1 Espaços Métricos

ESPAÇO MÉTRICO

Um par (X, d) diz-se um espaço métrico se X for um conjunto e $d: X \times X \to \mathbb{R}^+$ for uma aplicação que verifica as seguintes condições, quaisquer que sejam $x, y, z \in X$:

- (1) d(x,y) = 0 se e só se x = y;
- (2) d(x,y) = d(y,x);
- (3) $d(x,z) \le d(x,y) + d(y,z)$.

 $\label{eq:lambda} \mbox{[\grave{A} função d chama-se métrica e aos elementos de X pontos do espaço métrico; a condição (3) designa-se por desigualdade triangular.]}$

Note que, ao verificar (3), basta-nos considerar três pontos distintos $x, y, z \in X$, uma vez que, se dois deles coincidirem, o resultado é trivial ou segue imediatamente de (1).

BOLA ABERTA e BOLA FECHADA

Dados um (X, d) um espaço métrico, $a \in X$ e r > 0, os conjuntos

$$B_r(a) := \{x \in X ; d(x, a) < r\} \text{ e } B_r[a] := \{x \in X ; d(x, a) \le r\}$$

designam-se, respectivamente, por bola aberta e bola fechada de centro a e raio r.

EXEMPLOS.

- (1) Se X é um conjunto, $d: X \times X \to \mathbb{R}^+$, definida por $d(x,y) = \begin{cases} 0 & \text{se } x = y \\ 1 & \text{caso contrário,} \end{cases}$ é uma métrica.
- (2) Em \mathbb{R}^n $(n \in \mathbb{N})$ podemos definir diversas métricas:

(a)
$$d_1(a,b) = \sum_{i=1}^n |a_i - b_i|,$$

(b)
$$d_2(a,b) = \sqrt{\sum_{i=1}^n (a_i-b_i)^2},$$
 [métrica euclidiana]

(c)
$$d_{\infty}(a,b) = \max\{|a_i - b_i|; i = 1, \dots, n\},\$$

onde
$$a = (a_i)_{i=1,\dots,n}, b = (b_i)_{i=1,\dots,n} \in \mathbb{R}^n$$
.

(3) Se (X,d) e (Y,d') são espaços métricos, podemos definir em $X\times Y$ as métricas

- (a) $d_1((x_1, y_1), (x_2, y_2)) = d(x_1, x_2) + d'(y_1, y_2),$
- (b) $d_2((x_1, y_1), (x_2, y_2)) = (d(x_1, x_2)^2 + d'(y_1, y_2)^2)^{\frac{1}{2}},$
- (c) $d_{\infty}((x_1, y_1), (x_2, y_2)) = \max\{d(x_1, x_2), d'(y_1, y_2)\},\$

onde $(x_1, y_1), (x_2, y_2) \in X \times Y$.

(4) Se A é um subconjunto de X e d é uma métrica em X, a restrição d_A de d a $A \times A$ é uma métrica em A.

[Diz-se então que (A,d_A) é um subespaço métrico de (X,d).]

(5) Sejam $a, b \in \mathbb{R}$. No conjunto das funções limitadas de [a, b] em \mathbb{R} podemos considerar a métrica ρ definida por

$$\rho(f,g) := \sup \{ |f(x) - g(x)| \, ; \, x \in [a,b] \},$$

onde $f, g : [a, b] \to \mathbb{R}$ são funções limitadas.

[Esta métrica chama-se habitualmente métrica do supremo, e o espaço métrico designa-se por $\mathcal{L}([a,b],\mathbb{R}).$]

- (6) Como toda a função contínua de [a,b] em \mathbb{R} é limitada, podemos considerar ainda o subespaço métrico de $\mathcal{L}([a,b],\mathbb{R})$ das funções contínuas de [a,b] em \mathbb{R} , que se costuma denotar por $\mathcal{C}([a,b],\mathbb{R})$, ou simplesmente por $\mathcal{C}[a,b]$.
- (7) No conjunto das funções contínuas de [a, b] em \mathbb{R} podemos ainda considerar a métrica

$$\sigma(f,g) := \int_a^b |f(x) - g(x)| \ dx.$$

[métrica do integral]

CONJUNTO LIMITADO/FUNÇÃO LIMITADA

Um subconjunto A de um espaço métrico (Y,d) é limitado se existirem $a \in Y$ e r > 0 tais que d(y,a) < r qualquer que seja $y \in A$. Uma função $f: X \to (Y,d)$ é limitado se f(X) for um subconjunto limitado de (Y,d).

EXEMPLO.

(8) Se X é um conjunto e (Y, d) um espaço métrico, podemos considerar o espaço métrico $\mathcal{L}(X, (Y, d))$ das funções limitadas de X em (Y, d) munido da métrica do supremo

$$\rho(f, g) := \sup \{ d(f(x), g(x)) ; x \in X \}.$$

FUNÇÃO CONTÍNUA

Sejam (X,d) e (Y,d') espaços métricos e $f:X\to Y$ uma função. Diz-se que $f:(X,d)\to (Y,d')$ é uma função contínua em $a\in X$ se

$$(\forall \varepsilon > 0) \ (\exists \delta > 0) \ : \ (\forall x \in X) \ d(x, a) < \delta \Rightarrow d'(f(x), f(a)) < \varepsilon.$$

 $f:(X,d)\to (Y,d')$ diz-se uma função contínua se for contínua em todo o ponto x de X.

Na definição de função contínua em $a \in X$ as bolas abertas são essenciais. De facto:

[Uma função f:(X,d) o (Y,d') é contínua em $a \in X$ se e só se

$$(\forall \varepsilon > 0) \ (\exists \delta > 0) \ : \ f(B_{\delta}(a)) \subseteq B_{\varepsilon}(f(a)).$$

As bolas abertas têm uma propriedade interessante:

Se $x \in B_r(a)$ então existe s > 0 tal que $B_s(x) \subseteq B_r(a)$.

ABERTO

Se (X,d) é um espaço métrico e $A\subseteq X$, A diz-se um subconjunto aberto de (X,d) se

$$(\forall x \in A) \ (\exists s > 0) : B_s(x) \subseteq A.$$

Já sabemos que toda a bola aberta é um aberto. Há no entanto abertos que não são bolas abertas. Por exemplo, $]0, +\infty[$ é um subconjunto aberto de \mathbb{R} (com a métrica euclidiana) embora não seja uma bola aberta.

E fácil verificar que os abertos de um espaço métrico (X,d) têm as seguintes propriedades:

- (1) \emptyset e X são subconjuntos abertos de (X, d);
- (2) se $A \in B$ são subconjuntos abertos de (X, d), então também $A \cap B$ o é;
- (3) se I é um conjunto e $(A_i)_{i\in I}$ é uma família de subconjuntos abertos de (X,d), então $\bigcup_{i\in I} A_i$ é ainda um aberto de (X,d).

Note-se que, uma vez que a intersecção de dois abertos é um aberto (Propriedade 2), também qualquer intersecção *finita* de abertos é um aberto. Não podemos no entanto generalizar esta propriedade ao caso de uma família qualquer de abertos: há famílias (infinitas) de abertos cuja intersecção não é aberta. Por exemplo, $\bigcap_{n\in\mathbb{N}} \left] -\frac{1}{n}, \frac{1}{n} \right[= \{0\}$ não é um aberto em \mathbb{R} .

Proposição. Um subconjunto de um espaço métrico é aberto se e só se é reunião de bolas abertas.

Demonstração. Como cada bola aberta é um aberto e estes são estáveis para a reunião, conclui-se imediatamente que a reunião de bolas abertas é aberta.

Reciprocamente, se $A \subseteq X$ é aberto, então, para cada $a \in A$, existe $\delta_a > 0$ tal que $B_{\delta_a}(a) \subseteq A$. Logo $A \subseteq \bigcup_{a \in A} B_{\delta_a}(a) \subseteq A$, e obtemos a igualdade pretendida.

O estudo dos subconjuntos abertos de um espaço métrico é justificado pelo seguinte resultado.

Proposição. Sejam (X, d) e (Y, d') espaços métricos e $f: X \to Y$ uma função.

- (1) $f:(X,d) \to (Y,d')$ é contínua em $a \in X$ se e só se, para cada subconjunto aberto V de (Y,d') ao qual f(a) pertença, existir um aberto U de (X,d) tal que $a \in U$ e $f(U) \subseteq V$.
- (2) A função $f:(X,d) \to (Y,d')$ é contínua se e só se todo o subconjunto aberto de (Y,d') tiver como imagem inversa por f um subconjunto aberto de (X,d).

Demonstração. (1) (\Rightarrow) Seja V um aberto de Y ao qual f(a) pertence. Por definição de aberto, existe $\varepsilon > 0$ tal que $B_{\varepsilon}(f(a)) \subseteq V$. Da continuidade de f em a conclui-se então que existe $\delta > 0$ tal que $f(B_{\delta}(a)) \subseteq B_{\varepsilon}(f(a))$. Logo, considerando $U = B_{\delta}(a)$, obtemos $f(U) \subseteq B_{\varepsilon}(f(a)) \subseteq V$, como pretendido.

- (\Leftarrow) Seja $\varepsilon > 0$. A bola aberta $B_{\varepsilon}(f(a))$ é em particular um aberto ao qual f(a) pertence. Logo, por hipótese, existe um aberto U de X tal que $a \in U$ e $f(U) \subseteq B_{\varepsilon}(f(a))$. Por definição de aberto existe $\delta > 0$ tal que $B_{\delta}(a) \subseteq U$. Finalmente temos $f(B_{\delta}(a)) \subseteq f(U) \subseteq B_{\varepsilon}(f(a))$. (2) (\Rightarrow) Sejam V um subconjunto aberto de Y e $a \in f^{-1}(V)$. Como V é aberto e $f(a) \in V$, existe $\varepsilon > 0$ tal que $B_{\varepsilon}(f(a)) \subseteq V$. Logo existe $\delta > 0$ tal que $B_{\delta}(a) \subseteq f^{-1}(V)$ e podemos então concluir que $f^{-1}(V)$ é um aberto de X.
- (\Leftarrow) Sejam $a \in X$ e $\varepsilon > 0$. Como $B_{\varepsilon}(f(a))$ é um aberto de Y, da hipótese segue que $f^{-1}(B_{\varepsilon}(f(a)))$ é um aberto de X. Como $a \in f^{-1}(B_{\varepsilon}(f(a)))$, pela definição de aberto existe $\delta > 0$ tal que $B_{\delta}(a) \subseteq f^{-1}(B_{\varepsilon}(f(a)))$, o que é equivalente a $f(B_{\delta}(a)) \subseteq B_{\varepsilon}(f(a))$. Logo, f é contínua em a.

2 Espaços Topológicos

TOPOLOGIA

Dado um conjunto X, um subconjunto \mathcal{T} de partes de X diz-se uma topologia em X se

- (1) $\emptyset \in \mathcal{T} \in X \in \mathcal{T}$;
- (2) se $A, B \in \mathcal{T}$ então $A \cap B \in \mathcal{T}$;
- (3) se $(A_i)_{i\in I}$ for uma família de elementos de \mathcal{T} , então $\bigcup_{i\in I} A_i \in \mathcal{T}$.

[Ao par (X,\mathcal{T}) chama-se espaço topológico. Os elementos de \mathcal{T} dizem-se os abertos do espaço topológico (X,\mathcal{T}) .]

FUNÇÃO CONTÍNUA

Se (X, \mathcal{T}) e (Y, \mathcal{T}') são espaços topológicos e $f: X \to Y$ é uma função, $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$

- (1) diz-se contínua em $a \in X$ se: $(\forall V \in \mathcal{T}')$ $f(a) \in V \Rightarrow (\exists U \in \mathcal{T})$: $a \in U$ e $f(U) \subseteq V$;
- (2) diz-se contínua se: $(\forall V \in \mathcal{T}')$ $f^{-1}(V) \in \mathcal{T}$.

Proposição. Se (X, \mathcal{T}) , (Y, \mathcal{T}') e (Z, \mathcal{T}'') são espaços topológicos e $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ e $g: (Y, \mathcal{T}') \to (Z, \mathcal{T}'')$ são funções contínuas, então a sua composição $g \circ f: (X, \mathcal{T}) \to (Z, \mathcal{T}'')$ é ainda uma função contínua.

EXEMPLOS.

- (1) Se (X,d) é um espaço métrico e \mathcal{T} é o conjunto dos abertos definidos pela métrica d, então (X,\mathcal{T}) é um espaço topológico. Por exemplo, a métrica euclidiana em \mathbb{R}^n define uma topologia em \mathbb{R}^n , a que se chama topologia euclidiana.
- (2) Em qualquer conjunto X podemos definir:
 - (a) a topologia discreta $\mathcal{T} := \mathcal{P}(X)$, em que todo o subconjunto de X é aberto (induzida pela métrica discreta);
 - (b) a topologia indiscreta (ou topologia grosseira) $\mathcal{T} := \{\emptyset, X\}$.
- (3) Se X é um conjunto qualquer, $\mathcal{T} = \{A \subseteq X \mid X \setminus A \text{ é um conjunto finito}\}$ é uma topologia em X, a que se dá o nome de topologia cofinita.
- (4) Seja (X, \mathcal{T}) um espaço topológico. Dado um subconjunto Y de X, $\mathcal{T}_Y := \{U \cap Y ; U \in \mathcal{T}\}$ é uma topologia em Y. A esta topologia chama-se topologia relativa ou topologia de subespaço em Y induzida por \mathcal{T} .

ESPAÇO TOPOLÓGICO METRIZÁVEL

Um espaço topológico cuja topologia seja exactamente o conjunto dos abertos definidos por uma métrica diz-se um espaço topológico metrizável.

[Note-se que: Duas métricas diferentes num conjunto X podem definir a mesma topologia: métricas topologicamente equivalentes.]

Proposição. Se d e d' são métricas num conjunto X, d e d' são topologicamente equivalentes se e só se as funções $(X,d) \longrightarrow (X,d') e (X,d') \longrightarrow (X,d)$ são contínuas. $x \longmapsto x$

Lema. Se (X, \mathcal{T}) é um espaço topológico e \mathcal{T}_Y é a topologia de subespaço em $Y \subseteq X$, então a função inclusão $(Y, \mathcal{T}_Y) \longrightarrow (X, \mathcal{T})$ é contínua. $y \longmapsto y$

Proposição. Sejam (X, \mathcal{T}) e (Y, \mathcal{T}') espaços topológicos e $f: X \to Y$ uma função.

- (1) Se \mathcal{T} é a topologia discreta, $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ é contínua.
- (2) Se T' é a topologia indiscreta, $f:(X,T)\to (Y,T')$ é contínua.

TOPOLOGIAS COMPARÁVEIS

No conjunto das topologias de um conjunto X podemos definir uma relação de ordem do seguinte modo: se T e T' são topologias em X, $T \leq T'$ se $T \subseteq T'$. Nesse caso diz-se que T é uma topologia menos fina do que T' e que T' é uma topologia mais fina do que T.

OBSERVAÇÕES.

- (1) Se T e T' são topologias em X, dizer que T é mais fina do que T' é equivalente a dizer que a função identidade $(X,T) \to (X,T')$ é contínua.
- (2) A topologia discreta é mais fina do que qualquer outra topologia que se possa definir no conjunto X, enquanto que a topologia indiscreta é menos fina do que qualquer outra.

HOMEOMORFISMO/ESPAÇOS HOMEOMORFOS

Sejam (X, \mathcal{T}) e (Y, \mathcal{T}') espaços topológicos.

- (1) Uma função $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ diz-se um homeomorfismo se for uma função contínua, bijectiva, com função inversa $g:(Y,\mathcal{T}')\to (X,\mathcal{T})$ contínua.
- (2) Se existir um homeomorfismo $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ diz-se que os espaços topológicos (X,\mathcal{T}) e (Y,\mathcal{T}') são homeomorfos.

EXEMPLOS. Como subespaços de \mathbb{R} , são homeomorfos: [0,1] e [a,b] (com $a,b \in \mathbb{R}$ e a < b); [0,1] e $[1,+\infty[;\mathbb{R}$ e $]0,+\infty[.$

3 Bases e sub-bases

BASE

Um subconjunto \mathcal{B} de uma topologia \mathcal{T} num conjunto X diz-se uma base da topologia \mathcal{T} se todo o elemento de \mathcal{T} for uma reunião de elementos de \mathcal{B} ; isto é

$$\mathcal{T} = \{ \bigcup_{i \in I} B_i \, | \, (B_i)_{i \in I} \text{ \'e uma família de elementos de } \mathcal{B} \}.$$

Lema. Se (X, \mathcal{T}) é um espaço topológico, então \mathcal{B} é uma base de \mathcal{T} se e só se, para todo o aberto A, se verificar $(\forall x \in A) \ (\exists B \in \mathcal{B}) : x \in B \subseteq A$.

EXEMPLOS.

(1) Se (X, d) é um espaço métrico e \mathcal{T} é a topologia definida pela métrica d, então o conjunto $\mathcal{B} = \{B_r(x) \mid r > 0, x \in X\}$ é uma base para a topologia \mathcal{T} .

[Em particular, os intervalos abertos limitados formam uma base para a topologia euclidiana em $\mathbb{R}.$]

(2) Um conjunto \mathcal{B} de partes de X é uma base para a topologia discreta em X se e só se, para todo o ponto x de X, $\{x\} \in \mathcal{B}$.

Proposição. Dados um conjunto X e um subconjunto S de P(X), o conjunto T constituído pelas reuniões quaisquer de intersecções finitas de elementos de S é uma topologia em X.

SUB-BASE

Se \mathcal{S} e \mathcal{T} estão nas condições da proposição anterior, diz-se que \mathcal{S} é uma sub-base de \mathcal{T} , e que \mathcal{T} é a topologia gerada por \mathcal{S} .

[A topologia gerada por ${\mathcal S}$ é portanto a topologia menos fina que contém ${\mathcal S}.$]

EXEMPLOS.

- (1) Toda a base de uma topologia é em particular uma sub-base.
- (2) $\{a, a+1 \mid a \in \mathbb{R}\}$ é uma sub-base da topologia euclidiana em \mathbb{R} [mas não é uma base].
- (3) A topologia euclidiana em \mathbb{R} é gerada por $\mathcal{S} = \{ [a, +\infty[; a \in \mathbb{R} \} \cup \{] -\infty, b [; b \in \mathbb{R} \}.$
- (4) Qualquer que seja X, $\{X \setminus \{x\} \mid x \in X\}$ é uma sub-base da topologia cofinita em X.

Proposição. Se (X,T) e (Y,T') são espaços topológicos e S é uma sub-base de T', então uma função $f:(X,T) \to (Y,T')$ é contínua se e só se toda a imagem inversa, por f, de um elemento de S for um aberto em (X,T).

