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Abstract

Given an algebraic theory T whose category of models is semi-
abelian, we study the category TopT of topological models of T and
generalize to it various results on topological groups. In particular
TopT is regular, Mal’cev and protomodular; every open subobject
is closed and every quotient map is open. We devote special atten-
tion to the Hausdorff, compact, locally compact, connected, totally
disconnected and profinite T-algebras.

Introduction

Semi-abelian categories have been introduced in [15] as a formal context in
which all diagram lemmas of universal algebra are valid, but also many prop-
erties characteristic of non-abelian situations: the theory of normal subobjects,
of commutators, of semi-direct products, and so on. Of course all abelian cate-
gories are semi-abelian, but there are many more examples: the category of all
groups, of rings without unit, of Ω-groups, of Heyting semi-lattices, of presheaves
or sheaves of these, and so on. The algebraic theories T yielding semi-abelian
categories ModT of models have been characterized in [12]; in particular, they
admit a unique constant which we write 0 and various operations which collec-
tively recapture some of the properties of the addition and the subtraction in
the case of groups. This paper investigates the properties of topological models
of such theories, that is, models of the theory provided with a topology which
makes all the operations of the theory continuous. We write TopT for the corre-
sponding category. For example, when T is the theory of groups, we recapture
the theory of topological groups.

In the case of topological groups, the multiplication by an element x is an
homeomorphism, with inverse the multiplication by x−1. When performing the
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quotient by a (normal) subgroup, this homeomorphism transforms the equiva-
lence class of the unit in the equivalence class of x. The semi-abelian theories
do not give rise to such homeomorphisms and our first task is to prove some
substitutes for these results, which will turn out to be sufficient for generalizing
most of the classical results known in the case of topological groups. This in-
cludes some purely algebraic lemmas, closely related to recent work in universal
algebra (see [19]), and of which we present a direct (categorical) approach in an
appendix section.

We start our study with that of subalgebras B ⊆ A of a topological T-algebra
A, proving at once that every open topological subalgebra B ⊆ A is also closed.
Moreover the closure B ⊆ A of a subalgebra B ⊆ A is another subalgebra and
B ⊆ A is normal when B ⊆ A is so.

Next we focus on the quotient of a topological T-algebra A by a normal
subalgebra B ⊆ A. The algebraic quotient A/B provided with the quotient
topology is still a topological T-algebra and the quotient map q : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A/B

is a continuous open mapping. When moreover the normal subalgebra B is
compact, this mapping q is also a closed map. The openness of quotient maps
implies the regularity of the category TopT.

The category TopT is generally not exact, but it shares various other proper-
ties of the category ModT of ordinary models, including some properties which
one proves classically using the exactness of ModT. For example TopT is com-
plete, cocomplete, Mal’cev and protomodular. The inverse image functors of the
fibration of points in TopT are monadic, yielding so a good theory of topological
semi-direct products.

We choose to call “proabelian” a finitely complete, pointed, regular and pro-
tomodular category with coequalizers. Every proabelian category is a Mal’cev
category which satisfies all the basic diagram lemmas of homological algebra
and admits good theories of normal subobjects and abelian objects.

The full subcategory of abelian topological T-algebras inherits all the already
mentioned properties of TopT: it is thus proabelian, with semi-direct products.
Moreover, if B ⊆ A is an abelian subobject of a Hausdorff topological T-algebra
A, the closure B ⊆ A is still an abelian subalgebra.

The rest of the paper is devoted to the study of various classes of topological
T-algebras. A topological T-algebra A is Hausdorff as soon as 0 ∈ A is a closed
point. The quotient A/B by a normal subalgebra B ⊆ A is Hausdorff precisely
when the subalgebra B is closed. The Hausdorff reflection of a topological T-
algebra A is the quotient of A by the closure of 0 ∈ A. The category of Hausdorff
T-algebras is complete, cocomplete and proabelian.

On the other hand, a topological T-algebra A is discrete when 0 ∈ A is an
open point. The category of discrete T-algebras can be identified with ModT.

Turning our attention to the case of compact Hausdorff T-algebras, we obtain
this time a semi-abelian category, thus a corresponding abelian category of
abelian compact T-models. Locally compact T-algebras present also interesting
properties: in particular, they consititute a proabelian category. Even in the
non Hausdorff case, a topological T-algebra is locally compact as soon as 0
admits a compact neighborhood. Moreover in the Hausdorff case, every locally
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compact subalgebra is closed.
Next we devote some attention to the case of totally disconnected T-algebras.

The connected component Γ(0) of 0 in a topological T-algebra A is always a
closed normal subgroup and the corresponding quotient A/Γ(0) is the totally
disconnected reflection of A. The category of totally disconnected T-algebras is
still another example of a proabelian category.

We particularize these results to the case of profinite (= compact totally
disconnected) T-algebras, yielding again this time a semi-abelian category of
profinite T-models, thus an abelian category of profinite abelian T-algebras.

Let us mention also that in a short exact sequence of topological T-algebras

0 qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq B qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq A qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq A/B qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq 0

A is compact (respectively: Hausdorff, connected, totally disconnected) as soon
as B and A/B are compact (respectively: Hausdorff, connected, totally discon-
nected).

All results on semi-abelian categories needed in this paper can be found in
the survey paper [4]; various original papers are cited in the bibliography. Some
few additional results, essentially inspired from universal algebra (in particular
[19]), are shortly presented in the “Appendix” section.

1 Introducing topological semi-abelian algebras

Given an object X of a category V, the corresponding category PtX(V) of points
(see [8]) has for objects the triples (A, p, s) in V

p : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq X, s : X qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A, p ◦ s = idX .

A morphism f : (A, p, s) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq (B, q, t) is a morphism of V such that

f : A qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq B, q ◦ f = p, f ◦ s = t.

When V has pullbacks, every morphism v : X qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq Y in V induces an inverse
image functor

v∗ : PtY (V) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq PtX(V).

The category V is protomodular (see [9]) when it admits pullbacks and all the
inverse image functors v∗ between the categories of points reflect isomorphisms.
The category V is semi-abelian (see [15]) when it is protomodular, Barr exact,
and admits finite limits, finite coproducts and a zero object. In that case V has
all finite colimits and the inverse image functors v∗ between categories of points
are monadic (see [11]), yielding a theory of semi-direct products.

An algebraic theory T has a semi-abelian category ModT of models precisely
when (see [12]) T has

1. a unique constant 0;

2. binary operations α1(X,Y ), . . . , αn(X, Y ) satisfying αi(X, X) = 0;
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3. a n + 1-ary operation θ(X1, . . . , Xn+1) satisfying

θ
(
α1(X,Y ), . . . , αn(X, Y ), Y

)
= X.

This is in particular the case when T has a group operation +, in which case it
suffices to choose

n = 1, α1(X,Y ) = X − Y, θ(X, Y ) = X + Y.

Thus groups, Ω-groups, modules on a ring, rings without unit, all these theories
with additional sup and/or inf semi-lattice structure, Heyting semi-lattices for
their own, and so on, yield examples of semi-abelian theories. Let us emphasize
the fact that in general, T admits indeed many more operations than simply
αi and θ; moreover, the choice in T of operations αi and θ as indicated is by
no means unique. We shall in general refer to such an algebraic theory T as a
“semi-abelian” theory and to the T-algebras as “semi-abelian algebras”.

