Ronald Alberto Zúñiga Rojas

Universidade de Coimbra Departamento de Matemática Topologia Algébrica

Contents

1 Some Basic Definitions

- 2 The Fundamental Group and Covering Spaces
 - Fundamental Group and Coverings
 - Automorphisms of Coverings
 - The Universal Covering
- 3 The Van Kampen Theorem
 - G-Coverings from the Universal Covering
 - The Van Kampen Theorem
- 4 Rephrasing Van Kampen Theorem
 - Free Products of Groups and Free Groups
 - Applications

Contents

1 Some Basic Definitions

- 2 The Fundamental Group and Covering Spaces
 - Fundamental Group and Coverings
 - Automorphisms of Coverings
 - The Universal Covering
- 3 The Van Kampen Theorem
 - G-Coverings from the Universal Covering
 - The Van Kampen Theorem
- 4 Rephrasing Van Kampen Theorem
 - Free Products of Groups and Free Groups
 - Applications

Homotopy Between Paths

If $\gamma : [0, 1] \to U$ and $\delta : [0, 1] \to U$ are paths with the same initial and final points and $U \subseteq X$ is an open subset of a topological space X a *homotopy* from γ to δ is a continuous mapping $H : [0, 1] \times [0, 1] \to U$ such that

$$H(t,0) = \gamma(t)$$
 and $H(t,1) = \delta(t)$ $\forall t \in [0,1]$

 $H(0,s) = \gamma(0) = \delta(0)$ and $H(1,s) = \gamma(1) = \delta(1)$ $\forall s \in [0,1]$

Such γ and δ are called homotopic paths.

Lemma

 $\gamma\simeq\delta\iff\gamma$ and δ are homotopic paths is an equivalence relation.

Notation

Denote $[\gamma]$ as the equivalence class of the path γ .

(日) (日) (日) (日) (日) (日) (日)

Product Path

If σ is a path from a point x_0 to a point x_1 and τ is a path from x_1 to another point x_2 , there is a *product* path denoted $\sigma \cdot \tau$, which is a path from x_0 to x_2 . It first traverses σ and then τ , but it must do so at the double speed to complete the trip in the same unit time:

$$\sigma \cdot \tau(t) = \begin{cases} \sigma(2t) & \text{if } 0 \leq t \leq \frac{1}{2} \\ \tau(2t-1) & \text{if } \frac{1}{2} \leq t \leq 1 \end{cases}$$

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Inverse Path

If σ is a path from a point x_0 to a point x_1 , there is an *inverse* path σ^{-1} from x_1 to x_0 given by:

$$\sigma^{-1}(t) = \sigma(1-t), \quad 0 \le t \le 1$$

Constant Path

For any $x \in X$, let ε_x be the *constant* path at x:

$$\varepsilon_x(t) = x, \quad 0 \leqslant t \leqslant 1$$

Some Basic Definitions

Results

•
$$\varepsilon_x \cdot \sigma \simeq \sigma$$
 for every σ that starts at x
• $\sigma \cdot \varepsilon_x \simeq \sigma$ for every σ that ends at x
• $\varepsilon_x \simeq \sigma \cdot \sigma^{-1}$ for every σ that starts at x
• $\varepsilon_x \simeq \sigma^{-1} \cdot \sigma$ for every σ that ends at x
• $\sigma \cdot \tau \cdot \gamma \simeq \sigma \cdot (\tau \cdot \gamma) \simeq (\sigma \cdot \tau) \cdot \gamma$ where $\sigma \cdot \tau \cdot \gamma$ is defined by:

$$\sigma \cdot \tau \cdot \gamma(t) = \begin{cases} \sigma(3t) & \text{if } 0 \leqslant t \leqslant \frac{1}{3} \\ \tau(3t-1) & \text{if } \frac{1}{3} \leqslant t \leqslant \frac{2}{3} \\ \gamma(3t-2) & \text{if } \frac{2}{3} \leqslant t \leqslant 1 \end{cases}$$

6 If $\sigma_1 \simeq \sigma_2$ and $\tau_1 \simeq \tau_2$, then: $\sigma_1 \cdot \tau_1 \simeq \sigma_2 \cdot \tau_2$ when the products defined.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Loop

For a point $x \in X$, a *loop* at x is a closed path that starts and ends at x.