Proposição. Sejam X um conjunto e $S \subseteq \mathcal{P}(X)$. As seguintes condições são equivalentes:

- (i) S é uma base para uma topologia em X.
- (ii) (B1) $X = \bigcup_{B \in \mathcal{S}} B$; (B2) $(\forall B_1, B_2 \in \mathcal{S}) \ (\forall x \in B_1 \cap B_2) \ (\exists B_3 \in \mathcal{S}) : x \in B_3 \subseteq B_1 \cap B_2$.

Proposição. Sejam (X, T) um espaço topológico e T_Y a topologia relativa em $Y \subseteq X$.

- (1) Se \mathcal{B} é base da topologia \mathcal{T} , então $\mathcal{B}_Y := \{B \cap Y ; B \in \mathcal{B}\}$ é uma base da topologia \mathcal{T}_Y .
- (2) Se S é sub-base de T, então $S_Y := \{S \cap Y ; S \in S\}$ é uma sub-base da topologia T_Y .

4 Vizinhanças

VIZINHANÇA

Sejam (X, \mathcal{T}) um espaço topológico e a um ponto de X. Diz-se que um subconjunto V de X é uma vizinhança de a se existir um aberto A tal que $a \in A \subseteq V$.

Designaremos o conjunto das vizinhanças de x em (X, \mathcal{T}) por \mathcal{V}_x .

EXEMPLOS. Seja (X, \mathcal{T}) um espaço topológico.

- (1) Qualquer que seja $x \in X, X \in \mathcal{V}_x$.
- (2) Se A é aberto e $x \in A$, então $A \in \mathcal{V}_x$.
- (3) Se \mathcal{T} é a topologia discreta, então, quaisquer que sejam $Y \subseteq X$ e $x \in Y, Y \in \mathcal{V}_y$.

Proposição. Um conjunto $A \subseteq X$ é aberto se e só se é vizinhança de todos os seus pontos.

Proposição. Se (X, \mathcal{T}) é um espaço topológico e $x \in X$, então:

- (1) $\mathcal{V}_x \neq \emptyset \ e \ V \in \mathcal{V}_x \Rightarrow x \in V;$
- (2) $V \in \mathcal{V}_x \ e \ W \supseteq V \Rightarrow W \in \mathcal{V}_x$;
- (3) $V, W \in \mathcal{V}_x \Rightarrow V \cap W \in \mathcal{V}_x$:

Proposição. Seja $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ uma função.

- (1) f é contínua em $a \in X$ se e só se a imagem inversa por f de qualquer vizinhança de f(a) é uma vizinhança de a.
- (2) f é contínua se e só se, para todo o $x \in X$, a imagem inversa por f de qualquer vizinhança de f(x) é uma vizinhança de x.

SISTEMA FUNDAMENTAL DE VIZINHANÇAS

Sejam (X, \mathcal{T}) um espaço topológico e $x \in X$. Um subconjunto \mathcal{U}_x de \mathcal{V}_x diz-se uma base de vizinhanças de x ou sistema fundamental de vizinhanças de x se, para cada $V \in \mathcal{V}_x$, existir $U \in \mathcal{U}_x$ tal que $U \subseteq V$.

EXEMPLOS.

(1) Se \mathcal{T} for uma topologia em X definida por uma métrica d, então o conjunto das bolas abertas centradas em $x \in X$ é um sistema fundamental de vizinhanças de x.

(2) Se \mathcal{T} for a topologia discreta em X, então o conjunto singular $\mathcal{U}_x = \{\{x\}\}$ é um sistema fundamental de vizinhanças de $x \in X$.

Proposição. Sejam (X, \mathcal{T}) um espaço topológico e \mathcal{T}_Y a topologia relativa em $Y \subseteq X$.

- (1) Se $x \in Y$ e \mathcal{V}_x é o conjunto das vizinhanças de x no espaço topológico (X, \mathcal{T}) , então $\mathcal{V}'_x := \{V \cap Y : V \in \mathcal{V}_x\}$ é o conjunto das vizinhanças de x em (Y, \mathcal{T}_Y) .
- (2) Se $x \in Y$ e \mathcal{U}_x é um sistema fundamental de vizinhanças de x no espaço topológico (X,\mathcal{T}) , então $\mathcal{U}'_x := \{U \cap Y ; U \in \mathcal{U}_x\}$ é um sistema fundamental de vizinhanças de x em (Y,\mathcal{T}_Y) .

5 Subconjuntos fechados de um espaço topológico

FECHADO

Um subconjunto A de um espaço (X, \mathcal{T}) chama-se fechado se o seu complementar for aberto.

Proposição. Um subconjunto \mathcal{F} de $\mathcal{P}(X)$ é o conjunto dos subconjuntos fechados de um espaço topológico (X, \mathcal{T}) se e só se verifica as seguintes condições:

- (1) $\emptyset \in \mathcal{F} \ e \ X \in \mathcal{F}$;
- (2) se $U, V \in \mathcal{F}$ então $U \cup V \in \mathcal{F}$;
- (3) se $(U_i)_{i\in I}$ for uma família de elementos de \mathcal{F} , então $\bigcap_{i\in I} U_i \in \mathcal{F}$.

Proposição. Uma função $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ é contínua se e só se, qualquer que seja o subconjunto fechado F de (Y,\mathcal{T}') , $f^{-1}(F)$ é fechado em (X,\mathcal{T}) .

Lema. Se \mathcal{F} é o conjunto dos subconjuntos fechados de (X, \mathcal{T}) e Y é um subconjunto de X, então $\mathcal{F}_Y = \{F \cap Y \mid F \in \mathcal{F}\}$ é o conjunto dos fechados do subespaço (Y, \mathcal{T}_Y) .

FUNÇÃO ABERTA/FUNÇÃO FECHADA

Uma função $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ diz-se aberta (resp. fechada) se, sempre que A for um subconjunto aberto (fechado) de X, f(A) for um subconjunto aberto (fechado) de Y.

Proposição. Se T_Y é a topologia de subespaço em Y definida por (X, \mathcal{T}) , então a inclusão $(Y, \mathcal{T}_Y) \hookrightarrow (X, \mathcal{T})$ é aberta (fechada) se e só se Y é um subconjunto aberto (fechado) de (X, \mathcal{T}) .

Lema. Toda a função bijectiva, contínua e aberta é um homeomorfismo.

6 Operações de interior e de aderência

PONTO INTERIOR

Se (X, \mathcal{T}) é um espaço topológico e Y é um subconjunto de X, um ponto x de X diz-se um ponto interior de Y se Y for uma vizinhança de x.

[O conjunto dos pontos interiores de Y chama-se interior de Y e denota-se por $\overset{\circ}{Y}$, $\mathrm{int}(Y)$ ou simplemente $\mathrm{int}Y$.]

Lema. Se Y é um subconjunto de um espaço topológico (X, \mathcal{T}) , então:

- (1) $int(Y) \subseteq Y$; $int(Y) = Y \Leftrightarrow Y \in \mathcal{T}$;
- (2) int(Y) é um aberto: é o maior aberto contido em Y; $logo, int(Y) = \bigcup \{A \in \mathcal{T} : A \subseteq Y\}.$

EXEMPLOS.

- (1) Se \mathcal{T} é a topologia discreta em X, qualquer que seja $Y \subseteq X$, $\operatorname{int}(Y) = Y$.
- (2) Se \mathcal{T} é a topologia indiscreta em X, então $\operatorname{int}(X) = X$ e $\operatorname{int}(Y) = \emptyset$ desde que $Y \neq X$.
- (3) Em \mathbb{R} , com a topologia euclidiana, $\operatorname{int}([a,b]) =]a,b[$, $\operatorname{int}(\{x\}) = \emptyset$, $\operatorname{int}(\mathbb{Q}) = \emptyset$.
- (4) Em \mathbb{R} , com a topologia cofinita, se $Y \subseteq \mathbb{R}$, então $\operatorname{int}(Y) = \begin{cases} Y & \text{se } \mathbb{R} \setminus Y \text{ finito} \\ \emptyset & \text{caso contrário.} \end{cases}$

PONTO ADERENTE

Se (X, \mathcal{T}) é um espaço topológico e $Y \subseteq X$, um ponto x de X diz-se um ponto aderente de Y se toda a vizinhança de x intersecta Y; isto é, se $(\forall V \in \mathcal{V}_x)$ $V \cap Y \neq \emptyset$.

[O conjunto dos pontos aderentes de Y chama-se aderência de Y ou fecho de Y , e representa-se por \overline{Y} .]

Lema. Se Y é um subconjunto de um espaço topológico (X, \mathcal{T}) , então:

- (1) $Y \subseteq \overline{Y}$; $Y = \overline{Y} \Leftrightarrow Y \text{ \'e fechado}$;
- (2) \overline{Y} é fechado: é o menor fechado que contém Y; logo $\overline{Y} = \bigcap \{F; F \text{ é fechado } e Y \subseteq F\}.$

EXEMPLOS.

- (1) Se \mathcal{T} é a topologia discreta em X, qualquer que seja $Y \subseteq X$, $\overline{Y} = Y$.
- (2) Se \mathcal{T} é a topologia indiscreta em X, então $\overline{\emptyset} = \emptyset$ e $\overline{Y} = X$ desde que $Y \neq \emptyset$.

Aula VI - Topologia e Análise Linear

- (3) Em \mathbb{R} , com a topologia euclidiana, $\overline{]a,b[}=[a,b], \overline{\{x\}}=\{x\}, \overline{\mathbb{Q}}=\mathbb{R}.$
- (4) Em \mathbb{R} , com a topologia cofinita, se $Y \subseteq \mathbb{R}$, então $\overline{Y} = \begin{cases} Y & \text{se } Y \text{ finito} \\ \mathbb{R} & \text{caso contrário.} \end{cases}$

SUBCONJUNTO DENSO/FRONTEIRA/EXTERIOR/DERIVADO

Sejam (X, \mathcal{T}) um espaço topológico e Y um subconjunto de X.

- (1) Y diz-se denso se $\overline{Y} = X$.
- (2) Um ponto x de X diz-se ponto fronteira de Y se

$$(\forall U \in \mathcal{V}_x) \ U \cap Y \neq \emptyset \neq U \cap (X \setminus Y).$$

O conjunto dos pontos fronteira de Y chama-se fronteira de Y e designa-se por frY.

(3) Um ponto x de X diz-se ponto exterior de Y se tiver uma vizinhança que não intersecta Y; isto é, se for um ponto interior do complementar de Y.

O conjunto dos pontos exteriores de Y chama-se exterior de Y e denota-se por extY.

(4) Um ponto x de X diz-se ponto de acumulação de Y se

$$(\forall V \in \mathcal{V}_x) \quad V \cap (Y \setminus \{x\}) \neq \emptyset;$$

isto é, se $x \in \overline{Y \setminus \{x\}}$.

O conjunto dos pontos de acumulação de Y chama-se derivado de Y e denota-se Y'. Um ponto $x \in Y$ diz-se ponto isolado de Y se não for ponto de acumulação.

EXEMPLOS.

- (1) Se \mathcal{T} é a topologia discreta em X, qualquer que seja $Y \subseteq X$, fr $Y = \emptyset$, ext $Y = X \setminus Y$ e $Y' = \emptyset$; logo, todos os pontos de Y são isolados.
- (2) Se \mathcal{T} é a topologia indiscreta em X, então, se Y é um subconjunto não vazio de X, Y é denso e frY=X. Quanto ao conjunto derivado, se Y for um conjunto singular, então $Y'=X\setminus Y$, enquanto que Y'=X desde que Y tenha pelo menos dois pontos.
- (3) Em \mathbb{R} , com a topologia euclidiana,

(a)
$$fr([a,b]) = fr([a,b]) = \{a,b\}, fr(\{x\}) = \{x\}, fr\mathbb{Q} = \mathbb{R};$$

(b)
$$\operatorname{ext}(|a,b|) =]-\infty, a[\cup]b, +\infty[, \operatorname{ext}(\{x\})] = \mathbb{R} \setminus \{x\}, \operatorname{ext}\mathbb{Q} = \emptyset;$$

(c)
$$([a,b])' = [a,b], \{x\}' = \emptyset, \mathbb{N}' = \emptyset, \mathbb{Q}' = \mathbb{R}.$$

7 Topologia produto

TOPOLOGIA PRODUTO

Sejam (X, \mathcal{T}_X) e (Y, \mathcal{T}_Y) espaços topológicos. A topologia \mathcal{T} em $X \times Y$ gerada pela base

$$\mathcal{B} = \{ U \times V ; U \in \mathcal{T}_X, V \in \mathcal{T}_Y \}$$

chama-se topologia produto de \mathcal{T}_X e \mathcal{T}_Y .

[Ao espaço topológico $(X \times Y, \mathcal{T})$ chama-se espaço produto.]

Proposição. Se \mathcal{T} é a topologia produto de \mathcal{T}_X e \mathcal{T}_Y , então:

- (1) As projecções $p_X: (X \times Y, \mathcal{T}) \to (X, \mathcal{T}_X)$ e $p_Y: (X \times Y, \mathcal{T}) \to (Y, \mathcal{T}_Y)$ são contínuas (e abertas).
- (2) Uma função $f:(Z,\mathcal{T}_Z) \to (X \times Y,\mathcal{T})$ é contínua se e só se as funções compostas $p_X \circ f:(Z,\mathcal{T}_Z) \to (X,\mathcal{T}_X)$ e $p_Y \circ f:(Z,\mathcal{T}_Z) \to (Y,\mathcal{T}_Y)$ são contínuas.

Demonstração. 1. Para verificar que $p_X: X \times Y \to X$ é contínua, basta notar que, se $U \in \mathcal{T}_X$, então $p_X^{-1}(U) = \{(x,y) \in X \times Y \; ; \; x \in U\} = U \times Y$, que é aberto em $X \times Y$. Para provar que p_X é aberta, consideremos $A \in \mathcal{T}$; isto é, $A = \bigcup_{i \in I} U_i \times V_i$, com cada $U_i \in \mathcal{T}_X$ e cada $V_i \in \mathcal{T}_Y$. Se $A = \emptyset$, entãp $p_X(A) = \emptyset$ é aberto. Se $A \neq \emptyset$, podemos supor que, para todo o $i \in I$, $V_i \neq \emptyset$. Nesse caso $p_X(A) = p_X(\bigcup_{i \in I} U_i \times V_i) = \bigcup_{i \in I} U_i \in \mathcal{T}_X$.

A demonstração de que a função p_Y é contínua e aberta é análoga.

2. Se f é contínua, então $p_X \circ f$ e $p_Y \circ f$ são contínuas, porque são composições de funções contínuas.

Para provar o recíproco, suponhamos que $p_X \circ f$ e $p_Y \circ f$ são contínuas. Seja $U \times V$ um elemento da base $\mathcal B$ da topologia produto. Então

$$f^{-1}(U \times V) = \{z \in Z : f(z) \in U \times V\}$$

= \{z \in Z : p_X(f(z)) \in U \land p_Y(f(z)) \in V\}
= \((p_X \circ f)^{-1}(U) \cap (p_Y \circ f)^{-1}(V),\)

que é aberto porque $p_X \circ f$ e $p_Y \circ f$ são contínuas.

Corolário. Se $f:Z\to X$ e $g:Z\to Y$ são funções entre espaços topológicos, e se considerarmos o conjunto $X\times Y$ munido da topologia produto, a função

$$< f,g>: Z \longrightarrow X \times Y$$
 $x \longmapsto (f(x),g(x))$ é contínua se e só se f e g o são.

Aula VII - Topologia e Análise Linear

Demonstração. Pela proposição anterior sabemos que $< f,g>: Z \to X \times Y$ é contínua se e só se $p_X \circ < f,g>$ e $p_Y \circ < f,g>$ o são. Para concluir o resultado basta notar que $p_X(< f,g>(z))=p_X(f(z),g(z))=f(z)$ e que $p_Y(< f,g>(z))=g(z)$, isto é $p_X \circ < f,g>=f$ e $p_Y \circ < f,g>=g$.

[A definição e os resultados anteriores são facilmente generalizáveis ao produto finito de espaços topológicos.]

EXEMPLOS.

- (1) A topologia euclidiana em \mathbb{R}^n é a topologia produto das topologias euclidianas em cada um dos factores \mathbb{R} .
- (2) Sejam $(X_i, \mathcal{T}_i)_{1 \leq i \leq n}$ espaços topológicos.
 - (a) Se, para todo o i, \mathcal{T}_i é a topologia indiscreta em X_i , então a topologia produto da família $(\mathcal{T}_i)_{1 \leq i \leq n}$ é a topologia indiscreta em $\prod_{1 \leq i \leq n} X_i$.
 - (b) Se, para todo o i, \mathcal{T}_i é a topologia discreta em X_i , então a topologia produto da família $(\mathcal{T}_i)_{1 \leq i \leq n}$ é a topologia discreta em $\prod_{1 \leq i \leq n} X_i$.

8 Sucessões convergentes

SUCESSÃO CONVERGENTE

Se (X, \mathcal{T}) é um espaço topológico, uma sucessão $(x_n)_{n \in \mathbb{N}}$ de elementos de X converge para $x \in X$ se $(\forall V \in \mathcal{V}_x)$ $(\exists p \in \mathbb{N})$ $(\forall n \in \mathbb{N})$ $n \geq p \Rightarrow x_n \in V$.

Diz-se então que x é um limite da sucessão (x_n) .

Uma sucessão em (X, \mathcal{T}) que convirja para algum $x \in X$ diz-se uma sucessão convergente. Um ponto $y \in X$ é ponto aderente de (x_n) se $(\forall V \in \mathcal{V}_x)$ $(\forall p \in \mathbb{N})$ $(\exists n \in \mathbb{N}) : n \geq p$ e $x_n \in V$.

Lema. Um ponto y de (X, \mathcal{T}) é um ponto aderente de uma sucessão (x_n) em X se e só se

$$y \in \bigcap_{p \in \mathbb{N}} \overline{\{x_n \, ; \, n \ge p\}}.$$

OBSERVAÇÕES.

- (1) Uma sucessão pode convergir para mais do que um ponto.
- (2) Se x é um limite de (x_n) , então é ponto aderente de (x_n) . O recíproco não se verifica.
- (3) Toda a sucessão constante ou constante a partir de alguma ordem igual a x é convergente, e converge para x.

EXEMPLOS.

- (1) Num espaço discreto uma sucessão é convergente se e só se é constante a partir de alguma ordem.
- (2) Num espaço indiscreto toda a sucessão é convergente, e converge para todo o ponto do espaço.

Proposição. Se $f:(X,\mathcal{T}_X) \to (Y,\mathcal{T}_Y)$ é uma função contínua e (x_n) é uma sucessão que converge para x em X, então $f(x_n)$ converge para f(x) em Y.

Demonstração. Seja $V \in \mathcal{V}_{f(x)}$. Por definição de função contínua, existe $U \in \mathcal{V}_x$ tal que $f(U) \subseteq V$. Como $x_n \to x$, existe $p \in \mathbb{N}$ tal que, se $n \geq p$, então $x_n \in U$. Logo, se $n \geq p$, $f(x_n) \in f(U) \subseteq V$.

