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Summary

In this thesis we prove that the canonical model of a surface of general type in an

open family of surfaces in each of the birational classes

(I) q = 0, pg = 4 and K2 = 7

(II) q = 0, pg = 6 and K2 = 13

is a complete intersection in a generalised weighted Grassmannian. For each of the

families the canonical ring has Pfaffian 5× 5 format. In other words, it is a quotient

of a polynomial ring by an ideal generated by the five submaximal Pfaffians of a 5×5

skew matrix. Our methods involve a generalisation of Mukai’s vector bundle method.

We construct a vector bundle on the surface which, as a result of our analysis, is

the restriction of the universal orbi-bundle on a generalised weighted Grassmannian.

As in Mukai’s work, this bundle yields an embedding of the canonical model of S

as a quasilinear section of that generalised weighted Grassmannian. Chapter I is

an introduction to the context of the problem. Chapter III focuses on curves with a

halfcanonical divisor. We prove preliminary results concerning the numerical structure

of the halfcanonical ring, such as the degrees of the generators of R(C, A) and of the

ideal IA. We also give an intrinsic description of all the the complete intersection

halfcanonical ideals of codimension ≤ 3 on an algebraic curve. Chapter IV sees the

first application of the vector bundle method. There we show how to embed a curve of

genus 8 with a halfcanonical net and a curve of genus 14 with a halfcanonical divisor

with h0(A) = 5 into generalised weighted Grassmannians. Each of these corresponds

to a member of the canonical linear system of the surfaces mentioned above. In

the same chapter we define generalised weighted Grassmannians and give a detailed

introduction to the vector bundle technique. Finally, Chapter V is dedicated to the

construction of the canonical model of surfaces of general type in the birational classes

(I) and (II).

v



CHAPTER I

Introduction

Of all those working in the subject of algebraic surfaces the Italian school of

G. Castelnuovo and F. Enriques is undoubtedly responsible for pioneering a systematic

treatment of surfaces of general type. In his book, [En] Enriques sets up most of the

general theory of algebraic surfaces and linear systems on an algebraic surface that

is still in use to this day. Chapter VII of [En] is dedicated to the study of regular

surfaces of general type∗ with geometric genus pg ≥ 4. The condition on the genus

is a necessary condition to study surfaces with birational canonical map ϕKS
. The

interplay between the geometry of hyperplane curve sections of the image of the

surface under the canonical map and the geometry of the surface itself justifies the

requirement that the irregularity q = h1(OS) = h1(KS) be zero.

In Chapter V of this thesis we construct the canonical model of a surface in an

open family in each of the birational classes

(I) q = 0, pg = 4 and K2 = 7

(II) q = 0, pg = 6 and K2 = 13

as a complete intersection inside a generalised weighted Grassmannian.

The surfaces in (I) were well known to Enriques† et al. We can find a classical

treatment in chapter VII of [En]. The author constructs examples of surfaces in (I)

with a free canonical linear system and with a canonical linear system with a simple

base point. He also goes quite far in the description of the component of the moduli

space of (I) corresponding to surfaces with a free canonical linear system. In this

case, the image of the canonical morphism is a surface Σ in P3 having a curve of

singularities γ which at a general point of γ are double points. An adjoint surface to

Σ is by definition any surface passing through γ (in analogy with the notion of adjoint

curve to a given plane curve). The surface Σ has a unique minimal degree adjoint

∗See page 122 for our conventions.

†Enriques cites the work of his student Franchetta, Su alcuni esempi di superficie canoniche.
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surface. It is a quadric cone Q with its vertex at the (unique) triple point of γ (and of

Σ). The data (Σ, γ,Q) is enough to describe the component of the moduli space. The

adjuvant element is, of course, the rationality of Q. A modern treatment of the moduli

space of (I) can be found in the work of Bauer [Bau]. The method of the adjoint

surface in conjunction with the theory of symmetric determinantal hypersurfaces is

employed by Ciliberto in [C81] to give a description of the component of the moduli

space of surfaces of general type with pg = 4, birational canonical morphism and K2

in the set {5, 6, 7, 8, 9, 10}. His method relies on the fact that both Σ and its minimal

degree adjoint Σ′ are generic symmetric with the degree of Σ′ equal to deg(Σ) − 5;

and it fails for K2 > 10. Notice that whilst for K2 ≤ 8 the minimal degree adjoint

surface is rational, for K2 > 10 the adjoint may well be of general type. The question

of existence of regular canonical surfaces with pg = 4 and K2 ≥ 11 is still an open

problem. (See [C]).

Surfaces in the birational class (II) have been constructed by Tonoli in [Ton] as

one of many canonical surfaces in P5. They also appear in the work of Catanese

[C]. Their existence follows by an application of Buchsbaum–Eisenbud’s theorem for

Gorenstein ideals of codimension 3 (see below) and as such has been know for quite

some time. To our knowledge the moduli space of the surfaces in (II) remains to be

investigated.

What will bring together (I) and (II) in Chapter V is the fact the fact that under

generality assumptions, the canonical ring R(S, KS) is a Pfaffian 5 × 5 ring and can

be expressed as the quotient by a regular sequence of the homogeneous ring of a

generalised weighted Grassmannian.

The canonical ring. For a surface, S, of general type, the canonical ring

R(S, KS) =
⊕

n≥0

H0(S, nKS),

encodes information about the surface, its canonical image, its bicanonical image,

questions of projective normality of these images and so forth. It was defined by

D. Mumford in [Mum] and subsequently used by many authors as a tool in the

description of the moduli space of surfaces of general type. In the case of surfaces of

general type, the canonical ring is a finitely generated Noetherian ring and the scheme

ProjR(S, KS), called the canonical model of S, is birational to the surface S. It is a
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normal surface with at most du Val singularities. (See [Mum]). Hence, describing the

birational class of a surface of general type can be done by studying R(S,KS). This

principle appears for the first time in an effective way in the work of Miles Reid. In the

article [R78] Reid gives a complete treatment of regular surfaces of general type with

pg(S) = 0, K2
S = 1 and TorsS = Z3, Z4 and Z5. These surfaces are also known as

Godeaux surfaces. Those with Severi group, TorsS, equal to Z5 were constructed by

Godeaux, and those with Severi group equal to Z4 by Miyaoka. In this birational class

the higher the dimension of TorsS the simpler is the geometry of S and the algebra

of R(S,KS). To construct his surface Godeaux construct the Z5-covering of S that

is a quintic hypersurface in P3. Miyaoka’s construction is similar. One constructs

the Z4-covering of S, which is a complete intersection in weighted projective space.

Mirroring this approach Reid describes the covering ring of the surface S associated

with the Severi group TorsS:

R(S, KS , TorsS) =
⊕

n≥0
d∈Tors S

H0(S, nKS + d)

The ring R(S,KS , TorsS) has a TorsS-action and the canonical ring of S is the

invariant ring under this action:

R(S, KS) = R(S, KS , TorsS)Tors S .

In this light, Reid gives a complete treatment of the case TorsS = Z3. The article

[R78] points out a systematic method for the study of surfaces of general type.

There have been many follow-ups to this work. Notably R. Barlow in [Ba85] has

constructed a simply connected Godeaux surface, and in [Ba84] a 4-parameter family

of Godeaux surfaces with TorsS = Z2. Her treatment involves a slight modification

of the classical covering method, allowing for ramification at isolated points and thus

introducing a singular cover. The action is not that of TorsS since this group is either

trivial or too small. Instead we take a Galois covering of a non Abelian group. This

variation of Reid’s construction is very subtle and it does not extend easily to other

examples. However, the guiding principle is still that of Reid’s work [R78]. To study

S we study R(S, KS).
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Recently Bauer, Catanese and Pignatelli in [BCP] have described the canonical

ring for surfaces of general type with pg = 4 and K2 = 7 for which the canonical

linear system has a base point.

The subject of graded rings on algebraic varieties has seen many developments

and is increasingly attracting more interest. Besides the canonical ring of a surface

of general type, the anticanonical ring of a Q-Fano 3-fold ([Fl88, Fl00, CPR]) and

the ring of a polarising divisor on a K3 surface ([ABR]) are other examples of graded

rings in active areas of research.

The algebra of the canonical ring. The study of moduli of algebraic varieties via

graded rings is tainted by a fundamental difficulty. Be it for the canonical ring of a

surface of general type or for any other of the examples of graded rings mentioned

before, the construction of a graded ring from numerical data is hindered by the

absence of structure theories for codimension≥ 4 ideals. The desire to have a structure

theory for codimension 4 is justified by the existing results in codimension 2 (the

theorem of Hilbert–Burch) and in codimension 3.

Theorem I.1 (Buchsbaum–Eisenbud). Let A = C[x1, . . . , xn] be a graded poly-

nomial ring, I Gorenstein homogeneous ideal of codimension 3. Then there exist an

odd integer k = 2n + 1 and a k × k skew matrix M such that

A/I ← A
Pf M←−−−

k⊕
A(−ai)

M←−
k⊕

A(−bi)
Pf Mt←−−−− A(−t) ← 0 (0.1)

is the minimal free resolution of A/I as an A-module. Conversely any codimension 3

ideal which allows such a minimal resolution is Gorenstein.

Proof. See [BE] or [BH, p. 119–123]. ¤

Let us spare a few words on the assumptions of this theorem. The Gorenstein

assumption is a regularity assumption. It implies the Cohen–Macaulay property,

renowned for bridging the gap between commutative algebra and algebraic geometry.

As an example one should think of an ideal defining a hypersurface in projective space

with an embedded component. Despite the codimension of such ideal be 1, the ideal

is definitely not generated by a single form. Off course that in this situation the

quotient ring is not Cohen–Macaulay. This counter-example to an “assumption-free”
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structure theory of codimension 1 ideals, which is drawn from a geometrical point of

view, reveals only part of the problem. The Gorenstein assumption expresses extra

homological regularity. (See Section II.2). The free resolution of a Gorenstein ideal

is self-dual.

Most of the homogeneous ideals of codimension ≥ 4 relevant to the problem of

moduli of varieties have been constructed without the safety net of a theorem like

Theorem I.1. The main techniques for doing this are unprojection and the use of key

varieties. These techniques base themselves on two archetypal operations of geometry;

unprojection on that of projection and the use of key varieties on that of taking a

linear section.

Key varieties versus unprojection. In terms of graded rings a key variety cor-

responds to a key graded ring, i.e. a graded ring to be used as raw material in the

construction of more graded rings. An example of this is the homogeneous ring of

G(2, 5) ⊂ P9 in its Plücker embedding. Constructing graded rings using a key ring

in the simplest cases amounts to taking the quotient by a regular sequence. Letting

ev : C[xi] ³ R be a minimal surjection corresponding to a choice of generators of a

key graded ring R and considering R has a quotient of C[xi], there is a way in which

taking a regular sequence in R can preserve codimension of the quotienting ideal, by

a process of elimination of (some) generators of R. We should be terming it as a

quasilinear regular sequence in analogy to the terminology of quasilinear section of

Corti and Reid’s paper [CR].

Definition I.2. Let R be a graded‡ ring. Fix ev : C[x1, . . . , xn] → R a minimal

surjection. A regular sequence (f1, . . . , fn) in R is said to be quasilinear if each fi

is homogeneous and a preimage (and indeed all) of fi under ev is a polynomial Fi

containing, for some integer j, the term xj . It can be checked that this notion does

not depend on the surjection ev.

In view of Theorem I.1 above, roughly speaking, Gorenstein ideals of codimension

3 (including complete intersections of length 3!) are the ideals generated by the

submaximal Pfaffians of a certain skew matrix of odd dimension. Unlike the ideals in

a polynomial ring generated by regular sequences that have a geometrical realisation

‡See page 14 for our conventions on graded rings.
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in complete intersections, the Pfaffian ideals, until very recently, had no geometrical

counterpart. They correspond to the weighted Grassmannians of Corti and Reid

[CR]. Despite applying only to the case of Pfaffian 5×5 ideals, these varieties are the

corner stone of a geometrical theory of Pfaffian 5 × 5 ideals. They are key varieties

and their homogeneous rings are key rings. Let us give an example of a quotient of a

key ring by quasilinear regular sequence.

Let C[mij , ni] be a polynomial ring of 10 variables of weights§

wt(M) = wt




m12 m13 m14 n1

m23 m24 n2

m34 n3

n4


 =




1 1 1 2
1 1 2

1 2
2




and consider the key ring R given as the quotient of C[mij , ni] by the ideal generated

by the 5 submaximal Pfaffians of M (see Section II.3 for a definition). Denote

J = (Pf1, . . . , Pf5).

Then, from Theorem I.1 we know that R = C[mij , ni]/J is Gorenstein. The weighted

Grassmannian G is by definition ProjR. We take the quotient of R by the ideal

I = (n1 − q1 + J, n2 − q2 + J, n3 − q3 + J, n4 − q4 + J) ⊂ R

with each qi a general quadratic form in mij . The ideal I is generated by a quasili-

near regular sequence. Define a surjective homomorphism λ : C[mij , ni] → C[mij ] by

setting ni 7→ qi and consider the diagram

C[mij , ni]
σ

ÀÀ

λ

~~
C[mij ] R

The codimension of I is 4. However, since I is generated by a quasilinear regular

sequence, the ideal G = λ(σ−1(I)) has codimension 3 in C[mij ]. The variety S =

ProjC[mij ]/G is a codimension 3 subscheme of P5. It was obtain as a quasilinear

section of the weighted Grassmannian G = ProjR. As such, from the geometry of G

(see Proposition IV.5 on page 79) we deduce that S is a regular surface of general type

§We use the convention to write only the upper triangle of a skew matrix, diagonal non-inclusive.
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with pg = 6 and K2 = 13. In other words an example of a surface in the birational

class (II).

Gorenstein unprojection was introduced by Kustin Miller in [KM] and later given

a geometrical rendition in the work of Papadakis and Reid [PR]. As the title of [KM]

says, it is a procedure of constructing Gorenstein ideals from smaller codimensional

ones. The set up is that of an inversion of projection. One starts with the end product

of the projection of a projectively Gorenstein variety in (weighted) projective space:

(X, D); the projected variety X and a divisor D image of the exceptional divisor of

the resolution of indeterminacy at the centre of projection. (Assume, for simplicity,

one projects from a point). Then there exists a section s ∈ Hom(ID, ωX) which

determines the unprojection of D in X. The unprojected variety is given by

Y = SpecOX [s].

(See Papadakis and Reid’s article [PR] for details). The starting and most fruitful

examples occur with Q-Fano 3-folds. Let us illustrate how one can obtain a surface

of general type in the birational class (II) using the technique of unprojection.

Let V2,3 be the Fano 3-fold given as the complete intersection of two hypersurfaces

F2, F3 of degrees 2 and 3 in P5. Suppose that V2,3 contains a plane π ' P2, whose

equations are x1 = x2 = x3 = 0. Then¶ we can write:

(
F2

F3

)
=

(
L1 L2 L3

Q1 Q2 Q3

)


x1

x2

x3


 , (0.2)

where Li, Qi ∈ C[x1, . . . , x6] are linear and quadratic respectively. Unprojecting π

means adjoining a new variable s of degree 2 to the polynomial ring C[x1, . . . x6] and

writing down the birational map

V2,3 99K V ⊂ P(16, 2), with (x1, . . . , x6) 7→ (x1, . . . , x6, s);

where s is the degree 2 rational form:

s =
L2Q3 − L3Q2

x1
=

L3Q1 − L1Q3

x2
=

L1Q2 − L2Q1

x3
. (0.3)

¶Notice that this will produce singularities of V2,3 along π.
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The rational form s is everywhere defined except at π and we can derive it from

(0.2) using Cramer’s rule. The unprojection of V2,3, i.e. the variety Y , is the proper

transform of V2,3 under this map. Its equations follow immediately from (0.3):

sxi =
∧2

i

(
L1 L2 L3

Q1 Q2 Q3

)
, plus F2, F3. (0.4)

We can put these equations in the following Pfaffian format:

Pf




x1 −x3 L3 Q3

x2 L2 Q2

L1 Q1

−s


 . (0.5)

From either (0.5) or (0.4) we deduce that Y meets the singularity of P(16, 2) trans-

versely and thus has a singularity of type 1
2(1, 1, 1) at the point (0, . . . , 0, 1). This

variety is an anticanonically embedded Fano 3-fold of Gorenstein index 2 and genus

4. (These Fano varieties have been classified by Takagi in [T00] and many more Fano

3-folds can be obtained in the same way as here, by unprojection). The canonical

ring of a general member S ∈ |−2KY | obtained from the anticanonical ring of the Y ,

by adding the equation s = q(x1 . . . , x6), for a general quadratic form q(x1, . . . , x6), is

Gorenstein of codimension 3. The surface S is nonsingular, projectively normal and

canonically embedded in P5. There is a small computation to get the degree, namely,

−K3
Y = 2 · 3 + 1

2 = 13
2 and K2

S = 2 · (−K3
Y ) = 13.

The use of unprojection in the construction of Gorenstein graded rings follows a

preliminary process of induction. One starts with the numerics of the graded ring we

expect to obtain, sees how many times and what type of projection leads to a smaller

ring and only then attempts to construct the targeted ring via unprojection.

For some cases, the method of key varieties can be used “deductively” applying

the vector bundle method as we shall see in this thesis. (See Chapter IV and V). But

for most cases it remains as yet essentially not inductive. (The reader should compare

this with the idea of finding a variety with given numerical invariants among the set

of complete intersections of projective space). On the other hand the method of key

varieties is remarkably simple. Taking a quasilinear regular sequence in a key ring, or

should we say, a quasilinear section in a key variety, makes the geometry transparent.
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The vector bundle method. The idea to use key varieties is inspired by Mukai’s

linear section theorem. This result, which the reader can find on page 82, is the

unification of several research papers [M95a, M95b, M95c, M93, M88, M89].

It asserts that every indecomposable Fano 3-fold with at most Gorenstein canonical

singularities and genus 6 ≤ g ≤ 10 or g = 12 is a linear section of an appropri-

ate homogeneous space. In his list (see page 82) Mukai considers Grassmannians,

orthogonal Grassmannians and Spinor varieties.

The technique Mukai uses to proof the linear section theorem is known as the

vector bundle method. Given a Fano 3-fold, V , Mukai constructs a bundle on it,

tautological with respect to the corresponding homogeneous space, and derives from

this bundle an embedding of V into that homogeneous space. There is an important

reduction step. Mukai considers a ladder

C ⊂ T ⊂ V (0.6)

where T is a nonsingular K3 surface and C is a nonsingular canonical curve. The

ladder consists in taking a linear section at each step with respect to the anticanonical

embedding of V by |−KV |, and therefore makes it possible to work with either C or

T . The ladder of varieties of (0.6) corresponds to a chain of surjections of graded

rings:

R(V,−KV ) ³ R(T,−KV |T ) ³ R(C, KC)

each given by quotienting by a nonzero divisor of degree 1. In Mukai’s linear sec-

tion theorem (except for for genus 6 case where we need to take a quadric section)

all sections are linear and therefore the final regular sequence is made up of linear

homogeneous forms. Replacing linear by quasilinear and homogeneous by quasiho-

mogeneous we arrive to the concepts described in the previous paragraph.

The tautological orbi-bundle. To formulate a vector bundle technique that would

extend Mukai’s results to weighted Grassmannians one has to describe the weighted

homogeneous version of the Grassmannian variety G(2, 5) and especially its tauto-

logical vector bundle. The tautological (orbi)-bundle on a weighted Grassmannian is

defined by Corti and Reid in [CR].

Consider G(2, 5) the ordinary Grassmannian of 2-dimensional subspaces of a fixed

vector space V of dimension 5. Let F be the universal subbundle, i.e. the subbundle
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of V ⊗OG(2,5) whose fibre over a point [L] ∈ G(2, 5) is L. We denote by E the quotient

bundle of V ⊗OG(2,5) by F . We have

0 → F → V ⊗OG(2,5) → E → 0. (0.7)

Let us write aG(2, 5)\0 for the punctured affine cone of G(2, 5) in its Plücker em-

bedding. The sequence (0.7) descends to the punctured affine cone aG(2, 5)\0 and

yields a sheaf of rank 2 (that we keep denoting by E ). By C[aG(2, 5)] we mean the

coordinate ring of aG(2, 5) in affine space A10. If we denote the variables of affine

space by xij , the ring C[aG(2, 5)] is the quotient of C[xij ] by the ideal of submaximal

Pfaffians of the skew matrix

M =




x12 x13 x14 x15

x23 x24 x25

x34 x35

x45


 .

The Serre module of E ,

E =
⊕

k≥0

H0(aG(2, 5), E (k)),

over the ring C[aG(2, 5)] is generated by 5 elements identified with either 5 column

vectors si =
( ai

bi

)
or with the five columns of M . These generators are yoked by the

following 10 relations:

xijsk − xiksj + xjksi for 1 ≤ i < j < k ≤ 5. (0.8)

These come from the map
∧2 H0(aG(2, 5),E ) ³ H0(OaG(2,5)(1)). In fact, we have

si ∧ sj = xij ∈ H0(aG(2, 5),OaG(2,5)(1)) and the relations of (0.8) are expressing the

tautology

(si ∧ sj)sk − (si ∧ sk)sj + (sj ∧ sk)si. (0.9)

It is easy to see that at a point of aG(2, 5) either si = sj = sk and (0.9) is trivially

true, or, say si and sj span the fibre of E , in which case sk = αsj + βsj at p and by

direct computation we derive (0.9).

