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Some Basic Definitions

Homotopy Between Paths
If γ : [0,1]→ U and δ : [0,1]→ U are paths with the same
initial and final points and U ⊆ X is an open subset of a
topological space X a homotopy from γ to δ is a
continuous mapping H : [0,1]× [0,1]→ U such that

H(t ,0) = γ(t) and H(t ,1) = δ(t) ∀t ∈ [0,1]

H(0, s) = γ(0) = δ(0) and H(1, s) = γ(1) = δ(1) ∀s ∈ [0,1]

Such γ and δ are called homotopic paths.
Lemma
γ ' δ ⇐⇒ γ and δ are homotopic paths is an equivalence
relation.
Notation
Denote [γ] as the equivalence class of the path γ.
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Some Basic Definitions

Product Path
If σ is a path from a point x0 to a point x1 and τ is a path
from x1 to another point x2, there is a product path denoted
σ · τ , which is a path from x0 to x2. It first traverses σ and
then τ , but it must do so at the double speed to complete
the trip in the same unit time:

σ · τ(t) =
{
σ(2t) if 0 6 t 6 1

2
τ(2t − 1) if 1

2 6 t 6 1
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Inverse Path
If σ is a path from a point x0 to a point x1, there is an
inverse path σ−1 from x1 to x0 given by:

σ−1(t) = σ(1− t), 0 6 t 6 1

Constant Path
For any x ∈ X , let εx be the constant path at x :

εx(t) = x , 0 6 t 6 1
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Some Basic Definitions

Results
1 εx · σ ' σ for every σ that starts at x
2 σ · εx ' σ for every σ that ends at x
3 εx ' σ · σ−1 for every σ that starts at x
4 εx ' σ−1 · σ for every σ that ends at x
5 σ · τ · γ ' σ · (τ · γ) ' (σ · τ) · γ where σ · τ · γ is defined by:

σ · τ · γ(t) =


σ(3t) if 0 6 t 6 1

3
τ(3t − 1) if 1

3 6 t 6 2
3

γ(3t − 2) if 2
3 6 t 6 1

6 If σ1 ' σ2 and τ1 ' τ2, then: σ1 · τ1 ' σ2 · τ2
when the products defined.
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Some Basic Definitions

Loop
For a point x ∈ X , a loop at x is a closed path that starts
and ends at x.
Fundamental Group
The Fundamental Group of X with base point x , denoted
π1(X , x), is the set of equivalence classes by homotopy of
the loops at x .
The identity is the class e = [εx ].
The product is defined by [σ] · [τ ] = [σ · τ ].
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Some Basic Definitions

Results
1 The product [σ] · [τ ] = [σ · τ ] is well defined.
2 [σ] · ([τ ] · [γ]) = ([σ] · [τ ]) · [γ]
3 e · [σ] = [σ] = [σ] · e
4 [σ] · [σ−1] = e = [σ−1] · [σ]

Therefore, π1(X , x) is a group.
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Some Basic Definitions

Some Definitions
1 A path-connected space X is called simply connected if its

fundamental group is the trivial group.
2 A path-connected space X is called locally simply

connected if every neighborhood of a point contains a
neighborhood that is simply connected.

3 A path-connected space X is called semilocally simply
connected if every point has a neighborhood such that
every loop in the neighborhood is homotopic in X to a
constant path.
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Some Basic Definitions

Lemma
If f : X → Y is a continuous function and f (x) = y , then f
determines a group homomorphism

f∗ : π1(X , x)→ π1(Y , y)

which takes [σ] to [f ◦ σ].
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Some Basic Definitions

Some Interesting Results
Proposition
π1(S1,p) ∼= Z where p = (1,0).
Proposition
π1(X × Y , (x , y)) ∼= π1(X , x)× π1(Y , y).
Corollary
π1(T , (p,p)) ∼= Z× Z where p = (1,0).
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Some Basic Definitions

Homotopy Between Continuous Maps
In a more general way, suppose f : X → Y and g : X → Y
are continuous maps, where X and Y are topological
spaces. They are called homotopic maps if there is a
continuous mapping H : X × [0,1]→ Y such that