Proposição. Se A é um subconjunto de (X,T) e (x_n) é uma sucessão em A que converge para x em X, então $x \in \overline{A}$.

Demonstração. Se $V \in \mathcal{V}_x$, então existe $p \in \mathbb{N}$ tal que, se $n \geq p$, $x_n \in V$. Como todos os termos da sucessão pertencem a A, concluímos que, para $n \geq p$, $x_n \in V \cap A$, logo $V \cap A \neq \emptyset$ e então $x \in \overline{A}$.

9 Espaços topológicos separados

ESPAÇO SEPARADO

Um espaço topológico diz-se um espaço de Hausdorff, ou espaço separado, ou espaço T_2 , se

$$(\forall x, y \in X) \ x \neq y \Rightarrow (\exists U \in \mathcal{V}_x) \ (\exists V \in \mathcal{V}_y) : U \cap V = \emptyset.$$

Proposição. Se (X, \mathcal{T}) é um espaço separado e se x e y são limites de uma sucessão (x_n) em X, então x = y.

Demonstração. Suponhamos que (x_n) converge para x e para y. Se $U \in \mathcal{V}_x$ e $V \in \mathcal{V}_y$, então existem $p, q \in \mathbb{N}$ tais que, se $n \geq p$, $x_n \in U$ e, se $n \geq q$, $x_n \in V$. Logo, se $n \geq p$ e $n \geq q$, temos que $x_n \in U \cap V$, e então $U \cap V \neq \emptyset$. Num espaço separado isto significa que x = y.

EXEMPLOS.

- (1) Todo o espaço topológico metrizável é separado; em particular, \mathbb{R}^n , assim como todo o espaço discreto, é separado.
- (2) Se $\mathcal{T} = \{\emptyset, \mathbb{R}\} \cup \{[a, +\infty[; a \in \mathbb{R}\}, \text{ então } (\mathbb{R}, \mathcal{T}) \text{ não é separado.} \}$
- (3) Se \mathcal{T} é a topologia indiscreta num conjunto X com mais do que um ponto, então (X,\mathcal{T}) não é separado.

Teorema. As seguintes condições são equivalentes, para um espaço topológico (X, \mathcal{T}) :

- (i) o espaço X é separado;
- (ii) $(\forall x, y \in X)$ $x \neq y \Rightarrow (\exists A, B \in T)$: $x \in A, y \in B, e A \cap B = \emptyset$:
- (iii) o conjunto $\Delta = \{(x, x) : x \in X\}$ é um subconjunto fechado no espaço produto $X \times X$.

Demonstração. (i) \Rightarrow (ii): Sejam $x, y \in X$ com $x \neq y$. Por (i) existem $U \in \mathcal{V}_x$ e $V \in \mathcal{V}_y$ tais que $U \cap V = \emptyset$. Por definição de vizinhança, existem $A \in \mathcal{T}$ e $B \in \mathcal{T}$ tais que $x \in A \subseteq U$ e $y \in B \subseteq V$. De $U \cap V = \emptyset$ conclui-se que $A \cap B = \emptyset$.

- (ii) \Rightarrow (iii): Provar que Δ é fechado é provar que, qualquer que seja $(x, y) \in X \times X$ com $x \neq y$, $(x, y) \notin \overline{\Delta}$. Isto segue imediatamente de (ii), pois se $A, B \in \mathcal{T}$ são tais que $x \in A$, $y \in B$ e $A \cap B = \emptyset$ então $(A \times B) \cap \Delta = \emptyset$.
- (iii) \Rightarrow (i): Sejam $x, y \in X$ com $x \neq y$. Então $(x, y) \in X \times X \setminus \Delta$, que é aberto por (iii). Logo, por definição de topologia produto, existem abertos U, V de X tais que $(x, y) \in U \times V \subseteq X \times X \setminus \Delta$. Daqui se conclui que $U \in \mathcal{V}_x$, $V \in \mathcal{V}_y$ e $U \cap V = \emptyset$, como queríamos provar.

Proposição. Sejam Y um espaço de Hausdorff e $f, g: X \to Y$ funções contínuas. Então:

- (1) O conjunto $\{x \in X ; f(x) = g(x)\}\$ é fechado em X.
- (2) Se f coincide com g num subconjunto denso de X, então f = g.

Demonstração. (1) Se $f, g: X \to Y$ são contínuas, então $\langle f, g \rangle : X \to Y \times Y$ é contínua. Logo, $\langle f, g \rangle^{-1}$ (Δ) é um subconjunto fechado de X, porque Δ é fechado em $Y \times Y$. De

$$\langle f, g \rangle^{-1} (\Delta) = \{ x \in X ; ((f(x), g(x)) \in \Delta \} = \{ x \in X ; f(x) = g(x) \},$$

segue agora o resultado.

(2) é agora óbvio, uma vez que, por (1), se tem $\{x \in X ; f(x) = g(x)\} = \overline{\{x \in X ; f(x) = g(x)\}}$, que por sua vez é denso, ou seja

$$\{x \in X \; ; \; f(x) = g(x)\} = \overline{\{x \in X \; ; \; f(x) = g(x)\}} = X.$$

Proposição. Sejam X e Y espaços topológicos, com Y separado. Se $f: X \to Y$ é uma função contínua, então o gráfico de f, $\Gamma_f := \{(x, f(x)) : x \in X\}$, é fechado em $X \times Y$.

Demonstração. A função $F: X \times Y \to Y \times Y$, definida por F(x,y) = (f(x),y) é contínua, pois ao compô-la com as projecções $p_1: Y \times Y \to Y$ e $p_2: Y \times Y \to Y$ obtemos funções contínuas. Agora é fácil observar que $F^{-1}(\Delta) = \Gamma_f$, logo Γ_f é fechado porque é a imagem inversa de un fechado por uma função contínua.

10 Espaços topológicos conexos

ESPAÇO CONEXO

Um espaço topológico (X, \mathcal{T}) diz-se conexo se não for reunião de dois subconjuntos abertos disjuntos não vazios.

[Um espaço diz-se desconexo se não for conexo.]

Proposição. Seja (X, \mathcal{T}) um espaço topológico. As seguintes afirmações são equivalentes:

- (i) (X, \mathcal{T}) é um espaço conexo.
- (iii) X não é reunião de dois subconjuntos fechados disjuntos não vazios.
- (iii) Se U é um subconjunto aberto e fechado de (X, T), então U = X ou $U = \emptyset$.
- (iv) Qualquer aplicação contínua $f:(X,T)\to (\{0,1\},\mathcal{T}_d)$, onde \mathcal{T}_d é a topologia discreta, é constante.

SUBCONJUNTO CONEXO

Um subconjunto A de (X, \mathcal{T}) diz-se conexo se o subespaço (A, \mathcal{T}_A) for conexo.

EXEMPLOS.

- (1) Se $\operatorname{card} X \leq 1$, X é um espaço conexo.
- (2) $\mathbb{R} \setminus \{0\}$ e \mathbb{Q} são subconjuntos desconexos de \mathbb{R} .
- (3) Se X é um espaço discreto, então X é conexo se e só se tem quando muito um ponto.
- (4) Se X é um espaço indiscreto, então X é conexo.
- (5) Se X é um conjunto infinito munido da topologia cofinita, então X é conexo.

Proposição. Se A é um subconjunto de (X,T) denso e conexo, então (X,T) é conexo.

Demonstração. Se B for um subconjunto aberto e fechado de X, $B \cap A$ é um subconjunto aberto e fechado de A. Como A é conexo, $B \cap A = \emptyset$ ou $B \cap A = A$. Se se verificar a primeira igualdade, A é um subconjunto de $X \setminus B$, que é fechado em X. Logo $X = \overline{A} \subseteq X \setminus B$ e então $B = \emptyset$. Se $B \cap A = A$, então $A \subseteq B$, logo, porque B é fechado, $X = \overline{A} \subseteq B$ e então B = X.

Corolário. Se A é um subconjunto conexo de (X, \mathcal{T}) e B é um subconjunto de X tal que $A \subseteq B \subseteq \overline{A}$, então B é conexo.

Demonstração. Se considerarmos B com a topologia de subespaço, A é um subconjunto denso de B. Como A é conexo, concluímos que B é conexo, pela proposição anterior.

Proposição. Sejam A e B subconjuntos de (X, \mathcal{T}) , com A conexo. Se

$$A \cap int(B) \neq \emptyset \neq A \cap int(X \setminus B),$$

 $ent\tilde{a}o\ A\cap frB\neq\emptyset.$

Demonstração. Como $X = \operatorname{int}(B) \cup \operatorname{fr} B \cup \operatorname{int}(X \setminus B)$, e então

$$A = (A \cap \operatorname{int}(B)) \cup (A \cap \operatorname{fr}B) \cup (A \cap \operatorname{int}(X \setminus B)),$$

se $A \cap \operatorname{fr} B = \emptyset$, concluímos que A se pode escrever como reunião de dois abertos disjuntos: $A = (A \cap \operatorname{int}(B)) \cup (A \cap \operatorname{int}(X \setminus B))$. Logo um destes tem que ser vazio, o que contraria a hipótese.

Proposição. Seja $(A_i)_{i\in I}$ uma família de subconjuntos conexos de (X, \mathcal{T}) . Se $\bigcap_{i\in I} A_i \neq \emptyset$, então $\bigcup_{i\in I} A_i$ é um subconjunto conexo de (X, \mathcal{T}) .

Demonstração. Seja B um subconjunto aberto e fechado de $A = \bigcup_{i \in I} A_i$. Se B for não vazio, existe $j \in I$ tal que $B \cap A_j \neq \emptyset$. Logo, como A_j é, por hipótese, conexo e $B \cap A_j$ é aberto e fechado em A_j , conclui-se que $B \cap A_j = A_j$. Como, para todo o $i \in I$, $A_j \cap A_i \neq \emptyset$, $B \cap A_i \neq \emptyset$ e então concluímos que $B = A_i$. Portanto B = A e então A é conexo.

Corolário.

- (1) Se $(A_i)_{i\in I}$ é uma família de subconjuntos conexos de (X,T) que se intersectam dois a dois (isto é, para todo o par i,j em I, $A_i \cap A_j \neq \emptyset$), então $\bigcup_{i\in I} A_i$ é um subconjunto conexo de (X,T).
- (2) Se (X,T) é um espaço topológico tal que, para cada par de pontos x e y de X, existe um subconjunto conexo que os contém, então (X,T) é conexo.

Teorema. Um subconjunto de \mathbb{R} é conexo se e só se é um intervalo.

Demonstração. (\Rightarrow) Se $A \subseteq \mathbb{R}$ não for um intervalo, existem $x, y, z \in \mathbb{R}$ tais que x < y < z, $x, z \in A$ e $y \notin A$. Então A é reunião de dois subconjuntos abertos, não vazios, disjuntos:

$$A = (A \cap]-\infty, y[) \cup (A \cap]y, +\infty[).$$

(\Leftarrow) Suponhamos agora que I é um intervalo. Suponhamos, por redução ao absurdo, que existem subconjuntos A e B abertos e fechados em I, disjuntos, não vazios, cuja reunião é I. Sejam $a \in A$ e $b \in B$. Suponhamos que a < b. O intervalo [a, b] está contido em I, porque I é um intervalo e $a, b \in I$. Sejam $A' = A \cap [a, b]$ e $B' = B \cap [a, b]$, e seja $b' = \inf B'$. Como A' e B' são fechados em [a, b], também são fechados em \mathbb{R} . Logo $b' \in B'$ e então a < b'. Sejam $A'' = A' \cap [a, b']$ e $a'' = \sup A''$. Então $a'' \in A''$, porque A'' é fechado, logo a'' < b'. Podemos então concluir que o intervalo aberto]a'', b'[não intersecta A' nem B', donde não intersecta I, o que é absurdo. ■

Proposição. Se $f: X \to Y$ é contínua e sobrejectiva e X é conexo, então Y é conexo.

Demonstração. Se $B \subseteq Y$ é aberto e fechado em Y, também $f^{-1}(B)$ é aberto e fechado em X. Logo, porque X é conexo, $f^{-1}(B) = \emptyset$, caso em que necessariamente $B = \emptyset$, ou $f^{-1}(B) = X$, caso em que $B = f(f^{-1}(B)) = f(X) = Y$.

Corolário.

- (1) Se $f: X \to Y$ é contínua e A é um subconjunto conexo de X, então f(A) é um subconjunto conexo de Y.
- (2) Se $f: X \to Y$ é um homeomorfismo, então X é conexo se e só se Y o é.
- (3) Se $f: X \to \mathbb{R}$ é contínua e X é conexo, então f(X) é um intervalo.
- (4) $Em \mathbb{R}^2$, com a métrica euclidiana, qualquer bola aberta é conexa.

Teorema. Se (X, \mathcal{T}_X) e (Y, \mathcal{T}_Y) são espaços não vazios e \mathcal{T} é a topologia produto de \mathcal{T}_X e \mathcal{T}_Y , então $(X \times Y, \mathcal{T})$ é conexo se e só se (X, \mathcal{T}_X) e (Y, \mathcal{T}_Y) o são.

Demonstração. Se $X \times Y$ for conexo, então, porque as projecções são funções contínuas e sobrejectivas, X e Y são conexos.

Suponhamos agora que X e Y são conexos. Seja $(a,b) \in X \times Y$. Os subconjuntos $\{a\} \times Y$ e $X \times \{b\}$ de $X \times Y$ são conexos, porque são imagens, por funções contínuas, de Y e X, respectivamente. Além disso, a sua intersecção é não vazia (é igual a $\{(a,b)\}$), logo o subconjunto $S_{(a,b)} = (\{a\} \times Y) \cup (X \times \{b\})$ é conexo, porque é a reunião de dois conexos que se intersectam. Para concluir que $X \times Y$ é conexo, basta agora reparar que $X \times Y = \bigcup_{(a,b) \in X \times Y} S_{(a,b)}$ e que, para cada par de pontos $(a,b), (a',b') \in X \times Y$, $S_{(a,b)} \cap S_{(a',b')} \neq \emptyset$.

EXEMPLOS. \mathbb{R}^2 é conexo; o complementar de um ponto em \mathbb{R}^2 é ainda conexo, mas o complementar de uma recta é desconexo.

COMPONENTE CONEXA

Se X é um espaço topológico e $x \in X$, chama-se componente conexa de x ao maior conexo que contém x (e será designada por C_x).

[Nota: Como a família de todos os subconjuntos conexos de X que contêm x é uma família de conexos com intersecção não vazia, a sua reunião é necessariamente o maior conexo que contém x.]

Proposição.

- (1) Se $x, y \in X$, então $C_x = C_y$ ou $C_x \cap C_y = \emptyset$.
- (2) Toda a componente conexa é fechada (mas pode não ser aberta).

EXEMPLOS.

- (1) Se X é um espaço discreto, então $C_x = \{x\}$.
- (2) Se X é um espaço indiscreto, então $C_x = X$, qualquer que seja $x \in X$.
- (3) Se considerarmos \mathbb{Q} com a topologia euclidiana e $x \in \mathbb{Q}$, então $C_x = \{x\}$.

Corolário.

- (1) Se $f: X \to Y$ é uma função contínua, então a imagem por f de uma componente conexa está contida numa componente conexa (mas pode não coincidir com ela).
- (2) Se $f: X \to Y$ é um homeomorfismo e C_x é a componente conexa de x em X, então $f(C_x)$ é a componente conexa de f(x) em Y.
- (3) Dois espaços homeomorfos têm o mesmo número de componentes conexas.
- (4) Sejam (X, \mathcal{T}) e (Y, \mathcal{T}') espaços homeomorfos. Se $x \in X$ e $X \setminus \{x\}$ tem n componentes conexas, então existe $y \in Y$ tal que $Y \setminus \{y\}$ tem n componentes conexas.

ESPAÇO CONEXO POR ARCOS

- (1) Dado um espaço topológico X, um caminho em X é uma aplicação contínua $f:[0,1] \to X$. Diz-se que um caminho f vai de a a b se f(0) = a e f(1) = b.
- (2) Um espaço topológico X diz-se conexo por arcos se dados quaisquer pontos a e b de X existir um caminho em X de a a b.

[Todo o espaço conexo por arcos é conexo, mas nem todo o espaço conexo é conexo por arcos. Por exemplo, o subconjunto de \mathbb{R}^2

$$X := \{(x, \sin(\frac{1}{x}); x > 0\} \cup \{(0, y); y \in [-1, 1]\}$$

é conexo mas não é conexo por arcos.]

EXEMPLOS. Um subconjunto de \mathbb{R} é conexo se e só se é um intervalo e se e só se é conexo por arcos.

Toda a bola aberta em \mathbb{R}^2 é conexa por arcos.

Proposição. Todo o subconjunto aberto e conexo de \mathbb{R}^2 é conexo por arcos.

Demonstração. Sejam A um aberto conexo de \mathbb{R}^2 e $a \in A$. Consideremos o conjunto $U = \{x \in A : \text{ existe um caminho de } a \text{ a } x \text{ em } A\}$. Então U e $A \setminus U$ são abertos, logo U = A.

11 Espaços topológicos compactos

COBERTURA ABERTA

Seja X um conjunto.

- (1) Uma família $(U_i)_{i\in I}$ de subconjuntos de X diz-se uma cobertura de X se $X = \bigcup_{i\in I} U_i$.
- (2) Se $(U_i)_{i\in I}$ é uma cobertura de X e J é um subconjunto de I tal que $X = \bigcup_{j\in J} U_j$, então $(U_j)_{j\in J}$ diz-se uma subcobertura de $(U_i)_{i\in I}$; diz-se finita se J for um conjunto finito.
- (3) Uma cobertura $(U_i)_{i\in I}$ de um espaço topológico X diz-se uma cobertura aberta de X se todo o conjunto U_i for aberto em X.

ESPAÇO COMPACTO

Um espaço topológico diz-se compacto se toda a sua cobertura aberta tiver uma subcobertura finita.

Proposição. Um espaço X é compacto se e só se, sempre que $(F_i)_{i\in I}$ for uma família de subconjuntos fechados de X tal que $\bigcap_{i\in I} F_i = \emptyset$, existe $J\subseteq I$, finito, tal que $\bigcap_{j\in J} F_j = \emptyset$.

Proposição. Sejam (X, \mathcal{T}) um espaço topológico, Y um subconjunto de X e \mathcal{T}_Y a topologia de subespaço em Y. As seguintes afirmações são equivalentes:

- (i) O espaço (Y, \mathcal{T}_Y) é compacto.
- (ii) Sempre que $(U_i)_{i\in I}$ for uma família de elementos de \mathcal{T} tal que $Y\subseteq\bigcup_{i\in I}U_i$, existe um subconjunto finito J de I tal que $Y\subseteq\bigcup_{i\in I}U_i$.