Fundamental Group

The Fundamental Group of X with base point x, denoted $\pi_1(X, x)$, is the set of equivalence classes by homotopy of the loops at x.

The *identity* is the class $e = [\varepsilon_x]$.

The *product* is defined by $[\sigma] \cdot [\tau] = [\sigma \cdot \tau]$.

Results

The product
$$[\sigma] \cdot [\tau] = [\sigma \cdot \tau]$$
 is well defined.
 $[\sigma] \cdot ([\tau] \cdot [\gamma]) = ([\sigma] \cdot [\tau]) \cdot [\gamma]$
 $[\sigma] \cdot [\sigma] = [\sigma] = [\sigma] \cdot e$
 $[\sigma] \cdot [\sigma^{-1}] = e = [\sigma^{-1}] \cdot [\sigma]$

Therefore, $\pi_1(X, x)$ is a group.

Some Definitions

- A path-connected space X is called *simply connected* if its fundamental group is the trivial group.
- A path-connected space X is called *locally simply connected* if every neighborhood of a point contains a neighborhood that is simply connected.
- A path-connected space X is called *semilocally simply connected* if every point has a neighborhood such that every loop in the neighborhood is homotopic in X to a constant path.

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Lemma

If $f : X \to Y$ is a continuous function and f(x) = y, then f determines a group homomorphism

$$f_*: \pi_1(X, x) \to \pi_1(Y, y)$$

which takes $[\sigma]$ to $[f \circ \sigma]$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Some Interesting Results

- Proposition
 - $\pi_1(S^1, p) \cong \mathbb{Z}$ where p = (1, 0).
- Proposition

 $\pi_1(X \times Y, (x, y)) \cong \pi_1(X, x) \times \pi_1(Y, y).$

Corollary

 $\pi_1(T,(\rho,\rho)) \cong \mathbb{Z} \times \mathbb{Z}$ where $\rho = (1,0)$.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Homotopy Between Continuous Maps

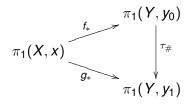
In a more general way, suppose $f : X \to Y$ and $g : X \to Y$ are continuous maps, where X and Y are topological spaces. They are called *homotopic maps* if there is a continuous mapping $H : X \times [0, 1] \to Y$ such that

$$H(x,0) = f(x)$$
 and $H(x,1) = g(x)$ $\forall x \in X$

Such *H* is called a *homotopy* from *f* to *g*.

Proposition

Considering *f*, *g* and *H* as before, *x* to be a base point of *X*, and $y_0 = f(x) \in Y$ and $y_1 = g(x) \in Y$; then, the mapping $\tau(t) = H(x, t)$ is a path from y_0 to y_1 , and the following diagram commutes:



i.e. $au_{\#} \circ f_* = g_*$

Corollary

With f, g and H as before, $H(x, s) = f(x) = g(x) = y \quad \forall s \in [0, 1]$ then

$$f_* = g_* : \pi_1(X, x) \to \pi_1(Y, y)$$

Definition

Two spaces X and Y are said to have the same homotopy type if there are continuous maps $f : X \to Y$ and $g : Y \to X$ such that $f \circ g \simeq id_Y$ and $g \circ f \simeq id_X$. The map f is called a homotopy equivalence if there is such a g.

イロト 不良 とくほ とくほう 二日

Group Action

An action of a group *G* on a space *Y* is a mapping $G \times Y \to Y$, $(g, y) \mapsto g \cdot y$ such that:

1
$$g \cdot (h \cdot y) = (g \cdot h) \cdot y$$
 $\forall g, h \in G, \forall y \in Y$
2 $e \cdot y = y$ $\forall y \in Y$ where $e \in G$

3 $Y \rightarrow Y$, $y \mapsto g \cdot y$ is a homeomorphism of $Y \quad \forall g \in G$

Two points $y, y' \in Y$ are in the same orbit if $\exists g \in G$ such that $y' = g \cdot y$. Since G is a group, this is an equivalence relation.

