The regularity of Eulerian ideals

Jorge Neves

Centre and Department of Mathematics
of the University of Coimbra
Algebra and Combinatorics seminar November 10, 2021

- G a simple graph;
- $V_{G}=\{1, \ldots, n\}, E_{G} \subset\{\{i, j\} \mid i \neq j\} ;$
- K a field, $K\left[V_{G}\right]=K\left[x_{1}, \ldots, x_{n}\right], K\left[E_{G}\right]=K\left[t_{e} \mid e \in E_{G}\right]$;
- $\varphi: K\left[E_{G}\right] \rightarrow K\left[V_{G}\right]$ defined by $t_{\{i, j\}} \mapsto x_{i} x_{j}$.
- Def. The Eulerian ideal of G is $I_{G} \subset K\left[E_{G}\right]$ given by:

$$
I_{G}=\varphi^{-1}\left(x_{i}^{2}-x_{j}^{2}: i, j \in V_{G}\right) .
$$

- $t_{e}^{2}-t_{f}^{2}$, for all $e, f \in E_{G}$.
- Eulerian binomials, i.e., $\mathbf{t}^{\alpha}-\mathbf{t}^{\beta}$, s.t.
$1 \alpha, \beta \in\{0,1\}^{E_{G}} \leftrightarrow \mathbf{t}^{\alpha}, \mathbf{t}^{\beta}$ are square-free.
$2\langle\alpha, \beta\rangle=0 \quad \leftrightarrow \operatorname{gcd}\left(\mathbf{t}^{\alpha}, \mathbf{t}^{\beta}\right)=1$.
$3 \sum_{f \in E_{G}} \alpha(f)=\sum_{f \in E_{G}} \beta(f) \leftrightarrow \mathbf{t}^{\alpha}-\mathbf{t}^{\beta}$ homogeneous.
$4 \operatorname{supp}(\alpha) \sqcup \operatorname{supp}(\beta) \subset E_{G}$ yields an Eulerian subgraph.

E.g. $\mathbf{t}^{\alpha}=t_{24} t_{34} t_{7,11} t_{89}$ and $\mathbf{t}^{\beta}=t_{23} t_{78} t_{9,10} t_{10,11}$.
- Endow E_{G} with a total order: $t_{e_{1}} \succ \cdots \succ t_{e_{s}}$.
- Fix the graded reverse lexicographic order in $K\left[E_{G}\right]$ with respect to this. In particular, if \mathbf{t}^{α} and \mathbf{t}^{β} are coprime of the same degree, $\mathbf{t}^{\alpha} \succ \mathbf{t}^{\beta}$ iff $\operatorname{supp}(\beta)$ contains the last edge of $\operatorname{supp}(\alpha) \sqcup \operatorname{supp}(\beta)$.

$$
\begin{aligned}
& \min \left\{t_{23}, t_{24}, \ldots, t_{\{9,10\}}, t_{\{10,11\}}\right\}=t_{\{10,11\}} \\
& \mathbf{t}^{\alpha}=t_{24} t_{34} t_{7,11} t_{89} \quad \text { [light brown] } \\
& \mathbf{t}^{\beta}=t_{23} t_{78} t_{9,10} t_{10,11} \quad \text { [dark brown] } \\
& \operatorname{lt}\left(\mathbf{t}^{\alpha}-\mathbf{t}^{\beta}\right)=\mathbf{t}^{\alpha}
\end{aligned}
$$

- Thm. $\left\{t_{e}^{2}-t_{f}^{2}: e, f \in E_{G}\right\} \cup\left\{\mathbf{t}^{\alpha}-\mathbf{t}^{\beta}\right.$, Eulerians $\}$ is a Gröbner basis. [N., Eulerian ideals, submitted]

