1 Espaços Métricos

EXERCÍCIOS¹

(1) (a) Verifique se $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^+$ é uma métrica em \mathbb{R} :

(i).
$$d(x,y) = \begin{cases} 0 & \text{se } x = y \\ 1 + |x - y| & \text{se } x \neq y \end{cases}$$

(ii).
$$d(x,y) = \begin{cases} |x| + |y| & \text{se } x \neq y \\ 0 & \text{se } x = y \end{cases}$$

(iii).
$$d(x,y) = |x^2 - y^2|$$

(iv).
$$d(x,y) = |x^3 - y^3|$$
.

- (b) Descreva as bolas abertas para cada uma das métricas da alínea anterior.
- (2) Seja (X, d') um espaço métrico. Verifique quais das funções $d: X \times X \to \mathbb{R}^+$ definidas em seguida são métricas em X:
 - (a) d(x,y) = k d'(x,y) para algum número real k > 0;
 - (b) $d(x,y) = \min\{1, d'(x,y)\};$
 - (c) $d(x,y) = (d'(x,y))^2$;
 - (d) (*) $d(x,y) = \frac{d'(x,y)}{1+d'(x,y)}$.
- (3) No conjunto das funções reais contínuas definidas em [0,1] considere as métricas ρ do supremo e σ do integral.
 - (a) Calcule, para cada uma dessas métricas, $d(\sin x, \cos x)$, $d(x^2, x)$ e $d(1 x, x^2)$.
 - (b) Sejam $f:[0,1] \to \mathbb{R}$ e $g:[0,1] \to \mathbb{R}$ definidas por f(x)=0 e g(x)=x. Dê uma ideia geométrica da região de \mathbb{R}^2 onde se situam os gráficos das funções que pertencem a $B_1(f)$ e a $B_1(g)$ para a métrica ρ .
 - (c) Poderá dar uma ideia geométrica da região de \mathbb{R}^2 onde se situam os gráficos das funções de $B_1(f)$ (ou de $B_1(g)$) para a métrica σ ? Justifique.
- (4) No conjunto das funções reais e limitadas de domínio [0,1[considere a métrica ρ do supremo. Considere as funções

¹Sempre que nada for dito em contrário, consideraremos \mathbb{R}^n munido da métrica euclidiana. Assinalam-se com (*) os exercícios de resolução eventualmente mais elaborada.

- (a) Calcule $\rho(f,g)$. Qual a condição menos restrictiva que se deve impôr ao número real δ para que $g \in B_{\delta}(f)$?
- (b) Seja $F = [0, 1[\times] 1, 1[$. O gráfico de g está contido em F?
- (c) Compare, relativamente a funções limitadas $h:[0,1[\to\mathbb{R},$ as duas condições seguintes:

i. $h \in B_1(f)$; ii. $Gr(h) \subseteq F$.

- (d) Dê uma ideia geométrica da região de \mathbb{R}^2 onde se situam os gráficos das funções que pertencem a $B_1(f)$.
- (5) Sejam (X,d) um espaço métrico e x e y elementos de X.
 - (a) Prove que, se x e y forem distintos, existem bolas abertas disjuntas B e B' tais que $x \in B$ e $y \in B'$.
 - (b) Sejam r e s números reais positivos tais que $B_r(x) = B_s(y)$. Podemos então concluir que x = y ou que r = s? Justifique a sua resposta.
- (6) Sejam (X, d) um espaço métrico e a um ponto de X. Mostre que:

(a)
$$X = \bigcup_{n=1}^{\infty} B_n(a);$$
 (b) $\{a\} = \bigcap_{r>0} B_r(a) = \bigcap_{n=1}^{\infty} B_{\frac{1}{n}}(a);$

(c)
$$B_r[a] = \bigcap_{s>r} B_s(a) = \bigcap_{n=1}^{\infty} B_{r+\frac{1}{n}}(a);$$
 (d) $B_r(a) = \bigcup_{0 < s < r} B_s[a].$