Convention Through this paper, given a semi-abelian theory T, the notation
αi or θ will always indicate operations as above, with n ∈ N the corresponding
number of operations αi.

Let us now introduce the topic of the present paper:

Definition 1 Let T be an algebraic theory. By a topological model of T, or a
topological T-algebra, we mean a topological space A provided with the structure
of a T-algebra, in such a way that every operation τ : Tn qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq T of T induces a

continuous mapping

τA : An qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A, (a1, . . . , an) 7→ τ(a1, . . . , an).

We write TopT for the category of topological T-algebras and continuous T-
homomorphisms between them.

For example when T is the theory of groups, TopT is the category of topo-
logical groups. The theory of topological groups uses in an intensive way the
fact that given an element g ∈ G of a topological group G (written additively),
the mapping

−+ g : G qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq G, x 7→ x + g

is an homeomorphism mapping 0 on g. This “homogeneity property” of the
topology can be partly recaptured in the case of a semi-abelian theory:

Proposition 2 Let T be a semi-abelian theory. For every element a ∈ A of a
topological T-algebra,

A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq An, x 7→ (

α1(x, a), . . . , αn(x, a)
)

presents A as a topological retract of An, with thus the induced topology, and
maps the element a ∈ A on (0, . . . , 0) ∈ An.
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Proof It suffices to observe that

An qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A, (a1, . . . , an) 7→ θ(a1, . . . , an, a)

is a retraction of the given map in the category of topological spaces. ¤
Notice that the inclusion given in proposition 2 is by no means a T-homomor-

phism: it does not preserve the constant 0.

Corollary 3 Let T be a semi-abelian theory. Given an element a ∈ A of a
topological T-algebra A, the subsets

n⋂

i=1

αi(−, a)−1(U), U open neighborhood of 0

constitute a fundamental system of open neighborhoods of a.

Proof Every open neighborhood of (0, . . . , 0) ∈ An contains a neighborhood of
the form Un, with U ⊆ A open neighborhood of 0. One concludes by proposition
2. ¤

Metatheorem 4 Let T be a semi-abelian theory and P , a topological property
stable under finite limits. If the property P is valid at the neighborhood of 0 in
a given semi-abelian algebra A, that property P is valid at the neighborhood of
every point of A.

Proof By proposition 2, since every retract of An is the equalizer of the identity
and an idempotent morphism on An. ¤

Another useful property of topological groups is that every neighborhood
V of 0 contains a symmetric neighborhood W such that W + W ⊆ V . The
generalization to the semi-abelian case is easy:

Lemma 5 Let T be a semi-abelian theory and V , an open neighborhood of 0
in a topological T-algebra A. Let τ be a (k + l)-ary operation of the theory and
a1, . . . , ak, elements of A such that τ(a1, . . . , ak, 0, . . . , 0) = 0. Then there exists
an open neighborhood U of 0 in A such that

b1, . . . , bl ∈ U ⇒ τ(a1, . . . , ak, b1, . . . , bl) ∈ V.

Proof The function

f : Al qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A, (X1, . . . , Xl) 7→ τ(a1, . . . , ak, X1, . . . , Xl)

is continuous and maps (0, . . . , 0) on 0. Therefore f−1(V ) is an open neighbor-
hood of (0, . . . , 0) in Al and this neighborhood contains one of the form U l, with
U neighborhood of 0 in A. ¤
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Using as usual ( ) to indicate the topological closure, let us immediately
observe that

Proposition 6 Let T be a semi-abelian theory. Every topological T-algebra is
a regular topological space.

Proof By the metatheorem 4, it suffices to prove that every open neighborhood
V of 0 in A contains the closure of an open neighborhood W of 0. We choose
the neighborhood W given by lemma 5 applied to the function θ(X1, . . . , Xn+1)
and prove that W ⊆ V . If a ∈ W ,

Z =
n⋂

i=1

αi(a,−)−1(W )

is open and contains a. Since a ∈ W , this proves the existence of some b ∈ Z∩W .
For each index i, we have αi(a, b) ∈ W because b ∈ Z; on the other hand b ∈ W .
By lemma 5, this implies

a = θ
(
α1(a, b), . . . , αn(a, b), b) ∈ V. ¤

2 On topological subalgebras

We focus first on the properties of subalgebras B ⊆ A of a topological algebra
A, still in the case of a semi-abelian theory T. Obviously, every subalgebra B of
the topological algebra A, provided with the induced topology, is a topological
algebra on its own. As usual when we mention that the subalgebra B is open,
or closed, or compact, or whatever, this is always for the topology induced by
that of A.

First, let us generalize a celebrated result on topological groups.

Proposition 7 Let T be a semi-abelian theory. Every open subalgebra B ⊆ A
of a topological algebra A is closed.

Proof Given a ∈ A\B, we must prove the existence of an open subset U ⊆ A\B
containing a. It suffices to put

U =
n⋂

i=1

αi(a,−)−1(B).

This subset is open, as finite intersection of open subsets. It contains a because
αi(a, a) = 0 ∈ B for each index i. Moreover U ∩ B = ∅, because b ∈ U ∩ B
would imply

a = θ
(
α1(a, b), . . . , αn(a, b), b

) ∈ B

since then each αi(a, b) and b itself would be in the subalgebra B. ¤
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Corollary 8 Let T be a semi-abelian theory, A a topological T-algebra and
B ⊆ A a subalgebra. The following conditions are equivalent:

1. B is a neighborhood of 0;

2. B is an open neighborhood of 0;

3. B is a closed neighborhood of 0.

Proof (2) ⇒ (3) follows from proposition 7 and (3) ⇒ (1) is trivial. If B is a
neighborhood of 0 and b ∈ B,

U =
n⋂

i=1

αi(−, b)−1(B)

is a neighborhood of b; it is contained in B because

x ∈ U ⇒ x = θ
(
α1(x, b), . . . , αn(x, b), b

) ∈ B

since B is a subalgebra. Thus B is open. ¤
Let us now investigate the behaviour of subalgebras with respect to topo-

logical closure.

Proposition 9 Let T be a semi-abelian theory. The closure B ⊆ A of every
subalgebra B ⊆ A of a topological T-algebra A is still a subalgebra.

Proof Let τ(X1, . . . , Xm) be a m-ary operation of the theory T. Define P to
be the topological pullback

P qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq B
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

Am qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqτ A

The topological subspace P ⊆ Am is closed because B ⊆ A is closed. Moreover
Bm ⊆ P because

b1, . . . , bm ∈ B ⇒ τ(b1, . . . , bm) ∈ B ⊆ B.

This implies B
m

= Bm ⊆ P because P is closed. This means exactly

a1, . . . , am ∈ B ⇒ τ(a1, . . . , am) ∈ B

and B is stable in A for all the operations of the theory T. ¤
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Analogously, we obtain:

Proposition 10 Let T be a semi-abelian theory. The closure B ⊆ A of ev-
ery normal subalgebra B ⊆ A of a topological T-algebra A is still a normal
subalgebra.