The point of this description of E is to enable the setting up of a grading com-

patible with the grading on C[aG(2, 5)] yielding a weighted Grassmannian. (See

Section IV.1 for a definition of weighted Grassmannian). Then, via the Serre functor,

the graded module E will correspond to the tautological orbi-bundle on the weighted

Grassmannian.



11

Let ci ∈ 1
2Z be half-integers such that wt(xij) = ci+cj is the grading of C[aG(2, 5)]

giving the weighted Grassmannian. Denote C[aG(2, 5)] with this grading by R. Then

the assignment w̃t(si) = ci defines a Z-grading on E by setting

En =
{

v ∈ E | v is homogeneous and w̃t(v) = n + 1/2
}

where by homogeneous we mean a sum of elements
∑

fisi where fi ∈ R is homoge-

neous and deg(fi) + w̃t(si) is constant when varying i. Notice that we have

RmEn ⊂ Em+n

and that the relations of (0.9) are homogeneous with respect to this grading.

Let Ẽ be the sheaf on the weighted Grassmannian G = ProjR corresponding to

the graded module E under Serre’s functor. For a subvariety, X ⊂ G the restriction

of Ẽ to X can be a vector bundle of rank 2. We will see how to embed curves with

a halfcanonical divisor A into generalised weighted Grassmannians using a bundle

of rank 2 whose Serre module is isomorphic to E described above. This will be

done in more detail in Chapter IV. For example, for a curve C of genus 14 with a

halfcanonical divisor A with dimH0(A) = 5 we can find a vector bundle E on C of

rank 2 and determinant A such that its Serre module E over the ring R(C, A) has four

generators 〈s1, s2, s3, s4〉 ⊂ H0(E ) in degree 0 and one generator t ∈ H0(E (A)), in

degree 1. If this is to be induced by Ẽ, the tautological orbi-bundle of certain weighted

Grassmannian wG, we infer from numerical inspection that the half-integers giving

the grading of C[aG(2, 5)] must be (c1, c2, c3, c4, c5) = (1
2 , 1

2 , 1
2 , 1

2 , 3
2). If we trace back

our definition of the graded module E such weighting yields

w̃t(si) =
1
2

for i = 1..4, and w̃t(s5) =
3
2

In other words, E has four generators in degree 0 and one generator in degree 1.

Reduction to halfcanonical curves. Once we have made up our mind to use

the vector bundle method and the notion of quasilinear section, the idea to study-

ing halfcanonical curves is a natural reduction step. Just as in Mukai’s canonical

curves, halfcanonical curves are a few steps (in fact, exactly one) down the ladder of

quasilinear sections containing a surface of general type.
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In general the halfcanonical ring of a curve in the canonical linear system of a

surface of general type is simpler to compute than the canonical ring of the surface.

Supporting this assertion is the fact that the geometry of nonsingular curves is far

simpler than of surfaces of general type. The same applies to the theory of coherent

sheaves on a nonsingular curve. However, working with the halfcanonical ring on a

curve is harder than working with its canonical ring. In the halfcanonical case the

sheer numerical structure given by the theorems of Noether and Petri in the canonical

curve case is unavailable. (These theorems have a subtle presence in Mukai’s work).

In Chapter III we prove some incipient results in this direction. In most important

cases they fell short on giving the whole information that, say, a Petri type theorem

for the halfcanonical ring R(C, A) would give. This has prompted in Chapter III the

study of all the “easy” cases of halfcanonical rings of codimension ≤ 3. When taken

a step up the ladder to the canonical ring of a surface of general type, these “easy”

cases correspond to the canonical models of surfaces of general type that have been

know since the time of Enriques.



CHAPTER II

Preliminaries

In this work, all varieties are defined over C.

Definition II.1. Let V be a finite dimensional vector space over C.

(i) A polynomial ring in n indeterminates will be denoted by C[x1, . . . , xn].

(ii) When a choice of basis for V is clear, the polynomial ring associated to V

is denoted by C[V ] and by definition is the C-module

C[V ] =
⊕

n≥0

SnV.

(iii) Affine space of dimension n is denoted by An; when is necessary to exhibit a

system of coordinates, by A[x1, . . . , xn] or to include the underlying vector

space, by A[V ].

(iv) Projective space of dimension n is denoted by Pn, P[x1, . . . , xn], P[V ], fol-

lowing similar conventions as in the previous item.

Let C[x1, . . . , xn] be a polynomial ring generated in arbitrary degrees.

(v) Weighted projective space, by definition ProjC[x1, . . . , xn], is denoted by

P(1a, 2b, . . . ) where a is the number of variables of weight 1, b the number

of those of weight 2 and so forth.

Let C be a nonsingular curve.

(vi) The notation gr
d is for a linear system of dimension r and degree d, i.e. for

a (r + 1)-dimensional subspace of global sections of a line bundle on C of

degree d.

(vii) The algebraic variety of linear systems of dimension r and degree d is de-

noted by W r
d (C).

(viii) The gonality of C, denoted gon(C), is the least integer d for which there

exists a g1
d on C.

13
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We introduce some additional notation in this and subsequent chapters. An index

for all the notation used in this work can be found on page 145.

II.1. Graded rings, Hilbert series and Hilbert numerator

Definition II.2 (Compare with [GW]). In this work a graded ring R is un-

derstood to be a finitely generated C-algebra which decomposes as a direct sum of

C-vector spaces R =
⊕

n≥0 Rn such that

(i) R0 = C;

(ii) RmRn ⊂ Rm+n, for m,n ≥ 0.

The summands Ri are called the homogeneous components of R and their elements

are referred to as being homogeneous. (If R is a polynomial ring we will also use the

terminology quasihomogeneous forms). An ideal of R is said to be homogeneous if

it can be generated by homogeneous elements. We denote by m the homogeneous

maximal ideal
⊕

n>0 Rn. A graded module over R is an R-module with a grading
⊕

n∈ZMn of C-modules such that RiMj ⊂ Mi+j for all j ∈ Z and for all i ≥ 0. For

a graded R-module M and an integer d we define the shift by d to be the module M

endowed with the grading
⊕

n∈ZMn+d. We denote this new graded module by M(d).

Remark. As a convention we treat R as a graded R-module by setting Ri = 0 for

all negative i. A similar convention applies to the quotient of R by a homogeneous

ideal R/I.

II.1.1. The graded ring of a divisor. Suppose that we are given X a variety, D

a line bundle on X and a set s1, . . . , sk of global sections of D. A classical problem is

to study the image of X under the map

X ⊃ X0 3 p 7→ (s1(p), . . . , sk(p)) ∈ Pk−1

where X0 is an open set of X where the map can be defined. From the initial question

of which equations define the image of X in Pk−1 to the more sophisticated issue of

projective normality, all can be rephrased in terms of the algebraic properties of

s1, . . . , sk. E.g., the image of X under the map above is contained in a hypersurface

of degree d if and only if there exists a relation of the same degree among s1, . . . , sk.
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We take all the algebraic information on any set of sections of any multiple nD into

to the graded ring associated to D.

Definition II.3. Let X be a variety and D a divisor on X. The graded ring of

D on X is the ring

R(X,D) =
⊕

n≥0

H0(X,nD).

The ring R(X, D) is a very useful tool even when D is not ample. For example,

the pair (S, KS) consisting of a (nonsingular) surface of general type and its canonical

divisor produces the canonical model X = ProjR(S, KS). The surface X is embedded

in weighted projective space and has at most du Val singularities resulting from the

contraction of −2-cycles on S by the natural map S → Proj R(S,KS). (See [Mum]).

II.1.2. Example. Consider a nonsingular curve C of genus 6 with a divisor A such

that 2A = KC and that h0(A) = 3. A nonsingular quintic curve in the projective

plane is a curve of genus 6, and indeed the hyperplane section is the a divisor A with

dimH0(A) = 3. In this example we will see how to recover the plane model of (C, A)

from the original data.

A curve C in this conditions is said to have a halfcanonical divisor. In general, a

curve C is said to have a subcanonical divisor if there exists a divisor A such that for

some integer k, we have kA = KC . The degree of a halfcanonical divisor is uniquely

determined by the genus: deg(A) = g(C)− 1, and for n ≥ 3 the dimension of H0(nA)

is given by the Riemann–Roch theorem. For n = 1 the theorem tells us nothing about

the dimension of the space of global sections of OC(A):

h0(A)− h1(A) = 1− g + g − 1 = 0;

except that h0(D) = h1(D) which we already knew by Serre duality. This is typical

in the study of subcanonical divisors on varieties: there is a range of “initial values”

of h0(nA) which we have to specify.

We reconstruct the plane quintic and its hyperplane section divisor by constructing

the graded ring R(C, A). We start by writing the dimension of the spaces H0(nA)

dimH0(nA) =





3 if n = 1
6 if n = 2
5(n− 1) if n ≥ 3
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Consider the following generators for H0(nA) when n ≤ 3:

H0(A) = 〈x1, x2, x3〉,
H0(2A) ⊃ 〈

S2(x1, x2, x3)
〉
,

H0(3A) ⊃ 〈
S3(x1, x2, x3)

〉
.

Let us assume that the divisor A is free. Denote by 〈s1, s2〉 ⊂ H0(A) a pair of sections

spanning a free pencil. Then Castelnuovo’s free-pencil trick shows that the kernel of

〈s1, s2〉 ⊗H0(nA) → H0((n + 1)A) (1.1)

is isomorphic to H0((n − 1)A) and in particular, we deduce that for n ≥ 4 the map

(1.1) is surjective. The upshot is that if
〈
S2(x1, x2, x3)

〉
and

〈
S3(x1, x2, x3)

〉
span the

whole of H0(2A) and H0(3A), respectively, then we have no need for extra generators

for R(C, A). This happens if and only if the image of C by the map ϕA does not map

to a plane conic or to a plane cubic. If ϕA(C) is a conic or a cubic then A cannot be

free. We deduce that

A free =⇒ R(C, A) is generated by H0(A).

All we need now to describe R(C, A) is the ideal IA, of relations holding among

x1, x2, x3. A relation will only occur when the number elements of Sn〈x1, x2, x3〉
exceeds the dimension of h0(nD), in other words, when

(
n + 2

n

)
≥ 5(n− 1).

This happens first for n = 5. Therefore the ideal IA is generated by a single quintic

relation, as expected.

II.1.3. Speeding up the calculation.

Definition II.4. Let M be a finite graded module over a graded ring R. The

Hilbert function of M is defined by setting φM (n) = dimCMn and the Hilbert series

by

HM (t) =
∑

n∈Z
φM (n)tn.

For example, take M = R = C[x1, . . . , xd]. Then

HM (t) =
1

(1− t)d
. (1.2)
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To see this, expand each of 1
1−t on the right-hand side as 1 + t + t2 + · · · , and then

expand the product (1 + t + t2 + · · · )d. For each k the coefficient of tk is exactly the

dimension of Rk. Assume now that I ⊂ R is a homogeneous ideal and take for M

the R-module R/I. Since R ³ R/I the same line of reasoning applies here, except

that we must correct numerator of (1.2) to account for the relations, 1st syzygies, 2nd

syzygies, and so forth. Thus we can write

HM (t) =
1 + a1t + a2t

2 + · · ·
(1− t)d

. (1.3)

Theorem II.5 (Hilbert). Let M be a finite graded R-module of dimension δ.

Assume that R is generated over C by elements of degree 1. Then φM is of polynomial

type of degree δ − 1.

Proof. See [BH, p. 147]. ¤

This theorem shows that the numerator of (1.3) is indeed a ‘finite’ polynomial.

The reason is that multiplying the Hilbert series of M by (1 − t)δ is the same as

computing
∑

k≥0

∆δφM (k)tk

and as φM is polynomial of degree δ − 1, for large enough k, ∆δφM (k) = 0. (We go

through a similar computation in more detail a few lines below, where we define the

operator ∆).

Besides the clear advantage of being compact notation, writing the Hilbert series

of M as in (1.3) is a natural byproduct of a free resolution of M . Consider one such

exact complex of free graded R-modules:

0 ← R/I ← R ←
⊕

R(−ai) ←
⊕

R(−bi) ← · · · (1.4)

Taking dimensions over graded components we see that

HM (t) =
1

(1− t)d
−

∑
HR(−ai)(t) +

∑
HR(−bi)(t)− · · ·

and as HR(−a) = ta

(1−t)d we deduce that

HM (t) =
1 +

∑
tai −∑

tbi + · · ·
(1− t)d

.
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Conversely having the Hilbert series of R/I in a fractional form with denominator

(1− t)d (corresponding to the generators of R) takes us one step closer to unfolding

the structure of R/I.

Proposition II.6. Let C be a nonsingular curve of genus g with a halfcanonical

divisor A with h = h0(A). Then the Hilbert series of R(C, A) is given by

1 + (h− 2)t + (g−2h + 1)t2 + (h− 2)t3 + t4

(1− t)2
(1.5)

Proof. By Riemann–Roch,

H(t) = 1 + ht + g t2 +
∑

k≥3

(k − 1)(g−1)tk,

thus

(1− t)H(t) = 1 + (h− 1)t + (g−h)t2 + (g−2)t3 +
∑

k≥4

(g−1)tk

and hence

(1− t2)H(t) = 1 + (h− 2)t + (g−2h + 1)t2 + (h− 2)t3 + t4. ¤

If we apply this to our example, (C, A) of a curve of genus 6 and halfcanonical

net, we obtain

HR(C,A) =
1 + t + t2 + t3 + t4

(1− t)2
.

As h = 3 there is at least one more generator in degree 1 in any minimal surjection

C[xi] ³ R(C, A) we might set up. Multiplication by (1− t) leads to

1− t5

(1− t)3
.

If this were the starting point of the computations of our example we would now haste

the guess that there is a surjection ev : S ³ R with S = C[x1, x2, x3]; in other words,

that R(C, A) is generated by H0(A), and furthermore, that there is a resolution

0 ← R(C, A) ← S ← S(−5) ← 0, (1.6)

i.e. R(C, A) = C[x1, x2, x3]/(F5). In a certain sense, what the Hilbert series does is to

go through the table-like computation of Paragraph II.1.2 and compute the general

case given the numerical data of (C, A). However it will not tell us what assumptions
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on the geometry of (C, A) in fact lead to this general situation. As we saw before the

assumption that A be a free divisor played an important part.

Consider the case when A has a simple base point. Since the genus of C is ≥ 2, the

canonical divisor 2A = KC is free of base points, hence it is not true that S2〈x1, x2, x3〉
generate the space H0(2A). Therefore there has to be a new generator y ∈ H0(2A)

and a quadratic relation F2 ∈ S2〈x1, x2, x3〉. The statements we made about the

generators and resolution of R(C, D) are no longer right. The polynomial ring S must

be substituted for C[x1, x2, x3, y] and the resolution of (1.6) for∗

0 ← R(C, A) ← S ← S(−2)⊕ S(−5) ← S(−7) ← 0.

Yet the Hilbert series are identical:

1− t5

(1− t)3
=

1− t2 − t5 + t7

(1− t)3(1− t2)
. (1.7)

This is a first, rather artificial, example of masking. We mention this in later chapters

and we give examples where the general case is ‘masked’. Roughly, masking occurs

when generators of two terms of a resolution, either adjacent or an odd number of

terms apart happen to have the same degree and thus cancel out in the Hilbert series.

Just like in (1.7):

1− t5

(1− t)2
=

1− t2 + t2 − t5

(1− t)3
=

1− t2 − t5 + t7

(1− t)3(1− t2)
.

II.1.4. Polynomial rings generated in arbitrary degree.

Definition II.7. Compare with [BH, p. 167]. A function φ : Z → Q is said

to have quasipolynomial type (of period g) if there exist a positive integer g and

polynomials Pi ∈ Q[t], i = 0, . . . , g − 1, of equal degree and equal leading coefficient,

such that for m À 0, φ(mg + i) = Pi(mg + i), for 0 ≤ i ≤ g − 1.

It is an easy exercise to extend the results of [BH] to this setting. Namely, if we

define the operator ∆g by ∆gφ(n) = φ(n+g)−φ(n) for any function φ : Z→ Q, then:

Proposition II.8. The following are equivalent:

(i) ∆d
gφ(n) = c, c 6= 0, for all n À 0;

∗The new term, A(−7), accounts for the syzygy: F5 · F2 − F2 · F5.
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(ii) φ is a quasipolynomial function of period g and degree d.

Proof. Adapt proof of [BH, 4.1.2]. ¤

This is an analogue of Theorem II.5:

Theorem II.9. Let S be a graded ring generated in arbitrary positive degrees and

M be a finite graded S-module of dimension δ. Then φM is of quasipolynomial type

of degree δ − 1.

Proof. See [BH, 4.3.5]. ¤

Let us illustrate this theorem with a few examples. Take

M = S = C[x1, . . . , xd]

where the weight of the variable xi is the integer bi > 0. Expanding the product

(1 + tb1 + t2b1 + · · · )(1 + tb2 + t2b2 + · · · ) · · · (1 + tbd + t2bd + · · · )

what we get as the coefficient of tk is exactly the dimension of the space of quasiho-

mogeneous forms of S of degree k. Thus,

HS(t) =
1∏d

i=1(1− tbi)
.

Notice that, like in the case of a polynomial ring generated in degree 1, multiplying

the Hilbert series by (1− tb) is equivalent to computing
∑

k≥0

∆bφM (k)tk.

Fixing b the least common multiple of {bi | 1 ≤ i ≤ d}, so that for all i, (1−tbi) divides

(1− tb) we deduce that

(1− tb)dHS(t) =
(1− tb)d

∏d
i=1(1− tbi)

is a polynomial. In virtue of Theorem II.9, for any homogeneous ideal I ⊂ S, writing,

just as in Paragraph II.1.3, the Hilbert series of S/I as

1 + a1t + a2t + · · ·∏d
i=1(1− tbi)

we deduce that the numerator of this rational function is a polynomial. Which brings

us to the definition:
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Definition II.10. Let S = C[x1, . . . , xd] be a polynomial ring generated in arbi-

trary positive degrees. Denote the degree of the variable xi by bi. Let M be a graded

S-module of finite type. Then the polynomial

HM (t)
d∏

i=1

(1− tbi)

is called the Hilbert numerator of HM (t), or simply the Hilbert numerator of M . We

denote this polynomial by QM (t).

We end this section with a standard result computing the degree of graded S-

module M directly from the Hilbert numerator.

Definition II.11. Let S be as above, a polynomial ring generated in arbitrary

positive degrees, and M a graded S-module of dimension d− 1. The degree of M is

by definition cd/d! where cd is the leading coefficient of the quasi-polynomial φM (n).

It follows that deg M equals the constant value of ∆d
gφM (k) for large k.

The aim is to show a way to compute the degree of M from the Hilbert polynomial

of M . We start with a preliminary result.

Proposition II.12. Let A = C[x1, . . . , xd] be a polynomial ring generated in

degree 1 and M a graded A-module. Denote the codimension of M by c and its

Hilbert numerator by

QM (t) = a0 + a1t + · · ·+ art
r.

Then

deg M =
r∑

i=0

ai

(
r − i

c

)
.

Proof. For each i, let us define a numerical function:

φi(k) = ai

(
k − i + d− 1

d− 1

)
.

The binomial coefficient
(
k−i+d−1

d−1

)
counts the number of homogeneous forms of degree

k − i in d variables, thus its associated series
∑

k∈Z φi(k)tk equals ait
i

(1−t)d . Therefore,

it follows that

HM (t) =
∑

k∈Z

(
r∑

i=1

φi(k)

)
tk,
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and therefore

φM (k) =
r∑

i=1

φi(k). (1.8)

Thus to compute degree we have only to apply ∆d−c−1 to both sides and decide for

which “large enough” k does ∆d−c−1φM (k) becomes a nonzero constant. This can be

done using (1.8). Notice that we can use the extension to negative integers by zero,

since for k < 0 the binomial coefficient
(
k−i+d−1

d−1

)
is zero for any 0 ≤ i ≤ r. Now, by

an elementary binomial identity it follows that

∆d−c−1φi(k) =
(

k − i + c

c

)
.

The function
∑r

i=1 ∆d−c−1φi(k) will settle down in some nonzero constant value for

k big enough. With what we have done so far it is easy to give a precise value k0 for

which this first happens. Just notice that

(1− t)c+1
∑

k∈Z

(
r∑

i=1

φi(k)

)
tk = QM (t) = a0 + a1t + · · ·+ art

r

and therefore if

∑

k∈Z

(
r∑

i=1

∆d−c−1φi(k)

)
tk = b0 + b1t + · · · bk0t

k0 +
∑

k≥k0+1

bk0t
k

then r = k0 + c and we finally conclude that

deg M =
r∑

i=1

φi(r − c) =
r∑

i=0

ai

(
r − i

c

)
. ¤

Corollary II.13. Let S = C[x1, . . . , xd] be a polynomial ring and M a graded

S-module. Denote the degree of the variable xi by bi, the codimension of M by c and

the Hilbert numerator of M by

QM (t) = a0 + a1t + · · ·+ art
r.

Then

deg M =
∑r

i=0 ai

(
r−i
c

)
∏d

i bi

.

Proof. This is a corollary of the proof of the previous proposition. By definition

we have
d∏

i=1

(1− tbi)HM (t) = QM (t) (1.9)
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By the identity

(1 + t + t2 + · · · tb−1)(1− t) = (1− tb)

equation (1.9) is equivalent to

(1− t)d
d∏

i=1

(1 + t + · · ·+ tbi−1)HM (t) = QM (t).