Teorema de Heine-Borel. Dado um intervalo fechado e limitado [a,b] de \mathbb{R} , de toda a cobertura aberta de [a,b] é possível extrair uma subcobertura finita.

Demonstração. Seja $(U_i)_{i\in I}$ uma família de abertos de \mathbb{R} tais que $[a,b]\subseteq\bigcup_{i\in I}U_i$. Sejam

 $Y = \{x \in [a, b]; [a, x] \text{ está contido numa reunião finita de elementos de } (U_i)_{i \in I} \}$

e $y = \sup Y$. Existe $j \in I$ tal que $y \in U_j$. Como $y \in \overline{Y}$, existe $x \in Y \cap U_j$. Como $x \in Y$, $[a, x] \subseteq \bigcup_{k=1, \dots, n} U_{i_k}$, logo $[a, y] \subseteq \bigcup_{k=1, \dots, n} U_{i_k} \cup U_j$ e então $y \in Y$. Se y = b, temos o resultado

provado. Se y < b, chegamos a uma contradição, pois qualquer ponto de U_j entre y e b ainda pertence a Y, o que contraria o facto de y ser o supremo do conjunto.

EXEMPLOS.

- (1) Todo o espaço finito é compacto.
- (2) Se X é um espaço discreto, então X é compacto se e só se é finito.
- (3) Todo o espaço indiscreto é compacto.
- (4) \mathbb{R} não é compacto. O espaço]0,1], com a topologia euclidiana, não é compacto.

Proposição.

- (1) Todo o subespaço compacto de um espaço de Hausdorff é fechado.
- (2) Todo o subespaço fechado de um espaço compacto é compacto.

Demonstração. (1) Sejam X um espaço de Hausdorff, K um subespaço compacto de X e $x \in X \setminus K$. Queremos provar que $x \notin \overline{K}$. Para cada $y \in K$ existem abertos U_y e V_y tais que $x \in U_y$, $y \in V_y$ e $U_y \cap V_y = \emptyset$. A família $(V_y)_{y \in K}$ constitui uma cobertura aberta de K, que, por K ser compacto, tem uma subcobertura finita $(V_y)_{y \in F}$. Obtemos então considerar o conjunto aberto $\bigcap_{y \in F} U_y$, ao qual x pertence e que não intersecta $\bigcup_{y \in F} V_y \supseteq K$. Logo $x \notin \overline{K}$, como queríamos demonstrar.

(2) Suponhamos que X é compacto e que F é um subespaço fechado de X. Qualquer que seja a família $(U_i)_{i\in I}$ de subconjuntos abertos de X que cubra F, a família $(U_i)_{i\in I\cup\{0\}}$ obtida juntando à primeira o conjunto aberto $U_0 = X \setminus F$ é uma cobertura aberta de X. Logo, porque X é compacto, tem uma subcobertura finita, o que prova em particular que F é coberto por uma parte finita da família (U_i) .

Corolário. Se o espaço X é compacto e de Hausdorff e Y é um subespaço de X, então Y é compacto se e só se é fechado em X.

Proposição. Se $f: X \to Y$ é uma aplicação contínua e A é um subespaço compacto de X, então f(A) é um subespaço compacto de Y.

Demonstração. Se $(U_i)_{i\in I}$ é uma família de subconjuntos abertos de Y que cobre f(A), então $(f^{-1}(U_i))_{i\in I}$ é uma família de abertos de X que cobre A. Como A é compacto, existe um subconjunto finito J de I tal que $A\subseteq\bigcup_{i\in J}f^{-1}(U_i)$. Logo, $f(A)\subseteq\bigcup_{i\in J}f(f^{-1}(U_i))\subseteq\bigcup_{i\in J}U_i$, o que prova que f(A) é compacto.

Corolário.

- (1) Se X é um espaço compacto e Y um espaço separado, então toda a aplicação contínua $f: X \to Y$ é fechada.
- (2) Se X é compacto e Y é separado, então toda a aplicação bijectiva e contínua $f: X \to Y$ é um homeomorfismo.

Teorema de Tychonoff. Sejam X e Y espaços topológicos não vazios. O espaço produto $X \times Y$ é compacto se e só se X e Y são compactos.

Demonstração. Se X e Y são não vazios, as projecções p_X e p_Y são aplicações sobrejectivas. Logo, se $X \times Y$ é compacto, $p_X(X \times Y) = X$ e $p_Y(X \times Y) = Y$ são compactos.

Reciprocamente, sejam X e Y compactos e \mathcal{U} uma cobertura aberta de $X \times Y$. Seja $x \in X$. Para cada $y \in Y$ existe $U_{(x,y)} \in \mathcal{U}$ tal que $(x,y) \in U_{(x,y)}$. Por construção da topologia produto, existem abertos $A_{(x,y)}$ e $B_{(x,y)}$ de X e Y respectivamente tais que $(x,y) \in A_{(x,y)} \times B_{(x,y)} \subseteq U_{(x,y)}$. Obtemos assim uma cobertura aberta $(B_{(x,y)})_{y \in Y}$ de Y, a qual, como Y é compacto, tem uma subcobertura finita $(B_{(x,y)})_{y \in Y_x}$. O conjunto $A_x = \bigcap_{y \in Y_x} A_{(x,y)}$ é um aberto de X

(porque intersecção finita de abertos) ao qual x pertence. Façamos agora esta construção para todo o $x \in X$. Obtemos uma cobertura aberta $(A_x)_{x \in X}$, que, por X ser compacto, tem uma subcobertura finita $(A_x)_{x \in X_0}$. É fácil ver agora que a família finita $(U_{(x,y)})_{x \in X_0, y \in Y_x}$ é uma cobertura aberta de $X \times Y$, pois, para cada $(a,b) \in X \times Y$, existem $x \in X_0$ e $y \in Y_x$ tais que $a \in A_x$ e $b \in B_{(x,y)}$; logo, $(a,b) \in A_x \times B_{(x,y)} \subseteq A_{(x,y)} \times B_{(x,y)} \subseteq U_{(x,y)}$.

Teorema de Kuratowski-Mrowka. Um espaço topológico X é compacto se e só se, para cada espaço Y, a projecção $p_Y: X \times Y \to Y$ é fechada.

Proposição. Todo o espaço métrico compacto é limitado.

Demonstração. Sejam X um espaço métrico compacto e $a \in X$. A cobertura aberta $X = \bigcup_{n \in \mathbb{N}} B_n(a)$ tem uma subcobertura finita, isto é, existe $m \in \mathbb{N}$ tal que $X = B_m(a)$. Logo, X é limitado.

Teorema. Um subespaço de \mathbb{R}^n é compacto se e só se é fechado e limitado.

Demonstração. Se $X \subseteq \mathbb{R}$ for fechado e limitado, então é subconjunto fechado de um intervalo [a,b], que é compacto. Logo, é compacto.

Suponhamos agora que $X\subseteq\mathbb{R}$ é compacto. Então é fechado em \mathbb{R} , porque \mathbb{R} é separado e é limitado, como já vimos.

12 Sucessões convergentes e de Cauchy em espaços métricos

Lema. Num espaço métrico uma sucessão não pode convergir para dois pontos distintos. ■

Teorema. Se X é um espaço métrico e A é um subconjunto de X, então um ponto x de X pertence a \overline{A} se e só se existe uma sucessão em A que converge para x em X.

Demonstração. Já vimos que, em qualquer espaço topológico, se x é limite de uma sucessão que toma valores em $A \subseteq X$, então $x \in \overline{A}$. Falta-nos então ver que, se X é um espaço métrico, o recíproco também se verifica. Sejam X um espaço métrico, $A \subseteq X$ e $x \in \overline{A}$. Então, para cada $n \in \mathbb{N}$, a bola aberta $B_{\frac{1}{n}}(x)$ intersecta A. Seja $x_n \in B_{\frac{1}{n}}(a) \cap A$. Verifica-se agora facilmente que a sucessão $(x_n)_{n \in \mathbb{N}}$, que toma valores em A, converge para x.

Corolário. Um subconjunto A de um espaço métrico X é fechado se e só se toda a sucessão convergente com valores em A tem o seu limite em A.

Teorema. Se X e Y são espaços métricos e $f: X \to Y$ é uma função, então f é contínua se e só se, sempre que (x_n) é uma sucessão em X que converge para x, a sucessão $(f(x_n))$ converge para f(x).

Demonstração. Para toda a função contínua f entre espaços topológicos, se (x_n) converge para x, então $(f(x_n))$ converge para f(x), como provámos atrás. Resta-nos provar que esta condição caracteriza as funções contínuas entre espaços métricos. Suponhamos que X e Y são espaços métricos e que $f: X \to Y$ é tal que, se (x_n) converge para x em X, então $(f(x_n))$ converge para f(x) em Y. Seja B um fechado de Y. Queremos porvar que a imagem inversa por f, $f^{-1}(B)$ é fechada em X. Seja $x \in \overline{f^{-1}(B)}$. Pelo teorema anterior, existe uma sucessão (x_n) em $f^{-1}(B)$ que converge para x. Logo, por hipótese, $f(x_n)$ converge para f(x). Como $(f(x_n))$ é uma sucessão que toma valores em B e B é por hipótese fechado, podemos concluir que o seu limite, f(x), ainda pertence a B. Logo $x \in f^{-1}(B)$ e então este conjunto é fechado, como queríamos provar.

Proposição. Num espaço métrico todo o ponto aderente a uma sucessão é limite de uma subsucessão da sucessão dada.

Demonstração. Seja a um ponto aderente da sucessão (x_n) no espaço métrico X. Vamos usar recorrência para construir uma subsucessão de (x_n) que convirja para a. Para n=1, existe $p(1) \in \mathbb{N}$ tal que $x_{p(1)} \in B_1(a)$, por definição de ponto aderente e uma vez que $B_1(a)$ é uma vizinhança de a. Para n=2, existe $p(2) \in \mathbb{N}$ tal que p(2) > p(1) e $x_{p(2)} \in B_{\frac{1}{2}}(a)$, por definição de ponto aderente. Definido p(k) para $k \in \mathbb{N}$, escolhemos $p(k+1) \in \mathbb{N}$ de forma que p(k+1) > p(k) e $x_{p(k+1)} \in B_{\frac{1}{k+1}}(a)$. A sucessão assim definida é, por construção, uma subsucessão de (x_n) que converge para a.

SUCESSÃO DE CAUCHY

Uma sucessão (x_n) num espaço métrico (X,d) diz-se uma sucessão de Cauchy se verificar a seguinte condição: $(\forall \varepsilon > 0) \ (\exists p \in \mathbb{N}) \ : \ (\forall n,m \in \mathbb{N}) \ n \geq p, \ m \geq p \ \Rightarrow \ d(x_n,x_m) < \varepsilon.$

Proposição.

- (1) Toda a sucessão convergente num espaço métrico é de Cauchy.
- (2) Toda a sucessão de Cauchy é limitada.

Demonstração. (1) Seja (x_n) uma sucessão que converge para x no espaço métrico (X,d), e seja $\varepsilon > 0$. Por definição de sucessão convergente, existe $p \in \mathbb{N}$ tal que, se $n \geq p$, então $d(x_n, x) < \frac{\varepsilon}{2}$. Logo, se $n \geq p$ e $m \geq p$, obtemos

$$d(x_n, x_m) \le d(x_n, x) + d(x, x_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

(2) Seja (x_n) uma sucessão de Cauchy no espaço métrico (X, d).

Para $\varepsilon=1$, existe $p\in\mathbb{N}$ tal que, se $n,m\geq p$, então $d(x_n,x_m)<1$. Então a bola aberta $B_1(x_p)$ contém todos os termos da sucessão de ordem igual ou superior a p. Resta-nos agora limitar os restantes termos x_1,\cdots,x_{p-1} , que são em número finito. Podemos então considerar $r=\max\{d(x_i,x_p)\;;\;i\leq p\}+1$. É óbvio que todos os termos da sucessão se encontram na bola aberta $B_r(x_p)$ e então a sucessão é limitada.

Proposição. Toda a sucessão de Cauchy com uma subsucessão convergente é convergente.

Demonstração. Seja x o limite de uma subsucessão $(x_{\varphi(n)})_{n\in\mathbb{N}}$ da sucessão de Cauchy $(x_n)_{n\in\mathbb{N}}$. Queremos provar que (x_n) também converge para x. Seja $\varepsilon>0$. Porque $(x_{\varphi(n)})$ converge para x, existe $p\in\mathbb{N}$ tal que, se $n\geq p$, $d(x_{\varphi(n)},x)<\frac{\varepsilon}{2}$. Por outro lado, porque (x_n) é de Cauchy, existe $q\in\mathbb{N}$ tal que, se $n,m\geq q$, então $d(x_n,x_m)<\frac{\varepsilon}{2}$. Se considerarmos agora $r=\max\{\varphi(p),q\}$, para todo o $n\in\mathbb{N}$, se $n\geq r$, obtemos

$$d(x_n, x) \le d(x_n, x_{\varphi(p)}) + d(x_{\varphi(p)}, x) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

 $\log (x_n)$ converge para x.

Corolário. Se (x_n) é uma sucessão num espaço métrico, as seguintes afirmações são equivalentes:

- (i) (x_n) é convergente;
- (ii) (x_n) é de Cauchy e tem um ponto aderente;
- (iii) (x_n) é de Cauchy e tem uma subsucessão convergente.

13 Espaços métricos completos

ESPAÇO MÉTRICO COMPLETO

Um espaço métrico (X, d) diz-se completo se toda a sucessão de Cauchy em X for convergente.

EXEMPLOS.

- (1) \mathbb{R} é um espaço métrico completo.
- (2) Q e [0, 1], com a métrica euclidiana, não são espaços completos.

Proposição.

- (1) Se Y é um subespaço completo de um espaço métrico X, então Y é fechado em X.
- (2) Se X é um espaço métrico completo e Y é um subconjunto de X, então Y é um subespaço métrico completo se e só se é fechado em X.

Demonstração. (1) Se $x \in \overline{Y}$, existe uma sucessão (y_n) em Y que converge para x. A sucessão (y_n) é então de Cauchy, logo converge em Y para um ponto $y \in Y$. Nesse caso também converge em X para y e então podemos concluir que $x = y \in Y$, pela unicidade do limite.

(2) Temos apenas que provar que um subconjunto fechado Y de um espaço completo X é um espaço completo. Seja (y_n) uma sucessão de Cauchy em Y. Então (y_n) é uma sucessão de Cauchy em X, logo converge para $x \in X$, visto que X é completo. Como Y é fechado, concluímos que $x \in Y$ e então (y_n) é convergente em Y.

Proposição. Todo o espaço métrico compacto é completo.

Demonstração. Sejam X um espaço métrico compacto e (x_n) uma sucessão de Cauchy em X. Se (x_n) não for convergente, então não tem nenhum ponto aderente. Logo, para cada $a \in X$, existe $U_a \in \mathcal{T}$ tal que $a \in U_a$ e existe $n \in \mathbb{N}$ tal que, se $m \geq n$, então $x_m \notin U_a$. A cobertura aberta assim obtida $(U_a)_{a \in X}$ tem uma subcobertura finita: $X = \bigcup_{i=1}^k U_{a_i}$. Para cada $i \in \{1, \dots, k\}$, por construção da cobertura existe $n_i \in \mathbb{N}$ tal que, se $m \geq n_i$, então $x_m \notin U_{a_i}$. Logo podemos concluir que, se $m \geq \max\{n_i \, ; \, i = 1, \dots, k\}, \, x_m \notin \bigcup U_{a_i} = X$, o que é absurdo.

Teorema. Se X é um conjunto não vazio e (Y,d) um espaço métrico, então o espaço $\mathcal{L}(X,Y)$ das funções limitadas de X em Y, munido da métrica do supremo

$$\rho(f,g) := \sup\{d(f(x),g(x)) : x \in X\},\$$

é um espaço completo se e só se (Y, d) é completo.

Demonstração. (\Rightarrow): Seja (y_n) uma sucessão de Cauchy em Y. Consideremos as funções constantes $f_n: X \to Y$ com $f_n(x) = y_n$. A sucessão de funções (f_n) é de Cauchy em $\mathcal{L}(X,Y)$, pois $\rho(f_n, f_m) = d(y_n, y_m)$. Logo a sucessão (f_n) converge para uma função $f: X \to Y$ em $\mathcal{L}(X,Y)$. Sejam $x \in X$ e y = f(x). Então, como $d(y_n, y) \leq \rho(f_n, f)$, é agora fácil concluir que (y_n) converge para y em (Y, d).

(\Leftarrow): Seja $(f_n: X \to Y)_{n \in \mathbb{N}}$ uma sucessão de Cauchy em $\mathcal{L}(X,Y)$. Para cada $x \in X$, $d(f_n(x), f_m(x)) \leq \rho(f_n, f_m)$; logo $(f_n(x))_{n \in \mathbb{N}}$ é uma sucessão de Cauchy em Y. Como Y é completo, $(f_n(x))$ é uma sucessão convergente. Designando por f(x) o seu limite, construímos uma função $f: X \to Y$. Falta-nos provar que a sucessão (f_n) converge para f e que f é uma função limitada.

Seja $\varepsilon > 0$. Porque a sucessão (f_n) é de Cauchy, existe $p \in \mathbb{N}$ tal que, se $n \geq p$ e $m \geq p$, então $\rho(f_n, f_m) < \frac{\varepsilon}{3}$. Para cada $x \in X$, como $f_n(x) \to f(x)$ em Y, existe $q \in \mathbb{N}$ tal que, se $m \geq q$, então $d(f_m(x), f(x)) < \frac{\varepsilon}{3}$. Logo, se $n \geq p$, temos que

$$d(f_n(x), f(x)) \le d(f_n(x), f_m(x)) + d(f_m(x), f(x)),$$

qualquer que seja $m \in \mathbb{N}$. Considerando $m = \max\{p, q\}$, obtemos

$$d(f_n(x), f(x)) \le d(f_n(x), f_m(x)) + d(f_m(x), f(x)) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \frac{2}{3}\varepsilon,$$

o que prova que

$$\rho(f_n, f) = \sup\{d(f_n(x), f(x)) ; x \in X\} \le \frac{2}{3}\varepsilon < \varepsilon.$$

É agora imediato que f é limitada.

Proposição. Se (X, d') e (Y, d) são espaços métricos, então o espaço métrico $C^*(X, Y)$ das funções limitadas e contínuas de (X, d) em (Y, d'), munido da métrica do supremo, é um subespaço fechado de $\mathcal{L}(X, Y)$.

