

Agrupamento de Escolas de Pampilhosa 8º Ano Ano Lectivo 2006/2007

ficha de Trabalho sobre "Notação Lientífica"

A Estrela Polar está a 350 anos-luz (a.l.) da Terra. Sabendo que a luz se propaga a uma velocidade de 300 000 km/s, calcula a distância entre a Estrela Polar e a Terra em km.

Resolução:			
Velocidade da luz:			
_			
Segundos num ano:			
_			
Quilómetros percor	ridos pela luz num ano:		
	-		
No visor da calculador	a apareceu $9,4608E12$.		
O significado desta es	scrita é	ou se ja	
1 <i>a.l.</i> =			
Portanto,			
350 <i>a.l.</i> =	·		
Como fazer na calcula	dora?		
9.4608 EXP 12 × 3	50 =		
,	Ш ————		
Logo, a distância da Es	strela Polar à Terra é, ap	proximadamente,	

Qualquer número pode representar-se, em notação científica, como produto de um número compreendido entre 1 (inclusive) e 10 (exclusive) por uma potência de base 10:

$$N = a \times 10^p \text{ com } p \in \mathbb{Z} \text{ e } 1 \le a < 10$$

Exercício 1:

Escreve em notação científica os seguintes números:

- a) 234,75;
- **b)** 695 000;
- **c)** -0,00075;
- **d)** 0,00565;
- **e)** 673×10^{-15} ;
- **f)** 0.7×10^{2} .

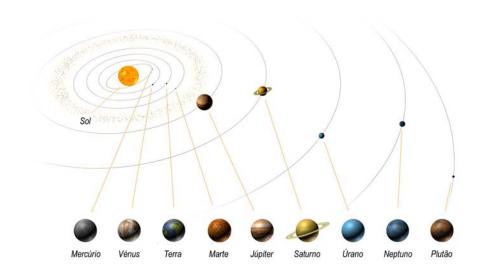
Comparação de números escritos em notação científica

> Os expoentes são diferentes:

O número maior é aquele cuja potência de 10 tiver maior expoente.

Exemplo: $4.5 \times 10^{5} > 9.6 \times 10^{3}$ (porque 5 > 3)

> Os expoentes são iguais:


O número maior é aquele cujo número escrito antes da potência de 10 é maior.

Exemplo: $7.5 \times 10^{5} > 5.6 \times 10^{5}$ (porque 7.5 > 5.6)

Exercício 2:

Coloca por ordem crescente os seguintes planetas de acordo com as suas massas.

Planeta	Massa (em gr)
Mercúrio	2,390 × 10 ²⁶
Vénus	4,841 × 10 ²⁷
Terra	5,976 × 10 ²⁷
Marte	6,574 × 10 ²⁶
Saturno	5,671 × 10 ²⁹

Bom trabalho!!!