Since
d∏

i=1

(1 + t + · · ·+ tbi−1)HM (t) =
∑

k∈Z

{
d∏

i=1

(1 + t + · · ·+ tbi−1)φM (k)

}
tk

we deduce that the numerical function

ψ(k) =
∑

0≤ji≤bi−1

φM (k − j1 − j2 − · · · − jd) (1.10)

is of polynomial type (of some degree ≤ d) and from (the proof of) Proposition II.12

that the leading coefficient of ψ times the factorial of its the degree equals
r∑

i=0

ai

(
r − i

c

)
.

The degree of ψ is the same as that of the quasipolynomial function φM (k) and in

terms of the leading coefficient of coefficient of φM (k), that of ψ comes multiplied by
∏d

i=1 bi as we deduce from (1.10). ¤

II.1.5. Remark. When we introduce Gorenstein ideals, this formula will become

slightly easier to remember:

deg S/I =
∑r

i=0 ai

(
i
c

)
∏d

i bi

.

with notations as in Corollary II.13.

II.2. The attributes of Cohen–Macaulay and Gorenstein

The notions of a Cohen–Macaulay and Gorenstein play an important role in the

geometry of graded rings. In this section we introduce the notions and state the

results that we use in subsequent chapters. The books of Eisenbud [Ei] and Bruns

and Herzog [BH] are standard reference texts that do the general theory of Cohen-

Macaulay modules. As far as duality on graded rings is concerned we follow the work

of Goto and Watanabe [GW].
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Definition II.14 (See [Ei]). A ring R is Cohen–Macaulay if and only if

depthP = codimP

for every maximal ideal P of R. Where the codimension of P is the supremum of

lengths of chains of primes descending from P and the depth of P is the length of a

maximal R-sequence contained in P .

Besides being a measure of how close to good a ring is the notion of Cohen–

Macaulay yields useful results when dealing with intersections. Suppose that R is

a graded ring and f1, . . . , fn are homogeneous forms in R. Then the ideal I =

(f1, . . . , fn) defines a subscheme of ProjR given by ProjR/I. From the onset we

would like to know the dimension of R/I and more specifically what are the primary

components of the scheme ProjR/I. Roughly speaking ProjR/I is made of irre-

ducible components with some multiplicity plus some embedded components. This

decomposition corresponds to a primary decomposition of I ⊂ R (recall that primary

decompositions are not unique). The Unmixedness result says that if I is generated

by a regular sequence the scheme ProjR/I has no embedded components. We start

by addressing the issue of dimension.

Theorem II.15. Let R be a local Cohen-Macaulay ring. Then x = x1, . . . , xr is

an R-sequence if and only if dimR/x = dimR− r

Proof. See [BH, 2.1.2]. ¤

We can recover this result for graded rings by localising at the graded maximal

ideal m. Noticing that if (x) is a sequence of homogeneous elements of R then

(x) is an R-sequence ⇐⇒ (xm) is an Rm-sequence.

Theorem II.16 (Unmixedness Theorem). Let R be a ring. If I = (x1, . . . , xn) is

an ideal generated by n elements such that codim I = n, then all minimal primes of

I have codimension n. If R is Cohen-Macaulay, then every associated prime of I is

minimal over I.

Proof. See [Ei, 18.14]. ¤
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II.2.1. Example. These two results can be used to compute the homogeneous ring

of a projective variety. Here is an example that almost works. Recall the if X is

a projective reduced variety in (weighted) projective space P then the homogeneous

ideal of X, denoted by I(X) is the ideal of quasihomogeneous forms F ∈ C[x1, . . . , xn]

that vanish on X. The ideal I(X) is a radical ideal. By the Nullstellensatz, the zero

set of two ideals A,B coincide if and only if RadA = RadB. If we have the variety

X ⊂ P and an ideal of quasihomogeneous forms (f1, . . . , fn) that cuts out X set-

theoretically X then Rad(f1, . . . , fn) = I(X). Take for example the twisted cubic.

The curve C3 ⊂ P3 is the image of P1 by the third Veronese embedding:

(u, v) 7→ (u3, u2v, uv2, v3).

The homogeneous ideal of C3 ⊂ P3 = P[x, y, z, w] is generated by 3 quadrics given by

rank
[

x y z
y z w

]
≤ 1.

Now let us take the quadric q = xz − y2 and the cubic f = det
( x y z

y z w
z w 0

)
. Since

q is irreducible and f is not a zero divisor in C[x, y, z, w]/(q), by definition, (q, f)

are a regular sequence. Since C[x, y, z, w] is a Cohen–Macaulay graded ring, by The-

orem II.15 the dimension of C[x, y, z, w]/(q, f) is 3 − 2 = 1. By the Unmixedness

Theorem we know that all associated primes of (q, f) are minimal over (q, f). Let

us now show that there is only one minimal prime over (q, f) corresponding to the

irreducible component C3. On the one hand it is clear that q and f go through C3.

(The condition on the rank implies that the determinant of the matrix defining f is

zero). On the other hand if

q = 0 and f = z det ( y z
z w )− w det ( x z

y w ) = 0

then from q = 0 we deduce that there exists k ∈ C such that (x, y) = (ky, kz) or

(y, z) = (kx, ky). With no loss in generality, we can assume that (y, z) = (kx, ky).

Then y = kx, z = k2x and from f = 0 we get kz = w, i.e. w = k3x. This means

that the rank of the matrix [ x y z
y z w ] is ≤ 1. We have shown that q and f cut out

set-theoretically C3. Scheme-theoretically, (q, f) cuts out a subscheme of degree 6.

(The degree is easily computed from the fact that f, g are a regular sequence. The

scheme-theoretic intersection is 2C3, in other words q = 0 and f = 0 meet with
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multiplicity 2 at C3. The twisted cubic is a classical example of a self-linked curve).

However, if the degree of R/(q, f) were 3 then we would deduce that I(X) = (q, f).

This sketches a type of reasoning that will be applied in a later chapter.

Proposition II.17. Let S be a polynomial ring (generated in arbitrary positive

degrees). The degree of an homogeneous ideal I ⊂ S is by definition the degree of the

graded S-module S/I. Assume that I is primary. Let P be the prime ideal Rad I.

Suppose that deg(I) = deg(P ). Then I = P .

Proof. Since I is primary the set of associated primes of A/I consists of {P}.
Consider a dévissage of A/I:

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = A/I

where Mi/Mi−1 ' A/P . (See Reid’s textbook [R95, pag 103]). In particular we have

deg(P ) = deg(Mi)− deg(Mi−1) and therefore

deg(A/I) = n deg(P ).

We deduce that n = 1 and therefore A/I = A/P . ¤

Remark. When S is a polynomial ring generated in degree 1, the integer n is by

definition the multiplicity of P in I and corresponds to the geometric multiplicity of

the irreducible component given by P . For a general ideal I with a set of minimal

primes {P1, . . . , Pr} the multiplicity of Pr in I can be defined as the length of a

dévissage of the APr -module (A/I)Pr . It can be checked this notion is well defined

(see [H, I.7.4]).

Definition II.18. [BH, §3.4] Let R be a Noetherian regular local ring. An

ideal I ⊂ R is a Gorenstein ideal of codimension c if R/I is Cohen–Macaulay and

Extc
R(R/I, R) ∼= R/I. A Noetherian ring R is Gorenstein if each localisation at

maximal ideals is a Gorenstein local ring.

Since,

c = codim I = min
{
i | Exti

R(R/I, R) 6= 0
}

(see [BH, 1.2.5]) if

R/I ← F0 ← F1 ← · · · ← Fc ← 0 (2.1)
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is a minimal free resolution of a Gorenstein ideal, the dual complex of (2.1) will

have zero cohomology at every degree except at degree c and the cohomology at this

degree is Extc
R(R/I,R), which by assumption is again R/I. Therefore by uniqueness

of minimal free resolutions, F∨
c−i

∼= Fi and this is expressed by saying that (2.1) is

self-dual.

II.2.2. The canonical module of a graded ring. In [GW] the canonical module

of a graded ring is defined. This is a global version of the canonical module of a

local Noetherian ring, as in [Ei] or [BH]. Its explicit definition would require some

more homological algebra. In this account we only sketch some of its properties. Let

us denote the canonical module of a graded ring by ωR for any graded ring R as in

Definition II.2. If R is a graded ring and M is a graded R-module we denote the

associated sheaf to M on Proj(R), image of M by Serre’s functor, by M̃ . (See [H, p

116]).

Theorem II.19. [GW, 5.1.8] Let X = Proj(R). Then ω̃R = ωX . ¤

Notice that ProjR is a projective scheme and has a dualising sheaf ωX = Extc
P(OX , ωP)

given that we can embed X as a subscheme of projective space P of some codimension

c. (See [H, 7.5]). The next two results will be used in the proof of Theorem II.23.

Theorem II.20. [GW, 2.1.3] If R is a Cohen-Macaulay graded ring, then R is

Gorenstein if and if ωR = R(d) for some d ∈ Z.

Theorem II.21. [GW, 2.1.6] Let R be a Cohen-Macaulay graded ring. Then for

any homogeneous ideal I of codimension c, such that R/I is Cohen-Macaulay

Extj
R(R/I, ωR) =





0 if i < c

ωR/I if i = c

Definition II.22. Let S = C[x1, . . . , xn] be graded polynomial ring. A sub-

scheme X ⊂ Proj(S) = P is called projectively Gorenstein if the homogeneous ideal

of X is a Gorenstein ideal. In particular a projectively Gorenstein subscheme of P is

arithmetically Cohen–Macaulay, i.e. its homogeneous ideal is Cohen–Macaulay.
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Theorem II.23. Let X ⊂ P be a projectively Gorenstein scheme of codimension

c. Then the minimal free resolution of OX as an OP-module has length c:

OX ← L0 ← · · · ← Lc ← 0

and moreover there is an integer—the adjunction number—such that

(i) L∨c−i ⊗OP(k) = Li (Gorenstein symmetry)

(ii) ωX = ωP ⊗ L∨c (Adjunction)

Proof. Let S denote the homogeneous ring of P and I the homogeneous ideal of

X. Let

S/I ← L0 ← · · · ← Lc ← 0

be a minimal free resolution of S/I. Apply the functor HomS( ,ωS):

0 → L∨0 ⊗ ωS → · · · → L∨c ⊗ ωS → 0.

Since S/I is Cohen–Macaulay, this complex is exact at every degree except in degree

c, where the cokernel is ωS/I . By the Gorenstein assumption ωS/I = (S/I)(d); and

by uniqueness of minimal resolutions, L∨c−i ⊗ ωS(−d) = Li. In particular,

ωS/I = (S/I)(d) = L0(d) = L∨c ⊗ ωS ¤

II.3. Pfaffians

Let M = (mij) be a 5 × 5 skew matrix. We define the submaximal Pfaffians of

M , using the notation Pfi for the ith submaximal Pfaffian by

Pfi = (−1)i+1 (mhjmkl −mhkmjl + mhlmjk)

where the indices i, h, j, k, l are such that {i, h, j, k, l} = {1, 2, 3, 4, 5}. Modulo a plus

or minus sign the submaximal Pfaffian Pfi is the Pfaffian of the skew matrix obtained

from M by removing the row and column i. Given that a skew matrix has even rank,

the determinant of M and therefore the Pfaffian of M are zero. Expanding along
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each row we obtain the following Pfaffian† identity:




m12 m13 m14 m15

m23 m24 m25

m34 m35

m45







Pf1
Pf2
Pf3
Pf4
Pf5




= 0

If we regard Pfi as defining polynomial equations in a ring C[mij ] then this identity

gives a set of 5 syzygies. In connection with this recall the theorem of Buchsbaum–

Eisenbud on page 4. As shorthand notation we denote the 5-tuple consisting of the

submaximal Pfaffians of M by Pf M .

†It is our convention to write only the upper triangle of a given skew matrix.



CHAPTER III

Halfcanonical Curves

Throughout this work C is a nonsingular abstract algebraic curve. A priori, C is

not embedded in a projective space. The initial datum is the genus of C. One step

further we consider a polarising divisor of a particular kind.

Definition III.1. Let C be a nonsingular algebraic curve.

(i) A divisor A is called an halfcanonical divisor∗ if 2A = KC .

In this work we restrict our attention to effective halfcanonical divisors, i.e. those

for which h0(A) > 0. On an elliptic curve, there is only one effective halfcanonical

divisor. We restrict to curves of genus ≥ 2. Let A be a halfcanonical divisor on a

curve C of genus ≥ 2. Since g(C) ≥ 2 and 2A = KC , the divisor A is ample. To the

polarising divisor A we associate

(ii) the halfcanonical ring R(C, A) =
⊕

n≥0 H0(nA).

Let S be a nonsingular regular surface of general type. A general member C of

the canonical linear system |KS | is a nonsingular curve and by adjunction it has a

halfcanonical divisor A = KS|C . If S is a regular, it is left with two invariants pg

and K2. (According to our conventions on page 122, S is minimal). Additionally,

the genus of C is given by K2
S + 1 and the invariant pg of S is transferred onto C

as dimH0(A) = pg − 1. There is one more way in which we should think of (C, A)

as being given with two invariants, and this is related to the numerical structure of

R(C, A). The dimensions of the graded components of this ring are by definition

dimH0(nA). Hence on a first attempt at computing R(C, A) we must own this data.

The solution is given by the Riemann–Roch theorem (which for most of this work we

abbreviate to RR). For large n, the divisor nA is non special and so

dimH0(nA) = 1− g(C) + ndeg(A).

∗In the literature theta characteristic is also used to designate a halfcanonical divisor.

30
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The genus of C, h0(2A), has to be given and additionally so does h0(A).

The focus of this and later chapters will be, on the one hand, the construction

of curves with a halfcanonical divisor and on the other hand, almost equivalently,

to study the structure of the halfcanonical ring. We finish this introduction with a

proposition that we use many times in this work.

Proposition III.2. Let C be a nonsingular curve with a halfcanonical divisor, A.

Let D be a divisor and 〈s1, s2〉 ⊂ H0(D) a base-point free pencil. Then

(i) h0(A−D) ≥ h0(A)− deg(D)
2 ;

(ii) if deg(D) is odd, h0(A− 2D) > h0(A)− deg(D);

Proof. Castelnuovo’s free-pencil trick amounts to saying that, since the system

〈s1, s2〉 is free of base points, the map 2OC → OC(D) given by multiplication with s1

and s2, is surjective. The kernel of this map is a torsion free sheaf of rank 1 and since

C is a nonsingular curve this is equivalent to invertibility. Therefore,

0 → OC(−D) → 2OC → OC(D) → 0.

Finally, tensoring this with OC(A), we get h0(A−D) + h0(A + D) ≥ 2h0(A); so that

by Riemann–Roch and Serre duality, h0(A −D) ≥ h0(A) − deg(D)
2 . If deg(D) is odd

then indeed h0(A −D) > h0(A) − deg(D)
2 . But another application of Castelnuovo’s

free-pencil trick yields:

0 → H0(A− 2D) → H0(D)⊗H0(A−D) → H0(A).

Hence, 2h0(A−D) ≤ h0(A− 2D) + h0(A). Which implies that

h0(A− 2D) > h0(A)− deg(D). ¤

III.1. Noether’s theorem for halfcanonical divisors

In this section we give a few elementary results on the degree of the generators of

R(C, A). First recall Noether’s theorem.

Theorem III.3 (Noether). Let C be a nonsingular curve. If C is not hyperelliptic

then the maps SnH0(KC) → H0(nKC) are surjective. ¤

Without any assumptions on (C, A) the following is as good a result as we can get.
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Proposition III.4. Let C be a nonsingular curve of genus ≥ 2 and A a half-

canonical divisor on C. Then the ring R(C, A) is generated by elements of degree up

to 5.

Proof. The linear system 2A = KC is free and at least 2-dimensional. Take a

pencil of sections V ⊂ H0(2KC) and apply Castelnuovo’s free pencil trick. The kernel

of the map

H0(nA)⊗ V → H0((n + 2)A)

is isomorphic to H0((n− 2)A). For n ≥ 5, by RR and Serre duality, its dimension is

(n− 3) deg(A) = 2h0(nA)− h0((n + 2)A). ¤

Notice that C10 ⊂ P(1, 2, 5) is a nonsingular curve with a halfcanonical divisor

A = O(1) halfcanonically embedded, i.e. the homogeneous ring of C10 equals R(C, A),

and therefore this ring has a generator in degree 5.

Proposition III.5. Let C be a nonsingular curve with a halfcanonical divisor such

that h0(A) ≥ 2. Assume that the divisor A is free. Denote by d the degree in which

the ring R(C, A) is generated. Then d ≤ 4. Furthermore,

(i) If dimH0(A) = 2 then d ≤ 2 if and only if C is not hyperelliptic.

(ii) If dimH0(A) ≥ 3 then d ≤ 3.

(iii) If dimH0(A) ≥ 3 and 2 gon(C) > deg(A) then d ≤ 2.

Proof. To show that the maps

H0(A)⊗H0(nA) → H0((n + 1)A)

are surjective for every n ≥ 4 we use the next lemma, which we use again later in this

chapter.

Lemma III.6. Suppose |A| is free. Let 〈s1, s2〉 ⊂ H0(A) be a pair of sections

spanning a free pencil. Then, for n ≥ 4, the map

〈s1, s2〉 ⊗H0(nA) → H0((n + 1)A) (1.1)

is surjective.



III.1 Noether’s theorem for halfcanonical divisors 33

Proof of the lemma. This is a straightforward application of Castelnuovo’s free-

pencil trick. The kernel of such a map is isomorphic to H0((n − 1)A), and thus, for

n ≥ 4 its dimension (by RR and Serre duality) equals to (n − 2) deg(A). Hence the

image of (1.1) has dimension 2(n − 1) deg(A) − (n − 2) deg(A) = ndeg(A), which is

the dimension of H0((n + 1)A). ¤

This shows that R(C, A) is generated in degree 4, as long as A is free and thus in

all of the cases (i)–(iv).

Proof of (i). Since A is free, if C is a hyperelliptic curve, then by Proposition III.2,

h0(A− g1
2) ≥ 1 so that A is the hyperelliptic divisor. Then, neither of

H0(2A)⊗H0(2A) → H0(4A)

H0(A)⊗H0(3A) → H0(4A)

is surjective. Conversely If C is not hyperelliptic then H0(2A)⊗H0(2A) → H0(4A) is

surjective and by Castelnuovo’s free–pencil trick H0(A)⊗H0(2A) → H0(3A) is also

surjective.

Proof of (ii). We show that the map

H0(A)⊗H0(3A) → H0(4A) (1.2)

is surjective. We start by proving a lemma which we use, often without mention,

throughout this work.

Lemma III.7. Let A and B be two divisors on an algebraic curve C. The extension

bundles of OC(B) by OC(A) with maximum number of global sections are parametrised

by the cokernel of the multiplication map

H0(KC −A)⊗H0(B) → H0(KC + B −A).

Proof of the lemma. The group classifying extensions of OC(B) by OC(A) is

Ext1(B,A). By Serre duality we have:

Ext1(B, A) = Ext1(KC + B −A, KC) ' H0(KC + B −A)∨.

On the other hand, extensions of OC(B) by OC(A) with maximum number of global

sections,

0 → OC(A) → F → OC(B) → 0
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have zero connecting homomorphism H0(B) → H1(A). In other words F has max-

imum number of global sections if and only if its class [F ] ∈ Ext1(B, A), under the

canonical morphism Ext1(B, A) → Hom(H0(B),H1(A)) maps to zero. Which is to

say, F has maximum number of global sections if and only if

[F ] ∈ Ker
{
Ext1(B,A) → H0(B)∨ ⊗H1(A)

}
. (1.3)

Again by Serre duality we have

H1(A) ' Ext0(A,KC)∨ = Ext0(0, KC −A)∨ = H0(KC −A)∨.

Finally, by dualising the statement of (1.3) we conclude that the classes of Ext1(B, A)

corresponding to extensions with maximum number of global sections are in bijection

with the cokernel of the map H0(KC −A)⊗H0(B) → H0(KC + B −A). ¤

Let us apply this lemma to our case. Let F be an extension of OC(A) by OC(−A)

corresponding to an element of the cokernel of (1.2). We have

0 → OC(−A) → F → OC(A) → 0 (1.4)

with h0(F ) = h0(A) ≥ 3. Since h0(F ) > 2 there exists a section of F with a

nontrivial divisor of zeros, δ. Such section gives rise to an embedding OC(δ) ↪→ F ,

which by saturation yields

0 → OC(ξ) → F → OC(−ξ) → 0, (1.5)

for some effective divisor δ ⊂ ξ 6= 0. From this sequence we immediately conclude

that h0(ξ) = h0(A). As OC(ξ) cannot be a subsheaf of OC(−A), the composition of

OC(ξ) → F with the map F → OC(A) of (1.4) is injective. Since A is free ξ ' A.

This means that F is the split extension. We deduce that the cokernel of that map

(1.2) is trivial.

Proof of (iii). Suppose that dimH0(A) ≥ 3 and 2 gon(C) > deg(A). We prove that

the map

H0(A)⊗H0(2A) → H0(3A) (1.6)

is surjective. Consider F , an extension of OC(A) by OC corresponding to an element

of the cokernel of the map (1.6). Since dimH0(F ) > 2, as before, we can take a global
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section of F with a nontrivial divisor of zeros. The same construction as above now

yields:

0 → OC(ξ) → F → OC(A− ξ) → 0. (1.7)

Since A is free (1.7) implies that h0(A − ξ) ≤ h0(A) − 1 and as h0(F ) = 1 + h0(A),

we deduce that h0(ξ) ≥ 2. By 2 gon(C) > deg(A), we get 2 deg(ξ) > deg(A) and then

that 2 deg(A − ξ) < deg(A) < 2 gon(C). Hence h0(A − ξ) ≤ 1 and so h0(ξ) = h0(A).