Proof Using theorem 64, let us consider an operation τ(X1, . . . , Xk, Y1, . . . , Yl)
of the theory satisfying the axiom τ(X1, . . . , Xk, 0, . . . , 0) = 0. As in proposition
9, we consider the pullback

P qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqq

q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

Ak ×Al qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqτ A

to get P closed in Ak × Al. This time Ak × Bl ⊆ P because B is normal in A

and thus Ak × B
l ⊆ P because P is closed. By theorem 64, this shows that B

is normal in A. ¤

3 On topological quotients and regularity

The following proposition generalizes a key property of topological groups:

Proposition 11 When T is a semi-abelian theory, the coequalizer q : B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Q

of two morphisms f, g : A qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
B of TopT is computed as in ModT and provided

with the quotient topology. Moreover, the continuous surjection q is also an open
map.

Proof Consider first two morphisms f, g : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
B in TopT and their coequal-

izer q : B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Q in ModT provided with the quotient topology; this makes al-

ready q continuous. The regular epimorphism q in ModT is the cokernel of its
kernel k : K qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B. If U is open in B, we must prove first that q(U) is open in
Q ∼= B/K, that is, q−1

(
q(U)

)
is open in B. By proposition 65,

q−1
(
q(U)

)
=

⋃

k1,...,kn∈K

θ(k1, . . . , kn,−)−1(U)

is indeed open, as a union of open subsets.
Next we prove that Q, provided with the quotient topology, is a topological

T-algebra. If τ(X1, . . . , Xk) is a k-ary operation of the theory T and U ⊆ Q is
open for the quotient topology

τ−1(U) =
{(

[b1], . . . , [bk]
)∣∣τ(

[b1], . . . , [bk]
) ∈ U

}

=
{
qk(b1, . . . , bk)

∣∣qτ(b1, . . . , bn) ∈ U
}

= qk
(
τ−1q−1(U)

)
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and this last subset is open because q and τ are continuous and qk is open, since
so is q. Therefore the operation τ is continuous on the quotient Q.

It is now trivial to conclude that q = Coker (f, g) in TopT. ¤
The category Top of topological spaces is not Barr regular, nevertheless:

Theorem 12 The category TopT of topological models of a semi-abelian theory
T is Barr regular.

Proof In the category of topological spaces, every open surjection yields nec-
essarily the quotient topology and open surjections are stable under pullbacks.
One concludes by proposition 11. ¤

4 Introducing proabelian categories

The category TopT, for a semi-abelian theory T, is generally not semi-abelian,
because it is not Barr exact. Indeed, the kernel pair of a morphism f : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq B

is its set-theoretical kernel pair provided with the topology induced by that of
A × A. Providing this kernel pair with a finer T-topology (for example, the
discrete one), yields an equivalence relation in TopT which is not a kernel pair.

This paper intends also to give evidence that there is a notion of good in-
terest, more general than semi-abelianity and which recaptures many of the
properties of semi-abelian categories:

Definition 13 A category V is proabelian when

1. V is finitely complete;

2. V admits all coequalizers;

3. V has a zero object;

4. V is Barr regular;

5. V is protomodular.

The proabelian category V is said to have semi-direct products when the inverse
image functors of the fibration of points are monadic.

Let us recall that when v : 0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Y is such that v∗ is monadic, every algebra
(A, ξ) for the corresponding monad yields a point

(
p, s : B ¿ Y

)
and B is

defined to be the semi-direct product Y o (A, ξ).
Of course every semi-abelian category is proabelian; but we shall now prove

that the topological models of a semi-abelian theory constitute a proabelian
category with semi-direct products. Other examples of proabelian categories
will be presented in the subsequent sections.
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Theorem 14 A proabelian category V is in particular a Mal’cev category sat-
isfying the five lemma, the nine lemma, the snake lemma and the Jordan-Hölder
theorem.

Proof Observe that the corresponding proofs given in [4] and [5] use only the
proabelian axioms. ¤

Proposition 15 A proabelian category V with semi-direct products is finitely
cocomplete.

Proof It suffices to prove the existence of binary coproducts. This follows
from proposition 4 in [7]: in a category with finite limits, if the inverse image
functors of the fibration of points have left adjoints, these adjoints are computed
by pushouts. But in the presence of a zero object, pushing out along a morphism
v : 0 qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Y is taking the coproduct with V . ¤

Let us prove now a useful property for constructing proabelian categories. In
the following proposition, and in the whole paper, “epireflective” means always
“regular epireflective”: the unit of the adjunction is a regular epimorphism.

Proposition 16 If V is a proabelian category, every epireflective subcategory
W ⊆ V is proabelian as well.

Proof The category W is finitely complete, has coequalizers and a zero object,
by reflexivity in V. It is regular by epireflexivity. It is protomodular since the
inclusion W ⊆ V is full and preserves pullbacks. ¤

Proposition 17 When T is an algebraic theory, the forgetful functor

U : TopT qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq ModT

is topological. As a consequence, the category TopT of topological T-algebras is
complete and cocomplete; limits and colimits are computed as in ModT.

Proof If (fi : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Ai)i∈I is a class of morphisms of T-algebras, with each Ai

a topological T-algebra, the corresponding initial topology on A (which exists,
whatever the size of I) provides A with the structure of a topological T-algebra.
Indeed if τ(X1, . . . , Xk) is an operation of the theory, the continuity of τ in A
is equivalent to the continuity of each fi ◦ τA, which is the case since fi ◦ τA =
τAi ◦ fk

i . This forces the conclusion, since ModT is complete and cocomplete
(see [3], II-7.3). ¤

Proposition 18 When T is an algebraic theory yielding a protomodular cat-
egory ModT of models, the models of T in every category C with finite limits
constitute again a protomodular category.

Proof This is a standard “Yoneda” argument. Indeed, the functors

C(C,−) : ModT(C) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq ModT, A 7→ C(C,A)

individually preserve pullbacks and collectively reflect isomorphisms. Therefore
the protomodularity of ModT implies that of ModT(C). ¤
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Theorem 19 When T is a semi-abelian theory, the category TopT of topological
T-algebras is complete, cocomplete, proabelian with semi-direct products.

Proof Using theorem 12, proposition 17 and proposition 18 (with C = Top, the
category of topological spaces), it remains to check the existence of semi-direct
products.

Given v : X qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Y in TopT, the functor

v∗ : PtY
(
TopT

)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq PtX

(
TopT

)

has a left adjoint, namely, the pushout along v. The functor v∗ reflects isomor-
phisms because TopT is protomodular, by proposition 18. By the Beck criterion,
we still have to check a condition on some coequalizers. But coequalizers in
the categories PtY

(
TopT

)
and PtX

(
TopT

)
are computed as in PtY

(
ModT

)
and

PtX
(
ModT

)
, that is as in ModT, and provided with the quotient topology. Now

v∗ : PtY
(
ModT

)
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq PtX

(
ModT

)

preserves the coequalizers involved in the Beck criterion, because the category
ModT is semi-abelian. Moreover v∗ preserves open surjections, as every topo-
logical pullback. We conclude by proposition 11. ¤

Theorem 20 When T is a semi-abelian theory, the forgetful functor

U : TopT qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Top

to the category of topological spaces is monadic.

Proof Given a topological space X, consider the free T-algebra F (X) on the
set X and, for every continuous mapping f : X qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq A to a topological T-algebra

A, the corresponding factorization f ′ : F (X) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A. The initial topological T-
algebra structure on F (X) for all these mappings f ′ (see proposition 17) yields
the left adjoint functor of U .

Every homeomorphic T-homomorphism of topological T-algebras is an iso-
morphism, thus U reflects isomorphisms.

