

The regularity of Eulerian ideals

Jorge Neves

Centre and Department of Mathematics of the University of Coimbra

Algebra and Combinatorics seminar November 10, 2021

► G a simple graph;

•
$$V_G = \{1, \ldots, n\}, E_G \subset \{\{i, j\} | i \neq j\};$$

 $\blacktriangleright K \text{ a field, } K[V_G] = K[x_1, \dots, x_n], \ K[E_G] = K[t_e \mid_{e \in E_G}];$

•
$$\varphi \colon K[E_G] \to K[V_G]$$
 defined by $t_{\{i,j\}} \mapsto x_i x_j$.

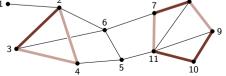
• <u>Def</u>. The *Eulerian ideal* of *G* is $I_G \subset K[E_G]$ given by:

$$I_G = \varphi^{-1} (x_i^2 - x_j^2 : i, j \in V_G).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$\blacktriangleright t_e^2 - t_f^2, \text{ for all } e, f \in E_G.$$

Eulerian binomials, i.e., $\mathbf{t}^{\alpha} - \mathbf{t}^{\beta}$, s.t.
1 $\alpha, \beta \in \{0, 1\}^{E_{G}} \leftrightarrow \mathbf{t}^{\alpha}, \mathbf{t}^{\beta}$ are square-free.
2 $\langle \alpha, \beta \rangle = 0 \quad \leftrightarrow \gcd(\mathbf{t}^{\alpha}, \mathbf{t}^{\beta}) = 1.$ 3 $\sum_{f \in E_{G}} \alpha(f) = \sum_{f \in E_{G}} \beta(f) \quad \leftrightarrow \mathbf{t}^{\alpha} - \mathbf{t}^{\beta}$ homogeneous.
4 $\operatorname{supp}(\alpha) \sqcup \operatorname{supp}(\beta) \subset E_{G}$ yields an Eulerian subgraph.
1 - 2

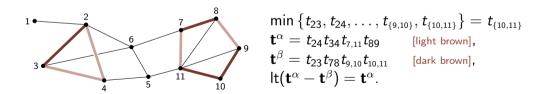


E.g.
$$\mathbf{t}^{\alpha} = t_{24}t_{34}t_{7,11}t_{89}$$

and $\mathbf{t}^{\beta} = t_{23}t_{78}t_{9,10}t_{10,11}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Endow E_G with a total order: $t_{e_1} \succ \cdots \succ t_{e_s}$.
- Fix the graded reverse lexicographic order in K[E_G] with respect to this. In particular, if t^α and t^β are coprime of the same degree, t^α ≻ t^β iff supp(β) contains the last edge of supp(α) ⊔ supp(β).



◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

▶ Thm.
$$\{t_e^2 - t_f^2 : e, f \in E_G\} \cup \{\mathbf{t}^\alpha - \mathbf{t}^\beta, \text{Eulerians}\}\$$
 is a Gröbner basis.
[N., *Eulerian ideals*, submitted]

Denote

$$\{g_1, \dots, g_k\} = \{t_e^2 - t_f^2 : e, f \in E_G\} \cup \{\mathbf{t}^\alpha - \mathbf{t}^\beta, \mathsf{Eulerians}\},\$$
$$\mathcal{B}_d = \{\mathbf{t}^\gamma : \mathsf{deg}(\mathbf{t}^\gamma) = d \text{ and } \mathsf{lt}(g_i) \nmid \mathbf{t}^\gamma, \text{ for all } i\}.$$

▶ Prop. Let $\mathbf{t}^{\gamma} \in \mathcal{B}_d$. Then $J = \operatorname{supp}(\gamma) \subset E_G$ is s.t. $|J \cap E_C| \leq |\mathcal{E}_C|/2$ for every Eulerian subgraph $C \subset G$ with even $|\mathcal{E}_C|$.

Proof. Let $C \subset G$ be Eulerian with $|E_C| = 2m$.

- 1 Assume that $|J \cap E_C| > m$.
- 2 Let $\mathbf{t}^{\alpha} = \text{product of the first } m \text{ edges in } J \cap E_C$.
- 3 Let \mathbf{t}^{β} be the product of the remaining edges of C.
- 4 $\mathbf{t}^{\alpha} \mathbf{t}^{\beta}$ is an Eulerian binomial with leading term \mathbf{t}^{α} .
- 5 $\mathbf{t}^{\alpha} \mid \mathbf{t}^{\gamma} \rightsquigarrow \text{Contradiction.}$

- ▶ <u>Def</u>. $J \subset E_G$ is called a *parity join* if $|J \cap E_C| \leq |E_C|/2$ for every Eulerian subgraph, $C \subset G$, with even $|E_C|$.
- Thm. G any graph. reg(G) = max {|J| : J is a parity join} 1. [N., Eulerian ideals, submitted]
 - *Proof.* Denote $\ell \in E_G$ last edge; $\mu = \max\{|J| : J \text{ is a parity join}\}.$
 - **1** $\mathbf{t}^{\gamma} \in \mathcal{B}_d$ is square-free on t_f , $f \neq \ell$ and $supp(\gamma) \subset E_G$ is a parity join.
 - 2 Hence $d \ge \mu \implies t_{\ell} \mid \mathbf{t}^{\gamma}$, for all $\mathbf{t}^{\gamma} \in \mathcal{B}_d$.
 - 3 Therefore, $d \ge \mu \implies \mathcal{B}_d \subset t_\ell \mathcal{B}_{d-1} \subset \mathcal{B}_d \implies |\mathcal{B}_d| = |\mathcal{B}_{d-1}|.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Prop. Let $J \subset E_G$ be a parity join. Denote d = |J| and let \mathbf{t}^{α} be the product of its edges. Then, $\mathbf{t}^{\gamma} \in \mathcal{B}_d$, the remainder of the division of \mathbf{t}^{α} by the Gröbner basis is square-free. Hence supp (γ) is a parity join of cardinality d.

Proof of Thm. (continued). $\mu = \max \{|J| : J \text{ is a parity join}\}.$

3
$$|\mathcal{B}_{\mu-1}| = |\mathcal{B}_{\mu}| = |\mathcal{B}_{\mu+1}| = \cdots$$

4 $\exists \mathbf{t}^{\gamma} \in \mathcal{B}_{\mu}$ square-free, s.t. $t_{\ell} \mid \mathbf{t}^{\gamma}$ and hence $t_{\ell} \nmid \mathbf{t}^{\gamma} t_{\ell}^{-1} \in \mathcal{B}_{\mu-1}$.
5 $t_{\ell} \mathcal{B}_{\mu-2} \subset \mathcal{B}_{\mu-1}$ is proper and hence $|\mathcal{B}_{\mu-2}| < |\mathcal{B}_{\mu-1}|$.
6 $\operatorname{reg}(G) = \mu - 1$