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Introduction

Modeling porous media systems
aims to describe the changes in a permeable media (made of somewhat rigid
material containing open spaces) due to changes of the fluid it held.
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Introduction

The changes in pressure caused by motion, removal or addition of liquid or gas
may cause deformations in the structure holding the fluid.

In the past, modelers tended to ignore the geomechanics in their calculations.

Side effects of drilling:

consolidation - reduction in volume due to fluid extraction
compaction - reduction in volume due to air removal
subsidence - collapse
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Motivation

Subsidence of Ekofisk Oil Field

was a side effect of drilling.
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Motivation

“They subsided so much they had to go in and raise the platforms, costing them
several billion dollars. If they’d known ahead of time, they could have built their
platforms taller”
Rick Dean, in ”Modeling complex, multiphase porous media systems”, Siam News, April 2002.

Photo: Norwegian Petroleum Museum/ConocoPhillips
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Motivation

Subsidence of Venice

cased by the extraction of the aquifer.
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Modeling

Poroelasticity refers to fluid flow within a deformable porous medium under the
assumption of relatively small deformations.

Examples of poroelastic structures
soil, rock, cartilage, brain, heart, bone

Various environmental, energy industry and biomechanics applications

Subsidence, reservoir compaction

Well stability, sand production

Waste disposal

Sequestration of carbon in saline aquifers

Estimate tumor-induced stress levels in the brain

Development of prosthetic devices for cartilage, bone, heart valves
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Biot’s consolidation model

Karl von Terzaghi (October 2, 1883 - October 25, 1963) Austrian civil engineer
and geologist. Frequently called the father of soil mechanics.
Maurice Anthony Biot (May 25, 1905 - September 12, 1985) Belgian-American
physicist Founder of the theory of poroelasticity.

Karl von Terzaghi Maurice Anthony Biot
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Biot’s consolidation model

primary variables: displacement u = (u1, u2, u3) and fluid pressure p

Balance of linear momentum

−∇ · (σ(u)− αpI ) = f

σ(u) - effective stress tensor, linear elastic, f - body force, α - Biot-Willis constant

σ(u) = 2µε(u) + λtr(ε(u))I ,

where

ε(u) =
1

2

(
grad u + (grad u)t

)
,

λ, µ - Lamé constants

The momentum conservation equation is very similar to the equation governing
linear elasticity, the exception is the addition of the term involving pressure.
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Biot’s consolidation model

Mass conservation

∂η

∂t
= −∇ · vf + sf

η - fluid content , vf - flux of fluid, sf - volumetric fluid source term

Equation for fluid content η in terms of fluid pressure p and material volume ∇ · u

η = c0p + α∇ · u

c0 - constrained specific storage coefficient

Darcy’s law for the flux of fluid

vf = − 1

µf
K (∇p − ρf g)

K - permeability tensor, µf - fluid viscosity, g - gravity
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Summary of equations

Coupling equations

In the domain, at any time t

−∇ · (σ(u)− αpI ) = f

∂

∂t
(c0p + α∇ · u)− 1

µf
∇ · K (∇p − ρf g) = sf

Initial conditions at time t = 0

p(0) = p0, u(0) = u0

Plus adequate boundary conditions

For the mixed formulation for the flow, we introduce the variable

z = − 1

µf
K (∇p − ρf g).
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Variational problem

Integrating by parts over Ω, we obtain the variational problem

Find u, p and z such that

au(u, v)− α(p,∇ · v) =

∫
Ω

f · v +

∫
ΓN

rN · v,(
c0
∂p

∂t
,w
)

+ α
( ∂
∂t
∇ · u,w

)
+ (∇ · z,w) =

∫
Ω

sfw ,

(µfK
−1z, s)− (p,∇ · s) =

∫
Ω

ρf g · s−
∫

Γp

pDs · η

holds for all (v,w , s) and t ∈ [0,T ], where

au(u, v) =

∫
Ω

(2µ(ε(u) : ε(v)) + λ(∇ · u)(∇ · v)) dx.
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Time discretization

Using the backward Euler method.