Demonstração. Seja $(f_n:(X,d)\to (Y,d'))_{n\in\mathbb{N}}$ uma sucessão de funções contínuas e seja $f:(X,d)\to (Y,d')$ o seu limite em $\mathcal{L}(X,Y)$. Queremos provar que $f:(X,d)\to (Y,d')$ é contínua. Sejam $x\in X$ e $\varepsilon>0$. Como $f_n\to f$, existe $p\in\mathbb{N}$ tal que, se $n\geq p$, então $\rho(f_n,f)<\frac{\varepsilon}{3}$. A continuidade da função f_p em x garante-nos que existe $\delta>0$ tal que, se $x'\in X$ e $d(x,x')<\delta$, então $d'(f_p(x),f_p(x'))<\frac{\varepsilon}{3}$. Logo, se $x'\in X$ e $d(x,x')<\delta$, temos que

$$d'(f(x), f(x')) \le d'(f(x), f_p(x)) + d'(f_p(x), f_p(x')) + d'(f_p(x'), f(x')) \le \rho(f, f_p) + \frac{\varepsilon}{3} + \rho(f, f_p) = \varepsilon.$$

Corolário. Sejam (X, d) e (Y, d') espaços métricos. O espaço $C^*(X, Y)$ é um espaço métrico completo se e só se (Y, d') é completo.

Demonstração. Para provar (\Rightarrow) usa-se exactamente a argumentação usada no Teorema anterior, pois as funções constantes são também contínuas.

(⇐): Se (Y, d') for completo, então $\mathcal{C}(X, Y)$ é um subespaço fechado do espaço completo $\mathcal{L}(X, Y)$.

OBSERVAÇÃO. Se considerarmos o seguinte subespaço de $\mathcal{C}([0,1],\mathbb{R})$

$$A = \{ f \in \mathcal{C}([0,1], \mathbb{R}) ; \rho(f,g) \le 1 \}$$

onde g é a função nula, então A é completo e limitado, mas não é compacto.

Teorema. Todo o espaço métrico é subespaço denso de um espaço métrico completo.

Demonstração. Seja X um espaço métrico. Consideremos no conjunto

$$\{(x_n)_{n\in\mathbb{N}} \; ; \; (x_n) \text{ \'e uma sucess\~ao de Cauchy em } X\}$$

a relação de equivalência: $(x_n) \sim (y_n)$ se a sucessão $(d(x_n, y_n))$ convergir para 0 em \mathbb{R}^+ . Seja Y o conjunto das classes de equivalência desta relação; isto é,

$$Y = \{[(x_n)] ; (x_n) \text{ \'e uma sucess\~ao de Cauchy em } X\}.$$

Para cada par de elementos de Y, $[(x_n)]$, $[(y_n)]$, definimos

$$\gamma([(x_n)], [(y_n)]) = \lim_{n \to \infty} d(x_n, y_n).$$

(Note-se que, se (x_n) e (y_n) são sucessões de Cauchy, então $(d(x_n, y_n))$ é uma sucessão de Cauchy em \mathbb{R}^+ , logo converge.)

(a) Vejamos em primeiro lugar que a função γ está bem definida, isto é, que a expressão acima não depende dos representantes das classes escolhidos: se $(x_n) \sim (x'_n)$ e $(y_n) \sim (y'_n)$, então

$$d(x_n, y_n) \leq d(x_n, x'_n) + d(x'_n, y'_n) + d(y'_n, y_n)$$

$$d(x'_n, y'_n) \leq d(x'_n, x_n) + d(x_n, y_n) + d(y_n, y'_n).$$

Como $\lim_{n\to\infty}d(x_n,x_n')=\lim_{n\to\infty}d(y_n,y_n')=0$, concluímos pelo Teorema das Sucessões Enquadradas que

$$\lim_{n \to \infty} d(x_n, y_n) \le \lim_{n \to \infty} d(x'_n, y'_n) \le \lim_{n \to \infty} d(x_n, y_n).$$

(b) γ é uma métrica em Y:

(b1)
$$\gamma([(x_n)], [(y_n)]) = 0 \Leftrightarrow \lim_{n \to \infty} d(x_n, y_n) = 0 \Leftrightarrow [(x_n)] = [(y_n)].$$

(b2)
$$\gamma([(x_n)], [(y_n)]) = \lim_{n \to \infty} d(x_n, y_n) = \lim_{n \to \infty} d(y_n, x_n) = \gamma([(x_n)], [(y_n)]).$$

(b3)
$$\gamma([(x_n)], [(z_n)]) = \lim_{n \to \infty} d(x_n, z_n) \le \lim_{n \to \infty} (d(x_n, y_n) + d(y_n, z_n)) = \lim_{n \to \infty} d(x_n, y_n) + \lim_{n \to \infty} d(y_n, z_n) = \gamma([(x_n)], [(y_n)]) + \gamma([(y_n)], [(z_n)]).$$

(c) Podemos identificar X com um subespaço de Y através da função (injectiva)

$$\begin{array}{ccc} X & \longrightarrow & Y \\ x & \longmapsto & [(x)] \end{array}$$

(onde [(x)] representa a classe de equivalência da sucessão constante igual a x). Como $\gamma([(x)],[(y)])=\lim_{n\to\infty}d(x,y)=d(x,y), X$ tem a métrica de subespaço. Para verificar que X

é denso em Y, consideremos um elemento $[(x_n)]$ de Y. A sucessão de classes de equivalência das sucessões constantes

$$y^1 = [(x_1)], \cdots, y^k = [(x_k)], \cdots$$

converge para $[(x_n)]$ pois $\gamma([y^k],[(x_n)]) = \lim_{n \to \infty} d(x_k,x_n)$, que sabemos tender para 0 quando k tende para $+\infty$, por definição de sucessão de Cauchy.

(d) Falta verificar que Y é um espaço completo. Para isso consideremos uma sucessão $(y^k)_{k\in\mathbb{N}}$ de elementos de Y, onde, para cada $k\in\mathbb{N}$,

$$y^k = [(x_n^k)_{n \in \mathbb{N}}].$$

Isto é,

Porque cada $(x_n^k)_{n\in\mathbb{N}}$ é uma sucessão de Cauchy, existe $n_k\in\mathbb{N}$ tal que, se $n\geq n_k$ e $m\geq n_k$, então

$$d(x_n^k, x_m^k) < \frac{1}{k}.$$

Consideremos a sucessão $(x_{n_k}^k)_{k\in\mathbb{N}}$ em X e verifiquemos que é de Cauchy. Sejam $\varepsilon > 0$ e $k \in \mathbb{N}$ tal que $\frac{3}{k} < \varepsilon$. Porque $(y^n)_{n\in\mathbb{N}}$ é uma sucessão de Cauchy em Y, existe $p \in \mathbb{N}$, que podemos considerar maior ou igual a k, tal que, se $l \geq p$ e $m \geq p$, então

$$\gamma(y^l, y^m) = \lim_{n \to \infty} d(x_n^l, x_n^m) < \frac{1}{k}.$$

Logo, existe $q \in \mathbb{N}$ tal que, se $n \geq q$, então $d(x_n^l, x_n^m) \leq \frac{1}{k}$. Donde

$$d(x_{n_l}^l, x_{n_m}^m) \le d(x_{n_l}^l, x_n^l) + d(x_n^l, x_n^m) + d(x_n^m, x_{n_m}^m) < \frac{1}{l} + \frac{1}{k} + \frac{1}{m} < \frac{3}{k} < \varepsilon.$$

Falta agora verificar que $y^n \to y = [(x_{n_k}^k)_{k \in \mathbb{N}}]$; isto é, que $\lim_{n \to \infty} \gamma(y^n, y) = 0$. Mas

$$\lim_{n\to\infty}\gamma(y^n,y)=\lim_{n\to\infty}\lim_{k\to\infty}d(x_k^n,x_{n_k}^k)\leq\lim_{n\to\infty}\lim_{k\to\infty}(d(x_k^n,x_{n_n}^n)+d(x_{n_n}^n,x_{n_k}^k))=0,$$

por construção de $(x_{n_k}^k)_{k\in\mathbb{N}}$.

14 Espaços métricos compactos e funções uniformemente contínuas

Sejam (X, d) e (Y, d') espaços métricos.

FUNÇÃO UNIFORMEMENTE CONTÍNUA

Uma função $f:(X,d)\to (Y,d')$ diz-se uniformemente contínua se

$$(\forall \varepsilon > 0) \ (\exists \delta > 0) \ : \ (\forall x, x' \in X) \ d(x, x') < \delta \ \Rightarrow \ d'(f(x), f(x')) < \varepsilon.$$

Proposição. A composição de duas funções uniformemente contínuas é uniformemente contínua.

Teorema. Se (X,d) é um espaço métrico compacto e $f:(X,d) \to (Y,d')$ é uma função contínua, então f é uniformemente contínua.

Demonstração. Seja $\varepsilon > 0$. Para cada $x \in X$ existe $\delta(x) > 0$ tal que, se $x' \in X$ e $d(x,x') < \delta(x)$, então $d'(f(x),f(x')) < \frac{\varepsilon}{2}$.

Considerando, para cada $x \in X$, $r(x) := \frac{\delta(x)}{2}$, as bolas abertas $B_{r(x)}(x)$ formam uma cobertura

aberta de X, que é compacto. Logo, existem $a_1, \dots, a_n \in X$ tais que $X = \bigcup_{i=1}^n B_{r(a_i)}(a_i)$.

Sejam $\delta = \min\{r(a_i); i = 1, \dots, n\}$ e $x, x' \in X$ tais que $d(x, x') < \delta$. Existe $j \in \{1, \dots, n\}$ tal que $x \in B_{r(a_i)}(a_j)$. Então

$$d(x', a) \le d(x', x) + d(x, a) < \delta + r(a_j) \le r(a_j) + r(a_j) = \delta(a_j).$$

Logo $d(x,a_j) < \delta(a_j)$ e $d(x',a_j) < \delta(a_j)$, e então

$$d'(f(x), f(x')) \le d'(f(x), f(a)) + d'(f(a), f(x')) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

MÉTRICAS UNIFORMEMENTE EQUIVALENTES

Duas métricas d e d' em X dizem-se uniformemente equivalentes se as funções identidade $(X,d) \to (X,d')$ e $(X,d') \to (X,d)$ forem funções uniformemente contínuas.

[E os espaços (X,d) e (X,d^\prime) dizem-se uniformemente equivalentes.]

EXEMPLO. Sejam d_1 , d_2 e d_{∞} as métricas em \mathbb{R}^2 definidas no Exemplo 1.3.2. Os espaços métricos (\mathbb{R}^2, d_1) , (\mathbb{R}^2, d_2) e $(\mathbb{R}^2, d_{\infty})$ são uniformemente equivalentes.

15 Espaços normados

ESPAÇO NORMADO

Chama-se espaço normado a um par $(V, \|\cdot\|)$, onde V é um espaço vectorial sobre um corpo K (\mathbb{R} ou \mathbb{C}) e $\|\cdot\|: V \to \mathbb{R}^+$ é uma função que verifica as seguintes condições, para $x, y \in V$ e λ um escalar (i.e. $\lambda \in K$):

- (1) ||x|| = 0 se e só se x = 0,
- (2) $\|\lambda x\| = |\lambda| \|x\|$,
- $(3) ||x+y|| \le ||x|| + ||y||.$

OBSERVAÇÕES.

- (1) Sempre que se considerar um espaço normado sobre C dir-se-á espaço normado complexo.
- (2) À função $\|\cdot\|$ chama-se norma.
- (3) Todo o espaço normado é em particular um espaço métrico, com a métrica $d: V \times V \to \mathbb{R}^+$ definida por

$$d(x,y) = ||x - y||.$$

Nesse caso a norma é recuperada de d através de ||x|| = d(x,0). Em particular, todo o espaço normado é um espaço topológico. Sempre que nos referirmos a propriedades de um espaço normado que dependam de uma métrica ou de uma topologia estamos a considerar a métrica e a topologia induzidas pela norma.

(4) Nem toda a métrica num espaço vectorial é definida por uma norma. De facto, dada uma métrica d num espaço vectorial, ||x|| = d(x,0) define uma norma se e só se, para $x, y, z \in V$ e λ escalar,

$$d(x,y) = d(x+z,y+z)$$
 e $d(\lambda x, \lambda y) = |\lambda| d(x,y)$.

ESPAÇO DE BANACH

Um espaço de Banach é um espaço normado completo.

EXEMPLOS.

(1) \mathbb{R}^n ou \mathbb{C}^n , como espaços vectoriais, com a norma

$$||x|| = (\sum_{i=1}^{n} |x_i|^2)^{\frac{1}{2}},$$

onde $x = (x_1, \dots, x_n)$; a estes espaços chamamos, respectivamente, espaço real euclidiano e espaço complexo euclidiano.

(2) Se X é um conjunto, o espaço vectorial $\mathcal{L}(X,\mathbb{R}) = \mathcal{L}(X)$, munido da norma (do supremo ou uniforme)

$$||f|| = \sup_{x \in X} |f(x)| = \rho(f, 0)$$

é um espaço normado (completo).

- (3) Se X é um espaço topológico, o espaço vectorial $\mathcal{C}^*(X,\mathbb{R}) = \mathcal{C}^*(X)$ das funções contínuas e limitadas de X em \mathbb{R} é um espaço normado (completo) quando munido da norma do supremo. Em particular, se X é um espaço compacto, o espaço vectorial das funções contínuas $\mathcal{C}(X) = \mathcal{C}(X,\mathbb{R})$ é um espaço normado para a norma do supremo. Note-se que, como f(X) é um compacto, $\|f\| = \max_{x \in X} |f(x)|$.
- (4) Se $X = \mathbb{R}^n$ ou $X = \mathbb{C}^n$, a norma $\|\cdot\|_1$ definida por

$$||x||_1 = \sum_{i=1}^n |x_i|.$$

(Note-se que em $\mathbb{R}^n \parallel \cdot \parallel_1$ é a norma definida pela métrica d_1 .) A este espaço chama-se espaço (real ou complexo) l_1^n e à norma chama-se norma l_1 .

De igual modo, podemos considerar o espaço l_{∞}^n com a norma l_{∞} definida por

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$

(que corresponde à métrica d_{∞} já estudada).

(5) Se $1 \leq p < \infty$, definimos o espaço (real ou complexo) l_p^n como o espaço vectorial \mathbb{R}^n ou \mathbb{C}^n munido da norma l_p :

$$||x||_p = (\sum_{k=1}^n |x_k|^p)^{\frac{1}{p}}.$$

Note-se que l_2^n é o espaço euclidiano (de dimensão n).

(6) Em

 $X=\{f:\mathbb{R}\to\mathbb{R}\;;\;\;f\; {\rm cont}$ ínua e existem $a,b\in\mathbb{R}$ tais que $\{x\in\mathbb{R}\;;\;f(x)\neq 0\}\subseteq[a,b]\}$ definimos a norma

$$||f||_1 = \int_{-\infty}^{+\infty} |f(t)| dt.$$

(7) Para $1 \leq p < \infty$, o espaço l_p consiste no conjunto das sucessões $x = (x_1, x_2, \cdots)$ tais que

$$\left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} < \infty.$$

A norma de um elemento $x \in l_p$ é

$$||x||_p = (\sum_{i=1}^{\infty} |x_i|^p)^{\frac{1}{p}}.$$

O espaço l_{∞} é o espaço das sucessões limitadas munido da norma

$$||x||_{\infty} = \sup_{i \in \mathbb{N}} |x_i|,$$

e c_0 é o espaço de todas as sucessões (de escalares) que convergem para 0, munido da norma $\|\cdot\|_{\infty}$.

(8) O espaço $C^{(n)}(0,1)$ tem como pontos as funções $f:]0,1[\to \mathbb{R}$ deriváveis até à ordem n e com derivadas (até à ordem n) contínuas e limitadas, e como norma

$$||f|| = \sup \{ \sum_{k=0}^{n} |f^{(k)}(t)| ; 0 < t < 1 \}.$$

(9) O conjunto dos polinómios de grau menor ou igual a n, $f(t) = \sum_{k=0}^{n} c_k t^k$, pode ser munido da norma

$$||f|| = \sum_{k=0}^{n} (k+1)|c_k|.$$

SUBESPAÇO NORMADO

- (1) Se X é um espaço normado, um seu subespaço normado é um subespaço vectorial equipado com a norma induzida pela norma de X.
- (2) Dado $Z \subseteq X$, chama-se subespaço linear gerado por Z a

$$lin Z = \{ \sum_{k=1}^{n} \lambda_k z_k : z_k \in Z, \lambda_k \in K, n = 1, 2, \dots \}$$

(que é o menor subespaço que contém Z).

Se X é um espaço normado, chamamos bola unitária à bola aberta de raio 1 e centro 0, que denotamos por D (ou por D(X) se estivermos a trabalhar com mais do que um espaço).

Proposição. Seja V um espaço vectorial.

- (1) Dada uma norma $\|\cdot\|$ em V, a sua bola unitária $D = \{x \in X ; \|x\| < 1\}$ tem as seguintes propriedades:
 - (a) $\forall x, y \in D \ \forall \lambda, \mu \in K \ |\lambda| + |\mu| \le 1 \ \Rightarrow \ \lambda x + \mu y \in D$;
 - (b) $\forall x \in D \exists \varepsilon > 0 \ x + \varepsilon D \subseteq D$;
 - (c) $\forall x \in V \ x \neq 0 \ \exists \lambda, \mu \in K : \lambda x \in D \land \mu x \notin D$.
- (2) Se $D \subseteq V$ satisfizer as condições (a)-(c), então

$$||x|| := \inf\{t \, ; \, t > 0 \ e \ x \in tD\}$$

define uma norma em X tal que D é a sua bola unitária.

OBSERVAÇÃO. Num espaço normado X as bolas abertas são completamente determinadas por D; de facto

$$\forall \varepsilon > 0 \ \forall a \in X \ B_{\varepsilon}(a) = a + \varepsilon D.$$

OPERADOR LINEAR/OPERADOR LINEAR LIMITADO

(1) Se X e Y são espaços normados sobre o mesmo corpo, chama-se operador linear de X em Y a uma função linear $T:X\to Y$; isto é

$$T(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 T(x_1) + \lambda_2 T(x_2),$$

para todo o par de pontos x_1, x_2 de X e todo o par de escalares λ_1, λ_2 . Se Y = K, T diz-se uma funcional linear. (2) Um operador linear $T: X \to Y$ diz-se limitado se

$$\exists N > 0 \ \forall x \in X \ \|T(x)\| \le N\|x\|.$$

Dados espaços normados X e Y, designamos o espaço vectorial dos operadores lineares de X em Y por $\mathsf{F}(X,Y)$, e o seu subespaço vectorial dos operadores lineares limitados por $\mathsf{L}(X,Y)$. Dado um espaço normado X, denotamos o espaço vectorial das suas funcionais lineares por X' e o seu subespaço das funcionais lineares limitadas por X^* .

Teorema. Sejam X e Y espaços normados e $T: X \to Y$ um operador linear. As seguintes condições são equivalentes:

- (i) T é contínuo;
- (ii) T é contínuo nalgum ponto de X;
- (iii) T é limitado.

Demonstração. (i) \Rightarrow (ii) é óbvio.