As before we have an embedding OC(ξ) ↪→ OC(A) and since A is free we deduce that

ξ ' A. In other words F is the split extension. ¤

The statement and proof of this proposition are inspired in the article [GL] of

Green and Lazarsfeld. Their result characterises the normal generation of a line

bundle L (equivalently gives a condition for the graded ring of a complete linear

series to be generated in degree 1) in terms of the Clifford index, Cliff(C).

Theorem III.8 (Green–Lazarsfeld). Let L be a very ample line bundle on C, with

deg(L) ≥ 2 g +1− 2 · h1(L)− Cliff(C)

(and hence h1(L) ≤ 1). Then L is normally generated.

Notice that for the purposes of halfcanonical rings R(C, A) we will only expect to

have a normally generated halfcanonical divisor for relatively high values of h0(A).

On the other hand, by Serre duality h1(A) = h0(A) and therefore it will virtually

impossible to apply their theorem directly. However the proof, involving vector bun-

dles, has been easy to adapt to our case. We will need to refine the result in one

or two occasions when R(C, A) is still generated in degree ≤ 2 despite the fact that

2 gon(C) ≤ deg(A).

Notation. Throughout this work we use the notation

sym2 : S2H0(A) → H0(2A)

for the second symmetric product of H0(A). We use it mainly when A is a half-

canonical divisor on a curve C. In the last chapter the same notation is used for

S2H0(KS) → H0(2KS) in the context of surfaces of general type.

Let V be a finite vector space. The subvariety of P[S2V ] parametrising symmetric

tensors of rank ≤ k will be denoted by Qk.
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The following Proposition goes some way in the direction of characterising the

kernel of sym2, and therefore of deciding when R(C, A) is generated in degree 1.

Proposition III.9. Let C be a nonsingular curve and A a divisor on C such that

h0(A) ≥ 3. Consider the linear subspace of P[S2H0(A)] given as the projectivised

kernel of the map sym2 : S2H0(A) → H0(2A) and denote it by P[Ker sym2]. Let

d = bdeg(A)
2 c. Then,

(i) P[Ker sym2] ∩Q4 6= ∅ =⇒ W 1
d (C) 6= ∅;

Suppose that A is a halfcanonical divisor and let d′ ≤ 2h0(A)− 3. Then,

(ii) W 1
d′(C) 6= ∅ =⇒ P[Ker sym2] ∩Q4 6= ∅.

Additionally, suppose that d < d′ and that ξ ∈ W 1
d′(C) is a free pencil. Then there

exists a quadric of rank 4 in the intersection P[Ker sym2] ∩Q4.

Proof. The free part of |A| yields a morphism, ϕ : C → Ct ⊂ Ph−1 onto a curve of

degree t, where we have denoted h0(A) by h. We have the inequality

deg(ϕ) · t ≤ deg(A).

Let us suppose that P[Ker sym2]∩Q3 6= ∅. In other words assume that Ct is contained

in a quadric Q, of rank 3. Projecting from the vertex of Q and composing with ϕ,

C
ϕ

//

%%KKKKKKKKKKKK Ct ⊂ Q ⊂ Ph−1

π

²²

C2 ⊂ P2

yields a pencil of degree < deg(A)+1
2 , since

deg(π) · 2 ≤ t =⇒ deg(ϕ) · deg(π) ≤ deg(A)
t

· t

2
.

Next, consider the case when the rank of Q is 4. Again, project from the vertex of Q

to obtain:

C
ϕ

//

&&MMMMMMMMMMMMM Ct ⊂ Q ⊂ Ph−1

π

²²

Cs ⊂ Q4 ⊂ P3

where Cs is a curve of degree s ≤ t. As Cs ⊂ Q4, denoting by L1 and L2 the two

rulings of Q4, we can write Cs = aL1+bL2 with a, b ≥ 0 and a+b = s. But then either
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a < s+1
2 or b < s+1

2 and thus the corresponding ruling gives a pencil of degree strictly

less than s+1
2 ≤ t+1

2 ≤ deg(A)+1
2 . In both instances we conclude that W 1

d (C) 6= ∅.

Proof of (ii). Let us now assume that A is a halfcanonical divisor. Let ξ be a

base-point free pencil of degree d′ ≤ 2h0(A)− 3. Proposition III.2 yields that

dimH0(A− ξ) ≥ dimH0(A)− deg(ξ)
2

≥ dimH0(A)− dimH0(A) +
3
2

> 1.

We deduce that h0(A − ξ) ≥ 2. We choose two pencils of sections in each of H0(ξ)

and H0(A− ξ):

〈s1, s2〉 ⊂ H0(ξ) and 〈t1, t2〉 ⊂ H0(A− ξ).

Lemma III.10. The kernel of the map

〈s1, s2〉 ⊗ 〈t1, t2〉 → H0(A) (1.8)

is at most 1-dimensional.

Proof of the lemma. We apply Castelnuovo’s linear-bilinear principle. Arguing

by contradiction, suppose that the kernel of (1.8) is is 2-dimensional. Then, its

projectivised in P[〈s1, s2〉⊗〈t1, t2〉] is a line. Therefore it must intersect the variety of

rank 1 tensors: P[〈s1, s2〉]×P[〈t1, t2〉], as this variety is 2-dimensional. But the image

of a tensor w ⊗ v is simply w · v, hence, never zero unless one of w or v is zero. We

conclude that the kernel of the map above is at most 1-dimensional. ¤

Next, notice that the elements s1t1, s1t2, s2t1, s2t2 of H0(A) readily produce a

symmetric tensor,

σ = (s1t1) · (s2t2)− (s1t2) · (s2t1) ∈ S2H0(A)

which is in the kernel of the map sym2. By the lemma, σ has rank 3 or 4.

Finally suppose additionally, that d < d′ and ξ ∈ W 1
d′(C) is free. Applying Castel-

nuovo’s free-pencil trick, we see that the kernel of the map

〈s1, s2〉 ⊗H0(A− ξ) → H0(A)

is isomorphic to H0(A− 2ξ). We have

deg(A− 2ξ) = deg(A)− 2d′ = 2
(

deg(A)
2

− 1− d′
)

+ 2 ≤ 2(d− d′) + 2 ≤ 0.
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If deg(A − 2ξ) = 0 then d′ = deg(A)
2 = d. Hence deg(A − 2ξ) < 0 and therefore

dimH0(A− 2ξ) = 0. Thus the image of ξ under the map of item (ii), Q, is a quadric

of rank 4. ¤

III.2. Petri’s theorem for halfcanonical divisors

Notation. Let S = C[xi] be a polynomial ring. We denote a surjection of C[xi] onto

R(C, A) by ev : C[xi] → R(C, A). The notation ev is mostly used for minimal surjec-

tions, i.e., surjections corresponding to a minimal choice of generators of R(C, A). In

Chapter V the same notation is used for a surjection onto the canonical ring R(S,KS).

Let ev : S = C[xi] → R(C, A) be a minimal surjection. By definition IA is the

kernel of the map ev. By an abuse of language, we will sometimes say the ring R(C, A)

has codimension c when c is the codimension of IA. We denote by I ′A,d the subspace

of IA,d given as

I ′A,d =
d−1∑

k=1

Sk · IA,d−k.

Recall Petri’s theorem on the homogeneous ideal of the canonical model C2 g−2

of a nonsingular curve.

Theorem III.11 (Petri). Let C be a nonsingular curve of genus g ≥ 3. Assume

that C is not hyperelliptic. Then the homogeneous ideal of C2 g−2 is generated by

quadrics and cubics, and by quadrics only in case C is neither trigonal nor a nonsin-

gular plane quintic. ¤

Petri’s analysis is composed of two steps. In the first step one shows that the

canonical ideal IKC is generated by forms of degree ≤ 3. This step is purely algebraic

and somewhat easier. The second step is the core of Petri’s analysis. The argument

relates the geometry of C2 g−2 with the gonality of C. It relies on two auxiliary results.

One is Petri’s identity expressing a relation between the generators of IKC . The other

establishes a relation between gonality of C and the set cut by the generators of degree

2 of IKC . Petri’s identity has an important role. Without it, the fact that the quadrics

relations cut out the canonical model would have to be stated set-theoretically. When

the quadric relations cut out the canonical model, Petri’s identity turns the statement
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into a scheme-theoretical statement which is the conclusion of the theorem. (See [S]

for a proof of Petri’s theorem).

Proposition III.12. Let C be a nonsingular curve equipped with a free halfcanon-

ical divisor A. Let d be the maximum degree of a minimal set of generators of the

halfcanonical ideal IA. Let m be the maximum degree of the generators in a (minimal)

set of generators of R(C, A) Then d ≤ 4 + m. This is, in full display:

(i) d ≤ 8 when R(C, A) is generated in degree 4;

(ii) d ≤ 7 when R(C, A) is generated in degree 3;

(iii) d ≤ 6 when R(C, A) is generated in degree 2;

(iv) d ≤ 5 when R(C, A) is generated in degree 1.

Proof. The proof relies entirely on the elementary observation of Lemma III.6. Let

ev : C[Xi] ³ R(C, A) denote a minimal surjection. Since we assume that A is free, by

Proposition III.5, the ring R(C, A) is generated in degree 4 and therefore

a) our list (i)–(iv) exhausts all possibilities,

b) wt(Xi) ≤ 4 and

c) m = max {wt(Xi)}.
Fix X1 and X2 two variables of weight 1 such that ev(X1) = s1 and ev(X2) = s2

for 〈s1, s2〉 ⊂ H0(A) spanning a free pencil. The next thing to do is to reduce any

polynomial in the variables Xi to a convenient form.

Lemma III.13. Let F ∈ C[Xi] be a form of degree d ≥ 5 + m. Then, there exist

G,H ∈ C[Xi], quasihomogeneous forms of degree d− 1 such that

F ≡ GX1 + HX2 mod I ′A,d

Proof of the lemma. We can write F as

F = GX1 + HX2 +
∑

k≥3

XkFk

where deg(Fk) = d− wt(Xk) ≥ 5. By Lemma III.6 there exist Gk,Hk ∈ C[Xi] forms

of degree d− wt(Xk)− 1 such that

Fk = GkX1 + HkX2 mod IA,jk
,

where jk = d− wt(Xk). ¤
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If F is a quasihomogeneous form of degree d ≥ 5 + m, such that ev(F ) = 0, then

s1 ev(G) + s2 ev(H) = 0 and thus by Castelnuovo’s free-pencil trick, there exists

l ∈ H0((d− 1)A−A) ' H0((d− 2)A) such that

ev(G) = −s2l and ev(h) = s1l.

Let L ∈ C[Xi] be a quasihomogeneous form of degree d−2 such that ev(L) = l. Then,

G = −X2L mod IA,d−1 and H = X1L mod IA,d−1

and thus F ≡ 0 mod I ′A,d. Hence if m = 4, we get that d (as in the statement of

this proposition) is ≤ 8; since any quasihomogeneous form of degree ≥ 9 in the kernel

of ev can be reduced to a combination of forms of smaller degree in the kernel of ev.

Similarly, d ≤ 4 + m. ¤

Despite the fact that in most interesting cases our estimate of d is far from good,

we point out that in the context of curves with a free halfcanonical divisor the estimate

of d is sharp. We see this by considering a plane quintic, which has m = 1 (the

notation is taken from Proposition III.12) and d = 5. Also, as we see in Section III.4,

a sextic nonsingular curve C6 ⊂ P(12, 3) is an example for which m = 2 and d = 6.

This is the only curve of genus 4 with a free halfcanonical pencil. Finally an octic

curve of in P(12, 4) has m = 4 and d = 8. All of these are “easy cases” in the sense

of Section III.4. Table III.1 on page 42, contains a list of candidate pairs (C, A),

consisting of a nonsingular curve C and a halfcanonical divisor A such that the ring

R(C, A) is simple.

Theorem III.14 (Petri’s Theorem for a halfcanonical divisor). Let C be a nonsin-

gular curve with an effective halfcanonical divisor A. Assume that R(C, A) is generated

in degree ≤ 2 and that C is not hyperelliptic. Consider the morphism given by a choice

of generators of R(C, A), ϕA+ : C → P. Then,

(i) ϕA+(C) is cut out set-theoretically by quasihomogeneous forms of degree 6.

Additionally if C is not trigonal neither a plane quintic,

(ii) ϕA+(C) is cut out set-theoretically by quasihomogeneous forms of degree 4.

Proof. Denote by W a complementary subspace to the image of the map sym2.

By our assumptions the pluri-halfcanonical map, ϕA+ maps to P[H0(A) ⊕W ]. It is
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an embedding fitting into the commutative diagram:

C
ϕKC

²²

ϕA+
// P[H0(A)⊕W ]

v2

²²

P[H0(KC)]
P(β)

// P[S2H0(A)⊕W ]

The map v2 is the second Veronese embedding and the map P(β) is the linear em-

bedding induced by the surjection

β : S2H0(A)⊕W → H0(KC).

Since C is not hyperelliptic, by Petri’s theorem, the image of C under the canonical

embedding is cut out by cubics. Therefore the image of C under P(β) ◦ϕKC is cut out

by forms of degree ≤ 3. Using the commutativity of the diagram we deduce that the

image of C under v2 ◦ϕA+ is cut out cubic forms in the variables S2H0(A)⊕W which

implies that C under ϕA+ is cut out by forms of degree ≤ 6. This shows (i). Item (ii)

follows by a similar argument. ¤

To get a theorem of the same calibre for the halfcanonical ring, i.e. to prove

that the ideal IA is cut out by forms of degree ≤ 6 (and by forms of degree ≤ 4 in

the nontrigonal and “non-plane-quintic” case) we have to run a Petri analysis on the

generators of R(C, A). The easy part of Petri’s analysis is done in Proposition III.12.

From there we recover the result that when R(C, A) is generated in degree 2, IA

is generated in degree 6 (allowing that we assume A to be free). The two results

collected in this section are slightly diverse in nature. However, even the weaker form

of Petri’s theorem as stated here will serve our purposes. In general, and especially

in Chapter IV, we use it for complete intersections in weighted projective space or in

weighted Grassmannians, when the set theoretic result of Theorem III.14 combined

with Bézout’s theorem from intersection theory (see [Fu, p 10]) allow us to describe

the generators of IA.

III.3. Hilbert numerators

If A is an halfcanonical divisor on a nonsingular curve then by Clifford’s Theorem

we know that h0(A) ≤ g(C)−1
2 + 1 with equality taking place if and only if the curve

is hyperelliptic. This upper bound allows us to limit our search of curves whose
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g(C)− 1 h0(A) Hilbert Numerator Denominator

1 1 1− t10 (1− t)(1− t2)(1− t5)

2 1 1− t4 − t6 + t10 (1− t)(1− t2)2(1− t3)

2 2 1− t8 (1− t)2(1− t4)

3 2 1− t6 (1− t)2(1− t2)

4 2 1− 2t4 + t8 (1− t)2(1− t2)2

4 3 1− t2 − t6 + t8 (1− t)3(1− t3)

5 3 1− t5 (1− t)3

6 3 1− t3 − t4 + t5 (1− t)3(1− t2)

8 4 1− t2 − t4 + t6 (1− t)4

9 4 1− 2t3 + t6 (1− t)4

11 5 1− 3t2 − 2t4 + 2t3 + 3t5 − t7 (1− t)5

12 5 1− 2t2 − t3 + t4 + 2t5 − t7 (1− t)5

Table III.1. Codimension ≤ 3 easy cases.

g(C)− 1 h0(A) Hilbert Numerator Denominator

5 2 1− 5t4 + 5t6 − t10 (1− t)2(1− t2)3

7 3 1− 2t3 − 3t4 + 3t5 + 2t6 − t9 (1− t)3(1− t2)2

10 4 1− 4t3 + 4t5 − t8 (1− t)4(1− t2)

13 5 1− t2 − 4t3 + 4t4 + t5 − t7 (1− t)5

Table III.2. Codimension 3 Pfaffian 5× 5.

halfcanonical ring R(C, A) has low codimension. In the two tables and in Figure 1 of

this section we collect all pairs (C, A) whose halfcanonical ring R(C, A) has expected

codimension ≤ 3.

By inspection of Table III.1, we see that all the rings of codimension 2 are expected

to be complete intersections. There are 4 clear† 5×5 Pfaffian plus a single 7×7 Pfaffian

case. The result of the computation of the Hilbert series for a pairs (C, A) consisting

†The case g = 12 and h0(A) = 5 is an “easy” 5× 5 Pfaffian ring.
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Figure 1. All halfcanonical rings of codimension ≤ 3.

of a smooth curve and a halfcanonical divisor can be displayed as a correspondence

between g(C) and h0(A) an in Figure 1. In this graph, points (g(C), h0(A)) marked

with a bullet correspond to rings R(C, A) of codimension ≤ 3. The diamonds indicate

the cases whose corresponding rings are expected to have Pfaffian 5× 5 format. The

star signals a Pfaffian 7× 7 halfcanonical ring.

Theorem III.15. The pairs (C, A) as depicted in Figure 1 exhaust all possible

cases of halfcanonical rings of codimension ≤ 3 on nonsingular curves.

Proof. It is clear that if R(C, A) has codimension ≤ 3 necessarily h0(A) ≤ 5. The

proof now breaks into an analysis of each value of dimH0(A).

Case dimH0(A) = 5. The dimension of the space S2H0(A) is 15. Therefore if

g(C) > 15, even if sym2 is injective we still need a new generator in degree 2. Therefore

g(C) ≤ 15. It remains to show that g(C) ≥ 12.

Lemma III.16. Let C be a nonsingular curve of genus 9 ≤ g(C) ≤ 11. Let A be a

halfcanonical divisor on C with h0(A) = 5. Then the halfcanonical ring R(C, A) has

codimension ≥ 4.

Proof of the lemma. Let C be a nonsingular curve of genus 9 ≤ g(C) ≤ 11 with

a halfcanonical divisor A such that h0(A) = 5. We argue by contradiction. Suppose

that R(C, A) has codimension 3. In particular A is very ample and the image of C
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under the embedding given by |A| is projectively normal. We deduce that C can be

realised as nonsingular curve in projective space of dimension 4.

Theorem (Castelnuovo’s bound). Let C be a nonsingular curve that admits a

birational map onto a nondegenerate curve of degree d in Pr. Then

g(C) ≤ π(d, r)

where Castelnuovo’s number π(d, r) is defined by

π(d, r) =
m(m− 1)

2
(r − 1) + mε,

with m =
⌊

d−1
r−1

⌋
and ε = d− 1−m(r − 1).

Proof. See [ACGH, pp 113–116]. ¤

We apply Castelnuovo’s bound to each of the cases 9 ≤ g(C) ≤ 11. Castelnuovo’s

number, π(d, 4), equals 9, 7 and 5 for g(C) = 11, 10 and 9 respectively. Applying the

Theorem we get a contradiction. ¤

Remark. If g(C) = 12, then m = 3, ε = 1 and thus π(11, 4) = 12. The curve C is

therefore an extremal‡ curve. For any r ≥ 3 and d ≥ 2r + 1, extremal curves exists

and are completely classified. See [ACGH, p. 122]. In our case, an extremal curve of

degree 11 in P4 is a nonsingular member of |4H − L| of the cubic scroll F(1, 2) ⊂ P4.

See page 63 for details.

Case dimH0(A) = 4. The dimension of the space S2H0(A) is 10. Hence if g(C) > 11,

we still need two generators in degree 2. It follows that g(C) ≤ 11.

Lemma III.17. Let C be a nonsingular curve of genus 7 with a halfcanonical divisor

A such that h0(A) = 4. Then R(C, A) has codimension ≥ 4.

Proof of the lemma. The kernel of sym2 is at least 3-dimensional. If the kernel

of sym2 is 4-dimensional then its projectivised must meet Q2 ⊂ P9[S2H0(A)] since

this variety has dimension 6. The elements of Q2 are reducible quadrics, hence this

cannot happen. We deduce that sym2 must be surjective. In degree 3 the dimension of

S3H0(A) is 20. The space of multiples of the kernel of sym2 has dimension 3 · 4 = 12.

‡Castelnuovo extremal.
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Suppose that there are at least 3 first syzygies between the 3 quadrics generating

Ker sym2. Each syzygy can be written as

AQ1 + BQ2 + CQ3 (3.1)

where Qi ∈ Ker sym2 and A,B, C ∈ 〈x1, . . . , x5〉. In view of (3.1) we can identify

the space of first syzygies with a subspace of the variety Hom(H0(A), 〈Q1, Q1, Q3〉∨).

Saying that the linear space of syzygies has dimension ≥ 3 is equivalent to saying

that its (projective) dimension is ≥ 2. Therefore the space of syzygies meets the

subvariety of Hom(H0(A), 〈Q1, Q1, Q3〉∨) parametrising homomorphisms of rank ≤ 2.

(Since the codimension of this variety is (4− 2)(3 − 2) = 2). This means that there

exists a nontrivial syzygy of the form AQ + BQ′ = 0 with Q, Q′ ∈ Ker sym2. This is

a contradiction since Q and Q′ are irreducible. Therefore the space of first syzygies

between 〈Q1, Q2, Q3〉 is at most 2 dimensional and accordingly, the span of S3H0(A)

in H0(3A) has dimension 20− 12 + 2 = 10. We conclude that we will need two new

generators in degree 2, which implies that R(C, A) has codimension ≥ 4. ¤

Lemma III.18. Let C be a nonsingular curve of genus 8 with a halfcanonical divisor

A such that h0(A) = 4. Then R(C, A) has codimension ≥ 4.

