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82nd Séminaire Lotharingien de Combinatoire
Curia, April 9, 2019



Definitions

I G graph, VG = {1, . . . , n}, EG ⊂ {{i , j} |i 6=j}.

I K field, K [VG ] = K [x1, . . . , xn], K [EG ] = K [tij |{i ,j}∈EG ].

I η : K [EG ]→ K [VG ] defined by tij 7→ xixj .

I Defn. Let I (XG ) ⊂ K [EG ] be the ideal given by:

I (XG ) = η−1(x2
i − x2

j |i ,j∈VG).
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Example [Using Macaulay2]

I (XG ) has the following
minimal generating set:
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6
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I t2
13 − t2
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2
56 − t2
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i − x2
j |i,j∈VG)

I t13t25 − t12t35,

t12t25 − t13t35, t12t13 − t25t35,

I t14t35 − t13t45, t13t35 − t14t45, t13t14 − t35t45,

I t14t25 − t12t45, (t12t25 − t14t45,) t12t14 − t25t45.
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Basic Properties

I I (XG ) is a binomial, homogeneous ideal of K [EG ].

I Its set of zeros is XG ⊂ {−1, 1}|EG | ⊂ P|EG |−1.

I Theorem [N., Vaz Pinto, Villarreal]

|XG | =

 2n−b0
(bipartite) or

2n−b0−1
(non-bipartite).
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Castelnuovo–Mumford regularity

I Degree d parts of K [EG ]/I (XG ) encode information.

I Let H(d) = dim. of the degree d part of K [EG ]/I (XG ).

I H(d) is strictly increasing up to d = r and

H(d) = H(r), ∀ d ≥ r .

I Defn. reg(G ) := r , Castelnuovo–Mumford regularity.

I Aim: relate reg(G ) with an invariant of G .
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C-M regularity of graphs

I reg(Ka,b) = max {a, b} − 1;
[González, Renteŕıa, 2008]

I G = tree or C2k+1, reg(G ) = |EG | − 1;
[Sarmiento, Vaz Pinto, Villarreal, 2011]

I reg(Kn) =
⌊
n
2

⌋
, n ≥ 4;

[González, Renteŕıa, Sarmiento, 2013]

I reg(C2k) = k − 1.
[N., Vaz Pinto, Villarreal, 2015]
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Ears and Joins

I G is 2-connected iff it is endowed
with an ear decomposition
starting from any cycle.
[Whitney, 1932]

I Defn. ϕ(G ) is the minimum
number of even length ears in an
ear decomposition of G .
[Frank, 1993]
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Ears and Joins

I Defn. A join of a graph is a set of edges, J ⊂ EG , such
that, for every circuit C , |J ∩ EC | ≤ |C |/2.

I Defn. The max. cardinality of a join is denoted by µ(G ).
[Maximum vertex join number, Solé and Zaslavsky, 1993]

I Theorem [Frank, 1993] If G is 2-connected, then

µ(G ) = n+ϕ(G)−1
2
·
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Nested Ear Decompositions

I Nested ear decompositions
[Eppstein, 1992]

(i) Ears must have both endpoints
in the same previous ear.

(ii) Ears determine nested intervals
in the ears they are attached to.



Nested Ear Decompositions

I Nested ear decompositions
[Eppstein, 1992]

(i) Ears must have both endpoints
in the same previous ear.

(ii) Ears determine nested intervals
in the ears they are attached to.



Nested Ear Decompositions

I Nested ear decompositions
[Eppstein, 1992]

(i) Ears must have both endpoints
in the same previous ear.

(ii) Ears determine nested intervals
in the ears they are attached to.



Nested Ear Decompositions

I Nested ear decompositions
[Eppstein, 1992]

(i) Ears must have both endpoints
in the same previous ear.

(ii) Ears determine nested intervals
in the ears they are attached to.



Nested Ear Decompositions

I Nested ear decompositions
[Eppstein, 1992]

(i) Ears must have both endpoints
in the same previous ear.

(ii) Ears determine nested intervals
in the ears they are attached to.



Nested Ear Decompositions

I Nested ear decompositions
[Eppstein, 1992]

(i) Ears must have both endpoints
in the same previous ear.

(ii) Ears determine nested intervals
in the ears they are attached to.



Nested Ear Decompositions

I Nested ear decompositions
[Eppstein, 1992]

(i) Ears must have both endpoints
in the same previous ear.

(ii) Ears determine nested intervals
in the ears they are attached to.



Nested Ear Decompositions

I Nested ear decompositions
[Eppstein, 1992]

(i) Ears must have both endpoints
in the same previous ear.

(ii) Ears determine nested intervals
in the ears they are attached to.



Nested Ear Decompositions

I Nested ear decompositions
[Eppstein, 1992]

(i) Ears must have both endpoints
in the same previous ear.

(ii) Ears determine nested intervals
in the ears they are attached to.



Nested Ear Decompositions

I Theorem [N.]

If G is bipartite and is endowed with a nested ear
decomposition with ε even length ears then,

reg(G ) = n+ε−3
2
·

I Corollary

In a nested ear decomposition of a bipartite graph
the number of even length ears does not change.
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Regularity and µ(G )

I Theorem [N., Vaz Pinto, Villarreal]

reg(G ) ≥ µ(G )− 1, with equality if G is bipartite.

I Corollary

If G is bipartite and is endowed with a nested ear
decomposition then ϕ(G ) is attained for any nested
ear decomposition.
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