- (7) Verifique se os seguintes subconjuntos de \mathbb{R} são abertos:
 - (a) \mathbb{N} ; (b) $[1,2[\cup]2,3[$; (c) $\{0\}\cup\{x;x^2>2\}$;
 - (d) \mathbb{Q} ; (e) $[5,7] \cup \{8\}$; (f) $\{\frac{1}{n}; n \in \mathbb{N}\}$.
- (8) Verifique se os seguintes conjuntos são abertos em \mathbb{R}^2 :
 - (a) $]0,1[\times]0,1[;$ (b) $[0,1[\times]0,1[;$ (c) $\{(x,y)\in\mathbb{R}^2\mid x\neq y\};$ (d) $\mathbb{R}^2\setminus\mathbb{N}^2.$
- (9) (*) Sejam $X \subseteq \mathbb{R}$ e $\mathcal{C}(X,\mathbb{R})$ o espaço métrico das funções contínuas e limitadas, de X em \mathbb{R} , munido da métrica do supremo. Considere o subconjunto

 $A = \{f : X \to \mathbb{R} ; \forall x \in X \mid f(x) > 0\} \text{ de } \mathcal{C}(X, \mathbb{R}). \text{ Mostre que:}$

- (a) se X = [0, 1], então A é aberto.
- (b) se X =]0, 1], então A não é aberto.
- (10) Considere a função

$$f: \mathbb{R} \longrightarrow \mathbb{R}.$$

$$x \longmapsto \begin{cases} 0 & \text{se } x = 0 \\ 1 + |x| & \text{se } x \neq 0 \end{cases}$$

Note que esta função é descontínua para a métrica usual em \mathbb{R} . Verifique que, se d é a métrica definida no Exercício (1)(a)(i) (pág.1), então a função $f:(\mathbb{R},d)\longrightarrow \mathbb{R}$ é contínua.

(11) Considere em \mathbb{R} a métrica usual d_1 e a métrica d definida em (1)(a)(ii) (pág.1). Verifique se alguma das funções $f, g: (\mathbb{R}, d) \to (\mathbb{R}, d_1)$ é contínua, sendo

$$f(x) = \begin{cases} 0 & \text{se } x \le 0 \\ 1 & \text{se } x > 0 \end{cases} \quad \text{e} \quad g(x) = \begin{cases} 0 & \text{se } x \le 1 \\ 1 & \text{se } x > 1. \end{cases}$$

2 Espaços Topológicos

EXERCÍCIOS.

- (1) Verifique quais das seguintes famílias de subconjuntos são topologias em $X = \{a, b, c, d, e\}$:
 - (a) $\mathcal{T}_1 = \{\emptyset, X, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\},\$
 - (b) $\mathcal{T}_2 = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\},\$
 - (c) $\mathcal{T}_3 = \{\emptyset, X, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}\},\$
 - (d) $\mathcal{T}_4 = \{\emptyset, X, \{a\}, \{a, b, c\}, \{a, b, c, d\}\}.$
- (2) Mostre que os seguintes conjuntos de partes de \mathbb{R} não são topologias em \mathbb{R} :
 - (a) $\mathcal{T} = \{\emptyset, \mathbb{R}\} \cup \{ a, b \mid a, b \in \mathbb{R}, a < b \}$
 - (b) $\mathcal{T} = \{\emptyset, \mathbb{R}\} \cup \{ |q, +\infty[| q \in \mathbb{Q} \}.$
- (3) Prove que a intersecção de duas topologias num conjunto X ainda é uma topologia em X, mas que a sua união nem sempre é uma topologia em X. O que poderemos dizer acerca da intersecção de uma família qualquer de topologias em X?
- (4) Dê exemplo de duas topologias \mathcal{T}_1 e \mathcal{T}_2 num conjunto X tais que $\mathcal{T}_1 \not\subseteq \mathcal{T}_2$ e $\mathcal{T}_2 \not\subseteq \mathcal{T}_1$.
- (5) (a) Mostre que as métricas d_1 , d_2 e d_∞ definem a mesma topologia em \mathbb{R}^2 .
 - (b) Verifique quais das métricas d definidas no Exercício (2) (pág.1) são topologicamente equivalentes a d'.
 - (c) Compare as topologias definidas em \mathbb{R} pelas métricas do Exercício (1) (pág.1).
- (6) (*) Considere, no conjunto $\mathcal{C}([0,1],\mathbb{R})$ das funções contínuas de [0,1] em \mathbb{R} , as métricas ρ do supremo e σ do integral.
 - (a) Sendo $0 < r \le 2$, considere a função $g:[0,1] \longrightarrow \mathbb{R}$ definida por