Let n denote the time step, and ∆t the time increment

au(un+1, v)− α(pn+1,∇ · v) =

∫
Ω

f · v +

∫
ΓN

rN · v,(
c0(pn+1 − pn),w

)
+ α

(
∇ · (un+1 − un),w

)
+ ∆t(∇ · zn+1,w) = ∆t

∫
Ω

sfw ,

(µfK
−1zn+1, s)− (pn+1,∇ · s) =

∫
Ω

ρf g · s−
∫

Γp

pDs · η

holds for all (v,w , s).
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Time discretization

Operator splitting

α∇ · u = crp +
cr
α
σ̃

FLOW(
(c0 + cr )(pn+1,k+1 − pn),w

)
+ ∆t(∇ · zn+1,k+1,w) = ∆t

∫
Ω

sfw

−
(cr
α

(σ̃n+1,k − σ̃n),w
)
,

(µfK
−1zn+1,k+1, s)− (pn+1,k+1,∇ · s) = −

∫
Γp

pDs · η +

∫
Ω

ρf g · s

MECHANICS

au(un+1,k+1, v) =

∫
Ω

f · v +

∫
ΓN

rN · v + α(pn+1,k+1,∇ · v)
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Splitting: iterative coupling

Time iteration

FLOW σ̃n,k−1

MECHANICS

Converges?

k = k + 1

n = n + 1

No

Yes

Convergence criterion

‖σ̃n+1,k − σ̃n+1,k−1‖L∞ < Tol

Time step loop

Iterative coupling is stable and accurate. [Wheeler and Gai, Numer. Meth. PDEs, 2007]
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Fully, iteratively, explicit and loosely coupled

Fully coupled The coupled governing equations of flow and geomechanics are
solved simultaneously at every time step.

Iteratively coupled Either the flow, or mechanical, problem is solved first, then the
other problem is solved using the intermediate solution information.
This sequential procedure is iterated at each time step until the
solution converges to within an acceptable tolerance. The
converged solution is identical to that obtained using the fully
coupled approach.

Explicitly coupled This is a special case of the iteratively coupled method, where
only one iteration is taken.

Loosely coupled The coupling between the two problems is resolved only after a
certain number of flow time steps. This method can save
computational cost compared to the other strategies, but it is less
accurate and requires reliable estimates of when to update the
mechanical response.

[Kim, Tchelepi, Juanes, SPE, 2009]

Śılvia Barbeiro (CMUC) Splitting methods for flow and mechanics simulators 16 / 36



Space discretization

A very simple example

−u′′(x) + u(x) = (1 + π2) sin(πx), x ∈ (0, 1), u(0) = 0, u(1) = 0

Variational formulation

Multiplying the equation by any arbitrary weight function v ∈ H1
0 (0, 1) and

integrating over the interval (0, 1)∫ 1

0

−u′′(x)v(x) dx +

∫ 1

0

u(x)v(x) dx =

∫ 1

0

(1 + π2) sin(πx)v(x) dx .

Integrating by parts∫ 1

0

u′(x)v ′(x) dx +

∫ 1

0

u(x)v(x) dx =

∫ 1

0

(1 + π2) sin(πx)v(x) dx

+u′(1)v(1)− u′(0)v(0).
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Finite element method

The finite element method supplies an approximation to the analytical solution in
the form of a piecewise polynomial function, defined over the entire computational
domain.

Example: The simplest case of linear splines.

xixi−1 xi+1 x

1 ϕi

ϕi (x) =

 (x − xi−1)/hi , xi−1 ≤ x ≤ xi ,
(xi+1 − x)/hi+1, xi ≤ x ≤ xi+1,
0, otherwise.

A piecewise linear finite element basis function ϕi (hat functions).
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Finite element method

x0 = a x1 x2 x3 x4 x5 x6 x7
. . .

xn = b x

A piecewise linear function.
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Finite element method

Matrix form
Since the aim of Finite Element Method method is the production of a linear
system of equations, we build its matrix form, which can be used to compute the
solution by a computer program.

We expand un in respect to this basis, un =
n∑

j=1

cjϕj to obtain

n∑
j=1

cja(ϕj , ϕi ) = f (ϕi ) i = 1, . . . , n,

which is a linear system of equations AU = F , where

aij = a(ϕj , ϕi ), Fi = f (ϕi ).
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Finite element method

For the finite element method the important property of the basis functions ϕi ,
1 ≤ i ≤ n is that they have local support, being nonzero only in one pair of
adjacent intervals (xi−1, xi ] and [xi+1, xi ).

This means that, Aij = 0 if |i − j | > 0.

