Departamento de Matemática da Universidade de Coimbra Análise Infinitesimal I

Ano lectivo 2010/11

CAPÍTULO I: Fundamentos

1. Qual o valor de verdade de cada	uma das seguintes proposições?
(a) 8 é par ou 6 é impar.	(b) 8 é par e 6 é ímpar.
(c) 8 é ímpar e 6 é ímpar.	(d) 8 é ímpar ou 6 é ímpar.

2. Quais das seguintes frases são a negação à proposição apresentada?

Proposição 1: Os pepinos são verdes e têm sementes.

- (a) Os pepinos não são verdes e não têm sementes.
- (b) Os pepinos não são verdes ou não têm sementes.
- (c) Os pepinos são verdes e não têm sementes.

Proposição 2: Tem-se 2 < 7 e 3 é ímpar.

(a) Tem-se 2>7 e 3 é par. (b) Tem-se $2\geq 7$ e 3 é par. (c) Tem-se $2\geq 7$ ou 3 é impar. (d) Tem-se $2\geq 7$ ou 3 é par.

3. Construa e compare as tabelas de verdade para as seguintes expressões:

$$\begin{array}{lll} \text{(a) } p \vee \sim p & \text{(b) } p \wedge \sim p & \text{(c) } \sim (p \wedge q) \\ \text{(d) } \sim p \vee \sim q & \text{(e) } p \wedge (q \vee r) & \text{(f) } (p \wedge q) \vee (p \wedge r) \end{array}$$

4. Qual o valor de verdade de cada uma das seguintes proposições?

(a) Se 8 for ímpar então 6 é ímpar.
(b) Se 8 for par então 6 é ímpar.
(c) Se 8 for ímpar então 6 é par.
(d) Se 8 for ímpar e 6 for par então 8 < 6.

5. Escreva as proposições recíproca, negação e contra-recíproca de cada uma das seguintes proposições:

(a)
$$(p \land q) \Rightarrow r$$
 (b) $p \Rightarrow (q \Rightarrow p)$ (c) $(p \Leftrightarrow q) \Rightarrow (p \Rightarrow q)$.

6. Escreva o recíproco, o contra-recíproco e a negação das seguintes frases:

- (a) Se chove então há nuvens no céu.
- (b) Se 229 é primo então Roma é a capital de França.

7. Escreva cada uma das frases na forma de implicação $p \Rightarrow q$.

- (a) Se comeres demasiado bolo ficas mal disposto.
- (b) Continua a comer bolo e arrepender-te-ás.
- (c) Sai ou chamo a polícia.
- (d) Vou-me embora se não pararem de falar.

- 8. Determine o antecedente e o consequente de cada uma das seguintes proposições:
 - (a) Um aumento significativo no poder dos computadores é uma condição necessária para futuros avanços tecnológicos.
 - (b) Erros serão introduzidos se efectuarmos uma modificação neste programa.
 - (c) Para poupar combustível é necessário instalar um bom isolamento térmico, assim como janelas duplas.
- 9. Construa tabelas de verdade para as seguintes proposições:
- (c) $(p \Rightarrow q) \Rightarrow [(p \lor r) \Rightarrow (q \lor r)]$