H(x ,0) = f (x) and H(x ,1) = g(x) ∀x ∈ X

Such H is called a homotopy from f to g.
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Proposition
Considering f , g and H as before, x to be a base point of
X , and y0 = f (x) ∈ Y and y1 = g(x) ∈ Y ; then, the
mapping τ(t) = H(x , t) is a path from y0 to y1, and the
following diagram commutes:

π1(X , x)

π1(Y , y0)

π1(Y , y1)

f∗ 44jjjjjjjj

g∗ **TTTTTTTT
τ#

��

i .e. τ# ◦ f∗ = g∗
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Some Basic Definitions

Corollary
With f , g and H as before,
H(x , s) = f (x) = g(x) = y ∀s ∈ [0,1]
then

f∗ = g∗ : π1(X , x)→ π1(Y , y)

Definition
Two spaces Xand Y are said to have the same homotopy
type if there are continuous maps f : X → Yand g : Y → X
such that f ◦ g ' idY and g ◦ f ' idX . The map f is called a
homotopy equivalence if there is such a g.
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Some Basic Definitions

Group Action
An action of a group G on a space Y is a mapping
G × Y → Y , (g, y) 7→ g · y such that:

1 g · (h · y) = (g · h) · y ∀g,h ∈ G, ∀y ∈ Y
2 e · y = y ∀y ∈ Y where e ∈ G
3 Y → Y , y 7→ g · y is a homeomorphism of Y ∀g ∈ G

Two points y , y ′ ∈ Y are in the same orbit if ∃g ∈ G such
that y ′ = g · y . Since G is a group, this is an equivalence
relation.
G acts evenly on Y if ∀y ∈ Y ∃Vy neighborhood of y
such that g · Vy ∩ h · Vy = ∅ ∀g,h ∈ G, g 6= h
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The Fundamental Group and Covering Spaces

Fundamental Group and Coverings

Covering
If X and Y are topological spaces, a covering map is a
continuous mapping p : Y → X with the property that
∀x ∈ X there is an open neighborhood Nx such that
p−1(Nx) is a disjoint union of open sets, each of which is
mapped homeomorphically by p onto Nx . Such a covering
map is called a covering of X .
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Fundamental Group and Coverings

Some Examples
1 The mapping p : R→ S1 given by:

p(t) = (cos(t), sin(t))

2 The Polar Coordinate Mapping

p : {(r , θ) ∈ R2 : r > 0} → R2 \ {(0,0)}

given by:
p(r , θ) = (r cos(θ), r sin(θ))

3 Another example is the mapping pn : S1 → S1, for any
integer n > 1, given by:

p(cos(2πt), sin(2πt)) = (cos(2πnt), sin(2πnt))

or in terms of complex numbers:

p(z) = zn
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The Fundamental Group and Covering Spaces

Fundamental Group and Coverings

Isomorphism Between Coverings
Let p : Y → X and p′ : Y ′ → X be a pair of coverings of X .
A homeomorphism ϕ : Y → Y ′ such that p′ ◦ ϕ = p is
called an isomorphism between coverings.
Trivial Covering
A covering is called trivial if it is isomorphic to the
projection of a product π : X × T → X
with π(x , t) = x where T is any set with the discrete
topology. So any covering is locally trivial.
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The Fundamental Group and Covering Spaces

Fundamental Group and Coverings

Interesting Application
A covering of R2 \ {(0,0)} can be realized as the right half
plane, via the polar coordinate mapping

(r , θ) 7→ (r cos(θ), r sin(θ))

and another covering could be the entire complex plane C
via the mapping

z 7→ exp(z)

One can find an isomorphism between these coverings.
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The Fundamental Group and Covering Spaces

Fundamental Group and Coverings

G-Coverings
1 Lemma

If a group G acts evenly on a topological space Y, then the
projection π : Y → Y/G is a covering map.

2 Definition
A covering p : Y → X that arises from an even action of a
group G on Y, is called a G-covering.

3 Definition
An isomorphism of G-coverings is an isomorphism of
coverings that commutes with the action of G; i.e. an
isomorphism of the G-covering p : Y → X with the
G-covering p′ : Y ′ → X is a homeomorphism
ϕ : Y → Y ′ such that p′ ◦ ϕ = p and ϕ(g · y) = g · ϕ(y).

