ(x1, x2) = x2
1x2 + x1x2

2 .
19 / 40



Kostka number Kλ, α is the number of semistandard tableaux of shape
λ and type α.

The Schur function on the variables x1, . . . , xn

sn(λ, x) =
X

α ∈ Zn
≥0

Kλ, αxα,

with α1 + · · ·+ αn = |λ|.
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Kλβ = Kλα, with β any permutation of α.

Corollary

The Schur function s(λ, x) =
P

α weak composition of |λ|
Kλ, αxα, is a

homogeneous symmetric function in x1, . . . , xn.
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Product of Schur functions

A product of Schur functions sµsν can be expressed as a non-negative
integer linear sum of Schur functions:

sµsν =
X

λ

cλµ νsλ.

cλµ ν are the famous Littlewood-Richardson coefficients.
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Skew Schur functions

Given µ ⊆ λ, consider the skew shape λ/µ. The skew Schur function sλ/µ
in the variables x = (x1, x2, · · · ) is the formal power series

sλ/µ =
X

T

xα(T ),

summed over all semistandard tableaux of shape λ/µ.

A skew Schur function can be expressed as a non-negative integer linear
sum of Schur functions:

sλ/µ =
X

ν

cλµ,νsν .

Let A := λ/µ, and let � denote the dominance order on partitions

sA =
X

col(A)�ν′�r(A)′
cλµ,νsν .

When does one have cλµ ν > 0, for all col(A) � ν ′ � r(A)′?

When does one have cλµ ν = 1, for all col(A) � ν ′ � r(A)′?
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The tensor product of two irreducible polynomial representations Vµ
and Vν of the general linear group GLd(C) decomposes into
irreducible representations of GLd(C)

Vµ ⊗ Vν =
X

l(λ)≤d
cλµ νVλ.

Schubert classes σλ form a linear basis for H∗(G (d , n)), the
cohomology ring of the Grassmannian G (d , n) of complex
d-dimensional linear subspaces of Cn,

σµσν =
X

λ⊆d×(n−d)
cλµ νσλ.

There exist n × n non singular matrices A, B and C , over a local
principal ideal domain, with Smith invariants µ = (µ1, . . . , µn),
ν = (ν1, . . . , νn) and λ = (λ1, . . . , λn) respectively, such that AB = C
if and only if cλµ ν > 0.
There exist n × n Hermitian matrices A, B and C , with integer
eigenvalues arranged in weakly decreasing order µ = (µ1, . . . , µn),
ν = (ν1, . . . , νn) and λ = (λ1, . . . , λn) respectively, such that
C = A + B if and only if cλµ,ν > 0.
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2. Schur positivity

A symmetric function is said to be Schur positive (or nonnegative) if
its expansion in the Schur basis has only nonnegative integer
coefficients.

Given a pair of partitions (µ, ν), the ?-operation builds a new pair of
partitions (λ, ρ) from the sizes of the parts of µ and ν,

(µ, ν) −→ (µ, ν)? = (λ, ρ), |µ|+ |ν| = |λ|+ |ρ|.

For any partition θ,
cθµ,ν ≤ cθλ,ρ?

Equivalently,
is sλsρ − sµsν Schur positive?
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3. What do cλµν count?
Littlewood-Richardson rule

cλµν is the number of tableaux with shape λ/µ and content ν
satisfying

I If one reads the labeled entries in reverse reading order, that is, from
right to left across rows taken in turn from bottom to top,

at any stage, the number of i ’s encountered is at least as large as the
number of (i + 1)’s encountered, #1′s ≥ #2′s . . . .

λ

µ

ν = (5, 3, 2)

332

221

1111

1
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Knutson-Tao-Woodward Puzzles (04)
A puzzle of size n is a tiling of an equilateral triangle of side length n with puzzle pieces

each of unit side length.

I Puzzle pieces may be rotated in any orientation but not reflected, and
wherever two pieces share an edge, the numbers on the edge must
agree.

1 1
1

0 0
0

1

0

0

1

00

1

0

1

1

1 0 1 0 1

0

1

1

0

1

µ ν

λ

1
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(Knutson-Tao-Woodward) cµ ν λ is the number of puzzles with µ, ν and λ
appearing clockwise as 01-strings along the boundary.
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