=⇒ The matrix A is symmetric, positive definite and tridiagonal, and the
associated system of linear equations can be solved very efficiently.
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Finite element method

Back to the very simple example (Exact solution: u(x) = sin(πx))
Uniform subdivision of [0, 1] of spacing h = 1/n.

n = 2 n = 4
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Finite element method

Uniform subdivision of [0, 1] of spacing h = 1/n.

n = 6 n = 100

In the last figure, the approximation error is so small that u and un are
indistinguishable.
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Finite element method

Basis function in 2D
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Finite element method

Find un ∈ Vn such that ∀vn ∈ Vn, a(un, vn) = f (vn).

Galerkin orthogonality

The key property of the Galerkin approach is that the error is orthogonal to the
chosen subspaces.

Since Vn ⊂ V , we can use vn as a test vector in the original equation. Subtracting
the two, we get the Galerkin orthogonality relation for the error, en = u − un

a(en, vn) = a(u, vn)− a(un, vn) = f (vn)− f (vn) = 0

and
a(en, en) = a(u − un, u − un) = min

vn∈Vn

a(u − vn, u − vn).
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Finite element method

Galerkin orthogonality

0

u − ϕ

un − ϕ

u − un = (u − ϕ)− (un − ϕ)

H1
0 (a, b)

Vn

Energy norm: ‖v‖E = |a(v , v)|1/2

un is the best approximation from Vn to the weak solution u ∈ H1
0 (a, b), when we

measure the error of the approximation in the energy norm.
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Spatial discretization
Eh and EH be two nondegenerate partitions of the polyhedral domain Ω with
maximal element diameter h and H, respectively.

Mixed spaces for flow variables
Examples of mixed spaces with
the needed properties are the
Raviart-Thomas-Nedelec spaces.

Example:
Lowest order Raviart-Thomas

2D

triangles: in each element
p̄ =const, z̄ = (a + bx , c + by)t

quadrilaterals: in each element
p̄ =const, z̄ = (a + bx , c + dy)t
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Mandel’s problem

Mandel’s solution has been used as a benchmark problem for testing the validity
of numerical codes of poroelasticity.
[Mandel, 1953] - analytical solution for pressure

[Abousleiman et al., 1996] - analytical solution for displacement and stress

2F

2F

y

x
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Mandel’s problem

−(λ+ µ)∇(∇ · u)− µ∇2u + α∇p = 0 in Ω× (0,T ]
∂
∂t (c0p + α∇ · u)− 1

µf
∇ · K∇p = 0 in Ω× (0,T ]

boundary conditions
p = 0, x = a, − 1

µf
K∇p · η = 0, x = 0, y = 0, y = b,

u1 = 0, x = 0, u2 = 0, y = 0,
∂uy
∂x

= 0, y = b,

σ̃η = (−F/a)η, y = b, σ̃η = 0, x = 0, x = a, y = 0,

computational domain

ux = 0

zx = 0

uy=0 zy=0

p = 0

Time discretization: Implicit Euler
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Mandel’s problem

surface: p, arrows: u1 and u2

T = 0.001
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Mandel’s problem

surface: p, arrows: u1 and u2

T = 0.1
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Mandel’s problem

surface: p, arrows: u1 and u2

T = 0.2

Śılvia Barbeiro (CMUC) Splitting methods for flow and mechanics simulators 32 / 36



Mandel’s problem

surface: p, arrows: u1 and u2

T = 0.5
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Mandel’s problem
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Mandel’s problem

Numerical results

H ‖u− ū‖H1 rate ‖p − p̄‖L2 rate ‖z− z̄‖L2 rate
5.000e-2 1.222e-3 1.39 1.389e-2 1.53 2.416e-1 1.35
2.500e-2 4.653e-4 1.19 4.798e-3 1.21 9.452e-2 0.94
1.667e-2 2.878e-4 1.05 2.933e-3 1.03 6.453e-2 1.14
1.250e-2 2.130e-4 1.10 2.179e-3 1.08 4.654e-2 0.82
1.000e-2 1.665e-4 0.89 1.711e-3 0.92 3.875e-2 1.14
8.333e-3 1.415e-4 - 1.446e-3 - 3.149e-2 -

Convergence rates: bilinear elements for u, lowest order Raviart-Thomas space for
p and z
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Important Questions

Is the method stable?

Is the method convergente?

Next seminar...

“I really enjoy developing efficient and accurate solutions to real-world problems,
while maintaining a solid theoretical base.” MFW
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