4 Definition
The trivial G-covering of X is the product G × X → X
where G acts on X by left multiplication.
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The Fundamental Group and Covering Spaces

Fundamental Group and Coverings

Examples of Zn-Coverings
1 The mapping p : R→ S1 given by:

p(t) = (cos(t), sin(t))

2 The Polar Coordinate Mapping

p : {(r , θ) ∈ R2 : r > 0} → R2 \ {(0,0)}

given by:
p(r , θ) = (r cos(θ), r sin(θ))

3 Another example is the mapping pn : S1 → S1, for any
integer n > 1, given by:

p(cos(2πt), sin(2πt)) = (cos(2πnt), sin(2πnt))

or in terms of complex numbers:

p(z) = zn
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The Fundamental Group and Covering Spaces

Fundamental Group and Coverings

Liftings
1 Proposition (Path Lifting)

Let p : Y → X be a covering, and let γ : [0,1]→ X be a
continuous path in X . Let y ∈ Y such that p(y) = γ(0).
Then ∃!γ̃ : [0,1]→ Y continuous path such that γ̃(0) = y
and p ◦ γ̃(t) = γ(t) ∀t ∈ [0,1].

2 Proposition (Homotopy Lifting)
Let p : Y → X be a covering, and let H : [0,1]× [0,1]→ X
be a homotopy of paths in X with γ0(t) = H(t ,0) as initial
path. Let γ̃0 : [0,1]→ Y be a lifting of γ0. Then
∃!H̃ : [0,1]× [0,1]→ Y homotopy of paths in Y , lifting of H
such that H̃(t ,0) = γ̃0(t) ∀t ∈ [0,1] and p ◦ H̃ = H.
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Fundamental Group and Coverings

Liftings
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The Fundamental Group and Covering Spaces

Automorphisms of Coverings

Next Goal!
Now, we are looking how to relate the fundamental group
of X with the automorphism group of a covering of X .
Theorem
Let p : Y → X be a covering, with Y connected and X
locally path connected, and let p(y) = x . If
p∗(π1(Y , y)) E π1(X , x), then there is a canonical
isomorphism

π1(X , x)/p∗(π1(Y , y))
∼=−→ Aut(Y/X )

Actually, the covering is a G-covering, where
G = π1(X , x)/p∗(π1(Y , y)).
Definition
A covering p : Y → X is called regular if
p∗(π1(Y , y)) E π1(X , x).
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The Fundamental Group and Covering Spaces

Automorphisms of Coverings

Corollary
If p : Y → X is a covering, with Y simply connected and X
locally path connected,then π1(X , x) ∼= Aut(Y/X ).
Corollary
If a group G acts evenly on a simply connected and locally
path-connected space Y , and X = Y/G is the orbit space,
then the fundamental group of X is isomorphic to G.
Corollary
π1(S1,p) ∼= Z where p = (1,0).
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The Fundamental Group and Covering Spaces

The Universal Covering

Definition
Assume that X is connected and locally path connected. A
covering p : Y → X is called a universal covering if Y is
simply connected. Such a covering, if exists, is unique, and
unique up to canonical isomorphism if base points are
specified.
Theorem
A connected and locally path-connected space X has a
universal covering if and only if X is semilocally simply
connected.
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The Van Kampen Theorem

G-Coverings from the Universal Covering

Proposition
There is a one-to-one correspondence between the set of
homomorphisms from π1(X , x) to the group G and the set
of G-coverings with base points, up to isomorphism:

Hom(π1(X , x),G)↔ {G − coverings}/ ∼=
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The Van Kampen Theorem

Let X be the union of two open sets U and V , where U, V and
U ∩ V (and hence, of course X ), are path connected. Also
assume that X is locally simply connected.
i .e. X , U, V and U ∩ V have universal covering spaces.