(ii) \Rightarrow (iii): Se T é contínuo em $x_0 \in X$, então, tomando $\varepsilon = 1$,

$$\exists \delta > 0 \ \forall x \in X \ \|x - x_0\| < \delta \ \Rightarrow \ \|T(x) - T(x_0)\| < 1.$$

Logo, se $y \in X$ for tal que $||y|| < \delta$, então, considerando $x = x_0 + y$, temos que $||x - x_0|| = ||y|| < \delta$, logo $||T(y)|| = ||T(x - x_0)|| = ||T(x) - T(x_0)|| < 1$. Portanto, se $z \in X$ e $z \neq 0$,

$$\operatorname{como}\,z = \frac{2\|z\|}{\delta}\,\frac{\delta z}{2\|z\|} \,\operatorname{e}\,\big\|\frac{\delta z}{2\|z\|}\big\| = \frac{\delta}{2} < \delta, \ \operatorname{temos}\,\operatorname{que}\,\|T(z)\| = \frac{2\|z\|}{\delta}\,\big\|T\big(\frac{\delta z}{2\|z\|}\big)\big\| < \frac{2}{\delta}\|z\|.$$

Temos então que T verifica a condição requerida tomando $N=\frac{2}{\delta}$.

(iii) \Rightarrow (i): Vamos em seguida provar que todo o operador linear limitado é uma função uniformemente contínua. Sabemos, por hipótese, que existe N>0 tal que $\|T(x)\|\leq N\|x\|$, para todo o $x\in X$. Então, se $\varepsilon>0$, o valor $\delta=\frac{\varepsilon}{N}>0$ é tal que, para $x,y\in X$,

$$||x - y|| < \delta \implies ||T(x) - T(y)|| = ||T(x - y)|| \le N||x - y|| < N\frac{\varepsilon}{N} = \varepsilon.$$

Corolário. Se X e Y são espaços normados e $T: X \to Y$ é um operador linear, então T é um homeomorfismo se e só se T é uma bijecção tal que T e a sua função inversa são operadores lineares limitados.

Demonstração. Para concluir o resultado basta-nos provar que, se T é um operador linear e bijectivo, com função inversa $T_1: Y \to X$, então T_1 é um operador linear. Para provar isso,

sejam $\lambda_1, \lambda_2 \in K$ e $y_1, y_2 \in Y$. Sejam x_1, x_2 (os únicos) elementos de X tais que $T(x_1) = y_1$ e $T(x_2) = y_2$. Então $T(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 T(x_1) + \lambda_2 T(x_2) = \lambda_1 y_1 + \lambda_2 y_2$. Logo, por definição de inversa, $T_1(\lambda_1 y_1 + \lambda_2 y_2) = \lambda_1 x_1 + \lambda_2 x_2 = \lambda_1 T_1(y_1) + \lambda_2 T_1(y_2)$.

Duas normas $\|\cdot\|_1$ e $\|\cdot\|_2$ num mesmo espaço vectorial V dizem-se equivalentes se forem topologicamente equivalentes, isto é, se definirem a mesma topologia em V.

Corolário. Duas normas $\|\cdot\|_1$ e $\|\cdot\|_2$ em V são equivalentes se e só se

$$\exists c > 0 \ \exists d > 0 : \forall x \in V \ \|x\|_1 < c\|x\|_2 < d\|x\|_1.$$

Demonstração. As duas normas são equivalentes se e só se, por definição, as funções identidade $(V, \|\cdot\|_1) \to (V, \|\cdot\|_2)$ e $(V, \|\cdot\|_2) \to (V, \|\cdot\|_1)$ são isomorfismos, o que é equivalente – uma vez que são operadores lineares – a serem operadores lineares limitados. Isto é,

$$\exists N > 0 : ||x||_2 \le N||x||_1 \in \exists M > 0 : ||x||_1 \le M||x||_2.$$

É agora trivial tirar a conclusão pretendida.

Corolário. Se $\|\cdot\|_1$ e $\|\cdot\|_2$ são normas equivalentes em V, então $(V, \|\cdot\|_1)$ é um espaço completo se e só se $(V, \|\cdot\|_2)$ o for.

Demonstração. Basta notar que as funções identidade $(V, \|\cdot\|_1) \to (V, \|\cdot\|_2)$ e $(V, \|\cdot\|_2) \to (V, \|\cdot\|_1)$ são – como provámos no teorema acima – uniformemente contínuas e usar o resultado do Exercício 100 (d).

Se X e Y são espaços normados, podemos munir o espaço vectorial $\mathsf{L}(X,Y)$ dos operadores lineares limitados de X em Y de uma norma, do seguinte modo:

$$||T|| := \inf\{N > 0 ; \forall x \in X \ ||T(x)|| \le N||x||\}.$$

OBSERVAÇÃO. Veremos na aula teórico-prática que a função assim definida é uma norma e que se tem ainda

$$||T|| = \sup\{||T(x)|| \; ; \; ||x|| \le 1\}.$$

Aqui vamos apenas observar uma outra propriedade importante de ||T||: o número real ||T|| é o mínimo do conjunto $\{N > 0 : \forall x \in X \ ||T(x)|| \le N||x||\}$, isto é, tem-se que

$$||T(x)|| \le ||T|| \, ||x||.$$

Suponhamos, por redução ao absurdo, que esta desigualdade não é válida, isto é, que existe $x \in X$ tal que $\|T(x)\| > \|T\| \|x\|$. Então fazendo $M = \frac{\|T(x)\|}{\|x\|}$ temos que $M > \|T\|$ e que qualquer valor inferior a M, nomeadamente qualquer valor entre M e $\|T\|$ não pertence ao conjunto em causa. Logo $\|T\|$ não será o ínfimo do conjunto, o que é absurdo.

Teorema. Se Y for um espaço de Banach, então L(X,Y) é um espaço de Banach.

Demonstração. Seja $(T_n)_{n\in\mathbb{N}}$ uma sucessão de Cauchy em $\mathsf{L}(X,Y)$. Então, para todo o $x\in X$, uma vez que

$$||T_n(x) - T_m(x)|| = ||(T_n - T_m)(x)|| \le ||T_n - T_m|| \, ||x||,$$

concluímos que $(T_n(x))$ é uma sucessão de Cauchy em Y, logo convergente. Designemos por T(x) o seu limite. Definimos assim uma função $T: X \to Y$. Temos agora que verificar que T é um operador linear limitado e que $T_n \to T$. Dados $x_1, x_2 \in X$ e $\lambda_1, \lambda_2 \in K$,

$$T(\lambda_{1}x_{1} + \lambda_{2}x_{2}) = \lim_{n \to \infty} T_{n}(\lambda_{1}x_{1} + \lambda_{2}x_{2}) = \lim_{n \to \infty} (\lambda_{1}T_{n}(x_{1}) + \lambda_{2}T_{n}(x_{2}))$$

$$= \lambda_{1} \lim_{n \to \infty} T_{n}(x_{1}) + \lambda_{2} \lim_{n \to \infty} T_{n}(x_{2}) = \lambda_{1}T(x_{1}) + \lambda_{2}T(x_{2}),$$

logo T é um operador linear. Para verificar que é limitado, consideremos $\varepsilon > 0$. Porque (T_n) é de Cauchy, existe $p \in \mathbb{N}$ tal que, se $n \geq p$ e $m \geq p$, então $||T_n - T_m|| < \varepsilon$. Então, quaisquer que sejam $x \in X$ e $m \geq p$,

$$||T(x) - T_m(x)|| = ||(\lim_{n \to \infty} T_n(x)) - T_m(x)|| = ||\lim_{n \to \infty} (T_n - T_m)(x)|| = \lim_{n \to \infty} ||(T_n - T_m)(x)|| \le \varepsilon ||x||.$$

Logo

$$||T(x)|| \le \varepsilon ||x|| + ||T_m(x)|| \le (\varepsilon + ||T_m||) ||x||,$$

e então $T \in \mathsf{L}(X,Y)$; mas também se conclui da designaldade anterior que $||T-T_m|| \leq \varepsilon$. Logo $T_m \to T$, como queríamos demonstrar.

Lema. Se X, Y e Z são espaços normados e $T: X \to Y$ e $S: Y \to Z$ são operadores lineares limitados, então $S \circ T: X \to Z$ é um operador linear limitado e $\|S \circ T\| \le \|S\| \|T\|$.

SÉRIE CONVERGENTE/SÉRIE ABSOLUTAMENTE CONVERGENTE

Dado um espaço normado X, uma série $\sum_{k=1}^{\infty} x_k$ em X (isto é, com $x_k \in X$ para todo o $k \in \mathbb{N}$) diz-se:

(1) convergente para $x \in X$ se a sucessão das somas parciais $(s_n)_n = \left(\sum_{k=1}^n x_k\right)_n$ convergir para x, isto é

$$\lim_{n \to \infty} \|x - \sum_{k=1}^{n} x_k\| = 0;$$

(2) absolutamente convergente se a série $\sum_{k=1}^{\infty} ||x_n||$ convergir em \mathbb{R}^+ .

Lema. Num espaço de Banach toda a série absolutamente convergente é convergente.

Demonstração. Basta-nos provar que a sucessão das somas parciais (s_n) de uma série absolutamente convergente $\sum_{k=1}^{\infty} x_k$ é uma sucessão de Cauchy. Seja $\varepsilon > 0$ e seja $p \in \mathbb{N}$ tal que

$$\sum_{k=p+1}^{\infty} \|x_k\| < \varepsilon. \text{ Então, se } m \ge n \ge p, \|s_n - s_m\| = \|\sum_{k=n+1}^m x_k\| \le \sum_{k=n+1}^m \|x_k\| < \varepsilon.$$

OBSERVAÇÃO. Quando, num espaço métrico, queremos provar que uma sucessão de Cauchy (x_n) converge, podemos supor, sem perda de generalidade, que $d(x_n, x_m) < \frac{1}{2^n}$ para todo o $m \ge n$, pois dada qualquer sucessão de Cauchy é fácil construir uma sua subsucessão com esta propriedade, a qual convergirá se e só se a sucessão dada convergir, como indicamos em seguida.

De facto, se (x_n) for de Cauchy, podemos construir uma sua subsucessão $(x_{\varphi(n)})_{n\in\mathbb{N}}$ da seguinte forma:

- (1) existe $p_1 \in \mathbb{N}$ tal que, se $n \geq p_1$ e $m \geq p_1$, então $d(x_n, x_m) < \frac{1}{2}$; em particular, $d(x_{p_1}, x_m) < \frac{1}{2}$ se $m \geq p_1$; definimos $\varphi(1) = p_1$;
- (2) de igual modo, existe $p_2 \in \mathbb{N}$ tal que, se $n \geq p_2$ e $m \geq p_2$, então $d(x_n, x_m) < \frac{1}{2^2}$; tomando $\varphi(2) = \max\{p_2, p_1 + 1\}$, temos que $d(x_{\varphi(2)}, m) < \frac{1}{2^2}$, se $m \geq \varphi(2)$, e $\varphi(2) > \varphi(1)$;
- (3) dado $n \in \mathbb{N}$ e supondo já definidos $\varphi(1) < \varphi(2) < \cdots < \varphi(n-1)$ tais que, se $m \ge \varphi(k)$, então $d(x_{\varphi(k)}, x_m) < \frac{1}{2^k}$, escolhemos $\varphi(n) \in \mathbb{N}$ tal que $\varphi(n) > \varphi(n-1)$ e tal que, se $m \ge \varphi(n)$, então $d(x_{\varphi(n)}, x_m) < \frac{1}{2^n}$.

A sucessão $(x_{\varphi(n)})_{n\in\mathbb{N}}$ assim definida verifica a propriedade pretendida.

Teorema. Um espaço normado é completo se e só se toda a sua série absolutamente convergente é convergente.

 $Demonstração. (\Rightarrow)$: foi provado no lema anterior.

(\Leftarrow): Suponhamos que X é um espaço normado onde toda a série absolutamente convergente é convergente, e seja (x_n) uma sucessão de Cauchy em X tal que $d(x_n,x_m)<\frac{1}{2^n}$ para todo o $n\in\mathbb{N}$ e $m\geq n$. Sejam $x_0=0$ e $y_k=x_k-x_{k-1}$ para $k\in\mathbb{N}$. Então (x_n) é a sucessão das somas parciais da série $\sum_{k=1}^{\infty}y_k$. É fácil verificar que a série $\sum_{k=1}^{\infty}y_k$ é absolutamente convergente, logo converge para algum $x\in X$, ou seja $x_n\to x$.

OBSERVAÇÃO. O uso de séries permite-nos falar de bases de um espaço de Banach: uma sucessão $(e_i)_{i\in\mathbb{N}}$ é uma base de um espaço de Banach X se todo o $x\in X$ se escrever, de forma única, como soma de uma série $x=\sum_{i=1}^{\infty}\lambda_ie_i$. Por exemplo, o espaço das sucessões l_p tem uma base canónica $(e_i)_{i\in\mathbb{N}}$, onde $e_i=(0,\ldots,0,1,0,\ldots)=(\delta_{ni})_{n\in\mathbb{N}}$, onde $\delta_{ii}=1$ e $\delta_{ni}=0$ se $n\neq i$.

Vejamos agora como definir novos espaços à custa de espaços dados.

- (1) Se X é um espaço normado e $S \subseteq X$, já mencionámos o subespaço linear $\lim S$ gerado por S, que é o menor subespaço que contém S. Podemos também considerar o menor subespaço fechado que contém S, e que denotamos por $\overline{\lim}S$. Note que $\overline{\lim}S$ é exactamente o fecho de $\lim S$.
- (2) Se $T: X \to Y$ é um operador linear entre os espaços normados X e Y, o seu núcleo $\operatorname{Ker} T = \{x \in X \; ; \; T(x) = 0\}$ é um subespaço de X enquanto que a sua imagem $\operatorname{Im} T = T(X)$ é um subespaço de Y.
- (3) Se X é um espaço vectorial e Z é um seu subespaço, consideramos em X a relação de equivalência \sim definida por $x \sim y$ se $x y \in Z$. Note que a classe de equivalência de $x \in X$ é [x] = x + Z; em particular [x] = 0 se e só se $x \in Z$. A estrutura de espaço vectorial em X induz naturalmente uma estrutura de espaço vectorial em $X/_{\sim} = \{[x]; x \in X\}$: $\lambda[x] + \mu[y] := [\lambda x + \mu y]$. Denotamos este espaço por X/Z.

Se Z for um subespaço fechado de X podemos definir em X/Z uma norma:

$$||[x]||_0 := \inf\{||y|| \; ; \; y \sim x\} = \inf\{||x + z|| \; ; \; z \in Z\}.$$

Chamamos ao espaço normado X/Z o espaço normado quociente e à norma $\|\cdot\|_0$ norma quociente.

Em particular, se $T: X \to Y$ é um operador linear limitado, então o seu núcleo Z = KerT é um subespaço fechado de X e induz um operador linear $T_0: X/Z \to Y$.

Proposição. Sejam $T: X \to Y$ um operador linear limitado entre espaços normados, $Z = \operatorname{Ker} T \ e \ T_0: X/Z \to Y$ o operador linear induzido por T. Então T_0 é um operador linear limitado e a sua norma é exactamente ||T||.

SOMA DIRECTA DE ESPAÇOS NORMADOS

Suponhamos que Y e Z são subespaços fechados dum espaço normado X tais que $Y \cap Z = \{0\}$ e Y + Z = X. Note que nesse caso X pode identificar-se com $Y \times Z$. Nesse sentido, se as projecções $p_Y : X \to Y$ e $p_Z : X \to Z$ são contínuas (i.e. operadores lineares limitados), diz-se que X é a soma directa de Y e Z e escreve-se $X = Y \bigoplus Z = \{(y, z) : y \in Y, z \in Z\}$.

16 O Teorema de Hahn-Banach

Sejam X um espaço normado, X' o seu dual algébrico (isto é, o espaço vectorial das suas funcionais lineares) e X^* o seu espaço dual.

Lema. Se $f \in X'$, então f é limitada se e só se $f(B) \neq K$.

HIPERPLANO

Um hiperplano afim (ou simplesmente um hiperplano) é um conjunto da forma

$$H = \{x_0\} + Y = \{x_0 + y \, ; \, y \in Y\},\,$$

onde $x_0 \in X$ e $Y \subseteq X$ é um subespaço de codimensão 1 (isto é, tal que dim X/Y = 1). Diz-se então que H é uma translação de Y.

Se $f \in X'$ e $f \neq 0$, então definimos

$$K(f) := f^{-1}(0) = \{x \in X : f(x) = 0\}$$
 e $I(f) = f^{-1}(1)$.

Note que, se $f \neq 0$, então existe $x_0 \in X$ tal que $I(f) = \{x_0\} + K(f)$, logo I(f) é uma translação de K(f). (Basta considerar $x_1 \in X$ tal que $f(x_1) \neq 0$ e $x_0 := \frac{1}{f(x_1)} x_1$.)

Teorema. Seja X um espaço vectorial.

- (1) Se $f \in X' \setminus \{0\}$, então K(f) é um subespaço de codimensão 1, logo I(f) é um hiperplano (que não contém 0). Além disso, todo o $x \in X$ se escreve de forma única como $x = y + \lambda x_0$, onde $y \in K(f)$ e $\lambda \in K$.
- (2) Se $f, g \in X' \setminus \{0\}$ então $f = \lambda g$ se e só se K(f) = K(g).
- (3) A correspondência $f \mapsto I(f)$ define uma função bijectiva entre as funcionais lineares não nulas e os hiperplanos que não contêm 0.

Lema. Para $f \in X^*$, as seguintes condições são equivalentes:

- (i) $||f|| \le 1$;
- (ii) $\forall x \in D |f(x)| < 1$;
- (iii) $I(f) \cap D = \emptyset$.

Demonstração. (i) \Rightarrow (ii): Se $||f|| \le 1$, então, para $x \in D$, $|f(x)| \le ||x|| < 1$.

- $(ii) \Rightarrow (iii) \text{ \'e \'obvio.}$
- (iii) \Rightarrow (i): Se ||f|| > 1, então existe $x \in X$ tal que |f(x)| > ||x||. Logo $x' := \frac{1}{f(x)}x \in D$ e $f(x') = f(\frac{1}{f(x)}x) = \frac{f(x)}{f(x)} = 1$.

Teorema. Seja X um espaço normado.

- Seja f: X → K uma funcional linear não nula.
 Se f é limitada, então K(f) e I(f) são fechados e têm interior vazio.
 Se f não é limitada, então K(f) e I(f) são densos em X.
- (2) A correspondência $f \mapsto I(f)$ define uma bijecção entre os operadores lineares limitados não nulos e os hiperplanos fechados que não contêm 0.

