Joins, ears and
 Castelnuovo-Mumford regularity

Jorge Neves
Centre and Department of Mathematics
of the University of Coimbra
82nd Séminaire Lotharingien de Combinatoire
Curia, April 9, 2019

Definitions

- G graph, $V_{G}=\{1, \ldots, n\}, E_{G} \subset\{\{i, j\} \mid i \neq j\}$.

Definitions

- G graph, $V_{G}=\{1, \ldots, n\}, E_{G} \subset\{\{i, j\} \mid i \neq j\}$.
- K field, $K\left[V_{G}\right]=K\left[x_{1}, \ldots, x_{n}\right], K\left[E_{G}\right]=K\left[t_{i j} \mid\{i, j\} \in E_{G}\right]$.

Definitions

- G graph, $V_{G}=\{1, \ldots, n\}, E_{G} \subset\{\{i, j\} \mid i \neq j\}$.
- K field, $K\left[V_{G}\right]=K\left[x_{1}, \ldots, x_{n}\right], K\left[E_{G}\right]=K\left[t_{i j} \mid\{i, j\} \in E_{G}\right]$.
- $\eta: K\left[E_{G}\right] \rightarrow K\left[V_{G}\right]$ defined by $t_{i j} \mapsto x_{i} x_{j}$.

Definitions

- G graph, $V_{G}=\{1, \ldots, n\}, E_{G} \subset\{\{i, j\} \mid i \neq j\}$.
- K field, $K\left[V_{G}\right]=K\left[x_{1}, \ldots, x_{n}\right], K\left[E_{G}\right]=K\left[t_{i j} \mid\{i, j\} \in E_{G}\right]$.
- $\eta: K\left[E_{G}\right] \rightarrow K\left[V_{G}\right]$ defined by $t_{i j} \mapsto x_{i} x_{j}$.
- Defn. Let $I\left(X_{G}\right) \subset K\left[E_{G}\right]$ be the ideal given by:

$$
I\left(X_{G}\right)=\eta^{-1}\left(x_{i}^{2}-x_{j}^{2} \mid i, j \in V_{G}\right) .
$$

Example [Using Macaulay2]

$I\left(X_{G}\right)$ has the following minimal generating set:

$>t_{13}^{2}-t_{12}^{2}, \ldots, t_{56}^{2}-t_{12}^{2}$,

$$
\eta\left(t_{i j}^{2}-t_{k \ell}^{2}\right)=x_{i}^{2} x_{j}^{2}-x_{k}^{2} x_{\ell}^{2} \in\left(x_{i}^{2}-x_{j}^{2} \mid i, j \in V_{G}\right)
$$

Example [Using Macaulay2]

$I\left(X_{G}\right)$ has the following minimal generating set:

$>t_{13}^{2}-t_{12}^{2}, \ldots, t_{56}^{2}-t_{12}^{2}$,

- $t_{13} t_{25}-t_{12} t_{35}$,

$$
\eta\left(t_{13} t_{25}-t_{12} t_{35}\right)=x_{1} x_{3} x_{2} x_{5}-x_{1} x_{2} x_{3} x_{5}=0 \in\left(x_{i}^{2}-x_{j}^{2} \mid i, j \in V_{G}\right)
$$

Example [Using Macaulay2]

\checkmark COIMBRA dm.uc
$I\left(X_{G}\right)$ has the following minimal generating set:

$>t_{13}^{2}-t_{12}^{2}, \ldots, t_{56}^{2}-t_{12}^{2}$,

- $t_{13} t_{25}-t_{12} t_{35}, \quad t_{12} t_{25}-t_{13} t_{35}$,

$$
\eta\left(t_{12} t_{25}-t_{13} t_{35}\right)=x_{1} x_{2}^{2} x_{5}-x_{1} x_{3}^{2} x_{5} \in\left(x_{i}^{2}-x_{j}^{2} \mid i, j \in V_{G}\right)
$$

Example [Using Macaulay2]

$I\left(X_{G}\right)$ has the following minimal generating set:

$>t_{13}^{2}-t_{12}^{2}, \ldots, t_{56}^{2}-t_{12}^{2}$,
$-t_{13} t_{25}-t_{12} t_{35}, \quad t_{12} t_{25}-t_{13} t_{35}, \quad t_{12} t_{13}-t_{25} t_{35}$,
$I\left(X_{G}\right)$ has the following minimal generating set:

$>t_{13}^{2}-t_{12}^{2}, \ldots, t_{56}^{2}-t_{12}^{2}$,

- $t_{13} t_{25}-t_{12} t_{35}, \quad t_{12} t_{25}-t_{13} t_{35}, \quad t_{12} t_{13}-t_{25} t_{35}$,
$\rightarrow t_{14} t_{35}-t_{13} t_{45}, t_{13} t_{35}-t_{14} t_{45}, t_{13} t_{14}-t_{35} t_{45}$,
$I\left(X_{G}\right)$ has the following minimal generating set:

$>t_{13}^{2}-t_{12}^{2}, \ldots, t_{56}^{2}-t_{12}^{2}$,
- $t_{13} t_{25}-t_{12} t_{35}, \quad t_{12} t_{25}-t_{13} t_{35}, \quad t_{12} t_{13}-t_{25} t_{35}$,
$-t_{14} t_{35}-t_{13} t_{45}, \quad t_{13} t_{35}-t_{14} t_{45}, \quad t_{13} t_{14}-t_{35} t_{45}$,
$-t_{14} t_{25}-t_{12} t_{45},\left(t_{12} t_{25}-t_{14} t_{45},\right) t_{12} t_{14}-t_{25} t_{45}$.

Basic Properties

$\Rightarrow I\left(X_{G}\right)$ is a binomial, homogeneous ideal of $K\left[E_{G}\right]$.

Basic Properties

-I $\left.I X_{G}\right)$ is a binomial, homogeneous ideal of $K\left[E_{G}\right]$.

- Its set of zeros is $X_{G} \subset\{-1,1\}^{\left|E_{G}\right|} \subset \mathbb{P}^{\left|E_{G}\right|-1}$.

Basic Properties

-I $\left.I X_{G}\right)$ is a binomial, homogeneous ideal of $K\left[E_{G}\right]$.

- Its set of zeros is $X_{G} \subset\{-1,1\}^{\left|E_{G}\right|} \subset \mathbb{P}^{\left|E_{G}\right|-1}$.
- Theorem [N., Vaz Pinto, Villarreal]

$$
\left|X_{G}\right|= \begin{cases}2^{n-b_{0}}(\text { bipartite }) & \text { or } \\ 2^{n-b_{0}-1} & \text { (non-bipartite) }\end{cases}
$$

- Degree d parts of $K\left[E_{G}\right] / I\left(X_{G}\right)$ encode information.
- Degree d parts of $K\left[E_{G}\right] / I\left(X_{G}\right)$ encode information.
- Let $H(d)=$ dim. of the degree d part of $K\left[E_{G}\right] / I\left(X_{G}\right)$.
- Degree d parts of $K\left[E_{G}\right] / I\left(X_{G}\right)$ encode information.
- Let $H(d)=$ dim. of the degree d part of $K\left[E_{G}\right] / I\left(X_{G}\right)$.
- $H(d)$ is strictly increasing up to $d=r$ and

$$
H(d)=H(r), \forall d \geq r .
$$

- Degree d parts of $K\left[E_{G}\right] / I\left(X_{G}\right)$ encode information.
- Let $H(d)=$ dim. of the degree d part of $K\left[E_{G}\right] / I\left(X_{G}\right)$.
- $H(d)$ is strictly increasing up to $d=r$ and

$$
H(d)=H(r), \forall d \geq r
$$

- Defn. $\operatorname{reg}(G):=r$, Castelnuovo-Mumford regularity.
- Aim: relate $\operatorname{reg}(G)$ with an invariant of G.

C-M regularity of graphs
$-\operatorname{reg}\left(\mathcal{K}_{a, b}\right)=\max \{a, b\}-1$;
[González, Rentería, 2008]

C-M regularity of graphs
$-\operatorname{reg}\left(\mathcal{K}_{a, b}\right)=\max \{a, b\}-1$;
[González, Rentería, 2008]

- $G=$ tree or $\mathcal{C}_{2 k+1}, \operatorname{reg}(G)=\left|E_{G}\right|-1$;
[Sarmiento, Vaz Pinto, Villarreal, 2011]

C-M regularity of graphs
$-\operatorname{reg}\left(\mathcal{K}_{a, b}\right)=\max \{a, b\}-1$;
[González, Rentería, 2008]

- $G=$ tree or $\mathcal{C}_{2 k+1}, \operatorname{reg}(G)=\left|E_{G}\right|-1$;
[Sarmiento, Vaz Pinto, Villarreal, 2011]
$-\operatorname{reg}\left(\mathcal{K}_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor, n \geq 4$;
[González, Rentería, Sarmiento, 2013]
$-\operatorname{reg}\left(\mathcal{K}_{a, b}\right)=\max \{a, b\}-1$;
[González, Rentería, 2008]
- $G=$ tree or $\mathcal{C}_{2 k+1}, \operatorname{reg}(G)=\left|E_{G}\right|-1$;
[Sarmiento, Vaz Pinto, Villarreal, 2011]
$-\operatorname{reg}\left(\mathcal{K}_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor, n \geq 4$;
[González, Rentería, Sarmiento, 2013]
$-\operatorname{reg}\left(\mathcal{C}_{2 k}\right)=k-1$.
[N., Vaz Pinto, Villarreal, 2015]
- G is 2 -connected iff it is endowed with an ear decomposition starting from any cycle.
[Whitney, 1932]