$$g(x) = \begin{cases} \frac{-4x}{r} + 4 & \text{se } 0 \le x < \frac{r}{2} \\ 2 & \text{se } \frac{r}{2} \le x \le 1 \end{cases}$$

Mostre que $g \in B_r^{\sigma}(f) \setminus B_1^{\rho}(f)$, onde $f : [0,1] \to \mathbb{R}$ é a função definida por f(x) = 2.

- (b) Conclua que ρ e σ não são topologicamente equivalentes.
- (c) Mostre que $\mathcal{T}^{\sigma} \subset \mathcal{T}^{\rho}$.
- (7) Mostre que todo o subespaço de um espaço discreto é discreto.
- (8) Seja \mathcal{T} a topologia usual em \mathbb{R} .

- (a) Determine a topologia relativa $\mathcal{T}_{\mathbb{N}}$ no conjunto \mathbb{N} .
- (b) Verifique se cada um dos seguintes subconjuntos de [0, 1] é aberto em [0, 1]:
 - i. $]\frac{1}{2},1];$

ii. $]\frac{1}{2}, \frac{2}{3}];$

iii. $]0, \frac{1}{2}].$

- (9) Considere o conjunto $\mathcal{T} = \{\emptyset\} \cup \{|a, +\infty[| a \in \mathbb{R}\} \cup \{\mathbb{R}\}\}$.
 - (a) Mostre que \mathcal{T} é uma topologia em \mathbb{R} .
 - (b) Determine a topologia relativa de [0,1] induzida por (\mathbb{R},\mathcal{T}) .
- (10) Considere o conjunto $\mathcal{T}_0 = \{A \mid A \subseteq]-\infty, 0]\} \cup \{\mathbb{R}\}.$
 - (a) Mostre que \mathcal{T}_0 é uma topologia em \mathbb{R} .
 - (b) Determine a topologia induzida por \mathcal{T}_0 em $]-\infty,0]$, $]0,+\infty[$ e $[0,+\infty[$.
- (11) Prove que, se $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ é contínua, também o é $f:(X,\mathcal{T}_1)\to (Y,\mathcal{T}'_1)$ sempre que $\mathcal{T}\subseteq \mathcal{T}_1$ e $\mathcal{T}'_1\subseteq \mathcal{T}'$.
- (12) Prove que, se $f: X \to Y$ é constante, então f é contínua em relação a quaisquer topologias \mathcal{T}_1 em X e \mathcal{T}_2 em Y.
- (13) Considere a topologia \mathcal{T} definida no Exercício (9). Verifique se as funções $f, g: (\mathbb{R}, \mathcal{T}) \to (\mathbb{R}, \mathcal{T})$ definidas por $f(x) = x^3$ e $g(x) = x^2$ são contínuas.
- (14) Verifique se as funções $f, g: (\mathbb{R}, \mathcal{T}_0) \to (\mathbb{R}, \mathcal{T}_0)$, com f(x) = |x| e g(x) = -|x| são contínuas, onde \mathcal{T}_0 é a topologia definida no Exercício (10).
- (15) Considere \mathbb{R} munido da topologia usual. Mostre que, se toda a função $f:(X,\mathcal{T})\to\mathbb{R}$ é contínua, então \mathcal{T} é a topologia discreta em X.
- (16) Sejam $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ uma função contínua, A um subconjunto de X e f_A a restrição de f a A.
 - (a) Mostre que, se \mathcal{T}_A é a topologia relativa definida em A por \mathcal{T} , então $f_A:(A,\mathcal{T}_A)\to (Y,\mathcal{T}')$ é contínua.
 - (b) Encontre um exemplo que mostre que o resultado recíproco é falso.
- (17) Mostre que:
 - (a) O intervalo [a, b] $(a, b \in \mathbb{R}, a < b)$ é homeomorfo ao intervalo [0, 1].
 - (b) Qualquer intervalo aberto de \mathbb{R} é homeomorfo a \mathbb{R} .
 - (c) O intervalo [0, 1] não é homeomorfo ao intervalo [0, 1].