Consider next a reflexive pair f, g : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
B of morphisms in TopT admitting

a split coequalizer q : B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Q in Top. Coequalizers in TopT and in Top are

constructed, respectively, as in ModT and in Set, and are provided in both
cases with the quotient topology. Thus being a coequalizer in TopT is being a
coequalizer both in ModT and in Top (see proposition 11). The Beck criterion
applied to the forgetful functor ModT qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq Set indicates that q = Coker (f, g) in

ModT. Since moreover q = Coker (f, g) in Top by assumption, q = Coker (f, g)
in TopT and one concludes by again the Beck criterion. ¤
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5 Abelian topological algebras

The notion of abelian object makes sense in a proabelian category. Given an
object A, the commutator [A,A] is the kernel of the composite q ◦ (idA, 0) =
q ◦ (0, idA)

[A,A] k qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq A

(idA, 0)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

(0, idA)
A×A

q
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq ρ(A)

where q = Coker
(
(idA, 0), (0, idA)

)
. The object A is abelian when A = [A, A]

(see [4]). This is equivalent to the existence of a (necessarily unique) structure
of internal abelian group on A.

The abelian objects in a semi-abelian category constitute an epireflective
subcategory which is abelian. The corresponding topological result is:

Proposition 21 Let V be a proabelian category. The abelian objects of V
constitute an additive epireflective proabelian subcategory Ab(V) of V. When V
has semi-direct products, Ab(V) has semi-direct products as well.

Proof The proofs in the semi-abelian case given in [4] remain valid to show that
the coequalizer ρ(A) above yields the expected epireflection ρ. By proposition
16, Ab(V) is proabelian. And of course Ab(V) is additive, since every object is
internally an abelian group.

Suppose now that V has semi-direct products. By proposition 15, it is finitely
cocomplete. Thus Ab(V) is finitely cocomplete as well, by reflexivity. To prove
that the inverse image functors of the fibration of points of Ab(V) are monadic,
we use once more the Beck criterion. Pushing out a point along v yields the left
adjoint of v∗. On the other hand v∗ reflects isomorphisms by protomodular-
ity. Moreover since Ab(V) is closed in V under regular quotients, coequalizers in
Ab(V) are computed as in V. Next in a category of points, coequalizers are com-
puted as in the base category. This forces at once the condition on coequalizers
in the Beck criterion, since it holds in V. ¤

Proposition 22 Let T be a semi-abelian theory and A an abelian topological
T-algebra. The operations

a + b = θ
(
α1(a, 0), . . . , αn(a, 0), b

)

−a = θ
(
α1(0, a), . . . , αn(0, a), 0

)

describe the internal abelian group structure of A and thus provide in particular
A with the structure of a topological abelian group.

Proof Let us write

⊕ : A2 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A, ª : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A

for the internal abelian group operations of A and

p(X,Y, Z) = θ
(
α1(X, Y ), . . . , αn(X,Y ), Z

)
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for the Mal’cev operation of T inherited from the semi-abelian structure. Since
⊕ and ª are T-homomorphisms, we get

a⊕ b = p(a, 0, 0)⊕ p(0, 0, b)

= p
(
a⊕ 0, 0⊕ 0, 0⊕ b)

= p(a, 0, b)
= a + b

a⊕ (−a) = p(a, 0, 0)⊕ p(0, a, 0)
= p(a⊕ 0, 0⊕ a, 0⊕ 0)
= p(a, a, 0)
= 0

which proves the result. ¤

Theorem 23 Let T be a semi-abelian theory. The category Ab
(
TopT

)
of

abelian topological T-algebras is complete, cocomplete, additive and proabelian
with semi-direct products.

Proof By proposition 21 and theorem 19. ¤
Given a semi-abelian theory T , the category Ab

(
TopT

)
is generally not exact,

since TopT is not. This prevents Ab
(
TopT

)
to be abelian.

Theorem 24 Let T be a semi-abelian theory. The forgetful functor

U : Ab
(
TopT

)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Top

is monadic.

Proof We use the Beck criterion. The left adjoint of U is the composition of
the left adjoints in theorems 20 and 21 (with V = TopT). It is again trivial
that U reflects isomorphisms. The condition on coequalizers holds by the Beck
criterion applied to the situation of theorem 20, since Ab

(
TopT

)
is closed in

TopT under regular quotients. ¤

6 On Hausdorff algebras

We investigate now the properties of those T-algebras which are Hausdorff
spaces.

Proposition 25 Let T be a semi-abelian theory. For a topological T-algebra
A, the following conditions are equivalent:

1. {0} is closed in A;

13



2. A is a T0-topological space;

3. A is a T1-topological space;

4. A is a Hausdorff space.

Proof (4) ⇒ (3) ⇒ (2) are obvious. Let us prove (2) ⇒ (1). If A is T0 but
0 ∈ A is not closed, choose 0 6= a ∈ {0}. Every neighborhood of a contains
0, thus by the T0-axiom there exists a neighborhood V of 0 which does not
contain a. Let U be the neighborhood of lemma 5 corresponding to the function
θ(X1, . . . , Xn, 0). Consider

W =
n⋂

i=1

αi(a,−)−1(U).

This is an open neighborhood of a ∈ {0}, thus it contains 0. This means
αi(a, 0) ∈ U for each index i, thus

a = θ
(
α1(a, 0), . . . , αn(a, 0), 0

) ∈ V

by construction of U . This is a contradiction.
(1) ⇒ (3) holds by our metatheorem 4 while (3) ⇒ (4) holds because every

regular T1-space is Hausdorff (see proposition 6). ¤

Proposition 26 Let T be a semi-abelian theory and B, an abelian subalgebra
of a Hausdorff T-algebra A. The closure B ⊆ A is still an abelian subalgebra.

Proof We must prove that the operations + and − of proposition 22, re-
stricted to B, are homomorphisms of T-algebras. This means, for every op-
eration τ(X1, . . . , Xk) of the theory, the equality for all elements of B of the
following functions, defined and continuous for all elements of A

τ(X1, . . . , Xk) + τ(Y1, . . . , Yk) = τ(X1 + Y1, . . . , Xk + Yk)
−τ(X1, . . . , Xk), = τ(−X1, . . . ,−Xk).

The equalities hold in B, thus they hold in B, by continuity of the various
functions and Hausdorffness of A. ¤

Proposition 27 Let T be a semi-abelian theory and A a topological T-algebra.
For a subalgebra B ⊆ A, the following conditions are equivalent:

1. B is closed in A;

2. the quotient topological T-algebra A/B is Hausdorff.

Proof By proposition 25, the quotient A/B is Hausdorff when [0] is closed in it.
When this is the case, B is closed in A as inverse image of [0] by the quotient map
q : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A/B. Conversely if B is closed in A, its image [0] ∈ A/B is a closed
point because B is saturated and the quotient map q is open (see proposition
11). ¤
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Corollary 28 Let T be a semi-abelian theory, A a topological T-algebra and
B ⊆ A a normal subalgebra. If B and A/B are Hausdorff T-algebras, A is a
Hausdorff algebra as well.

Proof By proposition 25, 0 ∈ B is closed and by proposition 27, B ⊆ A is
closed as well. Thus 0 ∈ A is closed. ¤

Corollary 29 Let T be a semi-abelian theory. The category HausT of Haus-
dorff topological T-algebras is epireflective in the category TopT of topological
T-algebras. In particular, it is complete and cocomplete.