Proof. We claim that gon(C) ≤ 3. This follows from an application of Propo-

sition III.9. The kernel of sym2 has dimension ≥ 2 thus W 1
d (C) 6= ∅, where d =⌊

deg(A)
2

⌋
= 3, in other words gon(C) ≤ 3.

Now suppose that C has a free g1
3. Then by Proposition III.2 (on page 31) we

deduce that the space H0(A− 2g1
3) has dimension > 1, which means that there exists

an effective divisor, A−2g1
3, of degree 1 with at least 2 global sections. In other words

C is rational. This is a contradiction. Therefore C is hyperelliptic. (Notice that the

point (8,4) is not on the Clifford line).

If C is a hyperelliptic curve with a halfcanonical divisor A such that h0(A) = 4

then Proposition III.2 gives that h0(A−3g1
2) ≥ 1. Hence A is not free and there exists

a point p such that A = 3g1
2 + p. This implies that sym2 is not surjective, since KC is

free. By the same token, the map

H0(A)⊗H0(2A) → H0(3A)
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cannot be surjective. In conclusion, besides 〈x1, x2, x3, x4〉 we will have at least one

new generator in degree 2 and at least one new generator in degree 3. The ring

R(C, A) has codimension ≥ 4. ¤

There are three more cases before we finish the proof of Theorem III.15.

Case dimH0(A) = 3. The dimension of the space S2H0(A) is 6. When g(C) > 8, we

still lack at least three generators in degree 2. Therefore g(C) ≤ 8.

Case dimH0(A) = 2. The dimension of the space S2H0(A) is 3. If g(C) > 6, we have

to add at least four new generators in degree 2. Therefore g(C) ≤ 6.

Case dimH0(A) = 1. We need x to generate H0(A) and a further y1 . . . yg−1 to

generate H0(2A). In degree 3 we have

x3, xyi for i = 1, . . . , g − 1.

Altogether, g elements. The dimension of H0(3A) is 2g − 2 hence we need an ex-

tra set of g − 2 generators in degree 3. Up to now, the number of generators is

1 + g − 1 + g − 2 = 2g − 2. If g ≥ 4 then the number of elements needed to generate

R(C, A) is ≥ 6 which means that R(C, A) has codimension ≥ 4.

We have finished the proof of Theorem III.15. ¤

III.4. Halfcanonical rings: easy cases

We refer the reader to Table III.1 on page 42 for a list of the easy cases. In this

section we construct the halfcanonical ring R(C, A) of a pair (C, A), in each the classes

of Table III.1. We will need to make some generality assumptions on the pair (C, A).

In most cases this will exclude the occurrence of masking of the Hilbert numerator.

Genus 2.

Theorem III.19. Let C be a nonsingular curve of genus 2. For every ramification

point p ∈ C of the hyperelliptic system, the divisor A = p is a halfcanonical divi-

sor. The ring R(C, A) is generated by x, y, z of degrees 1, 2 and 3, respectively, The

ideal of relations IA is generated by a single quasihomogeneous form of degree 10. In

particular, C is isomorphic to a curve of degree 10 in P(1, 2, 3).
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Proof. A nonsingular curve of genus 2 is hyperelliptic. Let us start the analysis of

the ring R(C, A) by writing

H0(A) = 〈x〉
H0(2A) =

〈
x2, y

〉

H0(3A) =
〈
x3, xy

〉

H0(4A) =
〈
x4, x2y, y2

〉
.

The element x is a generator of H0(A) and 〈y〉 is a complementary basis to
〈
x2

〉 ⊂
H0(2A). Then x3, xy have to be linearly independent. Moreover, x4, x2y, y2 are

also linearly independent, as any linear dependence relation would imply that y is

zero on the divisor of zeros of x which contradicts the fact that x2, y are linearly

independent. In the next step, h0(5A) = 4 and we already own a 3-dimensional

subspace of H0(5A) given by
〈
x5, x3y, x2y

〉
. Therefore there exists a generator u ∈

H0(5A) complementary to this space. By Proposition III.4 these are all the generators

of the ring R(C, A).

As far as the ideal IA is concerned, firstly, there is no relation in degree 6: the

space H0(6A) contains the elements x6, x4y, x3y, xu which are clearly linearly inde-

pendent. Furthermore, y3 ∈ H0(6A) and cannot be involved in any linear relation

with x6, x4y, x3y, xu, otherwise y would vanish at div0(x). Therefore

H0(6A) =
〈
x6, x4y, x3y, xu, y3

〉
.

The divisor 2A = KC is free. Thus, by Castelnuovo’s free-pencil trick the map

〈
x2, y

〉⊗H0(nA) → H0((n + 2)A) (4.1)

has a kernel of dimension h0((n− 2)A). But then, for n ≥ 5 we have

2h0(nA)− h0((n− 2)A) = (n + 1) deg(A) = h0((n + 2)A),

i.e., the map (4.1) is surjective. Since un ∈ H0(5nA) and is not a multiple of
〈
x2, y

〉
,

we deduce that there is a relation for each degree divisible by 5 bigger than 10. These

have to be multiples of the original relation in degree 10. ¤
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Genus 3 and h0(A) = 1.

Let A be a halfcanonical divisor with h0(A) = 1. If C is nonhyperelliptic, the

canonical morphism embeds C as a plane quartic C4 ⊂ P2 and then A is supported on

the intersection of C4 and a bitangent line (see Figure 2 below). Scheme-theoretically

the intersection is 2A = KC since C4 is a canonical curve. In particular we deduce

that the number of halfcanonical divisors on a nonhyperelliptic curve of genus 3 with

0-dimensional associated linear system equals the number of bitangents of a plane

quartic, i.e. 28. If C is hyperelliptic and the canonical morphism ϕKC is 2-to-1 onto

a plane conic C2 ⊂ P2. Let L be a secant to C2 at two branching points and denote

L∩C2 by P1 + P2, with P1 6= P2. The pulled-back divisors ϕ∗KC (P1) and ϕ∗KC(P2) are

denoted by 2p1 and 2p2 respectively. Then A = p1 + p2. Conversely, a halfcanonical

divisor A, determines a unique secant line L at two branching points. We deduce

that in the hyperelliptic case there are
(
r
2

)
halfcanonical divisors on C, where r is the

degree of the ramification divisor on C. By Hurwitz’ formula,

r = 2 g +2 = 8 =⇒
(

r

2

)
= 28.

Incidentally, in the hyperelliptic case, C has a unique halfcanonical pencil (the g1
2)

and 35 noneffective halfcanonical divisors

−g1
2 + pi1 + pi2 + pi3 + pi4

where {i1, i2, i3, i4} ⊂ {p1, . . . , p8} = R, where R is the support of the ramification

divisor. As written there are
(
8
4

)
= 70 such expressions, but this number should be

halved on account of the relation:

−g1
2 + pi1 + pi2 + pi3 + pi4 ∼ −g1

2 + pj1 + pj2 + pj3 + pj4

where {j1, j2, j3, j4} is a complementary set to {i1, i2, i3, i4}. Altogether the number

of halfcanonical divisors on a hyperelliptic curve of genus 3 is 28 + 1 + 35 = 22·3 as

expected.

Theorem III.20. Let C be a nonsingular curve of genus 3 and A a halfcanonical

divisor with h0(A) = 1. Then the ring R(C, A) is generated by x, y1, y2, z of degrees

1, 2, 2 and 3, respectively. The ideal of relations IA is generated by two quasihomoge-

neous forms F4, F6 of degrees 4 and 6, respectively.
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Proof of Theorem III.20. Let us write

H0(A) = 〈x〉
H0(2A) =

〈
x2, y1, y2

〉

H0(3A) =
〈
x3, xy1, xy2, z

〉
= (†)

H0(4A) =
〈
x(†), y2

1, y1y2, y
2
2

〉
= (∗)

H0(5A) = 〈x(∗), y1z, y2z〉
In the above display, x is a generator of H0(A), y1, y2 are complementary to

〈
x2

〉 ⊂
H0(2A) and z is complementary to

〈
x3, xy1, xy2

〉 ⊂ H0(3A). However in what follows

it will be important to choose y1, y2, z in general conditions. Firstly we want the pencil

〈y1, y2〉 to be free. Since 2A is free there is no impediment for this to happen. As we

can see in Figure 2, geometrically this corresponds to choosing y1, y2 to define two

lines meeting outside the image of C by ϕA. Additionally, in the hyperelliptic case,

if we denote ϕ∗KC(P1) = 2p1 and ϕ∗KC(P2) = 2p2, with A = p1 + p2, we can choose z

such that z(pi) 6= 0. This is because the divisor 3A is free. (In fact, very ample as we

will see). The set (∗) has 7 elements and the space itself is only 6-dimensional. Hence

we find a relation in degree 4.

Lemma III.21. There is only one relation in degree 4.

Proof of the lemma. We argue by contradiction. Suppose there are two relations

in degree 4. Then, we can eliminate from one of them the term xz. In other words

there exists a relation involving only x4, x2y1, x
2y2, y

2
1, y1y2 and y2

2, which means that

the image of C under the canonical map ϕKC is contained in a quadric, i.e. C is

hyperelliptic. Let us write a relation in degree 4 in the form:

αzx = q(x2, y1, y2).

where q is a quadratic polynomial. For at least one of the relations the scalar α

is nonzero, thus q(x2, y1, y2) is not a relation. However, in this situation, q goes

through P1 and P2 so that p1 + q1 + p2 + q2 ⊂ div0(q(x2, y1, y2)), which implies that

q1 + q2 ⊂ div0(z), which is a contradiction. ¤

Let us denote this new relation by F4. Equally, there is only one relation in

〈x(∗), y1z, y2z〉 and this is the multiple F4. A relation that is not a multiple F4 is