Theorem (Seifert-Van Kampen)
For any homomorphisms

h1 : π1(U, x)→ G and h2 : π1(V , x)→ G,

such that h1 ◦ i1∗ = h2 ◦ i2∗, there is a unique
homomorphism

h : π1(X , x)→ G,

such that h ◦ j1∗ = h1 and h ◦ j2∗ = h2.
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The Van Kampen Theorem

π1(U ∩ V , x)

π1(U, x)

π1(V , x)

π1(X , x) G
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Rephrasing Van Kampen Theorem

Free Products of Groups and Free Groups

Definitions Let G be a group.
If {Gj}j∈J is a family of subgroups of G, these groups
generate G if every element x ∈ G can be written as a
finite product of elements of the groups Gj . This means
that ∃(x1, ..., xn) a finite sequence of elements of the
groups Gj such that x = x1 · ... · xn. Such a sequence is
called a word of length n ∈ N in the groups Gj that
represent the element x ∈ G.
If xi , xi+1 ∈ Gj , there is a shorter word (x1, ...x̃i , ..., xn) of
length n − 1 with x̃i = xi · xi+1 ∈ Gi that also represents x .
Furthermore, if xi = 1 for any i , we can delete xi from the
sequence, obtaining a new shorter word (y1, ..., ym) that
represents x , where no group Gj contains both yi , yi+1 and
where yi 6= 1 ∀i . Such a word is called a reduced word.
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Free Products of Groups and Free Groups

Definitions
If {Gj}j∈J generates G, and Gi ∩Gj = {e}, whenever i 6= j ,
G is called the free product of the groups Gj if for each
x ∈ G \ {e} there is a unique reduced word in the groups
Gj that represent x . In this case, the group G is denoted by:

G = ~j∈JGj

and
G = G1 ∗ · · · ∗Gn

in the finite case.
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Free Products of Groups and Free Groups

Definitions
If {gj}j∈J is a family of elements of G, these elements
generate G if every element x ∈ G can be written as a
product of powers of the elements gj . If the family {gj}nj=1 is
finite, G is called finitely generated.
Suppose {gj}j∈J is a family of elements of G such that
each gj generates an infinite cyclic subgroup Gj ≤ G. If G,
is the free product of the groups Gj , then G is said to be a
free group and {gj}j∈J is called a system of free generators
for G. In this case, for each x ∈ G \ {e}, x can be written
uniquely as:

x = (gj1)
n1 · · · (gjk )

nk

where ji 6= ji+1 and ni 6= 0 ∀i . Of course, ni may be
negative.
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Free Products of Groups and Free Groups

Theorem (Rephrasing Seifert-Van Kampen)
Let X be the union of two open sets U and V , where U, V
and U ∩ V (and hence, of course X ), are path connected.
Also assume that X is locally simply connected. Then

π1(X , x) ∼= (π1(U, x) ∗ π1(V , x))/N

where N is the least normal subgroup of the free product
π1(U, x) ∗ π1(V , x) that contains all elements represented
by words of the form

(i1∗(g)−1, i2∗(g)) for g ∈ π1(U ∩ V , x)

Corollary
Let X be as above. If U ∩ V is simply connected, then

π1(U ∪ V , x) ∼= π1(U, x) ∗ π1(V , x)
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Applications

Wedge of Circles
1 Definition

Let X be the union X =
⋃n

i=1 Si where each subspace Si is
homeomorphic to the unit circle S1 ⊆ R2. Assume that
there is a point p ∈ X such that Si ∩ Sj = {p} whenever
i 6= j . Then X is called the wedge of the circles S1, ...,Sn.

2 Theorem
Let X =

⋃n
i=1 Si be as above. Then

π1(X ,p) = π1(S1,p) ∗ · · · ∗ π1(Sn,p) = Z ∗ · · · ∗ Z
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Applications

Mn: Surface of genus n
The surface Mn, sometimes called the n-fold connected
sum of tori, or the n-fold torus, and sometimes also
denoted T# ...#T , is the surface obtained by taking n
copies of the torus T = S1 × S1, deleting an open disk
from two of them and pasting both together along their
edges,and repeating this process for the remaining n − 2
torus.
Theorem
π1(Mn, x) is isomorphic to the quotient of the free group on
the 2n generators α1, ..., αn, β1, ..., βn by the least normal
subgroup containing the element

[α1, β1][α2, β2] · · · [αn, βn]

where [α, β] = αβα−1β−1.
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