Demonstração. (1) Sejam $f \in X^* \setminus \{0\}$ e $x_0 \in X$ tal que $f(x_0) \neq 0$. Como f é contínua, $K(f) = f^{-1}(0)$ e $I(f) = f^{-1}(1)$ são fechados. Para verificar que têm interior vazio basta notar que, quaisquer que sejam $x \in X$ e $\varepsilon > 0$,

$$f(x + \varepsilon x_0) = f(x) + \varepsilon f(x_0) \neq f(x).$$

Para provar que, se f não é limitada, K(f) é denso, suponhamos que K(f) não é denso, isto é, que existem $x_0 \in X$ e r > 0 tais que $B_r(x_0) \cap K(f) = \emptyset$. Então podemos concluir que $\|f\| \le \frac{|f(x_0)|}{r}$: de facto, se $|f(x)| > \frac{|f(x_0)|}{r} \|x\|$ para algum $x \in X$, então $y := x_0 - \frac{xf(x_0)}{f(x)} \in B_r(x_0) \cap K(f)$.

(2) Segue imediatamente de (1) e do teorema anterior.

Definição. Se X é um espaço vectorial, uma função $f: X \to \mathbb{R} \cup \{\infty\}$ diz-se uma funcional convexa se verificar as seguintes condições

- (1) $\forall t \geq 0 \ p(tx) = tp(x)$ [positiva homogénea];
- (2) $\forall x, y \in X \ \forall t \in [0,1] \ p(tx + (1-t)y) \le tp(x) + (1-t)p(y)$ [convexa].

Observações: (a) Na presença de (1), a condição de ser convexa é equivalente a ser sub-aditiva, isto é:

- (2') $\forall x, y \in X \ p(x+y) \le p(x) + p(y)$.
- (b) As operações em $\mathbb{R} \cup \{\infty\}$ são as naturais: $\forall r \in \mathbb{R} \infty + r = \infty + \infty = \infty$; $0 \cdot \infty = 0$ e $t \cdot \infty = \infty$ para t > 0. Além disso, ∞ é o elemento máximo de $\mathbb{R} \cup \{\infty\}$.
- (c) Toda a norma é uma funcional convexa; toda a funcional linear é uma funcional convexa.
- (d) Dado um conjunto X e duas funções $\varphi, \psi : X \to \mathbb{R}$ (ou $\mathbb{R} \cup \{\infty\}$), diz-se que φ domina ψ (ou ψ é dominada por φ) se, para todo o $x \in X$, $\psi(x) \leq \varphi(x)$.
- (e) Uma funcional linear $f: X \to \mathbb{R}$ é dominada pela funcional convexa $p: X \to \mathbb{R}$, $x \mapsto N||x||$, se e só se f é limitada e $||f|| \le N$.
- (f) Quando $f: X \to Z$ for uma extensão de $g: Y \to Z$, isto é, quando $Y \subseteq X$ e, para todo o $y \in Y$, f(y) = g(y), escrevemos $g \subseteq f$.

Lema. Sejam Y um subespaço vectorial de codimensão 1 do espaço vectorial real X, p: $X \to \mathbb{R} \cup \{\infty\}$ uma funcional convexa e $f_0: Y \to \mathbb{R}$ uma funcional linear dominada por p. Existe uma extensão $f: X \to \mathbb{R}$ de f_0 que ainda é uma funcional linear dominada por p.

Demonstração. Como Y tem codimensão 1, existe $z \in X$ tal que todo o elemento de X se escreve na forma x = y + tz para algum $y \in Y$ e $t \in \mathbb{R}$. Se existir a funcional linear $f: X \to \mathbb{R}$ que estende f_0 , então f é completamente determinada por f(z) = c:

$$f(x) = f(y + tz) = f_0(y) + tf(z) = f_0(y) + tc.$$

Provar a existência de f é então provar a existência de $c \in \mathbb{R}$ tal que, para todo o $y \in Y$ e $t \in \mathbb{R}$,

$$f(y+tz) < p(y+tz) \Leftrightarrow f_0(y)+tc < p(y+tz).$$

- \bullet Se t=0, a desigualdade é trivialmente satisfeita.
- Se t > 0, para todo o $y \in Y$,

$$f_0(y) + tc \le p(y + tz) \Leftrightarrow c \le \frac{p(y + tz) - f_0(y)}{t} = p\left(\frac{y}{t}\right) - f_0\left(\frac{y}{t}\right);$$

• Se t < 0, isto é t = -s, com s > 0, para todo o $y \in Y$,

$$f_0(y) - sc \le p(y - sz) \Leftrightarrow c \ge \frac{-p(y - sz) + f_0(y)}{s} = -p(\frac{y}{s} - z) + f_0(\frac{y}{s}).$$

Logo, f é dominada por p se e só se, quaisquer que sejam $y', y'' \in Y$,

$$-p(y''-z) + f_0(y'') \le c \le p(y'+z) - f_0(y).$$

Existirá um $c \in \mathbb{R}$ nestas condições se e só se, quaisquer que sejam $y', y'' \in Y$,

$$-p(y''-z)+f_0(y'') \le p(y'+z)-f_0(y') \iff f_0(y')+f_0(y'') \le p(y'+z)-p(y''-z).$$

Como f é uma funcional linear dominada por p, temos que

$$f_0(y') + f_0(y'') = f_0(y' + y'') \le p(y' + y'') = p(y' + z + y'' - z) \le p(y' + z) + p(y'' - z).$$

O resultado do Lema pode estender-se ao caso de Y não ter codimensão 1. A técnica subjacente é a iteração do processo de construção de f. Podemos então afirmar:

Teorema. Se Y for um subespaço vectorial do espaço vectorial real X tal que $X = lin(Y \cup \{z_i; i \in \mathbb{N}\})$ e $f_0 \in Y'$ é dominada por uma funcional convexa $p: X \to \mathbb{R} \cup \{\infty\}$, então f_0 pode ser estendida a uma funcional linear $f: X \to \mathbb{R}$ ainda dominada por p.

Além disso, se X for um espaço normado e f_0 for uma funcional linear limitada, então f_0 tem uma extensão $f \in X^*$ tal que $||f|| = ||f_0||$.

Demonstração. A primeira afirmação segue do lema anterior, iterando o processo de construção de f. A segunda afirmação sai da primeira, atendendo à observação já feita de que f_0 é dominada pela funcional convexa $p: X \to \mathbb{R}, x \mapsto ||f_0|| ||x||$.

Na demonstração do Teorema de Hahn-Banach vamos usar a seguinte condição, que é equivalente ao Axioma da Escolha:

Lema de Zorn. Todo o conjunto ordenado em que todo o seu subconjunto totalmente ordenado tem majorante tem elemento maximal.

Teorema da Extensão de Hahn-Banach. Seja Y um subespaço do espaço vectorial real X. Se $f_0: X \to \mathbb{R}$ é uma funcional linear dominada pela funcional convexa $p: X \to \mathbb{R} \cup \{\infty\}$, então existe uma funcional linear $f: X \to \mathbb{R}$ que estende f_0 e que é dominada por p.

Se X é um espaço normado e $f_0 \in Y^*$, então existe $f \in X^*$ tal que $f_0 \subseteq f$ e $||f|| = ||f_0||$.

Demonstração. Consideremos o conjunto $\mathcal{F} = \{f_{\gamma} : Y_{\gamma} \to \mathbb{R}; f_{\gamma} \in Y'_{\gamma} \text{ e } f_{0} \subseteq f_{\gamma} \leq p\}$, ordenado pela inclusão \subseteq . Se $\mathcal{F}_{0} = \{f_{\gamma}; \gamma \in \Gamma_{0}\} \subseteq \mathcal{F}$ for um conjunto totalmente ordenado, então $\tilde{f} : \bigcup_{\gamma \in \Gamma_{0}} Y_{\gamma} \to \mathbb{R}$, onde $\tilde{f}(x) = f_{\gamma}(x)$ para $\gamma \in \Gamma_{0}$ tal que $x \in Y_{\gamma}$, é um supremo de \mathcal{F}_{0} .

Logo, pelo Lema de Zorn, \mathcal{F} tem um elemento maximal, f. Se o domínio de f não for X, pelo lema anterior f pode ser estendida a um subespaço maior, o que contraria o facto de f ser maximal. Logo f tem domínio X e é uma extensão de f_0 nas condições pretendidas.

A segunda afirmação sai agora da primeira, tal como no teorema anterior.

O Teorema de Hahn-Banach pode ser estendido ao caso dos espaços vectoriais complexos. Para isso é fundamental a relação entre as funcionais lineares de um espaço vectorial complexo e as funcionais lineares do espaço vectorial real subjacente, que explicamos em seguida.

Um espaço vectorial complexo pode ser considerado como espaço vectorial real. Para X espaço vectorial complexo, denotaremos por $X_{\mathbb{R}}$ o espaço vectorial real que lhe corresponde. Podemos então definir as funções

$$r: X^* \longrightarrow X_{\mathbb{R}}^* = (X_{\mathbb{R}})^*$$
 e $c: X_{\mathbb{R}}^* \longrightarrow X^*$
$$X \xrightarrow{f} \mathbb{C} \longmapsto X \xrightarrow{r(f)} \mathbb{R}$$

$$x \mapsto \operatorname{Re}(f(x))$$
 e $c: X_{\mathbb{R}}^* \longrightarrow X^*$
$$X \xrightarrow{g} \mathbb{R} \longmapsto X \xrightarrow{c(g)} \mathbb{C}$$

$$x \mapsto g(x) - ig(ix).$$

Estas funções são inversas uma da outra e preservam a norma. São em particular homeomorfismos entre estes espaços.

Teorema. Sejam Y um subespaço de um espaço normado complexo X e $f_0 \in Y^*$. Existe uma extensão $f \in X^*$ de f_0 a todo o X que tem exactamente a norma de f_0 .

Demonstração. Pelo teorema anterior podemos estender $r(f_0)$ a uma funcional linear $g: X_{\mathbb{R}} \to \mathbb{R}$, limitada, com $||g|| = ||r(f_0)|| = ||f_0||$. A funcional complexa $f = c(g) \in X^*$ estende f_0 e verifica $||f|| = ||f_0||$.

Vejamos agora algumas consequências do Teorema de Hahn-Banach.

Corolário. Se X é um espaço normado e $x_0 \in X$, existe uma funcional linear limitada $f: X \to K$, de norma 1, tal que $f(x_0) = ||x_0||$.

Demonstração. Para $x_0 = 0$ o resultado é trivial. Se $x_0 \neq 0$, consideramos o subespaço $Y = \lim\{x_0\}$ e definimos $f_0 \in Y^*$ por $f(\lambda x_0) := \lambda \|x_0\|$. Então $\|f_0\| = 1$ e a sua extensão, obtida à custa do Teorema de Hahn-Banach, também tem norma 1.

Corolário. Se X é um espaço normado e $x_0 \in X$, então

$$x_0 = 0 \Leftrightarrow \forall f \in X^* \ f(x_0) = 0.$$

Se X e Y são espaços normados, existe uma função (natural) do espaço dos operadores lineares de X em Y no espaço dos operadores lineares de Y^* em X^* :

É fácil ver que, se T é um operador linear, então T^* é também um operador linear.

Teorema. Se X e Y são espaços normados e $T: X \to Y$ é um operador linear limitado, então $T^*: Y^* \to X^*$ é um operador linear limitado e $||T^*|| = ||T||$.

Demonstração. Como, para todo o $g \in Y^*$, $||T^*(g)|| = ||g \circ T|| \le ||g|| ||T||$, concluímos imediatamente que T é um operador linear limitado e que $||T^*|| \le ||T||$. Para ver que $||T^*|| \ge ||T||$, procedemos do seguinte modo: para cada $\varepsilon > 0$, existe $x_0 \in X$ tal que $||x_0|| = 1$ e $||T(x_0)|| \ge ||T|| - \varepsilon$. Seja $g \in S(Y^*)$ tal que $g(T(x_0)) = ||T(x_0)||$. Então

$$T^*(g)(x_0) = g(T(x_0)) = ||T(x_0)|| \ge ||T|| - \varepsilon.$$

Logo $||T^*|| \ge ||T|| - \varepsilon$.

Dado um espaço vectorial X, com dual X' e bidual X'', existe uma aplicação linear injectiva

$$\begin{array}{cccc} X & \longrightarrow & X'' = \mathsf{F}(\mathsf{F}(X,K),K) \\ & & & x'' : \mathsf{F}(X,K) & \to & K \\ & & & f & \mapsto & f(x). \end{array}$$

(Esta função é um isomorfismo se X tiver dimensão finita.)

Se X for um espaço normado, esta aplicação pode ser considerada entre os espaços normados X e X^{**} :

De facto, como $|\hat{x}(f)| = |f(x)| \le ||f|| ||x||$, \hat{x} é uma funcional linear limitada, e, além disso, $||\hat{x}|| \le ||x||$.

Teorema. A correspondência $x \mapsto \hat{x}$ define uma imersão $X \to X^{**}$ que preserva a norma.

Demonstração. Para $x \in X$ com $x \neq 0$, seja $f \in X^*$ tal que f(x) = ||x|| e ||f|| = 1. Então $|\hat{x}(f)| = |f(x)| = ||x||$ e $||\hat{x}(f)| \le ||\hat{x}|| ||f|| = ||\hat{x}||$, logo $||x|| \le ||\hat{x}||$.

[Esta é uma forma natural de ver X como subespaço de um espaço normado completo, $X^{**}.$]

Falta-nos ainda ver uma extensão natural do Teorema de Hahn-Banach.

Dado um espaço vectorial real X, uam função $q: X \to \mathbb{R} \cup \{-\infty\}$ diz-se uma funcional côncava se $-q: X \to \mathbb{R} \cup \{\infty\}$ for uma funcional convexa; isto é,

- $\forall t \geq 0 \ \ q(tx) = tq(x);$
- $\forall x, y \in X \ q(x+y) \ge q(x) + q(y)$.

Aula XXIII - Topologia e Análise Linear

Suponhamos agora dada uma funcional linear $f_0: Y \to K$ entre uma funcional côncava q e uma funcional convexa p, isto é tal que

$$\forall y \in Y \ q(y) \le f_0(y) \le p(y).$$

Que condições precisamos de assegurar para que exista uma extensão de f_0 a todo o X que mantenha estas propriedades?

Se existir uma tal funcional linear $f: X \to K$, temos que

$$\forall x \in X \ \forall y \in Y \ f(y) = f(x+y) - f(x) \ \text{e} \ -f(x) \le -q(x) \ \Rightarrow \ f(y) \le p(x+y) - q(x).$$

[Note que esta desigualdade inclui a anterior: basta considerá-la para x=0 e x=-y.]

Teorema. Sejam p uma funcional convexa e q uma funcional côncava no espaço vectorial real X. Se Y é um subespaço de X e $f_0 \in Y'$ é tal que

$$\forall y \in Y \ \forall x \in X \ f_0(y) \le p(x+y) - q(x),$$

então f_0 tem uma extensão $f \in X'$ tal que

$$\forall x \in X \ q(x) \le f(x) \le p(x).$$

Demonstração. Vamos apenas construir uma extensão f_1 de f_0 ao subespaço $Z = lin(Y \cup \{z\})$, onde $z \in X \setminus Y$. Queremos então $f_1 : Z \to K$ tal que

$$\forall u \in Z \ \forall x \in X \ f_1(u) \le p(x+u) - q(x).$$

Vamos novamente estudar a escolha de $c = f_1(z)$. Então teremos necessariamente, para $y, y' \in Y$,

$$f_1(y+z) = f_0(y) + c \le p(x+y+z) - q(x)$$
e $f_1(y'-z) = f_0(y') - c \le p(x'+y'-z) - q(x')$.

Logo,

$$-p(x'+y'-z) + q(x') + f_0(y') \le c \le p(x+y+z) - q(x) - f_0(y).$$

Portanto, c existe se e só se

$$\forall x, x' \in X \ \forall y, y' \in Y \ -p(x'+y'-z) + q(x') + f_0(y') \le p(x+y+z) - q(x) - f_0(y);$$

a desigualdade verifica-se porque

$$f_0(y') + f_0(y) = f_0(y+y') \le p(x+x'+y+y') - q(x+x') \le p(x+y+z) + p(x'+y'-z) - q(x) - q(x') - q(x')$$

Corolário. Se p é uma funcional convexa e q uma funcional côncava em X tais que, para todo o $x \in X$, $q(x) \le p(x)$, então existe uma funcional linear f em X tal que

$$\forall x \in X \ q(x) \le f(x) \le p(x).$$

Demonstração. Faça-se $Y = \{0\}$ e $f_0 = 0$ no resultado anterior.

Teorema. Sejam A e B subconjuntos convexos disjuntos, não vazios, de um espaço vectorial real X. Se existir $\alpha \in A$ tal que, para todo o $x \in X$, existe $\varepsilon(x) > 0$ tal que $\alpha + tx \in A$ para todo o $t \in \mathbb{R}$ tal que $|t| \leq \varepsilon(x)$, então A e B podem ser separados por um hiperplano; isto é, existem uma funcional linear não nula $f: X \to \mathbb{R}$ e um número real c tais que

$$\forall x \in A \ \forall y \in B \ f(x) \le c \le f(y).$$

Demonstração. Suponhamos que $\alpha = 0$; logo

$$\forall x \in X \ \exists \varepsilon(x) > 0 : [-\varepsilon x, \varepsilon x] \subseteq A.$$

Definimos funções p e q em X do seguinte modo

$$p(x) := \inf\{t \ge 0 \; ; \; x \in tA\} \quad \text{e} \quad q(x) := \sup\{t \ge 0 \; ; \; x \in tB\}.$$

Então p é uma funcional convexa e q é uma funcional côncava. Além disso, como $tA \cap tB = \emptyset$ para t > 0, temos $q(x) \le p(x)$. Logo, pelo corolário anterior, existe uma funcional linear f em X tal que, para todo o $x \in X$, $q(x) \le f(x) \le p(x)$. Além disso, se $x \in A$ e $y \in B$,

$$f(x) \le p(x) \le 1 \le q(y) \le f(y).$$

Logo podemos considerar c=1 (e então A e B estão separados pelo hiperplano I(f)).

17 Espaços normados de dimensão finita

Teorema. Num espaço vectorial de dimensão finita quaisquer duas normas são equivalentes.