III.4 Halfcanonical rings: easy cases 50

````````````````````
x = 0

•
P1

•
P2

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Ay2 = 0

£
£

£
£

£
£

£
£

£
£

£
£

£
£

£
£

y1 = 0

Nonhyperelliptic C

©©©©©©©©©©©©©©©©©©

•P1

• P2Hyperelliptic C

Figure 2. The image of C under ϕKC

necessarily of the form

z(αy1 + βy2) = xA

where A is some appropriate polynomial expression of x, y1, y2, z. Since div0(z) misses

out on div0(x) such a relation implies that αy1 +βy2 ∈ H0(2A−div0(x)) =
〈
x2

〉
and

this is a contradiction. Accordingly, there are no new generators in degree 4 and 5

and so by Proposition III.4 the ring R(C, A) is generated by x, y1, y2, z. We now deal

with the generators of the ideal IA. We have already a generator of degree 4. The full

symmetric power of degree 6 of the generators x, y1, y2, z of the ring R(C, A) is based

by
{
x6, x3z, z2

} ∪ {y1, y2} ·
{
zx, x4

} ∪ S2{y1, y2} · x2 ∪ S3{y1, y2} . (4.2)

Subtracting the 3 multiples of F4 we obtain an 11-dimensional space. As the dimension

of H0(6A) is 10, we get a new relation in degree 6. Since the ring R(C, A) has no new
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generators in degree 6 we conclude that there are no more relations in degree 6. Let

us denote this relation by F6.

Lemma III.22. There is no syzygy between F4 and F6 in degree 7.

Proof of the lemma. If xF6 + l(x3, y1x, y2x, z)F4 = 0 then

x | l(x3, y1x, y2x, z)F4 =⇒ x | l(x3, y1x, y2x, z) or x | F4.

In the first case, we obtain F6 + a(x2, y1, y2)F4 = 0 and this is clearly not true. In

the second case, we obtain a relation between the elements of (†) which again is not

true. ¤

By the usual numerical argument this lemma enables us to show that there are

no new generators of IA,d in degree 7.

Lemma III.23. The map

〈y1, y2〉 ⊗H0(nA) → H0((n + 2)A)

is surjective for all n ≥ 5 and for n = 4, 3 has a 1-dimensional cokernel.

Proof of the lemma. By Castelnuovo’s free-pencil trick, the kernel of this map

is isomorphic to the space H0((n − 2)A). For n ≥ 5 all divisors involved in compu-

tation of the dimensions of the spaces are nonspecial. The cokernel has dimension

(n + 1) deg(A)− 2(n− 1) deg(A) + (n− 3) deg(A) = 0. If n = 4 then the kernel has

dimension 1 more than expected. And if n = 3 the kernel is 1-dimensional. ¤

For clarity, we make extra notation. Let ev : C[x, y1, y2, z] → R(C, A) be the

minimal surjection corresponding to the generators§ x, y1, y2, z.

Corollary III.24. Let F ∈ C[x, y1, y2, z] be a polynomial of degree d ≥ 10.

Then¶,

F ∈ IA,d =⇒ F ∈ I ′A,d

§We keep the same notation for the sections as elements of R(C, A) and the variables of the

polynomial ring C[x, y1, y2, z], as no confusion is likely to arise. In particular ev(x) = x and so on.

¶Recall the notation introduced on page 38 for I ′A,d.
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Proof. Let us write F as

F = Ay1 + By2 + Cx + Dz

where A,B, C,D ∈ C[x, y1, y2, z] are quasihomogeneous forms of degrees d− 2, d− 2,

d − 1 and d − 3 respectively. In particular, deg(D) and deg(C) are ≥ 7. By

Lemma III.23 we can write D ≡ A1y1 + B1y2 mod IA,d−3 and therefore

F ≡ A2y1 + B2y2 + Cx mod I ′A,d.

Writing C ≡ A3y1 + B3y2 mod IA,d−1 we deduce that F ≡ A3y1 + B3y2 mod I ′A,d.

Consequently, if F ∈ IA,d we conclude that ev(A3)y1+ev(B3)y2 = 0. By Castelnuovo’s

free-pencil trick, there exists a section k ∈ H0((d− 2)A− 2A) such that

ev(A3) = −ky2 and ev(B3) = ky1.

Let K ∈ C[x, y1, y2, z] be such that ev(K) = k. Then,

A3 ≡ −Ky2 mod IA,d−2 and B3 ≡ Ky2 mod IA,d−2

and this implies that F ≡ 0 mod I ′A,d. In other words, F ∈ I ′A,d. ¤

This corollary shows that any relation in degree ≥ 10 is a multiple of a relation

of smaller degree.

Lemma III.25. Let F ∈ C[x, y1, y2, z] be a quasihomogeneous form of degree 8.

Then,

F ∈ IA,8 =⇒ F ∈ I ′A,8

Proof of the lemma. If F has degree 8, then we can write it as

F = Ay1 + By2 + αx8 + βx5z + δx2z2.

All three last summands have a factorisation of the form x · G with deg(G) = 7,

therefore by Lemma III.23, F ≡ A1y1 + A2y2 mod I ′A,8. To finish we only have to

repeat the argument of Corollary III.24. ¤

Finally we have only to analyse the the component of degree 9 of IA.
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Lemma III.26. Let F ∈ C[x, y1, y2, z] be a quasihomogeneous form of degree 9.

Then,

F ∈ IA,9 =⇒ F ∈ I ′A,9

Proof of the lemma. We write

F = Ay1 + By2 + x9 + x6z + x3z2 + z3

and as in the previous lemma we readily reduce this expression to

F ≡ A1y1 + A2y2 + z3 mod I ′A,9.

The problem is that we cannot apply Lemma III.23 to z2 since its degree is only 6.

We go around this matter by observing that

〈x〉 ⊗H0(5A) ↪→ H0(6A)

has a cokernel of dimension 2 which must be spanned by
{
y3
1, y1y

2
1

}
. The argument is

a repetition of a previous argument: if αy3
1 + βy2

1y2 lies in the image of 〈x〉 ⊗H0(5A)

then αy1 + βy2 ∈ H0(2A− div0(x)) which is a contradiction. By this we can write

z2 ≡ xC + α1y
3
1 + β1y

2
1y2 mod IA,6;

and the lemma follows. ¤

We deduce that we have determined all the generators of IA. This finishes the

proof of Theorem III.20. ¤

Remark. There is an alternative way of proving Theorem III.20 that relies on some

results of Commutative Algebra introduced in Chapter II. In later theorems, when

the analysis of IA does not rend itself so easily we will have to use these arguments.

An alternative proof can be described in the following way. Since R(C, A) is generated

in degree 3, the map ϕA+ : C → P(1, 22, 3) is an embedding. The homogeneous ideal

I(ϕA+(C)) is IA. Suppose we have determined two relations F4 and F6 and we know

they form a regular sequence. Denote by I = (F4, F6). Clearly I ⊂ IA. Since F4, F6

are a regular sequence their zero locus is a 1-dimensional. Write the scheme defined

by I as a sum of irreducible components Z =
∑

αiZi. By Bézout’s theorem we know

that
∑

αi deg(Zi) ≤ 4·6
22·3 = 2. But deg(ϕA+(C)) = deg(A) = 2, hence Z has only

one irreducible component of multiplicity 1. Since the homogeneous ring of P(1, 22, 3)
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is Cohen–Macaulay and I is generated by a regular sequence, Z has no embedded

components (Unmixedness). Hence Z = ϕA+(C), and consequently I = IA. (See

Proposition IV.2 on page 75 for a more general and precise version of this type of

reasoning. There we have replaced Bézout’s theorem with an elementary argument).

This example is special in more than one way. To begin with, notice that the gen-

eral curve of genus 3 has a halfcanonical divisor whose linear system is 0-dimensional

(simply consider a bitangent). By Gieseker’s result (see [Gie, ACGH]) if a curve C
is general in moduli, the map

H0(A)⊗H0(A) → H0(2A)

is injective. Therefore we can be sure that whenever in the remainder of this work

we consider curves with halfcanonical divisors whose linear systems have dimension

≥ 1, the curve is not general in moduli. So in this sense, curves of genus 3 special

in the context of this work. Another feature of this case is that it disproves the

assertion that going from R(C,KC) to R(C, A) decreases the codimension of the ring.

For large genus, this is verified empirically to be true in this work. Here, R(C,KC) is

a ring of codimension 1 whereas R(C, A) has codimension one more. Of course that

R(C, A) should be thought of a ring of a polarising divisor on C plus some information

about a bitangent to C4 (assume C is nonhyperelliptic). Which brings us to our third

remark. The problem of reconstructing a plane quartic from (a subset of) its 28

bitangents is classical. The most recent studies are those by Caporaso and Sernesi

[CS] and by Lehavi [Le]. To our knowledge none of these accounts considers the

ring R(C, A). In the context of halfcanonical rings the bitangents to a plane quartic

give 28 embeddings of C into P(1, 22, 3) and the properties of these embeddings seem

worthwhile investigating.

Genus 3 and h0(A) = 2.

Since C is not rational, a divisor of degree 2 on C is necessarily free. Indeed A is

the unique g1
2 on C.

Theorem III.27. A nonsingular hyperelliptic curve C of genus 3 is isomorphic to

the halfcanonical curve C8 ⊂ P(12, 4).
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Proof. By Proposition III.5, the ring R(C, A) is generated in degree ≤ 4. Moreover

we have

H0(A) = 〈x1, x2〉
H0(2A) =

〈
x2

1, x1x2, x
2
2

〉

H0(3A) =
〈
x3

1, x
2
1x2, . . . .x

3
2

〉

H0(4A) =
〈
x4

1, . . . , x
4
2, w

〉

H0(5A) =
〈
x5

1, . . . , x
5
2, x1w, x2w

〉

Clearly for any n the n-symmetric power of x1, x2 is linearly independent, and

this takes care of the first three degrees. When we come to degree 4 we must add

a generator w complementary to
〈
x4

1, . . . , x
4
2

〉
. These are all the generators we need.

Moreover there is no excess of generators up to (not including) degree 10. In degree

10 we find the first relation. By Proposition III.12 this is the only relation. Therefore

R(C, A) = C[x1, x2, w]/(F10) and the theorem follows. ¤

Remark. These two cases illustrate the different structures of R(C, A) obtained in

the same curve considering diverse halfcanonical divisors A. For hyperelliptic curves

of genus 3 we can consider R(C, A1) where A1 has 0-dimensional associated linear

system and thus determines a secant line at branching points to the image of C under

the canonical morphism, and this leads to C[x, y1, y2, z]/(F4, F6); or we can consider

R(C, A2) where A2 is a pencil of lines going through a point of ϕKC(C) = C2 ⊂ P2,

which leads to C[x1, x2, w]/(F8).

Genus 4 and h0(A) = 2.

If C is a nonsingular curve of genus 4 with a halfcanonical pencil A, then C is

nonhyperelliptic if and only if A is free. From the halfcanonical model point of view,

C6 ⊂ P(12, 2), it is convenient to phrase the following theorem with the assumption

that A is free, though the reader might want to substitute this by the ‘nonhyperelliptic’

assumption. Notice however that a free halfcanonical pencil in this case is a trigonal

system.

Theorem III.28. Let C be a nonsingular curve of genus 4. Then C has a free

halfcanonical pencil if and only if C is isomorphic to C6 ⊂ P(12, 2).
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Proof. A general sextic curve C6 ⊂ P(12, 2) is nonsingular as we can always make

sure that (0, 0, 1) 6∈ C6. By adjunction C6 has a halfcanonical divisor given as the

restriction of O(1) to C6. Since as we mentioned, (0, 0, 1) 6∈ C6 this divisor is free.

Conversely assume that C is a nonsingular curve of genus 4 with a free halfcanon-

ical pencil. Since A is a free pencil we deduce that C is not hyperelliptic (Propo-

sition III.2). Applying Proposition III.5 we conclude that R(C, A) is generated in

degree ≤ 2. In addition, we have:

H0(A) = 〈x1, x2〉
H0(2A) = S2〈x1, x2〉+ 〈y〉 = (∗)
H0(3A) = S3〈x1, x2〉+ 〈yx1, yx2〉 = (†)
H0(4A) = S4〈x1, x2〉+ y · (∗) = (§)
H0(5A) = S5〈x1, x2〉+ y · (†)
H0(6A) = S6〈x1, x2〉+ y · (§)

By Proposition III.12, the ideal IA has a minimal set of generators of degree ≤ 6.

On the left hand side, for 4 ≤ n ≤ 6 the dimension of H0(nA) is 9, 12 and 15,

respectively. Except for degree 6 they equal the dimension of the spaces on the right

hand side. We conclude that IA is generated by a single element of degree 6. Therefore

C ' ProjR(C, A) is isomorphic to C6 ⊂ P(12, 2). ¤

Genus 5 and h0(A) = 2.

We consider the case when C is not trigonal. This implies that A is free and also

by Proposition III.5 that the ring R(C, A) is generated in degree ≤ 2.

Theorem III.29. A nonsingular curve C of genus 5 and gonality strictly bigger

than 3 has a halfcanonical pencil if and only if C is isomorphic to a complete inter-

section C4,4 ⊂ P(12, 22).

Proof. A general complete intersection C4,4 ⊂ P(12, 22) is nonsingular since we

can always make sure that C4,4 ∩ P[y1, y2] = ∅. The sheaf O(1) restricts to C4,4 as

a halfcanonical divisor. This divisor is free by the fact we have just mentioned. In

particular, by Proposition III.2 this implies that C4,4 is not trigonal.

Conversely, suppose that C is a nonsingular curve of genus 5 of gonality strictly

bigger that 3 with a halfcanonical pencil. Let us start by writing
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H0(A) = 〈x1, x2〉
H0(2A) = S2〈x1, x2〉+ 〈y1, y2〉
H0(3A) = S3〈x1, x2〉+ 〈y1, y2〉 · 〈x1, x2〉
H0(4A) = S4〈x1, x2〉+ S2〈x1, x2〉 · 〈y1, y2〉+ S2〈y1, y2〉 .

We have written down 8 generators for H0(3A) from the generators of H0(A) and

H0(2A). As R(C, A) is generated in degree ≤ 2 (Proposition III.5) there are no

relations holding among these. Finally, when it comes to H0(4A) we own two

more generators than the dimension thus there are exactly 2 quartic relations. Let

us denote them by F4 and G4. Since these two quartics are linearly independent

they form a regular sequence. The ring R(C, A) is generated by x1, x2, y1, y2 and

thus the map ϕA+ : C → P(12, 22) given by x1, x2, y1, y2 is an embedding of C and

its image is contained in the scheme-theoretic intersection of two quartics. Since

deg(ϕA+(C)) = 4 = 4·4
22 , by Bézout’s theorem the scheme-theoretic intersection of the

hypersurfaces F4 = 0 and G4 = 0 has only one irreducible component of multiplicity

one. Since C[x1, x2, y1, y2] is Cohen–Macaulay Z(F4, G4) has no embedded compo-

nents. Hence, (F4, G4) = I(ϕA+(C)) = IA. ¤

Genus 5 and h0(A) = 3.

By Clifford’s theorem, a curve of genus 5 with a halfcanonical net is necessarily

hyperelliptic and moreover A = 2g1
2. So that A is free and in particular, there exists

a unique halfcanonical net on C.

Theorem III.30. Let C be a nonsingular curve of genus 5. Then C has a half-

canonical net A, if and only if, C is hyperelliptic and A = 2g1
2, if and only if C is

isomorphic to a complete intersection C2,6 ⊂ P(13, 3).

Proof. The first equivalence is clear. Likewise, that a complete intersection C2,6

has a halfcanonical net is straightforward. Thus let us concentrate on showing that a

nonsingular curve C with a halfcanonical net is isomorphic to a complete intersection

C2,6 ⊂ P(13, 3) by explicitly computing its halfcanonical ring. By our preamble A

must be free. Therefore R(C, A) is generated in degree ≤ 3. Denote by

〈x1, x2, x3〉 = H0(A)
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a basis of the component in degree 1. The second symmetric power

S2〈x1, x2, x3〉 ⊂ H0(2A)

has an excess of one generator, thus we get a quadric relation. Denote it by F2. Thus

the halfcanonical net maps C onto a plane conic. This is clearly the only relation in

degree 2. In degree 3 the third symmetric power S3〈x1, x2, x3〉 has dimension 10 and

any cubic relation between these elements must be a multiple of F2. Hence modulo

these multiples, S3〈x1, x2, x3〉 generates a subspace of H0(3A) of dimension 7. Thus

there is a single new generator in degree 3 which we denote by z. By Proposition III.5,

R(C, A) is generated by x1, x2, x3 and z. The map

ϕA+ : C → P(13, 3) (4.3)

given by xi and z is an embedding into a curve of degree 4. The relation F2 is

a generator of the halfcanonical ideal. If there is a new relation in degree 4 then

under the map ϕ|A|+ of (4.3) the curve C maps to the intersection of a cubic and a

quartic hypersurface. Two hypersurfaces in 3-dimensional projective space forming a

regular sequence cut out a one dimensional scheme. We deduce that if there exists a

new quartic relation then ϕA+(C) is a component of a one dimensional subscheme of

P(13, 3) whose degree, by Bézout’s theorem is ≤ 2·4
3 . However deg(ϕA+(C)) = 4. The

same argument shows that there is no quintic relation. By Lemma III.6 the map

〈x1, x2, x3〉 ⊗
{
S5〈x1, x2, x3〉+ S2〈x1, x2, x3〉 · z

}
³ H0(6A)

is surjective and z2 6∈ 〈x1, x2, x3〉⊗
{
S5〈x1, x2, x3〉+ S2〈x1, x2, x3〉 · z

}
we deduce that

there is a relation in degree 6. Let us denote it by F6. Together with F2 these cut

out a subscheme of P[x1, x2, x3, z] of dimension 1 of degree 4 = deg(ϕA+(C)). We

conclude that the ideal IA is generated by F2 and F6. ¤

Genus 6 and h0(A) = 3.

Theorem III.31. Let C be a nonsingular curve of genus 6. Then C has a free

halfcanonical net if an only if C is isomorphic to a plane quintic.

Proof. This is done in Example II.1.2 of Chapter II, on page 15. ¤
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Genus 7 and h0(A) = 3.

Theorem III.32. Let C be a nonsingular curve of genus 7 such that gon(C) > 3.

Then C has a halfcanonical net if and only if C is isomorphic to to a complete inter-

section C3,4 ⊂ P(13, 2).

Proof. Suppose that C is not trigonal and has a halfcanonical net A. By Proposi-

tion III.5 the ring R(C, A) is generated in degree ≤ 2. Since C is nontrigonal the map

sym2 must have null kernel. This implies that we only need one new generators in

degree 2. Thus R(C, A) is generated by x1, x2, x3 in degree 1 and y in degree 2.

H0(A) = 〈x1, x2, x3〉
H0(2A) =

〈
S2H0(A), y

〉

Accordingly, there can only be one relation in the set S3{x1, x2, x3}∪{yx1, yx2, yx3}.
And likewise, only one new relation in S4{x1, x2, x3} ∪ S2{x1, x2, x3} · y ∪

{
y2

}
. By

our assumption C is not trigonal, nor it is a plane quintic. Consequently, by The-

orem III.14, denoting by ϕA+ the embedding yielded by our choice of generators

of R(C, A), ϕA+(C) is cut out set-theoretically by a cubic and a quartic in P(13, 2)

forming a regular sequence. Let I be the ideal generated by the cubic and quartic

forms. By Unmixedness, I has no embedded primes and using Bézout’s theorem we

conclude that I has a unique minimal prime of multiplicity 1. Hence I = IA (see

Proposition II.17).

Conversely a complete intersection C3,4 ⊂ P(13, 2) is a nonsingular curve of genus

7 with a halfcanonical divisor, O(1)|C3,4
, such that sym2 is injective, i.e., such that

gon(C) > 3. Note that C3,4 does not contain (0, 0, 0, 1) ∈ P(13, 2). In this situation

C3,4 would be singular. Moreover, if A had base locus, then C would be hyperellip-

tic. ¤

Genus 9 and h0(A) = 4.

Theorem III.33. Let C be a nonsingular curve of genus 9. Let A be a halfcanonical

divisor with dimH0(A) = 4. If dimW 1
4 (C) > 0 then R(C, A) has codimension ≥ 3.

If dimW 1
4 (C) = 0 then R(C, A) is a codimension 2 ring generated in degree 1 by

x1, x2, x3, x4 and the ideal of relations IA is generated by F2 of degree 2 and F4 of

degree 4.
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Proof. Suppose that dimW 1
4 (C) > 0. We want to show that R(C, A) is not gen-

erated in degree 1. Suppose that gon(C) ≤ 3. Let ξ be a free pencil of degree d ≤ 3.

If d = 3 then by (ii) of Proposition III.2, the dimension of H0(A − 2ξ) is > 4 − 3,

i.e. |A − 2ξ| is a linear system of dimension ≥ 1 and degree 2. We conclude that

C is hyperelliptic. For a hyperelliptic curve R(C, A) cannot be generated in degree

1. Hence we can assume that gon(C) = 4. Let ξ1 and ξ2 be two free base-point free

pencils. By Proposition III.9 each of them yields a symmetric tensor in the kernel of

sym2. Since W 1
4 (C) > 0 we may assume they yield distinct symmetric tensors. Hence

dimKer sym2 ≥ 2 and thus R(C, A) is not generated in degree 1.

Suppose that dimW 1
4 (C) = 0. Then, by the reasoning above, the dimension of

Ker sym2 is 1. From Proposition III.5 we deduce that R(C, A) is generated in degree

≤ 3. Hence we must show that the map

H0(A)⊗H0(2A) → H0(3A) (4.4)

is surjective. We will use a refinement of the argument of the proof of Proposition III.5.

Consider a element of the cokernel of (4.4). According to Lemma III.7 it corresponds

to an extension

0 → OC → F → OC(A) → 0

with 5 global sections. Consider the divisor of zeros δ of a section through two general

points p, q of C. Saturating the embedding OC(p + q) ⊂ OC(δ) ↪→ F we obtain

0 → OC(ξ) → F → OC(A− ξ) → 0

where ξ ⊃ p+q is an effective divisor. Since p+q are general we obtain h0(A−ξ) ≤ 2.

Consequently h0(ξ) ≥ 3. Thus deg(ξ) ≥ 6 and accordingly deg(A − ξ) ≤ 2, so that

dimH0(A− ξ) ≤ 1. We deduce that h0(ξ) ≥ h0(A).

To finish the proof of our claim, by showing that F must be the split extension,

we need to show that |A| is base point free. Suppose that |A| has a base point. Then

ϕ maps C onto a space curve of degree ≤ 7. The degree of ϕA is ≤ 2. Suppose

deg ϕA = 2. Then the image of C by ϕA is the rational normal curve of degree 3.

Which means that C is hyperelliptic. Thus deg ϕA = 1 and the image of C by ϕA

has degree ≤ 7. Additionally we know that ϕA(C) is contained in a quadric. This
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implies that there exists a g1
3 on ϕAC and therefore on C. This is a contradiction. We

conclude that A is free.

Therefore if dimW 1
4 (C) = 0 the map sym2 has a 1-dimensional kernel and the

ring R(C, A) is generated in degree 1. In particular ϕA is very ample. Moreover the

curve ϕA(C) has a 1-dimensional family of 4-secants and as such is not contained in

any irreducible cubic. In degree 4 we have

H0(4A) ⊃ S4H0(A).

On the right hand side, the space has dimension 35. Subtracting 10 to account for

multiples of the quadric relation we obtain 25. The space H0(4A) has dimension

3 · 8 = 24. Therefore there is a new quartic relation in IA. Denote the two relations

we have found so far by F2 and F4. Let S denote the intersection (F2 = 0)∩ (F4 = 0).

By Unmixedness, S has no embedded components. By the Bézout’s theorem we have

8 = deg ϕ|A|(C) ≤
∑

Ci∈S

αi deg(Ci) ≤ 8.

In other words S is irreducible and coincides with ϕA(C), which implies that IA is

generated by F2, F4. This finishes the proof of Theorem III.33. ¤

Genus 10 and h0(A) = 4.

Theorem III.34. A nonsingular curve C of genus 10 and gon(C) ≥ 6 has a half-

canonical divisor A with h0(A) = 4 if and only if C is isomorphic to a complete

intersection C3,3 ⊂ P3.

Proof. By Proposition III.9 for a complete intersection C3,3 of two cubics in P3 we

have gon(C3,3) ≥ 6. Conversely suppose that C is a nonsingular curve of genus 10 with

a halfcanonical divisor A such that dimH0(A) = 4. Assume that gon(C) ≥ 6. Since in

this case the inclusion Q4 ⊂ P[S2H0(A)] is an equality (all quadrics of 3-dimensional

projective space have rank ≤ 4) Proposition III.9 yields the equivalence:

P[Ker sym2] 6= ∅ ⇐⇒ gon(C) ≤ 4.

In fact this proposition also shows that for a nonsingular curve with a halfcanonical

divisor A with dimH0(A) = 5 the case gon(C) = 4 does not happen. Hence our
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assumption that gon(C) ≥ 6. Additionally, by the next lemma, gon(C) ≥ 6 implies

that A is very ample.

Lemma III.35. Let C be a nonsingular curve of genus 10 with a halfcanonical

divisor A with dimH0(A) = 4. Then

gon(C) ≥ 6 ⇐⇒ |A| is very ample.

Proof of the lemma. Suppose that |A| has a base locus. Then it contains a free g3
d

where d ≤ 8. By Castelnuovo’s bound (see page 44) a nondegenerate curve of degree

≤ 8 in P3 has geometric genus ≤ 9, which means that it cannot be birational to C.
Hence a g3

d with d ≤ 8 must give a morphism of degree ≥ 2. In this situation it maps

C onto a nondegenerate curve in P3 of degree ≤ 4. There is a finite list of curves to go

