2 Espaços Topológicos

TOPOLOGIA

Dado um conjunto X, um subconjunto \mathcal{T} de partes de X diz-se uma topologia em X se

- (1) $\emptyset \in \mathcal{T} \in X \in \mathcal{T}$;
- (2) se $A, B \in \mathcal{T}$ então $A \cap B \in \mathcal{T}$;
- (3) se $(A_i)_{i\in I}$ for uma família de elementos de \mathcal{T} , então $\bigcup_{i\in I} A_i \in \mathcal{T}$.

[Ao par (X,\mathcal{T}) chama-se espaço topológico. Os elementos de \mathcal{T} dizem-se os abertos do espaço topológico (X,\mathcal{T}) .]

FUNÇÃO CONTÍNUA

Se (X, \mathcal{T}) e (Y, \mathcal{T}') são espaços topológicos e $f: X \to Y$ é uma função, $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$

- (1) diz-se contínua em $a \in X$ se: $(\forall V \in \mathcal{T}')$ $f(a) \in V \Rightarrow (\exists U \in \mathcal{T})$: $a \in U$ e $f(U) \subseteq V$;
- (2) diz-se contínua se: $(\forall V \in \mathcal{T}') \ f^{-1}(V) \in \mathcal{T}$.

Proposição. Se (X, \mathcal{T}) , (Y, \mathcal{T}') e (Z, \mathcal{T}'') são espaços topológicos e $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ e $g: (Y, \mathcal{T}') \to (Z, \mathcal{T}'')$ são funções contínuas, então a sua composição $g \circ f: (X, \mathcal{T}) \to (Z, \mathcal{T}'')$ é ainda uma função contínua.

EXEMPLOS.

- (1) Se (X, d) é um espaço métrico e \mathcal{T} é o conjunto dos abertos definidos pela métrica d, então (X, \mathcal{T}) é um espaço topológico. Por exemplo, a métrica euclidiana em \mathbb{R}^n define uma topologia em \mathbb{R}^n , a que se chama topologia euclidiana.
- (2) Em qualquer conjunto X podemos definir:
 - (a) a topologia discreta $\mathcal{T} := \mathcal{P}(X)$, em que todo o subconjunto de X é aberto (induzida pela métrica discreta);
 - (b) a topologia indiscreta (ou topologia grosseira) $\mathcal{T} := \{\emptyset, X\}.$
- (3) Se X é um conjunto qualquer, $\mathcal{T} = \{A \subseteq X \mid X \setminus A \text{ é um conjunto finito}\}$ é uma topologia em X, a que se dá o nome de topologia cofinita.
- (4) Seja (X, \mathcal{T}) um espaço topológico. Dado um subconjunto Y de X, $\mathcal{T}_Y := \{U \cap Y ; U \in \mathcal{T}\}$ é uma topologia em Y. A esta topologia chama-se topologia relativa ou topologia de subespaço em Y induzida por \mathcal{T} .

ESPACO TOPOLÓGICO METRIZÁVEL

Um espaço topológico cuja topologia seja exactamente o conjunto dos abertos definidos por uma métrica diz-se um espaço topológico metrizável.

[Note-se que: Duas métricas diferentes num conjunto X podem definir a mesma topologia: métricas topologicamente equivalentes.]

Proposição. Se d e d' são métricas num conjunto X, d e d' são topologicamente equivalentes se e só se as funções $(X,d) \longrightarrow (X,d')$ e $(X,d') \longrightarrow (X,d)$ são contínuas. $x \longmapsto x$

Lema. Se (X, \mathcal{T}) é um espaço topológico e \mathcal{T}_Y é a topologia de subespaço em $Y \subseteq X$, então a função inclusão $(Y, \mathcal{T}_Y) \longrightarrow (X, \mathcal{T})$ é contínua.

Proposição. Sejam (X, \mathcal{T}) e (Y, \mathcal{T}') espaços topológicos e $f: X \to Y$ uma função.

- (1) Se \mathcal{T} é a topologia discreta, $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ é contínua.
- (2) Se T' é a topologia indiscreta, $f:(X,T)\to (Y,T')$ é contínua.