- G is 2 -connected iff it is endowed with an ear decomposition starting from any cycle.
[Whitney, 1932]

- G is 2 -connected iff it is endowed with an ear decomposition starting from any cycle.
[Whitney, 1932]

- G is 2 -connected iff it is endowed with an ear decomposition starting from any cycle.
[Whitney, 1932]

- G is 2 -connected iff it is endowed with an ear decomposition starting from any cycle.
[Whitney, 1932]

- G is 2 -connected iff it is endowed with an ear decomposition starting from any cycle.
[Whitney, 1932]
- Defn. $\varphi(G)$ is the minimum number of even length ears in an
 ear decomposition of G.
[Frank, 1993]
- G is 2 -connected iff it is endowed with an ear decomposition starting from any cycle.
[Whitney, 1932]
- Defn. $\varphi(G)$ is the minimum number of even length ears in an ear decomposition of G.

$$
\varphi(G)=1
$$

[Frank, 1993]

- Defn. A join of a graph is a set of edges, $J \subset E_{G}$, such that, for every circuit $C,\left|J \cap E_{C}\right| \leq|C| / 2$.
- Defn. A join of a graph is a set of edges, $J \subset E_{G}$, such that, for every circuit $C,\left|J \cap E_{C}\right| \leq|C| / 2$.
- Defn. The max. cardinality of a join is denoted by $\mu(G)$. [Maximum vertex join number, Solé and Zaslavsky, 1993]
- Defn. A join of a graph is a set of edges, $J \subset E_{G}$, such that, for every circuit $C,\left|J \cap E_{C}\right| \leq|C| / 2$.
- Defn. The max. cardinality of a join is denoted by $\mu(G)$. [Maximum vertex join number, Solé and Zaslavsky, 1993]
- Theorem [Frank, 1993] If G is 2-connected, then

$$
\mu(G)=\frac{n+\varphi(G)-1}{2}
$$

Nested Ear Decompositions

- Nested ear decompositions
[Eppstein, 1992]
(i) Ears must have both endpoints in the same previous ear.

Nested Ear Decompositions

- Nested ear decompositions
[Eppstein, 1992]
(i) Ears must have both endpoints in the same previous ear.

Nested Ear Decompositions

- Nested ear decompositions
[Eppstein, 1992]
(i) Ears must have both endpoints in the same previous ear.

Nested Ear Decompositions

- Nested ear decompositions
[Eppstein, 1992]
(i) Ears must have both endpoints in the same previous ear.

Nested Ear Decompositions

- Nested ear decompositions
[Eppstein, 1992]
(i) Ears must have both endpoints in the same previous ear.

Nested Ear Decompositions

- Nested ear decompositions
[Eppstein, 1992]
(i) Ears must have both endpoints in the same previous ear.
(ii) Ears determine nested intervals in the ears they are attached to.

Nested Ear Decompositions

- Nested ear decompositions
[Eppstein, 1992]
(i) Ears must have both endpoints in the same previous ear.
(ii) Ears determine nested intervals in the ears they are attached to.

Nested Ear Decompositions

- Nested ear decompositions
[Eppstein, 1992]
(i) Ears must have both endpoints in the same previous ear.
(ii) Ears determine nested intervals in the ears they are attached to.

Nested Ear Decompositions

- Nested ear decompositions
[Eppstein, 1992]
(i) Ears must have both endpoints in the same previous ear.
(ii) Ears determine nested intervals in the ears they are attached to.

- Theorem [N.]

If G is bipartite and is endowed with a nested ear decomposition with ϵ even length ears then,

$$
\operatorname{reg}(G)=\frac{n+\epsilon-3}{2}
$$

Nested Ear Decompositions

- Theorem [N.]

If G is bipartite and is endowed with a nested ear decomposition with ϵ even length ears then,

$$
\operatorname{reg}(G)=\frac{n+\epsilon-3}{2}
$$

- Corollary

In a nested ear decomposition of a bipartite graph the number of even length ears does not change.

- Theorem [N., Vaz Pinto, Villarreal] $\operatorname{reg}(G) \geq \mu(G)-1$, with equality if G is bipartite.
- Theorem [N., Vaz Pinto, Villarreal]

$$
\operatorname{reg}(G) \geq \mu(G)-1, \text { with equality if } G \text { is bipartite. }
$$

- Corollary

If G is bipartite and is endowed with a nested ear decomposition then $\varphi(G)$ is attained for any nested ear decomposition.