through. They are all rational or elliptic. In case the image is a rational curve we get

straightforwardly that gon(C) ≤ 4. If the image is a quartic elliptic curve, then it is

contained by the intersection of two linearly independent quadrics. But we know that

if gon(C) ≥ 6 then sym2 has no kernel, hence this cannot happen. We have shown

gon(C) ≥ 6 =⇒ |A| is free.

By our previous argument,the image of C under the morphism |A| cannot have degree

3 so that ϕA is a birational morphism onto a space curve C9 of degree 9. If it is not

an embedding then C9 has at least a singular point. Projecting off such a point we

obtain a free g2
d where d ≤ 7. Since gon(C) ≥ 6 we must have d = 7 and such system

yields a birational morphism onto a plane curve of degree 7. By the genus formula

this plane septic must be singular and therefore projecting off a singular point yields

a g1
5.

Conversely suppose that |A| is very ample and the image of C under ϕA is con-

tained in a quadric. If the rank of the quadric is 3 then the genus of C9 is 12. (Blow

up the quadric at the vertex and use the genus formula on the blown up surface).

Likewise if C9 is contained in a quadric of rank 4 then there exist two positive in-

tegers a, b such that a + b = 9 (degree) plus ab − a − b + 1 = 10 (genus formula).

These have the solution {a, b} = {3, 6} which implies that C is trigonal. But then by

Proposition III.2 the dimension of the space H0(A − 2g1
3) is > 1. Since the genus of

C is big enough (≥ 5) there exists a single trigonal system. Hence A = 3g1
3. But then
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deg(ϕA) is 3 and not 1. Hence

|A| is very ample =⇒ sym2 is injective =⇒ gon(C) ≥ 6. ¤

If gon(C) ≥ 6 then by the lemma |A| is very ample and by Proposition III.5 the

ring R(C, A) is generated in degree 2. Moreover since sym2 is injective a dimension

count shows that R(C, A) is indeed generated in degree 1. Denote a basis of H0(A)

by x1, . . . x4. The space

S3H0(A) ⊂ H0(3A)

is generated by
(
6
3

)
= 20 elements, two more than the dimension of H0(3A). As

there are no new generators in degree 3 we get exactly two relations in degree 3.

We deduce that ϕA(C) is contained in a complete intersection of two cubics in P3.

By Unmixedness and Bézout’s theorem we deduce that IA is generated by two cubic

forms. This finishes the proof of Theorem III.34. ¤

Genus 12 and h0(A) = 5.

Suppose that ϕA is a birational morphism. Then as we have mentioned be-

fore, Castelnuovo’s bound (page 44) classifies C as an extremal curve and therefore

according to a classification of extremal curves, the image of C by ϕA is a divisor in

the cubic scroll F(1, 2). Let us give an elementary proof of this.

Proposition III.36. Let C be a nonsingular curve of genus 12. Assume that C
has halfcanonical divisor A with dimH0(A) = 5. Let C ⊂ P4 be the image of C under

the map ϕA. Then one of the following possibilities occurs:

(i) C ' C4 ' P1 ⇐⇒ C is hyperelliptic.

(ii) C ' C5 ⊂ F(1, 2) and C5 ∈ |H + 2L| ⇐⇒ C is bielliptic.

(iii) C ' C11 ∈⊂ F(1, 2) and C11 ∈ |4H − L| ⇐⇒ dimW 1
4 (C) = 0.

where H is the hyperplane section of F(1, 2) and L the class of its ruling. The equiv-

alences hold under the assumption of existence of A. Moreover a nonsingular curve

C11 ∈ |4H −L| of F(1, 2) is a curve of genus 12 with a unique g1
4 and a halfcanonical

divisor A such that dimH0(A) = 5.

Proof. Since C is nondegenerate it is clear that deg(C) ≥ 4. By Castelnuovo’s

bound (page 44) if ϕA is birational then deg(C) = 11. (This is the point of calling C
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extremal). Therefore the possibilities for the degree of C are 4, 5 or 11. Hence in the

statement of the theorem we list all possible cases.

By a straightforward numerical argument, C is contained in a net of quadrics.

Denote this net by π ⊂ P[S2H0(A)]. Equivalently there are at least 3 quadric relations

in R(C, A). In the first place this implies that there exists a quadric of rank ≤ 4

through C and therefore gon(C) ≤ 5 (Proposition III.9). We will see here that indeed

gon(C) ≤ 4. Let L ⊂ π ⊂ P[S2H0(A)] be the locus of singular quadrics through

C. The scheme L is a nondegenerate subscheme of the plane π, of dimension ≥ 1.

The curve C is contained in a component of the intersection the quadrics of π. Let

us denote this component by S. Suppose that S has dimension 1. We rule out

the possibility that deg(C) = 5. If deg(C) = 5 then for every Q ∈ L there exists

p ∈ C ∩ (Q = 0). On the other hand if p ∈ ⋂
Q∈L Sing Q then any secant line to C

through p must be contained in C. In other words C is the union of two or more

lines, which is not true. We deduce that for every point of C there exists a singular

quadric Qp of π such that p ∈ Sing Qp. This implies that S is singular along C and

therefore C has multiplicity ≥ 2 in S. By Bézout’s theorem we have 5 · 2 ≤ 23 which

gives a contradiction. Therefore if dimS = 1 then deg(C) = 4. Then, C ' C4 the

rational normal curve of degree 4. Since C is not rational the map ϕA must have

degree d = 2. This means that C is hyperelliptic. Conversely if C is hyperelliptic

then dimH0(A− 4g1
2) ≥ 1 by Proposition III.2 on page 31, and by Clifford’s theorem

dimH0(4g1
2) = 5, so that the set-theoretic support of |A− 4g1

2| is the base locus of A

and ϕA maps C onto the rational normal curve of degree 4.

The next possibility happens for dimS = 2. Since S is contained in two quadrics

and is a nondegenerate variety of P4 (it contains C) it can only be one of two varieties:

F(0, 3), the cone over the rational normal curve of degree 3 or F(1, 2) the cubic scroll.

In the first case, projecting from the vertex we deduce that deg(C) must be divisible

by 3. This is a contradiction. Hence the case S = F(3, 0) does not happen for this

genus. The final case is S = F(2, 1). Given that KF = −2H + L, where H is the

hyperplane section and L a class of the ruling of F(1, 2), if we are to have C = aH+bL

we deduce from the genus formula that

2pa(C)− 2 = KFC11 + C2
11 = −5a− 2b + 3a2 + 2ab. (4.5)
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Since deg(C) = 5 or 11, there are two possibilities:

(a) 3a + b = 5 and pa(C) ≥ 0

(b) 3a + b = 11 and pa(C) ≥ 12

In case (a) the quadratic equation of (4.5) reduces to

3a2 − 11a + 8 ≤ 0

which has integer solutions for a = 1 or a = 2. If a = 1 then pa(C) = 0 and therefore

C is a smooth rational curve. Then, the morphism ϕA is 2-to-1 onto C. But this

means that C is hyperelliptic and we have dealt with this case. (If C is hyperelliptic

the image of C under ϕA is the rational normal curve of degree 4). If a = 2 then

C ∈ |2H − L| gets a hyperelliptic system from the ruling of F(1, 2). Note that, as

above, we can rule out the possibility of C being rational. In fact, in this case C must

be a quintic elliptic curve. In this case C is bielliptic. Conversely, suppose that C is

not trigonal with dimW 1
4 (C) > 0 and let ξ1, ξ2 denote two complete free pencils of

degree 4 on C. By Proposition III.2 we know that dimH0(A− ξ1 − ξ2) ≥ 5− 4 = 1.

On the other hand, by the fact that ξ1 6∼ ξ2 we have that dimH0(ξ1 + ξ2) ≥ 4 (see

[ACGH, p. 137]). This implies that A is not free and therefore ϕA maps C to a

quintic. This proves item (ii).

Finally suppose that we have (b). The quadratic equation of (4.5) reduces to

3a2 − 23a + 44 ≤ 0

whose only integer solution is a = 4. Therefore pa(C) = 12 and C11 ∈ |4H − L|.
We deduce that in this case the morphism ϕA is an embedding. In particular by

Proposition III.2, C is nontrigonal. The curve C11 has a tetragonal linear system

given by the ruling of F(1, 2), and by reasoning as above this system is unique. Hence

dimW 1
4 (C) = 0. Conversely suppose that dimW 1

4 (C) = 0. Then, by what we have

shown so far ϕA is an embedding and we recover C11 ∈ |4A− L|.
Finally a nonsingular curve in C ∈ |4H − L| is halfcanonical by adjunction. The

halfcanonical divisor A is given as the restriction of H to C. We deduce that h0(A) =

h0(F,H) = 5. The divisor A is very ample and therefore applying the argument

of a few lines above we deduce that dimW 1
4 (C) = 0. This finishes the proof of the

proposition. ¤



III.4 Halfcanonical rings: easy cases 66

Corollary III.37. Let C be a nonsingular curve of genus 12. If gon(C) ≥ 5 then

there are no halfcanonical divisors with dimH0(A) = 5. ¤

Remark. Observe that if A is not free then the ring R(C, A) is not generated in

degree 1 and hence not a codimension 3 ring. This justifies the assumptions of the

next theorem.

Theorem III.38. Let C be a nonsingular curve of genus 12. Let A be a halfcanon-

ical divisor on C with dimH0(A) = 5. Assume that dimW 1
4 (C) = 0. Then the ring

R(C, A) is generated in degree 1 by x1, x2, x3, x4, x5 and the ideal IA is generated by

three quadric relations F2, G2,H2 and two quartic relations F4, G4.

Proof. By Proposition III.36 the map ϕA is an embedding onto C11 ⊂ F(1, 2)

lying on the cubic scroll and belonging to the linear system |4H − L|. In particular

there are no more quadrics through C11 (other than those defining F(1, 2)) and this

means that there are no new generators in degree 2. A cubic form not contained

in the ideal IF(3) cuts out in F(1, 2) a subscheme of degree 9 hence there are no

generators of IA in degree 3. The dimension of S3H0(A) = S3〈x1, . . . , x5〉 is 35. The

space of multiples of the quadric relations is 15-dimensional and there are exactly 2

syzygies holding between these. Given that dimH0(3A) = 22 we deduce that there

are no new generators in degree 3. By Proposition III.5 we deduce that R(C, A) is

generated in degree 1 and therefore it is a codimension 3 ring. Since C11 ∈ |4H − L|
and dimH0(F, 4H − (4H − L)) = 2 we deduce that there is a pencil of quartic

hypersurfaces through C11. Two different quartics in this pencil cut out subschemes

on F(1, 2) which contain C11 and differ by two distinct lines of the ruling. Hence

these quartics cut out set-theoretically C11 on F(1, 2). Let F4 and G4 be two distinct

quartics through C11. Denote the quadratic generators of IA by Q1, Q2, Q3. We want

to show that IA = (Q1, Q2, Q3, F4, G4). Consider

J1 = (Q1, Q2, Q3, F4) and J2 = (Q1, Q2, Q3, G4).

Since F(1, 2) is arithmetically Cohen–Macaulay and the projection of each of the

ideals Ji in C[F(1, 2)] = C[x1, . . . , x4]/(Q1, Q2, Q3) is principal we deduce that both

Ji ⊂ C[x1, . . . , x5] have no embedded primes. Since they cut out a subscheme of P4
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containing ϕA(C), each of Ji must be contained in IA, the minimal prime correspon-

ding to the irreducible component ϕA(C). The degree of Ji equals 4 ·degF(1, 2) = 12.

Hence in a primary decomposition of each Ji, IA appears with multiplicity 1. Moreover

since Ji cut out a line outside ϕA(C) we conclude that

J1 = IA + P1 and J2 = IA + P2,

(where Pi are distinct prime ideals defining disjoint lines in P4) are primary decom-

positions of J1 and J2. Clearly J1 + J2 ⊂ IA. On the other hand,

IA = IAC[x1, . . . , x4] = IA(P1 + P2) ⊂ (IA + P1) + (IA + P2) = J1 + J2

hence IA = J1 + J2. ¤

Remark. To begin with, notice that this is an example where the interpretation of

the Hilbert numerator is not completely straightforward. The Hilbert series multiplied

by (1− t)5 is 1− 3t2 + 2t3 − 2t4 + 3t5 − t7 which would suggest that we need 2 more

generators in degree 3. In the end it turns out that this Hilbert numerator should be

written as 1− 3t2 − 2t4 + 2t3 + 3t5 − t7.

This is the first case of a Pfaffian 5 × 5 ring of which we give a full description

in this Chapter. The reason is that in this case, writing the equations in a Pfaffian

format is trivial. In the cases of Chapter IV to be able to write the 5 Pfaffians we

need to employ the vector bundle method.

Let us first write the equations of F(1, 2). In coordinates of P4[x1, . . . , x5] these

are given by

rank
[

x1 x3 x4

x2 x4 x5

]
≤ 2. (4.6)

Suppose that one of the quartics is given as

F4 = x1A + x3B + x4C.

Consider

G4 = x2A + x4B + x5C.

Since the vectors (x1, x3, x4) and (x2, x4, x5) are proportional on F(1, 2), the intersec-

tion G4 with F(1, 2) contains C11. Moreover it contains a different line from the ruling

of F(1, 2). We deduce that F4, G4 span the pencil of quartics through C11. Now we
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check that the three quadrics of (4.6) and these two quartics can be written as the 5

submaximal Pfaffians of the following skew matrix



0 x1 x3 x4

x2 x4 x5

C −B
A


 .

Let us take this opportunity to give a brief preview of the type of arguments used

in Chapter IV.

Proposition III.39. Let C be a nonsingular curve of genus 12. Assume that

dimW 1
4 (C) = 0. Let A be a halfcanonical divisor on C such that dimH0(A) = 5.

Then there exists a vector bundle E of rank 2 and determinant −A with the following

properties:

(i) dimH0(E ) = 2.

(ii) H0(A)⊗H0(E ) → H0(E (A)) is surjective.

(iii) H0(2A)⊗H0(E ) → H0(E (2A)) has a 3-dimensional cokernel.

Proof. Let ξ be the unique g1
4 on C. As we have shown in previous proofs we have

h0(A− 2ξ) = 1. Therefore the map

H0(KC − ξ)⊗H0(−ξ −A) → H0(A− 2ξ)

has a 1-dimensional cokernel. Accordingly, by Lemma III.7 on page 33, we deduce

that there exists a unique nonsplit extension

0 → OC(ξ) → E → OC(−ξ −A) → 0

with 2 global sections. This shows (i). The dimension of the cokernel of the map

H0(A) ⊗ H0(E ) → H0(E (A)) can be assessed by considering the adjoint maps. In

fact, it is enough to show that

H0(A)⊗H0(ξ) → H0(A + ξ) (4.7)

is surjective. By Castelnuovo’s free-pencil trick, the kernel of this map is isomorphic to

H0(A − ξ), whose dimension, by RR and Serre duality equals h0(A + ξ)− 4. Hence

the cokernel of (4.7) has dimension 2h0(A + ξ) − 14. All we need to show is that

h0(A + ξ) = 7 or equivalently, that h0(A − ξ) = 3. In fact, by Proposition III.2
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we have h0(A − ξ) ≥ 3, and if h0(A − ξ) ≥ 4 then A is not very ample. This is a

contradiction. Thus we have showed (ii).

To show (iii) we proceed analogously. This time, again, the map

H0(2A)⊗H0(ξ) → H0(2A + ξ)

is surjective but

H0(2A)⊗H0(−ξ −A) → H0(A− ξ)

has a 3-dimensional cokernel. ¤

Choose 〈s1, s2〉 = H0(E ) and 〈t1, t2, t3〉 ⊂ H0(E (2A)) spanning a complementary

set to H0(2A)⊗H0(E ) and let us write down the skew matrix:




0 s1 ∧ t1 s1 ∧ t2 s1 ∧ t2
s2 ∧ t1 s2 ∧ t2 s2 ∧ t2

t1 ∧ t2 t1 ∧ t3
t2 ∧ t3


 (4.8)

The zero entry comes from the fact that s1 ∧ s2 = 0 since these sections span a

subbundle of E . At every point of C this matrix has rank 2 since E is a vector

bundle of rank 2. Moreover, the entries of (4.8) are elements of R(C, A). Hence

its 5 submaximal Pfaffians represent relations between these elements. There are 3

quadric relations and 2 quartic relations. For complete details we refer the reader to

Chapter IV. Let us only mention that there are still some details to be checked. For

example that the 3 quadrics obtained in this way cut out F(1, 2) ⊂ P4[H0(A)]. This

is equivalent to proving that each of these Pfaffians is not a trivial relation, which is

a consequence of the fact that the intersection 〈t1, t2, t3〉 ∩H0(2A)⊗H0(E ) is empty.

Genus 13 and h0(A) = 5.

Proposition III.40. Let C be a nonsingular curve of genus 13 with a halfcanonical

divisor A such that dimH0(A) = 5. Then C has no g2
8 if and only if sym2 is surjective

and if either is true then ϕA is a birational morphism.

Proof. Assume that sym2 is surjective. Then |A| is necessarily free and using

Proposition III.2 we see that C cannot be hyperelliptic. In fact we will show next that

gon(C) ≥ 5. First, let us prove a lemma which will be used also in the next chapter.
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Lemma III.41. Let C be a nonsingular curve and A a halfcanonical divisor for

which sym2 is surjective. Let D be an effective divisor on C and denote by d the

dimension of its linear span in P[H0(A)]. Then we have the following inequality:

deg(D)− h0(D) ≤ 1
2
(d + 2)(d + 1)− 1

Proof. The number deg(D) − h0(D) is the dimension of the linear span of D in

canonical space, P(H0(KC)). The number 1
2(d + 1)d− 1 is the dimension of the image

of linear span of D in P[H0(A)] by the second Veronese map. ¤

We use this lemma to show that gon(C) cannot equal 3. For otherwise, assume

that D is a divisor of degree 3 and with h0(D) = 2. Then h0(A − D) ≥ 4 by

Proposition III.2. Hence

dimH0(A)− dimH0(A−D)− 1 ≤ 0.

From Lemma III.41 we deduce that deg(D)−h0(D) ≤ 0 which implies that deg(D) ≤
2. This is a contradiction. We conclude that gon(C) ≥ 4.

Let us now show that gon(C) ≥ 5. Consider a free g1
4 on C and denote it by ξ.

By Proposition III.2 we have h0(A− 2ξ) ≥ 1. Suppose that h0(A− 2ξ) = 1. Denote

H0(ξ) by 〈s1, s2〉 and H0(D) by 〈t1, t2, t3〉. Then

H0(ξ)⊗H0(D) → H0(A)

produces the following quadrics:

rank
[

s1t1 s1t2 s1t3
s2t1 s2t2 s2t3

]
≤ 1. (4.9)

Since h0(A− 2ξ) = 1 we deduce that the kernel of sym2 is at least 3-dimensional and

hence sym2 is not surjective. In fact we can see from (4.9) that ϕA(C) is contained in

the cubic scroll F(1, 2). If h0(A− 2ξ) = 2 then |A− 2ξ| is a free g1
4 on C. Let us write

A = 2ξ + ξ′ with ξ′ a complete free g1
4 (recall C is not trigonal). But now reverse the

roles of ξ and ξ′ to obtain 2ξ + ξ′ = 2ξ′ + ξ =⇒ ξ = ξ′. Therefore A = 3ξ. In this

situation we conclude that the projection from a point of P[H0(A)] of the image of C
by ϕA is a rational normal curve of degree 3. In other words, ϕA(C) is contained in

F(0, 3), the cone over a rational normal curve of degree 3. But then sym2 cannot be

surjective. We conclude that gon(C) ≥ 5.
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Let us now show that there are no g2
8 on C. Let D be a divisor of degree ≤ 8 and

h0(D) ≥ 3. By Proposition III.2, the linear system |A−D| is effective. Hence we can

apply Lemma III.41. Since

dimH0(A)− dimH0(A− (A−D))− 1 ≤ 1

we have deg(A −D) − h0(A −D) ≤ 2. This implies that h0(A −D) ≥ 2. Therefore

deg(D) = 8 and the linear system |A−D| is a free g1
4. This is not possible.

We have shown

sym2 surjective =⇒ C has no g2
8

Assume now that C has no g2
8. Clearly if there exists a g1

4, then a suitable subsys-

tem of 2g1
4 is a g2

8. Hence we conclude that gon(C) ≥ 4.

Let us describe the map ϕA. Let B ⊂ |A| be the free part of |A|. The linear

system |B| yields of morphism of C onto a curve C in P4 of degree ≤ 12. The degree

of ϕB is ≥ 3. If deg(ϕB) = 3 then C is a rational normal curve of degree 4 and

consequently C is trigonal, which is not true. If deg(ϕB) = 2 then deg(C) ≤ 6 and a

projection off a secant line to C ⊂ P4 composed with ϕB is a linear system of degree

≤ 8 and dimension 2, which we are assuming not to exist. Hence deg(ϕB) = 1. In this

situation the genus of C is 13. If deg(C) < 12 then from Castelnuovo’s bound (see

page 44), the genus of ϕB(C) is ≤ 12. We deduce that B = A and ϕA is a birational

morphism.

Let us now show that sym2 is surjective. We argue by contradiction. Assume that

sym2 is not surjective. Choose 3 quadrics in the system of quadrics through C ⊂ P4,

and denote their intersection by S. If dimS ≤ 1, then S is a scheme-theoretic complete

intersection and by Bézout’s theorem deg(C) ≤ 8. But by our previous discussion

deg(C) = 12. Therefore we can assume that dimS = 2 and hence the component S0

of S to which C belongs is 2-dimensional. The surface S0 is contained in two linearly

independent quadrics and accordingly has degree ≤ 4. If the degree is 4 then using

Unmixedness and Bézout’s theorem we deduce that S0 is a complete intersection of

two quadrics. But then it cannot be contained in an extra quadric as we are assuming.

Thus deg(S0) ≤ 3. Having minimal degree S0 can only be either F(0, 3) or F(1, 2).

In the first instance projecting from the vertex would yield a linear system of degree

≤ 4 on C. This is a contradiction.
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Finally suppose that C ⊂ F(1, 2) ⊂ P4. Let us write H for the hyperplane section

of F(1, 2) and L for the class of the ruling of F(1, 2). Then there exist integers a, b such

that C = aH + bL. With 3a + b = deg(C) = 12. Additionally, since KF = −2H + L

we have

24 ≤ 2pa(C)− 2 = KFC + C2 = −5a− 2b + 3a2 + 2ab.

substituting b = 12− 3a we get the following quadratic inequality:

3a2 − 25a + 48 ≤ 0

which has integers solutions a = 3, 4 and 5. If a = 3 then b = 3 and therefore there

exists a g1
3 which is not true. If a = 4 or a = 5 then pa(C) = 15 or 22 respectively.

We deduce that C is singular at least at two distinct points. Projecting from a secant

line at these points we obtain a g2
8. We conclude that sym2 must be surjective. ¤

Theorem III.42. Let C be a nonsingular curve of genus 13. Assume that C has

no g2
8. Then C has a halfcanonical divisor A with dimH0(A) = 5 if and only if C is

isomorphic to a complete intersection of C2,2,3 ⊂ P4.

Proof. Let C2,2,3 ⊂ P4 be a nonsingular complete intersection. By adjunction,

C = C2,2,3 has a halfcanonical divisor A = O(1)|C with dimH0(A) = 5. Additionally

sym2 is surjective.

Conversely assume that C is a nonsingular curve of genus 13 with no g2
8 and that

C has a halfcanonical divisor A with dimH0(A) = 5. By Proposition III.40 we know

that sym2 is surjective and |A| is a free linear system. Hence from Proposition III.5

we deduce that R(C, A) is generated in degree ≤ 3. We need to show that

H0(A)⊗H0(2A) → H0(3A) (4.10)

is surjective. The argument we use here is a refinement of the proof of Proposi-

tion III.5. By Lemma III.7 an element of the cokernel of (4.10) corresponds to an

extension

0 → OC → F → OC(A) → 0

with 6 global sections. Let p, q be two general points of C and denote by δ ⊃ p+ q the

divisor of zeros of a section of F vanishing at p and q. Let OC(ξ) be the saturation
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of OC(δ) ↪→ F . We have

0 → OC(ξ) → F → OC(A− ξ) → 0.

Since p + q ⊂ δ ⊂ ξ and p, q are general we deduce that h0(A − ξ) ≤ 3. Since

h0(F ) ≤ h0(ξ) + h0(A− ξ) we deduce that h0(ξ) ≥ 3. Since C has no g2
8 this implies

that deg(ξ) ≥ 9 and accordingly deg(A−ξ) ≤ 3. But then we must have h0(A−ξ) ≤ 1

and consequently h0(ξ) ≥ 5. Since |A| is free, we deduce that ξ = A. In other words

F is split. This shows that (4.10) is surjective.

Consequently R(C, A) is generated in degree 1. Since sym2 is surjective the ideal

IA has two generators in degree 2. Let us denote them by Q1 and Q2. Since there are

no linear syzygies holding between these quadratic generators a numerical argument

shows that there exists a new cubic generator that we denote by F3.

By the argument of the proof of Proposition III.40 the two quadrics Q1, Q2 cut

out in P4 a reduced surface of degree 4. By Unmixedness and Bézout’s theorem

this intersection is indeed complete. Since F3 is not a multiple of 〈Q1, Q2〉 it cuts

out on this surface a subscheme of dimension 1. We have I = (Q1, Q2, F ) ⊂ IA.

By Unmixedness, I has no embedded primes. By Bézout’s theorem I has a single

