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Definitions U esn dmac

» G graph, Vg ={1,...,n}, Ec C {{i,Jj} |i#}

> K field, K[Vg] = K[x1, ..., xa], K[Eg] = K[tjj |{ij}eEs].
> n: K[Eg] = K[Vi] defined by tj; — xix;.

» Defn. Let /(Xg) C K[Eg] be the ideal given by:

I(Xe) = (2 — 52 |ijev). J
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Example [Using Macaulay?] Uassmet dme

I(X¢) has the following n
minimal generating set: : 5 .

P ti3ts — tiotss, tiotrs — ti3tss, tiatiz — tositss,

2 2 2 2
> i3 — oyt — Lo,

P ti4t3s — ti3tss, ti3tss — tiatss, tiztis — t3siss,

> tiatos — tiotss, (tiotas — tiatss,) tiotia — tostas.
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» [(Xc) is a binomial, homogeneous ideal of K[Eg].
> lts set of zeros is Xg C {—1, 1}|EG| C PlEsl-1,

» Theorem [N., Vaz Pinto, Villarreal]

2n7b0 (bipartite) or

|Xe| = I

(non-bipartite) .
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» Degree d parts of K[Eg|/I(Xs) encode information.
» Let H(d) = dim. of the degree d part of K[Eg]/I(X¢).
» H(d) is strictly increasing up to d = r and
H(d) = H(r), Yd > r.
» Defn. reg(G) := r, Castelnuovo—Mumford regularity.

» Aim: relate reg(G) with an invariant of G.
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C-M regularity of graphs T

> reg(K,p) = max{a, b} —1;
[Gonzalez, Renteria, 2008]

» G = tree or Cok1, reg(G) = |Eg| — 1;
[Sarmiento, Vaz Pinto, Villarreal, 2011]

> reg(K,) = [gJ . n> 4

[Gonzélez, Renteria, Sarmiento, 2013]

> reg(Cox) = k — 1.
[N., Vaz Pinto, Villarreal, 2015]
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Ears and Joins T

» G is 2-connected iff it is endowed
with an ear decomposition
starting from any cycle.

[Whitney, 1932]

» Defn. ¢(G) is the minimum
number of even length ears in an
ear decomposition of G. 0(G) =1
[Frank, 1993]
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Ears and Joins T

» Defn. A join of a graph is a set of edges, J C Eg, such
that, for every circuit C, |[J N Ec| < |C|/2.

» Defn. The max. cardinality of a join is denoted by u(G).

[Maximum vertex join number, Solé and Zaslavsky, 1993]

» Theorem [Frank, 1993] If G is 2-connected, then

,U(G) _ n+g0(2G)—1. J
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» Theorem [N.]

If G is bipartite and is endowed with a nested ear
decomposition with € even length ears then,

reg(G) = ==

» Corollary

In a nested ear decomposition of a bipartite graph
the number of even length ears does not change.
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» Theorem [N., Vaz Pinto, Villarreal]

reg(G) > u(G) — 1, with equality if G is bipartite.J

» Corollary

If G is bipartite and is endowed with a nested ear
decomposition then ¢(G) is attained for any nested

ear decomposition.