G acts *evenly* on *Y* if $\forall y \in Y \quad \exists V_y$ neighborhood of *y* such that $g \cdot V_y \cap h \cdot V_y = \emptyset \quad \forall g, h \in G, g \neq h$

- The Fundamental Group and Covering Spaces

Contents

1 Some Basic Definitions

- 2 The Fundamental Group and Covering Spaces
 - Fundamental Group and Coverings
 - Automorphisms of Coverings
 - The Universal Covering
- 3 The Van Kampen Theorem
 - G-Coverings from the Universal Covering
 - The Van Kampen Theorem
- 4 Rephrasing Van Kampen Theorem
 - Free Products of Groups and Free Groups
 - Applications

L The Fundamental Group and Covering Spaces

-Fundamental Group and Coverings

Covering

If *X* and *Y* are topological spaces, a *covering map* is a continuous mapping $p: Y \to X$ with the property that $\forall x \in X$ there is an open neighborhood N_x such that $p^{-1}(N_x)$ is a disjoint union of open sets, each of which is mapped homeomorphically by *p* onto N_x . Such a covering map is called a *covering of X*.

L The Fundamental Group and Covering Spaces

-Fundamental Group and Coverings

Some Examples

1 The mapping $p : \mathbb{R} \to S^1$ given by:

 $p(t) = (\cos(t), \sin(t))$

2 The Polar Coordinate Mapping

$$p: \{(r, heta) \in \mathbb{R}^2 : r > 0\}
ightarrow \mathbb{R}^2 \setminus \{(0, 0)\}$$

given by:

$$p(r, \theta) = (r \cos(\theta), r \sin(\theta))$$

3 Another example is the mapping $p_n : S^1 \to S^1$, for any integer $n \ge 1$, given by:

 $p(\cos(2\pi t), \sin(2\pi t)) = (\cos(2\pi nt), \sin(2\pi nt))$

or in terms of complex numbers:

$$p(z) = z^n$$

L The Fundamental Group and Covering Spaces

Fundamental Group and Coverings

Isomorphism Between Coverings

Let $p: Y \to X$ and $p': Y' \to X$ be a pair of coverings of X. A homeomorphism $\varphi: Y \to Y'$ such that $p' \circ \varphi = p$ is called an isomorphism between coverings.

Trivial Covering

A covering is called *trivial* if it is isomorphic to the projection of a product $\pi : X \times T \to X$ with $\pi(x, t) = x$ where T is any set with the discrete topology. So any covering is locally trivial.

・ ロ ト ・ 雪 ト ・ 目 ト ・

L The Fundamental Group and Covering Spaces

-Fundamental Group and Coverings

Interesting Application

A covering of $\mathbb{R}^2\setminus\{(0,0)\}$ can be realized as the right half plane, via the polar coordinate mapping

$$(r, \theta) \mapsto (r \cos(\theta), r \sin(\theta))$$

and another covering could be the entire complex plane $\ensuremath{\mathbb{C}}$ via the mapping

$$z\mapsto exp(z)$$

One can find an isomorphism between these coverings.

・ ロ ト ・ 雪 ト ・ ヨ ト ・

The Fundamental Group and Covering Spaces

-Fundamental Group and Coverings

G-Coverings

🚺 Lemma

If a group *G* acts evenly on a topological space Y, then the projection $\pi: Y \to Y/G$ is a covering map.

2 Definition

A covering $p: Y \to X$ that arises from an even action of a group G on Y, is called a *G*-covering.

Operation 3 Definition

An *isomorphism* of *G*-coverings is an isomorphism of coverings that commutes with the action of *G*; i.e. an isomorphism of the *G*-covering $p: Y \to X$ with the *G*-covering $p': Y' \to X$ is a homeomorphism

 $\varphi: Y \to Y'$ such that $p' \circ \varphi = p$ and $\varphi(g \cdot y) = g \cdot \varphi(y)$.

Optimization

The trivial *G*-covering of *X* is the product $G \times X \rightarrow X$ where *G* acts on *X* by left multiplication.