3 Bases e sub-bases

EXERCÍCIOS.

- (1) Mostre que $\mathcal{B} = \{ [r, s]; r, s \in \mathbb{Q}, r < s \}$ é uma base da topologia euclidiana em \mathbb{R} .
- (2) Verifique se $S = \{\{\alpha\}, \{\beta\}, \{\alpha, \beta, \gamma\}, \{\alpha, \beta, \delta\}\}$ é uma base para uma topologia em $W = \{\alpha, \beta, \gamma, \delta\}$ e, em caso afirmativo, determine essa topologia.
- (3) Seja $X = \{a, b, c, d, e\}$. Construa a topologia gerada por \mathcal{U} quando: (a) $\mathcal{U} = \{\emptyset, \{a\}, \{b, e\}\};$ (b) $\mathcal{U} = \{\{a\}, \{b, c\}, \{a, b, e\}\}.$
- (4) Determine a topologia em \mathbb{R} gerada por $\mathcal{S} = \{[x, x+1]; x \in \mathbb{R}\}.$
- (5) Considere em $\mathbb R$ a topologia usual $\mathcal T$ e a topologia $\mathcal T'$ que tem como base

$$\mathcal{B} = \{ |a, b|; a, b \in \mathbb{R}, a < b \}.$$

Mostre que \mathcal{T} é menos fina do que \mathcal{T}' .

- (6) Sejam (X, \mathcal{T}) um espaço topológico e $f: X \to [0, 1]$ uma aplicação. Mostre que, se $f^{-1}([a, 1])$ e $f^{-1}([0, b])$ são abertos de X para todo o $a, b \in]0, 1[$, então f é contínua.
- (7) Seja X um espaço topológico. Mostre que, para que uma função $f: X \to \mathbb{R}$ seja contínua é necessário que os conjuntos $\{x \in X : f(x) > 0\}$ e $\{x \in X : f(x) < 0\}$ sejam abertos. Será suficiente?
- (8) Considere o conjunto $\mathcal{T}_0 = \{\emptyset\} \cup \{\mathbb{R}\} \cup \{(-a, a) | a \in \mathbb{R}\}.$
 - (a) Mostre que \mathcal{T}_0 é uma topologia em \mathbb{R} .
 - (b) Verifique se $\{(-a,a)|a\in\mathbb{Q}\}$ é uma base para a topologia \mathcal{T}_0 .
 - (c) Considere as funções $f, g: \mathbb{R} \to \mathbb{R}$ definidas por $f(x) = |x|, g(x) = x^2$. Designando por \mathcal{T} a topologia euclidiana, verifique se são contínuas quando:
 - (i). $f, g: (\mathbb{R}, \mathcal{T}_0) \to (\mathbb{R}, \mathcal{T}_0);$
 - (ii). $f, g: (\mathbb{R}, \mathcal{T}) \to (\mathbb{R}, \mathcal{T}_0)$;
 - (iii). $f, g: (\mathbb{R}, \mathcal{T}_0) \to (\mathbb{R}, \mathcal{T})$.