- $\begin{array}{lll} \text{(a)} \ p \wedge \sim (\sim p \vee \sim q) & \text{(b)} \ p \wedge q \Rightarrow \sim p & \text{(c)} \ (p \Rightarrow q) \Rightarrow [(p \vee r) \Rightarrow \\ \text{(d)} \ p \Rightarrow (q \Rightarrow p) & \text{(e)} \ p \wedge q \Leftrightarrow \sim q \vee \sim p & \text{(f)} \ (p \vee \sim q) \wedge \sim (p \wedge q) \\ \text{(g)} \ ((p \vee q) \wedge \sim r) \Rightarrow \sim p \vee r & \text{(h)} \ [p \wedge (p \Rightarrow q)] \Rightarrow q & \text{(i)} \ [\sim q \wedge (p \Rightarrow q)] \Rightarrow \sim p \\ \text{(j)} \ (p \Rightarrow q) \Leftrightarrow (q \Rightarrow p) & \text{(l)} \ (p \vee \sim p) \Rightarrow (q \wedge \sim q) & \text{(m)} \sim ((p \wedge \sim q) \Rightarrow \sim r) \end{array}$
- (n) $(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$.
- 10. Sem construir tabelas de verdade verifique que as seguintes expressões são tautologias:
 - (a) $(p \lor \sim r) \land [(p \lor \sim r) \Rightarrow (q \land r)] \Rightarrow (q \land r)$
 - (b) $[(p \lor \sim r) \land (q \Rightarrow (\sim p \land r))] \Rightarrow \sim q$
- *11. Prove que uma expressão não contendo conectivos lógicos além de ⇔ é uma tautologia se e só se cada variável (letra) aparece um número par de vezes.
 - 12. Num certo país cada habitante é um amante da verdade ou é um amante da mentira e, como tal, diz sempre a verdade ou diz sempre a mentira. Ao viajar neste país encontrei o Pedro e o Luís. O Pedro disse-me: "Se eu for um amante da verdade então o Luís é um amante da verdade." Será Pedro um amante da verdade ou da mentira? E o Luís?
 - 13. (a) Sendo $p \Leftrightarrow q$ uma proposição verdadeira, o que pode afirmar relativamente ao valor de verdade de $p \Leftrightarrow \sim q$ e $\sim p \Leftrightarrow q$?
 - (b) Supondo agora que $p \Leftrightarrow q$ é falso, o que pode afirmar relativamente ao valor de verdade de $p \Leftrightarrow \sim q$ e $\sim p \Leftrightarrow q$?
 - (c) Sendo $p \Rightarrow q$ uma proposição verdadeira, o que pode afirmar relativamente ao valor de verdade de $\sim p \land q \Leftrightarrow p \lor q$?
- *14. (a) Noutro país há, além dos amantes da verdade e da mentira, pessoas normais que mentem só de vez em quando. Ao encontrar um grupo com uma pessoa de cada tipo dizem-me:

António: Sou normal. Bruno: Isso é verdade. Cristiano: Eu não sou normal. Que podemos concluir?

2

(b) No mesmo país encontro o Diogo, que diz ao Eugénio: Tu dizes mais vezes a verdade do que eu, que responde: Isso não é verdade. Podemos concluir alguma coisa?

Departamento de Matemática da Universidade de Coimbra Análise Infinitesimal I

Ano lectivo 2010/11 Folha 2

CAPÍTULO I: Fundamentos

16. O Artur, o Bernardo e o Carlos, suspeitos de terem assaltado uma loja de chocolates, fazem os seguintes depoimentos:

Artur: "Bernardo é culpado, mas Carlos é inocente".

Bernardo: "Se Artur é culpado então Carlos é culpado".

Carlos: "Estou inocente, mas um dos outros dois é culpado".

- (a) Os três depoimentos são compatíveis?
- (b) Supondo os três réus inocentes, quem mentiu?
- (c) Supondo que todos disseram a verdade, quem é inocente e quem é culpado?
- *(d) Supondo que os inocentes disseram a verdade e os culpados mentira, quem é inocente e quem é culpado?
- 17. De entre as seguintes frases assinale as que são proposições atribuindo-lhe o respectivo valor de verdade.

 - (a) Para todo o x real, $x^2=x$. (b) Para exactamente um x real, $x^2=x$. (c) Para algum $x\in\mathbb{R}$ verifica-se $x^2=x$. (d) $x^2=x$.
- (e) xy = xz implies y = z.
- (f) Para x, y, z reais xy = xz implies y = z.
- 18. Para cada uma das expressões seguintes determine uma interpretação onde a proposição seja verdadeira e outra onde seja falsa.

 - (a) $(\forall x)(\forall y)(p(x,y) \Rightarrow q(y,x))$ (b) $(\forall x)(p(x) \Rightarrow (\exists y)q(x,y)).$
- 19. (a) Qual destas proposições é a negação de: "Algumas pessoas gostam de matemática"?
 - i. Algumas pessoas não gostam de matemática.
 - ii. Todas as pessoas gostam de matemática.
 - iii. Ninguém gosta de matemática.
 - (b) Qual destas proposições é a negação de: "Todas as pessoas gostam de gelados"?
 - i. Ninguém gosta de gelados.
 - ii. Todas as pessoas não gostam de gelados.
 - iii. Existe alguém que não gosta de gelados.
- 20. Determine a negação de cada uma das seguintes expressões numa forma que não contenha o conectivo \sim como conectivo principal.
 - (a) $(\forall x)(p(x) \lor \sim p(x))$

- (b) $(\exists x)(p(x) \Rightarrow (q(x) \lor r(x)))$
- (c) $(\forall x)(\exists y)(p(x,y) \Leftrightarrow p(y,x))$
- (d) $(\exists y)(\forall x)(p(x,y) \Rightarrow (q(x) \Rightarrow r(y))).$
- 21. Escreva expressões equivalentes às do exercício anterior utilizando apenas o quantificador \exists e os conectivos lógicos \sim e \vee .