Demonstração. Dado um espaço vectorial V de dimensão n, com base $(e_i)_{i=1}^n$, vamos provar que qualquer norma $\|\cdot\|$ em V é equivalente à norma $\|\cdot\|_1$, definida por $\|\sum_{i=1}^n \lambda_i e_i\| = \sum_{i=1}^n |\lambda_i|$. Sejam $S_1 = \{x \in V : \|x\|_1 = 1\}$ e $f: (S_1, \|\cdot\|_1) \to \mathbb{R}$, com $f(x) = \|x\|$. Como S_1 é um subconjunto fechado da bola fechada unitária, S_1 é compacto. Além disso, se $x = \sum_{i=1}^n x_i e_i$ e

$$y = \sum_{i=1}^{n} y_i e_i,$$

$$|f(x) - f(y)| = |||x|| - ||y||| \le ||x - y|| = ||\sum_{i=1}^{n} x_i e_i - \sum_{i=1}^{n} y_i e_i|| \le \sum_{i=1}^{n} |x_i - y_i| ||e_i||$$

$$\le \left(\max_{1 \le i \le n} ||e_i||\right) \sum_{i=1}^{n} |x_i - y_i| = \left(\max_{1 \le i \le n} ||e_i||\right) ||x - y||_1,$$

e então f é uma função contínua. Logo, tem máximo M e mínimo m. Note-se que m > 0 uma vez que $|f(x)| = \big| \|x\| \big| > 0$ para todo o $x \in S_1$. Logo, atendendo a que, para todo o $x \in V \setminus \{0\} \|x\| = \|x\|_1 f\big(\frac{x}{\|x\|_1}\big)$ e $m \le f\big(\frac{x}{\|x\|_1}\big) \le M$, obtemos, para todo o $x \in V$,

$$m||x||_1 \le ||x|| \le M||x||_1.$$

Corolário. Se X e Y são espaços normados e X tem dimensão finita, então qualquer operador linear $T: X \to Y$ é limitado.

Demonstração. A função $\|\cdot\|': X \to K$ definida por $\|x\|' = \|x\| + \|T(x)\|$ é uma norma em X. Como $\|\cdot\|$ e $\|\cdot\|'$ são equivalentes, existe N > 0 tal que $\|x\|' \le N\|x\|$, para todo o $x \in X$. Logo $\|T(x)\| \le \|x\|' \le N\|x\|$ e então $\|T\| \le N$.

Corolário. Dois espaços normados de dimensão finita são homeomorfos se e só se têm a mesma dimensão.

Demonstração. Já sabemos que dois espaços vectoriais de dimensão finita isomorfos têm a mesma dimensão. Por outro lado, se os dois espaços X e Y têm a mesma dimensão, finita, então existe um operador linear $T_1: X \to Y$ com inversa $T_2: Y \to X$, também operador linear. Pelo corolário anterior, as aplicações T_1 e T_2 são contínuas.

Corolário. Todo o espaço normado de dimensão finita é espaço de Banach.

Demonstração. Sai do corolário anterior e do facto de l_2^n ser completo.

Corolário. Num espaço de dimensão finita X um subconjunto é compacto se e só se é fechado e limitado. Em particular a bola unitária fechada e a esfera unitária fechada

$$B(X) = \{x \in X \; ; \; ||x|| \le 1\} \; e \; S(X) = \{x \in X \; ; \; ||x|| = 1\}$$

são compactas.

Demonstração. Segue do facto do resultado ser válido em l_2^n .

Corolário. Todo o subespaço de dimensão finita de um espaço normado é fechado.

Demonstração. Como espaço de dimensão finita, o subespaço é completo, logo necessariamente fechado como subespaço.

Num espaço métrico X, para cada $Y \subseteq X$ e $x \in X$, definimos $\operatorname{dist}(x,Y) := \inf\{d(x,y) \mid y \in Y\}$. (Note que $\operatorname{dist}(x,Y) = 0$ se e só se $x \in \overline{Y}$.)

Teorema. Seja Y um subespaço próprio do espaço normado X.

- (1) Se Y é fechado, então $\forall \varepsilon > 0 \ \exists x \in S(X) : \operatorname{dist}(x,Y) \geq 1 \varepsilon.$
- (2) Se Y tiver dimensão finita, então existe $x \in S(X)$ tal que dist(x, Y) = 1.

Demonstração. Sejam $z \in X \setminus Y$ e $Z := lin(Y \cup \{z\})$. Consideremos a funcional linear $f_0: Z \to \mathbb{R}$ definida por $f_0(y + \lambda z) = \lambda$.

(a) Como Y é fechado e Ker $(f_0) = Y$, f_0 é uma funcional linear limitada e então, pelo Teorema de Hahn-Banach, tem uma extensão $f \in X^*$ tal que $||f|| = ||f_0|| > 0$. Tem-se ainda $Y \subseteq \operatorname{Ker} f$. Como $||f|| = \sup_{x \in S(X)} |f(x)|$, para cada $\varepsilon > 0$ existe $x \in S(X)$ tal que $|f(x)| \ge (1 - \varepsilon)||f||$. Então, se $y \in Y$,

$$||x - y|| \ge \frac{|f(x - y)|}{||f||} = \frac{|f(x)|}{||f||} \ge 1 - \varepsilon.$$

(b) Se Y for de dimensão finita, podemos também considerar X de dimensão finita. Então a restrição de f a S(X) tem máximo, porque S(X) é compacto. Logo, existe $x \in S(X)$ tal que |f(x)| = ||f||. Então, para todo o $y \in Y$, temos

$$||x - y|| \ge \frac{|f(x - y)|}{||f||} = \frac{|f(x)|}{||f||} = 1.$$

Corolário. Se $X_1 \subset X_2 \subset \cdots \subset X_n \subset \cdots$ é uma sucessão de subespaços de dimensão finita de um espaço normado (com todas as inclusões próprias), então existem vectores unitários x_1, x_2, \cdots tais que $x_n \in X_n$ e $d(x_n, X_{n-1}) = 1$, para todo o $n \geq 2$.

Em particular, todo o espaço normado de dimensão infinita contém uma sucessão (x_n) de vectores unitários tais que $||x_n - x_m|| \ge 1$, para todo $n, m \in \mathbb{N}$.

Demonstração. Construímos a sucessão (x_n) aplicando o teorema anterior ao caso de $X = X_n$ e $Y = X_{n-1}$, para $n \ge 2$. (Sendo x_1 qualquer vector de X_1 .)

Teorema. Um espaço normado tem dimensão finita se e só se a sua bola fechada unitária é compacta.

Demonstração. Se X é um espaço normado com dimensão infinita, consideramos uma sucessão (x_n) em X tal que $||x_n - x_m|| \ge 1$, para todo $n, m \in \mathbb{N}$, cuja existência é garantida pelo teorema anterior. Então a cobertura aberta $(B_{\frac{1}{2}}(x))_{x \in X}$ não tem subcobertura finita, pois cada uma das bolas abertas contém no máximo um dos termos da sucessão.

18 O Teorema da Categoria de Baire

Lema. Seja X um espaço métrico completo. Se $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ é uma sucessão de subconjuntos fechados não vazios de X, então $\bigcap_{n \in \mathbb{N}} F_n \neq \emptyset$.

Demonstração. Para cada $n \in \mathbb{N}$, seja $x_n \in F_n$. Então, porque diam $F_n \to 0$, a sucessão $(x_n)_{n \in \mathbb{N}}$ é de Cauchy. Logo $x_n \to x \in X$, porque X é completo. Além disso, porque, para cada $k \in \mathbb{N}$, a sucessão $(x_{n+k})_{n \in \mathbb{N}}$ é uma subsucessão da primeira que está contida no fechado F_k , $x_{n+k} \to x \in F_k$. Logo $x \in \bigcap_{x \in \mathbb{N}} F_n$.

Teorema de Baire. Seja X um espaço completo. Se $(A_n)_{n\in\mathbb{N}}$ é uma sucessão de subconjuntos abertos e densos de X, então $A = \bigcap_{n\in\mathbb{N}} A_n$ é denso em X.

[Um espaço topológico com esta propriedade diz-se um espaço de Baire.]

Demonstração. Sejam $x \in X$ e r > 0. Queremos provar que $A \cap B_r(x) \neq \emptyset$. Como $A_1 \cap B_r(x)$ é um aberto não vazio, existem $x_1 \in X$ e s > 0 tais que $B_s(x_1) \subseteq A_1 \cap B_r(x)$. Podemos ainda afirmar que existe $r_1 \in]0,1[$ tal que

$$B_{r_1}[x_1] \subseteq A_1 \cap B_r(x).$$

De igual modo, atendendo a que $A_2 \cap B_{r_1}(x_1)$ é um aberto não vazio, existem $x_2 \in X$ e $r_2 \in]0, \frac{1}{2}[$ tais que

$$B_{r_2}[x_2] \subseteq A_2 \cap B_{r_1}(x_1).$$

Supondo já escolhidos x_k e $r_k \in]0, \frac{1}{k}[$ tais que $B_{r_k}[x_k] \subseteq A_k \cap B_{r_{k-1}}(x_{k-1}),$ e atendendo a que $A_{k+1} \cap B_{r_k}(x_k)$ é um aberto não vazio, podemos escolher $x_{k+1} \in X$ e $r_{k+1} \in]0, \frac{1}{k+1}[$ tais que

$$B_{r_{k+1}}[x_{k+1}] \subseteq A_{k+1} \cap B_{r_k}(x_k).$$

Construímos assim uma sucessão encaixada $(B_{r_n}[x_n])_{n\in\mathbb{N}}$ de subconjuntos fechados não vazios de X. Pelo lema anterior, existe $x_0\in\bigcap_{n\in\mathbb{N}}B_{r_n}[x_n]\subseteq \left(\bigcap_{n\in\mathbb{N}}A_n\right)\cap B_r(x)$, como queríamos demonstrar.

Corolário. Se um espaço métrico completo é reunião numerável de subconjuntos fechados, então pelo menos um deles tem interior não vazio.

Demonstração. Seja $(F_n)_{n\in\mathbb{N}}$ uma família numerável de subconjuntos fechados tal que $\bigcup_{n\in\mathbb{N}}F_n=X$. Então cada $X\setminus F_n$ é aberto e $\bigcap_{n\in\mathbb{N}}(X\setminus F_n)=\emptyset$. Pelo teorema anterior concluímos que algum dos conjuntos $X\setminus F_k$ não é denso, isto é F_k tem interior não vazio.

Definição. Um subconjunto Y de um espaço topológico X diz-se:

- (1) raro se o interior do seu fecho for vazio;
- (2) de primeira categoria se for reunião numerável de subconjuntos raros;
- (3) de segunda categoria se não for de primeira categoria, isto é, se $Y \subseteq \bigcup_{n \in \mathbb{N}} F_n$ com cada F_n fechado, então existe $k \in \mathbb{N}$ tal que $\operatorname{int}(F_k) \neq \emptyset$.

[Nota: O complementar de um subconjunto raro é denso.]

Corolário. Um espaço métrico completo é de segunda categoria. Além disso, num espaço métrico completo o complementar de um subconjunto de primeira categoria é de segunda categoria.

Teorema. (Princípio da limitação uniforme) Seja U um subconjunto de segunda categoria de um espaço métrico X e seja

$$\mathcal{F} = \{ f : X \to \mathbb{R} ; f \text{ continua } e \ \forall u \in U \ \{ f(u) ; f \in \mathcal{F} \} \text{ \'e limitada} \}.$$

Então os elementos de \mathcal{F} são uniformemente limitados numa bola fechada $B_r[x_0]$.

Demonstração. Para cada $n \in \mathbb{N}$, seja

$$F_n = \{x \in X ; |f(x)| \le n \text{ para todo o } f \in \mathcal{F}\} = \bigcap_{f \in \mathcal{F}} f^{-1}([-n, n]).$$

Cada F_n é fechado e $U\subseteq\bigcup_{n\in\mathbb{N}}F_n$, por hipótese. Logo existe $k\in\mathbb{N}$ tal que $\mathrm{int}(F_k)\neq\emptyset$, como queríamos demonstrar.

Teorema de Banach-Steinhaus. Sejam X e Y espaços normados, U um subconjunto de X de segunda categoria e $\mathcal{F} \subseteq L(X,Y)$ uma família de operadores lineares limitados tal que

$$\forall u \in U \quad \sup\{\|T(u)\|; T \in \mathcal{F}\} < \infty.$$

Então existe N > 0 tal que, para todo o $T \in \mathcal{F}$, $||T|| \leq N$. Em particular, o resultado é válido quando U = X é um espaço de Banach.

Demonstração. A função $X \to \mathbb{R}$ é contínua, porque composição de funções contínuas. Logo, pelo teorema anterior, existe $B_r[x_0]$ tal que

$$\exists n \in \mathbb{N} \ \forall x \in B_r[x_0] \ \forall T \in \mathcal{F} \ \|T(x)\| \le n.$$

Isto implica que $||T|| \le N = \frac{n}{r}$, para todo o $T \in \mathcal{F}$, como verificamos em seguida. Se $T \in \mathcal{F}$ e $x \in B(X)$, então $x_0 + rx$, $x_0 - rx \in B_r[x_0]$, portanto

$$||T(x)|| = \frac{1}{2r} ||T(x_0 + rx - (x_0 - rx))|| \le \frac{2n}{2r} = N,$$

e então $||T|| = \sup\{||T(x)|| : x \in B(X)\} \le N$.

19 Teorema da Aplicação Aberta e Teorema do Gráfico Fechado

Teorema da Aplicação Aberta. Sejam X e Y espaços de Banach e seja $T: X \to Y$ um operador linear limitado sobrejectivo. Então T é uma aplicação aberta.

Demonstração. Na prova deste teorema vamos usar os dois lemas que enunciamos em seguida. Omitimos a demonstração do primeiro por ser bastante técnica.

Lema. Suponhamos que X e Y são espaços normados, X é completo e $T \in L(X,Y)$ é tal que $\overline{T(B_r(0))} \supseteq B_s(y_0)$. Então $T(B_r(0)) \supseteq B_s(y_0)$.

Lema. Se T é um operador linear limitado, as seguintes condições são equivalentes:

- (i) T é uma aplicação aberta;
- (ii) $T(B_1(0))$ é aberto;
- (iii) $0 \in int(T(B_1(0)));$
- (iv) $int(T(B_1(0))) \neq \emptyset$;
- (v) $int(\overline{T(B_1(0))}) \neq \emptyset$.

Demonstração. Para provar o lema basta verificar que (iv) \Rightarrow (iii) e que (iii) \Rightarrow (i), uma vez que as implicações (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) são imediatas e que (v) \Rightarrow (iv) segue do lema anterior.

(iv) \Rightarrow (iii): Sejam $y_0 \in Y$ e r > 0 tais que $B_r(y_0) \subseteq T(B_1(0))$. Então também se tem $B_r(-y_0) \subseteq T(B_1(0))$ e podemos ainda concluir que $B_r(0) \subseteq T(B_1(0))$. De facto, se $y \in B_r(0)$, então $y_0 + y \in B_r(y_0) \subseteq T(B_1(0))$ e $-y_0 + y \in B_r(-y_0) \subseteq T(B_1(0))$, logo $y_0 + y = T(x_0)$ e $-y_0 + y = T(x_1)$, com $x_0, x_1 \in B_1(0)$. Portanto

$$y = \frac{1}{2}(y_0 + y) + \frac{1}{2}(-y_0 + y) = T(\frac{1}{2}x_0 + \frac{1}{2}x_1),$$

 $com \ \frac{1}{2}x_0 + \frac{1}{2}x_1 \in B_1(0).$

(iii) \Rightarrow (i): Para provar que T é aberta, basta verificar que, quaisquer que sejam $x_0 \in X$ e s > 0, $T(x_0) \in \operatorname{int}(T(B_s(x_0)))$. Da condição $0 \in \operatorname{int}(T(B_1(0)))$ concluímos que existe r > 0 tal que $B_r(0) \subseteq T(B_1(0))$. Logo $B_{rs}(0) \subseteq T(B_s(0))$ e então $B_{rs}(T(x_0)) \subseteq T(B_s(x_0))$.

Resta-nos agora provar o teorema. De

$$Y = T(X) = \bigcup_{n \in \mathbb{N}} \overline{T(B_n(0))} = \bigcup_{n \in \mathbb{N}} \overline{n \, T(B_1(0))},$$

e do facto de Y ser de segunda categoria podemos concluir que existe $n \in \mathbb{N}$ tal que $\operatorname{int}(n \overline{T(B_1(0))}) \neq \emptyset$. Logo $\operatorname{int}(T(B_1(0))) \neq \emptyset$ e então, pelo segundo lema, T é uma aplicação aberta.

Teorema da função inversa. Se $T: X \to Y$ for um operador linear limitado bijectivo e X e Y forem espaços de Banach, então a sua função inversa é também um operador linear limitado.

Teorema do gráfico fechado. Sejam X e Y espaços de Banach e $T: X \to Y$ um operador linear. Então T é limitado se e só se o seu gráfico

$$\Gamma(T) = \{(x, T(x)) : x \in X\} \subseteq X \times Y$$

é fechado na topologia produto.

Demonstração. Já vimos que o gráfico de uma função contínua cujo conjunto de chegada seja separado é fechado. Falta-nos provar o recíproco.

Em $Z = X \oplus Y = X \times Y$ consideramos a norma

$$||(x,y)|| = ||x|| + ||y||.$$

Por hipótese $\Gamma(T)$ é um subconjunto fechado de Z. Como Z é um espaço de Banach, $\Gamma(T)$ é um subespaço completo. O operador linear $\begin{array}{ccc} U:\Gamma(T) & \to & X \\ (x,y) & \mapsto & x \end{array}$ é uma bijecção contínua, logo,

pelo teorema anterior, é um homeomorfismo; isto é, $\begin{array}{ccc} X & \to & \Gamma(T) \\ x & \mapsto & (x,T(x)) \end{array}$ é um operador linear limitado. Portanto, escrevendo

$$(X \xrightarrow{T} Y) = (X \to \Gamma(T) \to X \times Y \xrightarrow{p_Y} Y),$$

onde $X \to \Gamma(T)$ é a função inversa de U e $\Gamma(T) \to X \times Y$ é a inclusão, concluímos que T é composição de funções contínuas, logo é contínua.

20 Espaços de Hilbert

PRODUTO INTERNO

Se V é um espaço vectorial, um produto interno (ou produto escalar) em V é uma função $(\cdot,\cdot):V\times V\to K$ é tal que, para $x,y,z\in V$ e $\lambda,\mu\in K$:

- (a) $(\lambda x + \mu y, z) = \lambda(x, z) + \mu(y, z);$
- (b) $(y, x) = \overline{(x, y)};$
- (c) $(x, x) \ge 0$, com igualdade só quando x = 0.]

OBSERVAÇÃO. Se (\cdot, \cdot) é um produto interno em V, então

$$||x|| := (x, x)^{\frac{1}{2}}$$

é uma norma em V.

ESPAÇO EUCLIDIANO/ESPAÇO DE HILBERT

Um espaço normado diz-se um espaço euclidiano se a sua norma for definida por um produto interno. Se, além disso, o espaço for completo, diz-se um espaço de Hilbert.

OBSERVAÇÃO. O produto interno pode recuperar-se facilmente da norma, pois

$$4(x,y) = ||x+y||^2 - ||x-y||^2 + i||x+iy||^2 - i||x-iy||^2$$
, no caso complexo, e

$$2(x,y) = ||x+y||^2 - ||x||^2 - ||y||^2 = \frac{1}{2}(||x+y||^2 - ||x-y||^2),$$
 no caso real.