Proof Given a topological T-algebra A, it follows at once from proposition 10
that {0} is the smallest closed normal subobject of A. Therefore A/{0} is the
Hausdorff reflection of A, by proposition 27. One concludes by proposition 17.

¤

Theorem 30 Let T be a semi-abelian theory. The category HausT of Hausdorff
T-algebras is complete, cocomplete, proabelian and the forgetful functor

U : HausT qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq Haus

to the category of Hausdorff spaces is monadic.

Proof The category HausT is proabelian by corollary 29 and proposition 16.
Let X be a Hausdorff space. The T-Hausdorff reflection (corollary 29) of the

free topological T-algebra on X (theorem 20) yields the adjoint functor of U .
The functor U reflects trivially isomorphisms.

To conclude by the Beck criterion, consider a reflexive pair f, g : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
B in

HausT which admits a split coequalizer q : B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Q in Haus. The split coequal-

izer is thus also a coequalizer in Top and of course, (f, g) is a reflexive pair in
TopT. By theorem 20, q = Coker (f, g) in TopT. Since Q is a Hausdorff space,
this is also a coequalizer in HausT. ¤

Theorem 31 Let T be a semi-abelian theory. The category Ab
(
HausT

)
of

Hausdorff abelian T-algebras is complete, cocomplete, additive, proabelian and
the forgetful functor

U : Ab
(
HausT

)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Haus

to the category of Hausdorff spaces is monadic.

Proof The category Ab
(
HausT

)
is proabelian by theorem 30 and proposition

21. The monadicity of U is proved as in theorem 24. ¤
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7 On compact algebras

Let us make clear that we do not include Hausdorffness in compactness. First
of all, an obvious observation:

Proposition 32 Let T be a semi-abelian theory. Every quotient of a compact
T-algebra is again compact.

Proof Every continuous image of a compact is compact. ¤
Here is an striking property of quotients, to be compared with proposition

11.

Proposition 33 Let T be a semi-abelian theory and A, a topological T-algebra.
When B ⊆ A is a compact normal subalgebra, the quotient q : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A/B is a

closed map.

Proof Consider a closed subset C ⊆ A; we must prove that its saturation
C̃ = q−1

(
q(C)

)
is closed as well. By proposition 65, we know that

C̃ =
{
a ∈ A

∣∣∃b1, . . . , bn ∈ B θ(b1, . . . , bn, a) ∈ C
}
.

Considering the continous mappings

A
pAqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

Bn ×A ι qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq An+1 θ qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A

where ι is the canonical inclusion, we have thus

C̃ = pA

(
ι−1

(
θ−1(C)

))
.

Since C is closed, ι−1
(
θ−1(C)

)
is closed as well. Since Bn is compact, the

projection pA is a closed map (see [6]) and therefore C̃ is closed. ¤

Proposition 34 Let T be a semi-abelian theory, A a topological T-algebra and
B ⊆ A a normal subalgebra B. If B and A/B are compact (resp. compact
Hausdorff), A is compact (resp. compact Hausdorff) as well.

Proof By proposition 65, for every element a ∈ A, the corresponding equiva-
lence class is given by

[a] = θ(Bn, a) =
{
θ(b1, . . . , bn, a)

∣∣b1, . . . , bn ∈ B
}
.

This equivalence class is compact, as continuous direct image of the compact
Bn. Therefore q is a closed continuous map (see proposition 33) with compact
fibres [a]; thus q is a proper map and therefore, reflects compact subspaces (see
[6] or [14]). In particular, A = q−1(A/B) is compact.

The Hausdorff case follows now from proposition 28. ¤
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In order to investigate further the properties of the category HCompT of
compact Hausdorff T-algebras, let us first observe that:

Proposition 35 Let T be a semi-abelian theory. The category HCompT of
compact Hausdorff T-algebras is reflective in the category TopT of topological
T-algebras. In particular, the category HCompT is complete and cocomplete.

Proof The category HComp of compact Hausdorff spaces is closed for limits
in the category Top of topological spaces (it is even reflective in it). Therefore
HCompT is closed in TopT under limits (see proposition 17). To get the expected
adjoint functor, it remains to check the solution set condition.

If A is a fixed topological T-algebra, every morphism f : A qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq C in TopT,
with C ∈ HCompT, factors through f(A) ⊆ C, which is still a compact T-algebra.
Every point of f(A) is the limit of an ultrafilter in f(A) and the cardinal of f(A)
is less than the cardinal of A. Write λ for the cardinal of the set of ultrafilters
in A. There is only a set of compact T-algebras with cardinal at most λ and, as
we have just seen, they constitute a solution set for A. ¤

Theorem 36 Let T be a semi-abelian theory. The category HCompT of com-
pact Hausdorff T-algebras is complete, cocomplete, semi-abelian and the forgetful
functor

U : HCompT qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq HComp

to the category of compact Hausdorff spaces is monadic.

Proof The category HCompT is complete and cocomplete by proposition 35;
limits are computed as in TopT, thus as in HausT. By proposition 32, HCompT

is closed in HausT for regular quotients; therefore HCompT is regular by theorem
30. It is also protomodular by proposition 18.

To prove the exactness of HCompT, consider in HCompT an equivalence re-
lation r : R qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A × A. Since R is compact, it is homeomorphic to its image
r(R), thus provided with the induced topology. But being compact, R is closed
in A×A. In particular the equivalence class of 0 is closed, as inverse image of R
along (idA, 0). Thus the corresponding quotient in TopT is compact Hausdorff
(see propositions 27 and 32) and R is the kernel pair of this quotient, since this
is the case in ModT and R has the induced topology.

Given a compact Hausdorff space X, the T-compact reflection (proposition
35) of the free topological T-algebra on X (theorem 19) yields the adjoint functor
of U . The functor U reflects trivially isomorphisms. The condition on coequal-
izers in the Beck criterion is satisfied in the Hausdorff case (theorem 30), thus
also in the compact Hausdorff case, where coequalizers are computed in the
same way (proposition 32). ¤

Theorem 37 Let T be a semi-abelian theory. The category Ab
(
HCompT

)
of

compact Hausdorff abelian T-algebras is complete, cocomplete, abelian and the
forgetful functor

U : Ab
(
HCompT

)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq HComp

to the category of compact Hausdorff spaces is monadic.
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Proof The category Ab
(
HCompT

)
is abelian by semi-abelianity of HCompT

(theorem 36). The monadicity of U is proved as in theorem 24. ¤

8 On locally compact algebras

Again we do not include Hausdorffness in local compactness.

Proposition 38 Let T be a semi-abelian theory. For a T-algebra A, the fol-
lowing conditions are equivalent:

1. 0 has a compact neighborhood;

2. A is locally compact.

Proof (2) ⇒ (1) is obvious.
Assume now that V is a compact neighborhood of some point a ∈ A. If U

is an arbitrary neighborhood of a, by regularity (see proposition 6), we consider
closed neighborhoods V ′ ⊆ V and U ′ ⊆ U of a. Then U ′ ∩ V ′ ⊆ U is a closed
neighborhood of a which is compact, as a closed subset of the compact V . Thus
a admits a fundamental system of compact neighborhoods. This proves that
assuming (1), it suffices to show that every point a ∈ A admits a compact
neighborhood.