Denote

$$
\begin{aligned}
& \left\{g_{1}, \ldots, g_{k}\right\}=\left\{t_{e}^{2}-t_{f}^{2}: e, f \in E_{G}\right\} \cup\left\{\mathbf{t}^{\alpha}-\mathbf{t}^{\beta}, \text { Eulerians }\right\}, \\
& \mathcal{B}_{d}=\left\{\mathbf{t}^{\gamma}: \operatorname{deg}\left(\mathbf{t}^{\gamma}\right)=d \text { and } \operatorname{lt}\left(g_{i}\right) \nmid \mathbf{t}^{\gamma}, \text { for all } i\right\} .
\end{aligned}
$$

- Prop. Let $\mathbf{t}^{\gamma} \in \mathcal{B}_{d}$. Then $J=\operatorname{supp}(\gamma) \subset E_{G}$ is s.t. $\left|J \cap E_{C}\right| \leqslant\left|E_{C}\right| / 2$ for every Eulerian subgraph $C \subset G$ with even $\left|E_{C}\right|$.

Proof. Let $C \subset G$ be Eulerian with $\left|E_{C}\right|=2 m$.
1 Assume that $\left|J \cap E_{C}\right|>m$.
2 Let $\mathbf{t}^{\alpha}=$ product of the first m edges in $J \cap E_{C}$.
3 Let \mathbf{t}^{β} be the product of the remaining edges of C.
$4 \mathbf{t}^{\alpha}-\mathbf{t}^{\beta}$ is an Eulerian binomial with leading term \mathbf{t}^{α}.
$5 \mathbf{t}^{\alpha} \mid \mathbf{t}^{\gamma} \rightsquigarrow$ Contradiction.

- Def. $J \subset E_{G}$ is called a parity join if $\left|J \cap E_{C}\right| \leqslant\left|E_{C}\right| / 2$ for every Eulerian subgraph, $C \subset G$, with even $\left|E_{C}\right|$.
- Thm. G any $\operatorname{graph} . \operatorname{reg}(G)=\max \{|J|: J$ is a parity join $\}-1$. [N., Eulerian ideals, submitted]

Proof. Denote $\ell \in E_{G}$ last edge; $\mu=\max \{|J|: J$ is a parity join $\}$.
$1 \mathbf{t}^{\gamma} \in \mathcal{B}_{d}$ is square-free on $t_{f}, f \neq \ell$ and $\operatorname{supp}(\gamma) \subset E_{G}$ is a parity join.
2 Hence $d \geqslant \mu \Longrightarrow t_{\ell} \mid \mathbf{t}^{\gamma}$, for all $\mathbf{t}^{\gamma} \in \mathcal{B}_{d}$.
3 Therefore, $d \geqslant \mu \Longrightarrow \mathcal{B}_{d} \subset t_{\ell} \mathcal{B}_{d-1} \subset \mathcal{B}_{d} \Longrightarrow\left|\mathcal{B}_{d}\right|=\left|\mathcal{B}_{d-1}\right|$.

- Prop. Let $J \subset E_{G}$ be a parity join. Denote $d=|J|$ and let \mathbf{t}^{α} be the product of its edges. Then, $\mathbf{t}^{\gamma} \in \mathcal{B}_{d}$, the remainder of the division of \mathbf{t}^{α} by the Gröbner basis is square-free. Hence supp (γ) is a parity join of cardinality d. Proof of Thm. (continued). $\mu=\max \{|J|: J$ is a parity join $\}$.
$3\left|\mathcal{B}_{\mu-1}\right|=\left|\mathcal{B}_{\mu}\right|=\left|\mathcal{B}_{\mu+1}\right|=\cdots$
$4 \exists \mathbf{t}^{\gamma} \in \mathcal{B}_{\mu}$ square-free, s.t. $t_{\ell} \mid \mathbf{t}^{\gamma}$ and hence $t_{\ell} \nmid \mathbf{t}^{\gamma} t_{\ell}^{-1} \in \mathcal{B}_{\mu-1}$.
$5 t_{\ell} \mathcal{B}_{\mu-2} \subset \mathcal{B}_{\mu-1}$ is proper and hence $\left|\mathcal{B}_{\mu-2}\right|<\left|\mathcal{B}_{\mu-1}\right|$.
$6 \operatorname{reg}(G)=\mu-1$.