22.	2. Para cada um dos seguintes pares de expressões, indique qual delas é consequência da outra e apresente, se possível, uma interpretação onde sejam não equivalentes:		
	(a) $(\forall x)(\exists y)p(x,y)$	e	$(\exists y)(\forall x)p(x,y)$
	(b) $(\exists x)(p(x) \land q(x))$	e	$((\exists x)p(x)) \wedge ((\exists x)q(x))$
	(c) $((\forall x)p(x)) \land ((\forall x)q(x))$	e	$(\forall x)(p(x) \land q(x))$
	(d) $(\forall x)p(x) \Rightarrow (\forall x)q(x)$	e	$(\forall x)(p(x) \Rightarrow q(x)).$
23	Apresente se possível uma	inte	pretação anda sajam falsas as saguintas avarassões.

- 23. Apresente, se possível, uma interpretação onde sejam falsas as seguintes expressões:
 - (a) $(\forall x)p(x) \Leftrightarrow \sim (\exists x)(\sim p(x))$
 - (b) $((\forall x)p(x)) \lor ((\forall x)q(x)) \Leftrightarrow (\forall x)(p(x) \lor q(x))$
 - (c) $[(\exists x)(p(x) \Rightarrow q(x)) \land (\forall x)p(x)] \Rightarrow (\exists x)q(x)$
 - (d) $(\forall z)(\forall y)[(\forall x)(p(y) \Rightarrow q(x,y)) \Rightarrow (p(y) \Rightarrow (\forall x)q(x,y))]$
 - *(e) $(\forall z)(\forall y)[(\forall x)(p(x,y) \Rightarrow q(x,y)) \Rightarrow (p(z,y) \Rightarrow (\forall x)q(x,y))].$
- 24. Verifique que
 - (a) $\{x \in \mathbb{N}; \ x^2 < 15\} = \{x \in \mathbb{N}; \ 2x < 7\}$
 - (b) $\{x \in \mathbb{Q}; \ x^2 = 2\} = \{x \in A; \ x \text{ \'e tigre e } x \text{ \'e cor-de-rosa}\},$

onde A é o conjunto dos animais terrestres conhecidos até 30/09/2010.

25. Considere os conjuntos

$$R = \{1, 3, \pi, 4.1, 9, 10\} \qquad S = \{\{1\}, 3, 9, 10\} \qquad T = \{1, 3, \pi\} \qquad U = \{\{1, 3, \pi\}, 1\}.$$

Indique, de entre as seguintes proposições, as que são falsas (justifique a sua resposta).

(a)
$$1 \in R$$
 (b) $1 \in S$ (c) $T \subseteq R$

(d)
$$S \subseteq R$$
 (e) $T \subseteq U$ (f) $\emptyset \subseteq S$

(g)
$$\{1\} \subseteq S$$
 (h) $T \in U$ (i) $T \nsubseteq R$.

26. Para A, B e C conjuntos arbitrários, indique quais as afirmações verdadeiras.

(a) Se
$$A \subseteq B$$
 e $B \subseteq A$ então $A = B$
 (b) $\emptyset \in \{\emptyset\}$
 (c) $\{\emptyset\} \subseteq A$
 (d) $\{\emptyset\} = \{\{\emptyset\}\}$

(e) Se
$$A \not\subseteq B$$
 e $B \subseteq C$ então $A \not\subseteq C$ (f) Se $A \in B$ e $B \not\subseteq C$ então $A \not\in C$.

27. Para $A = \{2,4,5,6\}, \ B = \{1,4,7\}, \ C = \{x; \ x \in \mathbb{Z} \ \mathrm{e} \ 2 \le x < 5\}$ subconjuntos de $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$ determine:

(a)
$$A \cup B$$
 (b) $A \cap C$ (c) $A - B$ (d) $S - A$ (e) $A - S$ (f) $(A \cap B)^c$

(d)
$$S - A$$
 (e) $A - S$ (f) $(A \cap B)^c$ (g) $(B - A)^c \cap (A - B)$ (h) $(C \cap B) \cup A^c$ (i) $(C^c \cup B)^c$.

28. Sendo $A \in B$ subconjuntos arbitrários de um conjunto X, indique as igualdades verdadeiras.

(a)
$$A \cup A = A$$
 (b) $B \cap B = B$

(c)
$$(A \cap B)^c = A^c \cap B^c$$

(d) $(A^c)^c = A$
(e) $A - B = (B - A)^c$
(f) $(A - B) \cap (B - A) = \emptyset$

(g) Se
$$A \cap B = \emptyset$$
 então $A = B^c$ (h) $\emptyset \cap \{\emptyset\} = \emptyset$.