L The Fundamental Group and Covering Spaces

-Fundamental Group and Coverings

- Examples of \mathbb{Z}_n -Coverings
 - **1** The mapping $p : \mathbb{R} \to S^1$ given by:

 $p(t) = (\cos(t), \sin(t))$

2 The Polar Coordinate Mapping

$$oldsymbol{
ho}:\{(oldsymbol{r}, heta)\in\mathbb{R}^2:oldsymbol{r}>0\}
ightarrow\mathbb{R}^2\setminus\{(0,0)\}$$

given by:

$$p(r, \theta) = (r \cos(\theta), r \sin(\theta))$$

3 Another example is the mapping $p_n : S^1 \to S^1$, for any integer $n \ge 1$, given by:

 $p(\cos(2\pi t), \sin(2\pi t)) = (\cos(2\pi nt), \sin(2\pi nt))$

or in terms of complex numbers:

$$p(z) = z^n$$

L The Fundamental Group and Covering Spaces

-Fundamental Group and Coverings

Liftings

Proposition (Path Lifting)

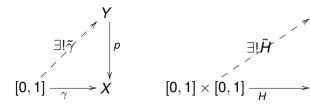
Let $p: Y \to X$ be a covering, and let $\gamma : [0, 1] \to X$ be a continuous path in *X*. Let $y \in Y$ such that $p(y) = \gamma(0)$. Then $\exists ! \tilde{\gamma} : [0, 1] \to Y$ continuous path such that $\tilde{\gamma}(0) = y$ and $p \circ \tilde{\gamma}(t) = \gamma(t) \quad \forall t \in [0, 1]$.

2 Proposition (Homotopy Lifting) Let $p: Y \to X$ be a covering, and let $H: [0,1] \times [0,1] \to X$ be a homotopy of paths in X with $\gamma_0(t) = H(t,0)$ as initial path. Let $\tilde{\gamma_0}: [0,1] \to Y$ be a lifting of γ_0 . Then $\exists ! \tilde{H}: [0,1] \times [0,1] \to Y$ homotopy of paths in Y, lifting of Hsuch that $\tilde{H}(t,0) = \tilde{\gamma_0}(t) \quad \forall t \in [0,1]$ and $p \circ \tilde{H} = H$.

_____The Fundamental Group and Covering Spaces

-Fundamental Group and Coverings

Liftings



р

<ロト <回 > < 注 > < 注 >

L The Fundamental Group and Covering Spaces

Automorphisms of Coverings

Next Goal!

Now, we are looking how to relate the fundamental group of X with the automorphism group of a covering of X.

Theorem

Let $p: Y \to X$ be a covering, with *Y* connected and *X* locally path connected, and let p(y) = x. If $p_*(\pi_1(Y, y)) \leq \pi_1(X, x)$, then there is a canonical isomorphism

$$\pi_1(X, x)/p_*(\pi_1(Y, y)) \xrightarrow{\cong} Aut(Y/X)$$

Actually, the covering is a *G*-covering, where $G = \pi_1(X, x) / p_*(\pi_1(Y, y))$.

Definition

A covering $p: Y \to X$ is called *regular* if $p_*(\pi_1(Y, y)) \trianglelefteq \pi_1(X, x)$.

L The Fundamental Group and Covering Spaces

Automorphisms of Coverings

Corollary

If $p: Y \to X$ is a covering, with Y simply connected and X locally path connected, then $\pi_1(X, x) \cong Aut(Y/X)$.

Corollary

If a group *G* acts evenly on a simply connected and locally path-connected space *Y*, and X = Y/G is the orbit space, then the fundamental group of *X* is isomorphic to *G*.

Corollary

$$\pi_1(S^1, p) \cong \mathbb{Z}$$
 where $p = (1, 0)$.

L The Fundamental Group and Covering Spaces

L The Universal Covering

Definition

Assume that X is connected and locally path connected. A covering $p: Y \rightarrow X$ is called a *universal covering* if Y is simply connected. Such a covering, if exists, is unique, and unique up to canonical isomorphism if base points are specified.

Theorem

A connected and locally path-connected space X has a universal covering if and only if X is semilocally simply connected.