Given a ∈ A and K a compact neighborhood of 0,

θ(Kn, a) =
{
θ(k1, . . . , kn, a)

∣∣k1, . . . , kn ∈ K
}

is compact, as continuous image of the compact Kn. To prove that θ(Kn, a) is
a neighborhood of a, it suffices to show that

n⋂

i=1

αi(−, a)−1(K) ⊆ θ(Kn, a)

(see corollary 3). Indeed if αi(x, a) ∈ K for each index i

x = θ
(
α1(x, a), . . . , αn(x, a), a

) ∈ θ(Kn, a). ¤

Proposition 39 Let T be a semi-abelian theory and A a Hausdorff T-algebra.
Every locally compact subalgebra B of A is closed.

Proof Given a ∈ B, we must prove that a ∈ B. For this we choose a compact
neighborhood Z of 0 in B, which has thus the form Z = U ∩ B for some
neighborhood U of 0 in A. The continuous image of the compact U ∩ B ⊆ B
in A is compact, thus closed. In other words, Z = U ∩ B is closed in A. We
choose further an open neighborhood U ′ ⊆ U of 0 in A. We consider then the
open subset

V =
n⋂

i=1

αi(a,−)−1(U ′)
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which is a neighborhood of a ∈ B, thus meets B:

∃b ∈ B ∀i αi(a, b) ∈ U ′.

Let us prove now that αi(a, b) ∈ B for each index i. For this it suffices to
prove that

αi(a, b) ∈ U ′ ∩B ⊆ U ′ ∩B ⊆ U ∩B = U ∩B ⊆ B,

where the first inclusion holds because U ′ is open. By choice of b, αi(a, b) ∈ U ′.
Since a, b ∈ B, αi(a, b) ∈ B by proposition 9.

One concludes now that

a = θ
(
α1(a, b), . . . , αn(a, b), b

) ∈ B

since b and all the αi(a, b) are in the subalgebra B. ¤

Proposition 40 Let T be a semi-abelian theory and A a locally compact T-
algebra. Every topological quotient T-algebra of A is still locally compact.

Proof Because every open (see proposition 5) continuous image of a locally
compact space is locally compact. ¤

Proposition 41 Let T be a semi-abelian theory, A a topological T-algebra and
B ⊆ A a normal subalgebra B. If B is compact and A/B is locally compact, A
is locally compact.

Proof The same argument as in proposition 34 shows that the quotient map
q : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A/B reflects compact subspaces, thus also compact neighbourhoods.

One concludes by proposition 38. ¤

Theorem 42 Let T be a semi-abelian theory. The category HLCompT of locally
compact Hausdorff T-algebras is proabelian.

Proof A closed subspace of a locally compact space is locally compact. Since
in the Hausdorff case equalizers are closed subspaces, the category HLCompT is
closed in HausT for equalizers; it is also obviously closed for finite products. By
proposition 40, HLComp is also closed in HausT for coequalizers, thus regular
quotients. Therefore HLComp is regular, since so is HausT (see theorem 30).
Finally HLComp is protomodular by proposition 18. ¤

Theorem 43 Let T be a semi-abelian theory. The category Ab
(
HLCompT

)
of

locally compact Hausdorff abelian T-algebras is additive proabelian.

Proof By proposition 21 and theorem 42. ¤
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9 On discrete algebras

The category ModT of T-algebras can be identified with the category of discrete
T-algebras. Observe at once that

Proposition 44 Let T be a semi-abelian theory. The forgetful functor

U : TopT qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq ModT, U(A) = A

has both a left and a right adjoint which map a T-algebra A on A provided with,
respectively, the discrete or the indiscrete topology.

Proof This is trivial. ¤
Let us observe further that:

Proposition 45 Let T be a semi-abelian theory. For a topological T-algebra
A, the following conditions are equivalent:

1. {0} is open in A;

2. A is a discrete topological space.

Proof (1) ⇒ (2) holds by our metatheorem 4 while the converse is obvious. ¤

Proposition 46 Let T be a semi-abelian theory and A a topological T-algebra.
For a subalgebra B ⊆ A, the following conditions are equivalent:

1. B is open in A;

2. the quotient topological T-algebra A/B is discrete.

Proof By proposition 45, the quotient A/B is discrete when [0] is open in it.
When this is the case, B is open in A as inverse image of [0] by the quotient
map q : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A/B. Conversely if B is open in A, its image [0] ∈ A/B is an

open point because the quotient map q is open (see proposition 11). ¤
Of course the category of discrete T-algebras is semi-abelian and monadic

over the category Set of sets, since it is isomorphic to the category ModT of
T-algebras.

10 Connected or totally disconnected algebras

We recall that a space is totally disconnected when the connected component
of each point is reduced to that point.

Lemma 47 Let T be a semi-abelian theory and A, a topological T-algebra.
Writing Γ(a) for the connected component of a point a ∈ A,

Γ(a) = θ
(
Γ(0)n, a

)
=

{
θ(b1, . . . , bn, a)

∣∣b1, . . . , bn ∈ Γ(0)
}
.
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Proof The subset θ
(
Γ(a)n, a

) ⊆ A is connected as direct image of the connected
space Γ(a)n by a continuous function. It contains a = θ(0, . . . , 0, a) by lemma
63. Thus it is contained in the connected component Γ(a).

Conversely, let b ∈ Γ(a). Each set αi

(
Γ(a), a

)
contains 0 = αi(a, a) and is

connected, as direct image of the connected space Γ(a) by a continuous function.
Thus αi

(
Γ(a), a

) ⊆ Γ(0). Therefore

b = θ
(
α1(b, a), . . . , αn(b, a), a

) ∈ θ
(
Γ(0)n, a

)
. ¤

Proposition 48 Let T be a semi-abelian theory and A a topological T-algebra.
The following conditions are equivalent:

1. the connected component of 0 is reduced to {0};
2. A is totally disconnected.

Proof By lemma 47. ¤

Proposition 49 Let T be a semi-abelian theory and A, a topological T-algebra.
The connected component of 0 in A is a closed normal subalgebra.

Proof The connected component of a point is always a closed subset. Let us
write B for the connected component of 0 in A. By theorem 64, it suffices to
prove that for every operation

τ(X1, . . . , Xk, Y1, . . . , Yl) such that τ(X1, . . . , Xk, 0, . . . , 0) = 0

one has

∀a1, . . . , ak ∈ A, ∀b1, . . . , bl ∈ B τ(a1, . . . , ak, b1, . . . , bl) ∈ B.

The case k = 0 proves in particular that B is a subalgebra. We prove this
statement by induction on l.

When l = 0, the statement reduces to 0 ∈ B. Assuming the result for l − 1
and considering the operation

τ(X1, . . . , Xk, Y1, . . . , Yl−1, 0),

we know by inductive assumption that

∀a1, . . . , ak ∈ A, ∀b1, . . . , bl ∈ B τ(a1, . . . , ak, b1, . . . , bl−1, 0) ∈ B.

Thus B is also the connected component of τ(a1, . . . , ak, b1, . . . , bl−1, 0). There-
fore

τ(a1, . . . , ak, b1, . . . , bl−1, bl) ∈ τ(a1, . . . , ak, b1, . . . , bl−1,−)(B) ⊆ B

since the continuous image of a connected subset is connected. ¤
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Proposition 50 Let T be a semi-abelian theory. Every quotient of a connected
topological T-algebra is again connected.

