Towards the socle of Eulerian ideals

Jorge Neves

Centre and Department of Mathematics of the University of Coimbra

12th Combinatorics Day
University of Aveiro mathematics department
October 21, 2022

- Let G be a simple graph.

D Def. $C \subseteq E_{G}$ is called Eulerian if $\operatorname{deg}_{C}(v)$ is even, $\forall v \in V_{G}$.

- Def. $J \subseteq E_{G}$ is a join iff

$$
|J \cap C| \leqslant \frac{|C|}{2}, \forall C \subseteq E_{G} \text { Eulerian. }
$$

[Frank (1993). Combinatorica]

- J is a join iff J is a minimum cardinality T-join, where T is (some) even set of vertices. [by Guan's Lemma, (1960)]

Eulerian ideals

- Consider $K\left[E_{G}\right]=K\left[t_{e}: e \in E_{G}\right]$. If $J \subseteq E_{G}$ let $\mathbf{t}_{J}=\prod_{e \in J} t_{e}$.
- $\mathbf{t}_{J}-\mathbf{t}_{L} \in K\left[E_{G}\right]$ is said an Eulerian binomial iff

$$
J \cap L=\emptyset, \quad|J|=|L|, \quad J \cup L \text { is Eulerian. }
$$

$$
\begin{aligned}
J(G) & =I(G)+\left(t_{\ell}^{2}\right) \\
& =\left(\{\text { Eulerian binomials }\} \cup\left\{t_{e}^{2}: e \in E_{G}\right\}\right) .
\end{aligned}
$$

- Then, $\left(\operatorname{dim}_{K} \frac{K\left[E_{G}\right]_{d}}{J(G)_{d}}\right)_{d \geqslant 0}=\left(h_{0}, h_{1}, h_{2}, \ldots, h_{r}, 0, \ldots\right)$.
- Question: can r be related directly to G ?
- Thm. If G is bipartite then

$$
r=\max \{|J|: J \text { is a join of } G\}
$$

[Neves, Vaz Pinto, Villarreal (2020). Journal of Algebra]

- Idea of the proof \leqslant. Let $\operatorname{deg}\left(\mathbf{t}^{\alpha}\right)=\max +1$.

1 Can assume $\mathbf{t}^{\alpha}=\mathbf{t}_{L}$ for some $L \subseteq E_{G}$.
2 Let $C \subseteq E_{G}$ be Eulerian s.t. $|C \cap L|>|C| / 2$.
3 Choose $L^{\prime} \subsetneq C \cap L$, with $\left|L^{\prime}\right|=|C| / 2$, and take $\mathbf{t}_{L^{\prime}}-\mathbf{t}_{C \backslash L^{\prime}}$.
4 Then $\mathbf{t}_{L}=\mathbf{t}_{L \backslash L^{\prime}}\left(\mathbf{t}_{L^{\prime}}-\mathbf{t}_{C \backslash L^{\prime}}\right)+\mathbf{t}_{L \backslash L^{\prime}} \mathbf{t}_{C \backslash L^{\prime}} \in J(G)$.

- Def. $J \subseteq E_{G}$ is a parity join of G iff $|J \cap C| \leqslant \frac{|C|}{2}$, for every, C, Eulerian subset of even cardinality.
[Neves (in press). Commun. Alg.]
Note:
- If G is bipartite, then: join \Longleftrightarrow parity join
- If G is non-bipartite, then: join \Longrightarrow parity join
- Thm. If G is any graph

$$
r=\max \{|J|: J \text { is a parity join of } G\}
$$

[Neves (in press). Commun. Alg.]

- Question: What about the non-zero values of

$$
\left(\operatorname{dim}_{K} \frac{K\left[E_{G}\right]_{d}}{J(G)_{d}}\right)_{d \geqslant 0}=\left(h_{0}, h_{1}, h_{2}, \ldots, h_{r}, 0, \ldots\right) ?
$$

- Def. Fix an ordering of $E_{G} . J \subseteq E_{G}$ is a reduced parity join iff J is a parity join and whenever $|J \cap C|=|C| / 2$, for some even cardinality Eulerian C, the last edge of C belongs to J.
- Thm. $\{J$ reduced parity join, $|J|=d\} \rightsquigarrow$ basis of $\frac{K\left[E_{G}\right]_{d}}{J(G)_{d}}$. [Neves, Vaz Pinto (in press). São Paulo J. Math. Sci.]

t_{23}, t_{24}, t_{34}

$t_{12} t_{34}, t_{13} t_{34}, t_{23} t_{34}$
$t_{23} t_{34}, t_{14} t_{24}, t_{14} t_{34}, t_{24} t_{34}$

$t_{23} t_{24} t_{34}, t_{14} t_{24} t_{34}$
- Def. The socle of $\frac{K\left[E_{G}\right]}{J(G)}$ is

$$
\left\{u \in \frac{K\left[E_{G}\right]}{J(G)}: t_{e} u=0, \forall e \in E_{G}\right\} .
$$

- Questions:

1 Characterize reduced parity joins yielding socle.
2 Compute the dimension of the socle.
3 Classify graphs with level socle.

Thank you.