└─ The Van Kampen Theorem

Contents

1 Some Basic Definitions

- 2 The Fundamental Group and Covering Spaces
 - Fundamental Group and Coverings
 - Automorphisms of Coverings
 - The Universal Covering
- 3 The Van Kampen Theorem
 - G-Coverings from the Universal Covering
 - The Van Kampen Theorem
- 4 Rephrasing Van Kampen Theorem
 - Free Products of Groups and Free Groups
 - Applications

L The Van Kampen Theorem

G-Coverings from the Universal Covering

Proposition

There is a one-to-one correspondence between the set of homomorphisms from $\pi_1(X, x)$ to the group *G* and the set of *G*-coverings with base points, up to isomorphism:

$$Hom(\pi_1(X, x), G) \leftrightarrow \{G - \text{coverings}\} / \cong$$

The Van Kampen Theorem

L The Van Kampen Theorem

Let *X* be the union of two open sets *U* and *V*, where *U*, *V* and $U \cap V$ (and hence, of course *X*), are path connected. Also assume that *X* is locally simply connected.

i.e. X, U, V and $U \cap V$ have universal covering spaces.

• Theorem (Seifert-Van Kampen) For any homomorphisms

$$h_1: \pi_1(U, x) \rightarrow G$$
 and $h_2: \pi_1(V, x) \rightarrow G$,

such that $h_1 \circ i_{1*} = h_2 \circ i_{2*}$, there is a unique homomorphism

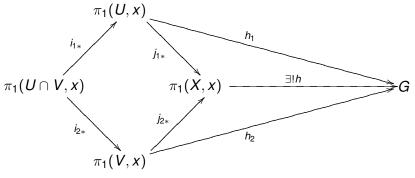
 $h: \pi_1(X, x) \to G,$

such that $h \circ j_{1*} = h_1$ and $h \circ j_{2*} = h_2$.

・ コ ト ・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- The Van Kampen Theorem

L The Van Kampen Theorem



Contents

1 Some Basic Definitions

- 2 The Fundamental Group and Covering Spaces
 - Fundamental Group and Coverings
 - Automorphisms of Coverings
 - The Universal Covering
- 3 The Van Kampen Theorem
 - G-Coverings from the Universal Covering
 - The Van Kampen Theorem
- 4 Rephrasing Van Kampen Theorem
 - Free Products of Groups and Free Groups
 - Applications

5 References

Free Products of Groups and Free Groups

Definitions Let *G* be a group.

- If $\{G_j\}_{j \in J}$ is a family of subgroups of *G*, these groups *generate G* if every element $x \in G$ can be written as a finite product of elements of the groups G_j . This means that $\exists (x_1, ..., x_n)$ a finite sequence of elements of the groups G_j such that $x = x_1 \cdot ... \cdot x_n$. Such a sequence is called a *word* of length $n \in \mathbb{N}$ in the groups G_j that represent the element $x \in G$.
- If $x_i, x_{i+1} \in G_j$, there is a shorter word $(x_1, ..., \tilde{x}_i, ..., x_n)$ of length n - 1 with $\tilde{x}_i = x_i \cdot x_{i+1} \in G_i$ that also represents x. Furthermore, if $x_i = 1$ for any i, we can delete x_i from the sequence, obtaining a new shorter word $(y_1, ..., y_m)$ that represents x, where no group G_j contains both y_i, y_{i+1} and where $y_i \neq 1 \quad \forall i$. Such a word is called a *reduced word*.

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

Free Products of Groups and Free Groups

Definitions

If {G_j}_{j∈J} generates G, and G_i ∩ G_j = {e}, whenever i ≠ j, G is called the *free product* of the groups G_j if for each x ∈ G \ {e} there is a unique reduced word in the groups G_j that represent x. In this case, the group G is denoted by:

$$G = \circledast_{j \in J} G_j$$

and

$$G = G_1 * \cdots * G_n$$

in the finite case.

Free Products of Groups and Free Groups

Definitions

- If {g_j}_{j∈J} is a family of elements of *G*, these elements generate *G* if every element *x* ∈ *G* can be written as a product of powers of the elements g_j. If the family {g_j}ⁿ_{j=1} is finite, *G* is called *finitely generated*.
- Suppose {g_j}_{j∈J} is a family of elements of G such that each g_j generates an infinite cyclic subgroup G_j ≤ G. If G, is the free product of the groups G_j, then G is said to be a *free group* and {g_j}_{j∈J} is called a *system of free generators* for G. In this case, for each x ∈ G \ {e}, x can be written uniquely as:

$$x=(g_{j_1})^{n_1}\cdots(g_{j_k})^{n_k}$$

where $j_i \neq j_{i+1}$ and $n_i \neq 0 \quad \forall i$. Of course, n_i may be negative.