Proof The direct continuous image of a connected space is connected. ¤

Lemma 51 Let T be a semi-abelian theory and A, a topological T-algebra. If
B ⊆ A is a connected normal subobject, every equivalence class [a] of an element
a ∈ A is connected and every clopen U ⊆ A is saturated for the equivalence
relation corresponding to the quotient q : A qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq A/B.

Proof Given a ∈ U , we consider the continuous function

ϕ : An qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A, (X1, . . . , Xn) 7→ θ(X1, . . . , Xn, a).

By proposition 65, we know that [a] = ϕ(Bn); thus [a] is connected as direct
image of the connected subspace Bn ⊆ An. In particular, if [a] intersects a
clopen U , by connectedness, [a] ⊆ U . This proves that U is saturated. ¤

Proposition 52 Let T be a semi-abelian theory, A a topological T-algebra and
B ⊆ A, a normal subalgebra. If both B and A/B are connected, then A is
connected as well.

Proof Write q : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A/B for the quotient map. Let U be a clopen of A. By

lemma 51, U is saturated, thus q(U) is a clopen of A/B. This forces q(U) = ∅
or q(U) = A/B, that is, U = ∅ or U = A. ¤

Proposition 53 Let T be a semi-abelian theory, A a topological T-algebra and
B ⊆ A, a normal subalgebra. If both B and A/B are totally disconnected, then
A is totally disconnected as well.

Proof Write q : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A/B for the quotient. Since q

(
Γ(0)

)
is connected and

contains [0], it is reduced to that element, because A/B is totally disconnected.
This implies Γ(0) ⊆ B and since B is totally disconnected, this forces Γ(0) =
{0}. One concludes by proposition 48. ¤

Proposition 54 Let T be a semi-abelian theory and A, a topological T-algebra.
The quotient of A by the connected component of 0 is a totally disconnected T-
algebra.

Proof By proposition 49, the connected component Γ(0) of 0 is a closed normal
subobject of A. Consider the following diagram, where the right hand square is
a pullback and k = Ker (p).

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq K qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

k
C qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

p
Γ
(
[0]

)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0

r

ppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
q

s

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

t

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Γ(0) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

i
A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqq A/Γ(0) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0
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By theorem 12, p is a regular epimorphism in TopT, thus the cokernel of its kernel
k. Since pullbacks commute with kernels, the left hand square is a pullback as
well, thus an intersection.

Now q ◦ i = 0 = t◦0, thus i factors through the right hand pullback, yielding
Γ(0) ⊆ C. This implies K = Γ(0) ∩ C = Γ(0). Next K = Γ(0) and Γ

(
[0]

)
are

connected components, thus by proposition 52, the algebra C is connected. But
since C is connected and contains 0, C ⊆ Γ(0) and finally, C = Γ(0). Therefore

Γ
(
[0]

)
= q(C) = q

(
Γ(0)

)
= [0].

One concludes by proposition 48. ¤

Corollary 55 Let T be a semi-abelian theory. The category TotDiscT of totally
disconnected T-algebras is epireflective in the category TopT of all topological T-
algebras and also in the category HausT of Hausdorff T-algebras. In particular,
the category TotDiscT is complete and cocomplete.

Proof Let f : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq C be a morphism of topological T-algebras, with C totally
disconnected. Since the direct image of a connected subspace is a connected sub-
space, the connected component of 0 ∈ A is mapped in the connected component
of 0 ∈ C, that is, on the singleton 0. Therefore f factors through the quotient
of proposition 54, which is thus the expected totally disconnected reflection of
A.

Every totally disconnected T-algebra is a Hausdorff T-algebra. The totally
disconnected reflection of a Hausdorff T-algebra A is its reflection as topological
T-algebra. ¤

Theorem 56 Let T be a semi-abelian theory. The category TotDiscT of totally
disconnected T-algebras is complete, cocomplete, proabelian and the forgetful
functor

U : TotDiscT qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq TotDisc

to the category of totally disconnected spaces is monadic.

Proof The category TotDiscT is proabelian by corollary 55 and propositions 19
(or 30) and 16. The monadicity of U is proved as in theorem 30. ¤

Theorem 57 Let T be a semi-abelian theory. The category Ab
(
TotDiscT

)
of

totally disconnected abelian T-algebras is complete, cocomplete, proabelian and
the forgetful functor

U : Ab
(
TotDiscT

)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq TotDisc

to the category of totally disconnected spaces is monadic.

Proof The category Ab
(
TotDiscT

)
is proabelian by theorem 56 and proposition

21. The monadicity of U is proved as in theorem 24. ¤
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11 On profinite algebras

A compact, totally disconnected space is also called a profinite space, or a Stone
space.

Proposition 58 Let T be a semi-abelian theory, A a topological T-algebra and
B ⊆ A, a normal subalgebra. If both B and A/B are profinite, then A is profinite
as well.

Proof By propositions 34 and 53. ¤

Proposition 59 Let T be a semi-abelian theory and A a profinite T-algebra.
If B ⊆ A is a closed normal subalgebra, the quotient topological T-algebra A/B
is still profinite.

Proof By proposition 27, the quotient A/B is Hausdorff; it is also compact,
as continuous image of the compact A. Each equivalence class [a] is closed –
thus compact – in A as inverse image of the closed point [a] of the Hausdorff
space A/B. Notice also that B is compact, as a closed subspace of a compact
Hausdorff one. By propositions 11 and 33, the quotient map q : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A/B is

both open and closed.
Given elements [a] 6= [b] ∈ A/B, the compact subsets [a] and [b] can be

included in disjoint clopens U , V of A, by profiniteness of the space:

[a] ⊆ U, [b] ⊆ V, U ∩ V = ∅.

Since the projection q : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A/B is open and closed, q(U) is a clopen in A/B

and thus its saturation q−1
(
q(U)

)
is a clopen in A.

Since q−1
(
q(U)

)
is a saturated clopen, so is its complement. Of course these

saturated clopens are disjoint and it remains to prove that

[a] ⊆ q−1
(
q(U)

)
, [b] ⊆ {q−1

(
q(U)

)
.

The first assertion is clear. To prove the second, it suffices to show that b 6∈
q−1

(
q(U)

)
, that is, U ∩ [b] = ∅. This is the case because U ∩ [b] ⊆ U ∩V = ∅. ¤

Corollary 60 Let T be a semi-abelian theory. The category ProfT of profi-
nite T-algebras is epireflective in the category HCompT of compact Hausdorff
T-algebras, thus also reflective in the category TopT of topological T-algebras. In
particular, the category ProfT is complete and cocomplete.

Proof Consider a compact Hausdorff algebra A and the connected component
B ⊆ A of 0. The quotient A/B is totally disconnected by proposition 54 and
compact by proposition 32. Thus A/B is profinite. One concludes as for corol-
lary 55 that ProfT is epireflective in HCompT. It remains to compose with the
reflection of proposition 35. ¤
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Theorem 61 Let T be a semi-abelian theory. The category ProfT of profinite
T-algebras is complete, cocomplete, semi-abelian and the forgetful functor

U : ProfT qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Prof

to the category of profinite spaces is monadic.

Proof The category ProfT is complete and cocomplete by corollary 60 and
proposition 17. It is proabelian by corollary 60, proposition 16 and theorem
36. The exactness of ProfT follows from that of HCompT (see theorem 36) since
ProfT is closed in HCompT for finite limits, but also for quotients by proposition
59.