Rephrasing Van Kampen Theorem

Free Products of Groups and Free Groups

Theorem (Rephrasing Seifert-Van Kampen)
 Let X be the union of two open sets U and V, where U, V and U ∩ V (and hence, of course X), are path connected.
 Also assume that X is locally simply connected. Then

$$\pi_1(X,x) \cong (\pi_1(U,x) * \pi_1(V,x))/N$$

where *N* is the least normal subgroup of the free product $\pi_1(U, x) * \pi_1(V, x)$ that contains all elements represented by words of the form

$$(i_{1*}(g)^{-1}, i_{2*}(g))$$
 for $g \in \pi_1(U \cap V, x)$

Corollary

Let *X* be as above. If $U \cap V$ is simply connected, then

$$\pi_1(U\cup V,x)\cong \pi_1(U,x)*\pi_1(V,x)$$

・ ロ ト ・ 雪 ト ・ 目 ト ・

Rephrasing Van Kampen Theorem

- Applications

Wedge of Circles

Definition

Let *X* be the union $X = \bigcup_{i=1}^{n} S_i$ where each subspace S_i is homeomorphic to the unit circle $S^1 \subseteq \mathbb{R}^2$. Assume that there is a point $p \in X$ such that $S_i \cap S_j = \{p\}$ whenever $i \neq j$. Then *X* is called the wedge of the circles $S_1, ..., S_n$.

2 Theorem

Let $X = \bigcup_{i=1}^{n} S_i$ be as above. Then

$$\pi_1(X, p) = \pi_1(S_1, p) * \cdots * \pi_1(S_n, p) = \mathbb{Z} * \cdots * \mathbb{Z}$$

・ ロ ト ・ 雪 ト ・ 目 ト ・

- Applications

• *M_n*: Surface of genus n

The surface M_n , sometimes called the *n*-fold connected sum of tori, or the *n*-fold torus, and sometimes also denoted T # ... # T, is the surface obtained by taking *n* copies of the torus $T = S^1 \times S^1$, deleting an open disk from two of them and pasting both together along their edges, and repeating this process for the remaining n - 2 torus.

Theorem

 $\pi_1(M_n, x)$ is isomorphic to the quotient of the free group on the 2*n* generators $\alpha_1, ..., \alpha_n, \beta_1, ..., \beta_n$ by the least normal subgroup containing the element

$$[\alpha_1,\beta_1][\alpha_2,\beta_2]\cdots[\alpha_n,\beta_n]$$

where $[\alpha, \beta] = \alpha \beta \alpha^{-1} \beta^{-1}$.

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

References

Contents

1 Some Basic Definitions

- 2 The Fundamental Group and Covering Spaces
 - Fundamental Group and Coverings
 - Automorphisms of Coverings
 - The Universal Covering
- 3 The Van Kampen Theorem
 - G-Coverings from the Universal Covering
 - The Van Kampen Theorem
- 4 Rephrasing Van Kampen Theorem
 - Free Products of Groups and Free GroupsApplications

References

- Fulton, W. Algebraic Topology. Springer-Verlag. New York. 1995.
- Hatcher, A. *Algebraic Topology*. Cambridge University Press. Cambridge. 2002.
- Bruzzo, U. Introduction to Algebraic Topology and Algebraic Geometry. ISAS Trieste. Genova. 2004.
- Munkres, J.R. *Topology*. 2nd Edition. Prentice Hall. New Jersey. 2000.
- Gamelin, T.W. Greene, R.E. *Introduction to Topology*. 2nd Edition. Dover. New York. 1999
- Steen, L.A. Seebach, J.A. *Counterexamples in Topology*. Dover. New York. 1995
- Dugundji, J. *Topology*. Allyn and Bacon. Boston. 1978.