The monadicity of U is proved as in theorem 36, replacing Hausdorff spaces
by completely disconnected ones. ¤

Theorem 62 Let T be a semi-abelian theory. The category Ab
(
ProfT

)
of profi-

nite abelian T-algebras is complete, cocomplete, abelian and the forgetful functor

U : Ab
(
ProfT

)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Prof

to the category of profinite spaces is monadic.

Proof The category Ab
(
ProfT

)
is abelian by semi-abelianity of ProfT (theorem

61). The monadicity of U is proved as in theorem 24. ¤

12 Appendix

This section contains some purely algebraic results on semi-abelian theories:
most of them can be found, in possibly rather different form, in a series of
papers on universal algebra due to Ursini (see in particular [19]). We give here
direct (categorical) proofs.

Lemma 63 Let T be a semi-abelian theory. Given elements a, b, c of a T-
algebra A:

(∀i αi(a, c) = αi(b, c)
) ⇒ (

a = b
)
,(∀i αi(a, b) = 0

) ⇒ (
a = b

)
,

θ(0, . . . , 0, a) = a.

Proof The first case is the injectivity condition in proposition 2; the second
case is obtained from the first one by putting c = b. The third assertion is
obtained by writing 0 = αi(a, a). ¤
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Notice that the implication
(∀i αi(c, a) = αi(c, b)

) ⇒ (
a = b

)

has no reason to hold in general.
Let us now recall that a Mal’cev operation is a ternary operation p(X,Y, Z)

such that
p(X, X, Y ) = Y, p(X,Y, Y ) = X.

In a semi-abelian theory T, the formula

p(X,Y, Z) = θ
(
α1(X, Y ), . . . , αn(X,Y ), Z

)

defines a Mal’cev operation (see lemma 63). The following result – valid in
particular for semi-abelian theories – is borrowed from [19]; we propose here a
direct proof.

Theorem 64 Let T be an algebraic theory containing a unique constant 0 and a
Mal’cev operation p(X, Y, Z) . For a subalgebra B ⊆ A, the following conditions
are equivalent:

1. B is the kernel of some morphism q : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q of T-algebras;

2. for every operation τ(X1, . . . , Xk, Y1, . . . , Yl) of the theory
satisfying the axiom τ(X1, . . . , Xk, 0, . . . , 0) = 0
and for all elements a1, . . . , ak ∈ A, b1, . . . , bl ∈ B,
one has τ(a1, . . . , ak, b1, . . . , bl) ∈ B.

Proof The necessity of the condition is obvious. Conversely, consider the
subalgebra R ⊆ A×A generated by all the pairs

(a, a) for a ∈ A, (b, 0) for b ∈ B.

By construction, R is a reflexive relation in ModT, thus a congruence by the
Mal’cev property (see [13]). Define q : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Q to be the quotient of A by R.

The kernel of q contains B since each pair (b, 0), for b ∈ B, is in R. Conversely,
if a ∈ A is such that q(a) = 0, the pair (a, 0) is in R and therefore is an algebraic
combination of the generators of R: there exists an operation γ and elements
ai ∈ A, bj ∈ B such that

(a, 0) = γ
(
(a1, a1), . . . , (ak, ak), (b1, 0), . . . , (bl, 0)

)

=
(
γ(a1, . . . , ak, b1, . . . , bl), γ(a1, . . . , ak, 0, . . . , 0)

)
.

The operation

τ(X1, . . . , Xk,Y1, . . . , Yl)

= p
(
γ(X1, . . . , Xk, Y1, . . . , Yl), γ(X1, . . . , Xk, 0, . . . , 0), 0

)
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satisfies the conditions of assumption 2 and

a = γ(a1, . . . , ak, b1, . . . , bl)

= p
(
γ(a1, . . . , ak, b1, . . . , bl), 0, 0

)

= p
(
γ(a1, . . . , ak, b1, . . . , bl), γ(a1, . . . , ak, 0, . . . , 0), 0

)

= τ(a1, . . . , ak, b1, . . . , bl)

and this last term is in B by assumption 2. ¤
For example, when T is the theory of groups, the operation

τ(X, Y ) = X + Y −X

satisfies τ(X, 0) = 0 and we know that a subgroup B ⊆ A is a kernel (i.e. is
normal) precisely when

∀a ∈ A ∀b ∈ B τ(a, b) ∈ B.

When T is the theory of rings with unique constant 0, the operations

τ1(X,Y ) = XY, τ2(X, Y ) = Y X

satisfy τi(X, 0) = 0 and a subring B ⊆ A is a kernel (= a two-sided ideal)
precisely when

∀a ∈ A ∀b ∈ B τ1(a, b) ∈ B, τ2(a, b) ∈ B.

Finally let us describe more precisely the quotient by a normal subobject:

Proposition 65 Let T be a semi-abelian theory and B ⊆ A a normal sub-
algebra. Given an arbitrary subset X ⊆ A, the saturation X̃ of X for the
corresponding quotient q : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A/B is given by

X̃ = q−1
(
q(X)

)

=
{
a ∈ A

∣∣∃x ∈ X ∀i αi(a, x) ∈ B
}

=
{
a ∈ A

∣∣∃x ∈ X ∀i αi(x, a) ∈ B
}

=
{
a ∈ A

∣∣∃b1, . . . , bn ∈ B θ(b1, . . . , bn, a) ∈ X
}

=
{
θ(b1, . . . , bn, x)

∣∣b1, . . . , bn ∈ B, x ∈ X
}
.

In particular, for every x ∈ A,

[x] = θ(Bn, x) =
{
θ(b1, . . . , bn, x)

∣∣b1, . . . , bn ∈ B
}
.

Proof By semi-abelianity of ModT, given elements a, c ∈ A

[a] = [c] ∈ A/B ⇔ ∀i [
αi(a, c)

]
= αi

(
[a], [c]

)
= 0 ⇔ ∀i αi(a, c) ∈ B
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where the first equivalence holds by lemma 63. This condition is of course
left-right symmetric since so is the equality [a] = [c].

Next if θ(b1, . . . , bn, a) ∈ X, we have in A/B (see lemma 63)

[a] =
[
θ(0, . . . , 0, a)

]

= θ
(
[0], . . . , [0], [a]

)

= θ
(
[b1], . . . , [bn], [a]

)

=
[
θ(b1, . . . , bn, a)

]

∈ q(X)

thus a ∈ q−1
(
q(X)

)
. Conversely if a ∈ q−1

(
q(X)

)
, there exists x ∈ X such that

[x] = [a], that is by the first part of the proof, αi(x, a) ∈ B for each index i.
This implies

θ
(
α1(x, a), . . . , αn(x, a), a

)
= x ∈ X

and it suffices to choose bi = αi(x, a).
Finally when a ∈ X̃, we have already observed that

a = θ
(
α1(a, x), . . . , αn(a, x), x

)

with x ∈ X and αi(a, x) ∈ B for each index i. Conversely if x ∈ X and bi ∈ B
for each index i, using lemma 63 we obtain

[
θ(b1, . . . , bn, x)

]
= θ

(
[b1], . . . , [bn], [x]

)
= θ

(
[0], . . . , [0], [x]

)
= [x]

thus θ(b1, . . . , bn, x) ∈ X̃. ¤
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