minimal prime with multiplicity one. In other words I = IA. ¤



CHAPTER IV

Pfaffian 5× 5 halfcanonical rings

In the context of Buchsbaum–Eisenbud’s theorem a Pfaffian 5 × 5 ring is a the

quotient of a polynomial ring by a homogeneous Gorenstein ideal of codimension

3 generated by the five submaximal Pfaffians of a skew matrix with entries in the

polynomial ring. Recall from Table III.2 on page 42 that there are four (plus one)

pairs (C, A) of a curve and a halfcanonical divisor for which the ring R(C, A), for a

general pair, is expected to be a Pfaffian 5 × 5 ring. The “plus one” accounts for

the case g(C) = 12 and h0(A) = 5 which was already studied in the previous chapter

(page 63). In this chapter we study the cases

g(C) = 8 dimH0(A) = 3

g(C) = 14 dimH0(A) = 5.

We prove that under some suitable generality assumptions on the pair (C, A), each

of these is a complete intersection in a generalised weighted Grassmannian. We sum-

marise the results of this chapter in the next table. The notation for the key varieties

is taken from Section IV.1. Additionally, Fd denotes a general quasihomogeneous

form of degree d in the variables of the ambient space.

g(C)− 1 h0(A) X, the key variety Defining forms

7 3 G(1
2

3
, 1

2

2)
⋂4

i=1 F i
2 ∩ F3

13 5 P(1)nG(1
2

4
, 3

2)
⋂4

i=1 F i
2 ∩

⋂2
j=1 F j

1

Table IV.1. Sections of key varieties

Implicit in Table IV.1 is the notion of a complete intersection in a arithmetically

Cohen–Macaulay scheme. We shall see below (Section IV.1) that generalised weighted

Grassmannians are by definition automatically projectively Gorenstein schemes. In
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particular their homogeneous rings are Cohen–Macaulay and hence they are arithme-

tically Cohen–Macaulay.

Definition IV.1 (Complete intersection). Consider S ⊂ X ⊂ P with S a sub-

scheme of an arithmetically Cohen–Macaulay scheme X in (weighted) projective space

P = ProjC[xi]. Let I(X) and I(S) be the homogeneous ideals of X and S in P. We

say that S is a complete intersection in X if there exist f1, . . . , fn ∈ C[xi] quasihomo-

geneous forms such that

n = dim X − dimS and I(S) = (f1, . . . , fn) + I(X)

In particular, since X is arithmetically Cohen–Macaulay (fi + I(X)) is a regular

sequence in C[xi]/I(X) and therefore (fi) is a regular sequence in C[xi].

In this chapter we will see how we can use generalised Grassmannians and the

notion of complete intersection to derive the structure of the ideal IA associated to a

halfcanonical divisor and to a choice of generators of the ring R(C, A).

The following result plays has a very important role. We have used it with X =

P several times in the previous chapter. There are two reasons for only proving

this result here. In the first place, taking a complete intersection in a weighted

projective space is a more common operation than taking a complete intersection in

an arithmetically Cohen–Macaulay scheme. Secondly we will only need the level of

generality of its statement in this chapter.

Proposition IV.2. Consider S ⊂ X ⊂ P with S an irreducible reduced variety,

X an arithmetically Cohen–Macaulay subscheme and P weighted projective space. Let

C[xi] denote the homogeneous ring of P and I(X), I(S) the homogeneous ideals of X

and S, respectively. Let J ⊂ C[xi] be an ideal generated by a sequence f1, . . . , ft of t

quasihomogeneous forms in C[xi]. Suppose that

(i) dimS = dim(Z(J) ∩X) = dimX − t

(ii) S ⊂ Z(J) ∩X

(iii) deg(S) = deg(X)
∏t

i=1 deg(fi)

Then I(S) = J + I(X).

Proof. The proof consists of three steps. In step 1 we show that J + I(X) has no

embedded primes. In step 2 we show that deg(J + I(X)) = deg(X)
∏t

i=1 deg(fi) and
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finally in step 3 we show that J + I(X) is primary and Rad(J + I(X)) = I(S). Then

the proof follows from Proposition II.17 on page 26.

Step 1. Let Ĵ ⊂ C[xi]/I(X) denote the ideal (J + I(X))/I(X). Since we are assum-

ing that dim(Z(J) ∩X) = dimX − t, the ideal Ĵ as codimension t. Moreover it is

generated by the t elements fi + I(X). Since C[xi]/I(X) is Cohen–Macaulay, by Un-

mixedness (Theorem II.16), Ĵ has no embedded primes. Let π : C[xi] → C[xi]/I(X)

be the quotient morphism. Consider a homogeneous primary decomposition of Ĵ

Ĵ = P̂1 ∩ · · · ∩ P̂k

Since Ĵ has no embedded primes each Rad P̂i is minimal over Ĵ . Denote the primary

ideal π−1(P̂i) by Pi. Then

J + I(X) = P1 ∩ · · · ∩ Pk

is a homogeneous primary decomposition and for each i the prime ideal RadPi is

minimal over J + I(X). Therefore J + I(X) has no embedded primes.

Step 2. By definition of degree of a homogeneous ideal

deg(J + I(X)) = degC[xi]/(J + I(X)).

Denote by Mi the graded C[xi] module C[xi]/((f1, . . . , fi) + I(X)). Since (fi + I(X))

is a regular sequence in C[xi]/I(X) (Theorem II.15) we have for each integer i the

exact sequence

0 → Mi(−deg(fi+1)) → Mi → Mi+1 → 0.

We deduce that deg(Mi+1) = deg(fi) deg(Mi). By induction we get

deg(I + I(X)) = deg(X)
t∏

1=1

deg(fi).

Step 3. Let J + I(X) = P1 ∩ · · · ∩ Pk be a primary decomposition. We have shown

that each RadPi is a minimal prime. We are assuming that S ⊂ Z(J) ∩ X and

that S is irreducible. Therefore for some integer i, which we can assume to be k,

RadPi = Rad I(S) = I(S), as S is reduced. Since J + I(X) has no embedded primes

and for distinct primary components Pi we have distinct minimal primes Rad(Pi) one

shows using induction on the exact sequence

0 → C[xi]/(P1 ∩ P2) → C[xi]/P1 ⊕ C[xi]/P2 → C[xi]/(P1 + P2) → 0
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that

deg(J + I(X)) = deg(P1) + · · ·+ deg(Pk).

From this we obtain

deg(X)
y∏

i=1

deg(f1) ≤ deg(Pk) ≤ deg(S) = deg(X)
y∏

i=1

deg(fi).

Therefore P1 = · · · = Pk−1 = 0 and we conclude that J + I(X) is primary. Ad-

ditionally Rad(J + I(X)) = I(S). The result now follows from Proposition II.17 on

page 26. ¤

Throughout this chapter we deliberately do not apply Buchsbaum–Eisenbud’s

Theorem to the ring R(C, A) for each the cases considered. If we want to apply

Buchsbaum–Eisenbud’s theorem, besides having to assume Gorensteiness of R(C, A)

from start, we would still have to analyse to which extent masking can occur in each

case. Given a Hilbert numerator indicating a 5× 5 Pfaffian format, a priori, there is

no reason for no occurrence of masking of a 7× 7 format. It should be interesting to

find an example where this actually happens.

IV.1. Weighted Grassmannians

The variety of subspaces of dimension 2 of a fixed vector space of dimension 5,

G(2, 5) in its Plücker embedding, provides a key example of the structure theorem for

a Gorenstein ideal of codimension 3 of Buchsbaum–Eisenbud [BE] — Theorem I.1.

From this algebraic point of view G(2, 5) ⊂ P9 is the zero locus of

Pf




x12 x13 x14 x15

x23 x24 x25

x34 x35

x45


 =




Pf1
...

Pf5


 . (1.1)

The matrix M above and its Pfaffians, Pfi, is all we need to write down the free

resolution of ideal generated by the five submaximal Pfaffians of M over A = C[xij ]:

A
(Pfi)←− 5A(−2) M←− 5A(−3)

(Pfi)
t

←− A(−5) ← 0. (1.2)

The ordinary G(2, 5) corresponds to the choice of weights, wt(xij) = 1. Making the

weighting of the variables of A arbitrary, in a way that the Pfaffians remain homoge-

neous, we can generalise this construction to a weighted Grassmannian.
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Proposition IV.3. Let wij denote the weight of the variable xij. Then the sub-

maximal Pfaffians of M are homogeneous with respect to this grading if and only if

there exist c1, . . . , c5 ∈ 1
2Z such that ci + cj is an integer and wij = ci + cj.

Proof. Clearly a grading originating from such a choice leaves the Pfaffians ho-

mogeneous. Conversely, let wt(xij) = wij be a weighting that makes the Pfaffians

homogeneous. Let us make the following extra notation: let bi denote the degree of

the i-th Pfaffian, Pfi and wji for i < j the ‘weight’ of the variable −xij , which is wij .

The Pfaffian tautology,



x12 · · · x15

. . .
...

x45







Pf1
...

Pf5


 = 0

returns the following relations:

wil + bl = wik + bk for any k 6= j.

This means that wil −wij is independent of the choice of i. Suppose that (i, k, l) and

(i, r, t) are two distinct ordered triples of integers in {1, . . . , 5}. Then

wik − wkl + wli = wir − wrl + wli = wir − wrt + wti.

Therefore the half-integers given by

ci =
wik − wkl + wli

2

for any ordered triple (i, k, l) of distinct integers of {1, . . . , 5}, are well-defined. Then,

ci + cj =
wij − wjl + wli + wji − wil + wlj

2
= wij . ¤

We will denote
∑

i ci by k. A resolution of the Pfaffian ideal is readily at hand:

A
(Pfi)←−

5⊕

i=1

A(ci − k) M←−
5⊕

i=1

A(−ci − k)
(Pfi)

t

←− A(−2k) ← 0 (1.3)

with Hilbert series:
1−∑

i t
k−ci +

∑
i t

k+ci − t2k

∏
i<j(1− tci+cj )

(1.4)
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Definition IV.4. Let (c1, . . . , c5) be a collection of elements of 1
2Z. A weighted

Grassmannian G(c1, . . . , c5) is the projectively Gorenstein codimension 3 subscheme

of P defined by the Pfaffian ideal of M for a choice of weights as in Proposition IV.3.

(See [CR] for an equivalent definition).

Proposition IV.5. Let G be a weighted Grassmannian for some choice of weights

(c1, . . . , c5). Let k be the integer
∑

i ci. Then

(i) ωG = OG(−2k)

(ii) degG =
P

(k−ci
3 )−P (k+ci

3 )+(2k
3 )Q

i<j(ci+cj)

(iii) H i(OG(j)) = 0 for all 0 < i < 6.

Proof.

(i) We have ωP = OP(−4k) and 2k is the adjunction number.

(ii) This follows from Corollary II.13.

(iii) We prove this using the fact that G is Cohen-Macaulay (hence the length

of (1.3) equals the codimension of G in P) and vanishing of H i(OP(j)) for

0 < i < 9. ¤

Example IV.6. Let G be the weighted Grassmannian corresponding to the choice

of weights:




1 1 1 2
1 1 2

1 2
2


 (1.5)

Proposition IV.7. Denote by xij for 1 ≤ i < j ≤ 4 the variables of weight 1 and

by yi the variables of weight 2. Then G is nonsingular away from P(y1, . . . , y4), where

it has a singularities of type 1
2(1, 1, 1, 0, 0, 0).

Proof. Away from P[y1, . . . , y4] where, say for simplicity x12 6= 0, and among the

equations of G in P we can find x12x34 = . . . , x12y3 = . . . , x12y4 = . . . , for which

we can apply the implicit function theorem. This means that the affine cone of G

is smooth on the neighbourhood of x12 = 1 and hence G is also smooth. If we are

at a point of P[y1, . . . , y4] then in the same way, using the implicit function theorem

we can eliminate three of the weight 1 coordinates and the affine cone will also be
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smooth. In this case, since the C∗ action has a stabiliser we find at the corresponding

point of G a singularity of type 1
2(1, 1, 1, 0, 0, 0) where the 1 account for the remaining

coordinates of weight 1. Alternatively one can simply say that since G and G(2, 5)

have the same affine cone, the variety G is quasismooth and therefore it is nonsingular

where the C∗ action has trivial stabiliser. ¤

IV.1.1. Generalised weighted Grassmannians. The theorem of Buchsbaum–

Eisenbud, characterising Gorenstein homogeneous ideals of codimension 3 does not

say that we should take all entries of the given skew matrix algebraically independent

(as in the case of a weighted Grassmannian). In fact we take care of this detail by con-

sidering quasilinear sections of weighted Grassmannians. Unfortunately this still does

not give all the possibilities for the entries of the skew matrix. Some generators of the

ring may only appear as implicit functions in the entries of the matrix. Geometrically

this corresponds to a hyperplane section in a cone variety. The constructions below

of generalised weighted Grassmannians still give Gorenstein ideals of codimension 3.

Algebraically the definition of these varieties could not be simpler. Consider an

injection of degree 0 of C[xij ] into a graded ring A = C[x]. We only need notation

for the weights of the variables xij : consider a collection of half-integers (c1, . . . , c5);

then

wt(xij) = ci + cj .

This is a necessary and sufficient condition for the homogeneity of the submaximal

Pfaffians of the following skew matrix (see Proposition IV.3):

M =




x12 x13 x14 x15

x23 x24 x25

x34 x35

x45


 (1.6)

The subscheme of P[x] = ProjA defined in this way is a projectively Gorenstein

scheme of codimension 3.

There is a more geometrical definition of these varieties. Recall that aG(2, 5), the

affine cone over the Grassmannian G(2, 5), is the affine subscheme of 10-dimensional

affine space, A10(xij) with 1 ≤ i < j ≤ 5, defined by the submaximal Pfaffians of the



IV.1 Weighted Grassmannians 81

skew matrix (1.6). Let A[x1, . . . xn] be ordinary affine k-space. We use the symbol n

in the expression

Ann aG(2, 5)

to mean: make the cone over aG(2, 5) with vertex at A[x1, . . . , xn]. More precisely

take the join of A[x1, . . . , xn] and aG(2, 5) in A[x1, . . . , xn, xij ].

Definition IV.8. Let (b1, . . . , bn) be a n-tuple of integers and (c1, . . . , c5) a collec-

tion of five half-integers. With the notation introduced above, define the generalised

weighted Grassmannian of weights (b1, . . . , bn; c1, . . . , c5) to be the quotient

(Ann aG(2, 5)\0)/C∗

where C∗ acts by

xl 7→ λblxl and xij 7→ λci+cjxij

for 1 ≤ l ≤ n and 1 ≤ i < j ≤ 5. We denote it by

P(b1, . . . , bn)nG(c1, . . . , c5).

The following proposition is very similar to Proposition IV.5. For this reason we

keep the proof to a minimum.

Proposition IV.9. Let G be the generalised weighted Grassmannian

P(b1, . . . , bn)nG(c1, . . . , c5). Denote
∑5

1=1 ci by k. Then

(i) G is a (n + 6)-dimensional variety;

(ii) ωG = OG(−2k −∑
i bi);

(iii) degG =
P

(k−ci
3 )−P (k+ci

3 )+(2k
3 )Q

l bl·
Q

i<j(ci+cj)
;

(iv) H i(OG(j)) = 0 for all 0 < i < n + 6.

Proof. Item (i) is clear from the geometric definition or the algebraic definition

of generalised weighted Grassmannian. Item (ii) comes straight out of the projective

resolution of the ideal of Pfaffians:

A
(Pfi)←−

5⊕

i=1

A(ci − k) M←−
5⊕

i=1

A(−ci − k)
(Pfi)

t

←− A(−2k) ← 0 (1.7)



IV.2 The vector bundle method 82

where A = C[x1, . . . xn, xij ] with wt(xi) = bi and wt(xij) = ci + cj . The dualising

module of P is OP(−4k−∑
i bi) and by Gorenstein adjunction ωG = O(−2k−∑

i bi).

Items (iii) and (iv) can be proved as in Proposition IV.5. ¤

IV.2. The vector bundle method

Vector bundles played an important part in the preliminary results of Chapter III

relating the gonality of a curve with a halfcanonical divisor and the halfcanonical ring

R(C, A). We are referring in particular to Proposition III.5. Vector bundles appear

in the study of special linear systems on algebraic curves in several places. For an

overview see [La87].

However the vector bundle method we wish to describe here is of a complete

different nature. The vector bundle method was used consistently in work of Mukai

of classification of Gorenstein Fano 3-folds. In a long series of articles [M89, M88,

M93, M95c, M95b, M95a, M03] Mukai describes a method of recovering the

classical constructions of Fano 3-folds of coindex 3 by the use of a suitable vector

bundle. If V is a nonsingular algebraic variety of dimension 3 whose anticanonical

linear system |−KV | is ample, V is said to be a Fano 3-fold. For a Fano 3-fold of

coindex 3 we define its genus to be the integer 1 − 1
2(K3

V ), which is the genus of a

generic linear curve section. We say that V is indecomposable if the anticanonical

linear system is indecomposable. The following theorem is taken from [M03].

Theorem (Mukai). Let V be an indecomposable Fano 3-fold with at most Goren-

stein canonical singularities∗. Then:

(i) g ≤ 10 or g = 12. (Iskovskikh’s genus bound in the smooth case).

(ii) g = 2 V = (6) ⊂ P(13, 2, 3)

g = 3 V4 ⊂ P4 or

V
2:1−−→ Q3

rank 5 ⊂ P4

g = 4 V = (2) ∩ (3) ⊂ P5

g = 5 V = (2) ∩ (2) ∩ (2) ⊂ P6

g = 6 V = G(2, 5) ∩H1 ∩H2 ∩Q or

V
2:1−−→ V5 ⊂ P6, where V5 = G(2, 5) ∩H1 ∩H2 ∩H3

∗See [R87] for a definition of Gorenstein canonical singularities.
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g = 7 V = Σ10
12 ∩H1 ∩ · · · ∩H7 where Σ10

12 = OG(5, 10)

g = 8 V = G(2, 6) ∩H1 ∩ · · · ∩H5

g = 9 V = Σ6
10 ∩H1 ∩H2 ∩H3 where Σ6

10 = SpG(3, 6)

g = 10 V = Σ5
18 ∩H1 ∩H2 where Σ5

18 ⊂ G(5, 7)

g = 12 V is smooth and V ' G(3, 7, N) ⊂ G(3, 7) where

N = 〈b1, b2, b3〉 ⊂
∧2C7 is a net of bivectors.

Mukai refers to (ii) of this theorem as the “linear section theorem”. It states that

a Fano 3-fold is a linear section of a Fano manifold of higher coindex. For genus

6, 7, 8, 9, 10 and 12 the key Fano n-folds Σ appear as subvarieties of a Grassmannian

or broadly speaking of a homogeneous space. To recover V as an embedded variety

Mukai construct a vector bundle of the corresponding rank, determinant, space of

global sections, etc.; and uses it to set up a map on V yielding an embedding into the

correspondent homogeneous space.

In his own words [M03] Mukai describes the vector bundle method in a sequence

of five steps:

(1) Construct the vector bundle on S ∈ |−KV |.
(2) Extend the vector bundle on S to a vector bundle on X.

(3) Embed V into the corresponding homogeneous space.

(4) Regard the image as a subvariety of one of Σ in the Theorem.

(5) Prove that the image of V under this embedding = Σ ∩H1 ∩ · · · ∩Hk.

Let us illustrate Mukai’s vector bundle method with one of Mukai’s results. (See

[M93]).

Theorem. A curve C of genus 8 is a transversal linear section of the 8-dimensio-

nal Grassmannian G(2, 6) ⊂ P14 if and only if C has no g2
7.

The only if of the statement is checked directly by geometrical inspection of

G(2, 6). To prove that a curve C of genus 8 is a transversal linear section of G(2, 6)

Mukai constructs a bundle E on C of rank 2 and determinant KC with 6-dimensional

space of global sections. In this case one can show that a bundle satisfying these

requirements is unique.
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Lemma 1. Suppose that C is nonsingular curve of genus 8. Assume that W 2
7 (C) =

∅. Then when E ranges over all stable bundles of rank 2 and canonical determinant

the maximum value of dimH0(E ) is 6 and moreover there is unique bundle bundle

for which dimH0(E ) = 6

Proof of the lemma. (sketch) By the theory of Brill–Noether there exists a g1
5 on

C. Let us denote it by ξ. By RR and Serre duality the adjoint linear system KC − ξ

has dimension 3. One shows that

H0(KC − ξ)⊗H0(KC − ξ) → H0(2KC − 2ξ)

has a 1-dimensional cokernel. Then, from the Lemma III.7 there exists a unique

nonsplit extension E of OC(KC − ξ) by OC(ξ) with dimH0(E ) = 6:

0 → OC(ξ) → E → OC(KC − ξ) → 0. (2.1)

Next one shows that E is stable and that any stable bundle of rank 2 and canonical

determinant with a space of global sections at least 6-dimensional fits in the sequence

(2.1) and therefore must be isomorphic to E . ¤

The vector bundle E is generated by its global sections, so that the map it defines

is a morphism

ϕ|E | : C → G(2, 6).

To get (5) of the vector bundle method, Mukai uses a skew version of Castelnuovo’s

linear-bilinear principle, equating

P∗Ker

{
2∧

H0(C) → H0(KC)

}
∩G(2,H0(E ))

with the set W 1
5 (C), and proving that the latter is finite. This is a consequence of

W 1
7 (C) = ∅. The proof that a curve of genus 8 having no g2

7 has finite number of g1
5

is somewhat intricate and we refer the reader to [M93] for details. This argument

also shows that ϕ|E | is an embedding as it is easily seen that ϕ|E | composed with the

Plücker map factors through the canonical map.
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IV.2.1. Vector bundles and weighted Grassmannians. Let X be a nonsingular

algebraic variety and E be a vector bundle of rank r on X, such that
∧r E = H is an

ample line bundle. Consider E the Serre module of E :

E =
⊕

n≥0

H0(X, E (nH)).

Let 〈si〉 ∈ E be any subspace of sections of E of dimension n ≥ r. We choose

trivialisations for E and consider the induced trivialisations for E (nH). Notice that

there is an induced trivialisation on
∧r E = H. We can write down a rational map:

ϕ|E |+ : X 3 p 7→ [si1 ∧ · · · ∧ sir(p)]i1...ir ∈ P

where the (i1, . . . , ir) ranges over all increasing r-tuples of {1, . . . n} and the projective

space on the the right hand side is of dimension
(
n
r

)
. Then, the image of X under this

map is contained in a weighted Grassmannian. The images of si after trivialisation

are r-tuples of complex numbers, so that the target space is nothing but Cr×d
r — the

space of maximal rank r × d matrices — modulo a GL(r,C) action corresponding to

a change of trivialisation. This map is not defined when si fail to give a matrix of

maximal rank. The action of N ∈ GL(r,C) is

N :




m11 . . . m1d

...
...

mr1 . . . mrd


 7→

7→


det(N)deg(si)N




m11

...

mr1


 (· · · ) det(N)deg(sd) ·N




m1d

...

mrd







that is, left-multiplication column-wise by det(N)deg(si)N where deg(si) = n if and

only if si ∈ E (nH).

To see that this notion of weighted Grassmannian agrees with our previous defi-

nition of G simply embed this variety in weighted projective space using the Plücker

embedding, i.e. the map

Cr×d
r 3 L 7→ ∧rL ∈ P(

r∧
Cr×d

r ).
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The weights of the weighted projective space P on the right are determined by the

distribution of {deg(si)}, indeed, the C∗ action giving P has eigenvalues λk for each

k occurring as a power of det(N) in some maximal minor. For example, the weighted

Grassmannian of Example IV.6 is the quotient C2×5
2 /GL(2,C) with the action of

GL(2,C):

 a1 . . . a5

b1 . . . b5


 7→


N


 a1 . . . a4

b1 . . . b4




∣∣∣∣∣∣
det(N) ·N


 a5

b5







There are 6 minors of weight 1 (those in the 2 × 4 leftmost submatrix) and 4 of

weight 2 corresponding to the maximal minors involving the last column. Under this

embedding C2×5
2 /GL(2,C) = G(1

2

4
, 3

2) ⊂ P(16, 24), the codimension 3 projectively

Gorenstein of Definition IV.4.

IV.2.2. A method that gives relations. In the previous paragraphs the em-

phasis was on the (rational) map given by the linear system |E | in the classical sense

(as in Mukai’s work) or by the extended linear system |E |+ composed of sections

of the several twists E (nKS) in the sense just described. However as was already

visible in the illustration of the vector bundle method on page 83 the vector bun-

dle method relies on a good knowledge of the graded ring R(X, det(E )). In Mukai’s

work all considerations could be reduced by an appropriate ladder of varieties to the

canonical ring of a general algebraic curve of genus g(V ) given as a linear section of

V . The canonical ring of a nonsingular algebraic curve is an object that has been

thoroughly analysed. Namely we have the theorems of Noether and Petri that give a

precise numerical description of the generators of R(C,KC) and IKC . In the context

of halfcanonical rings the results are less precise.

In the next example we illustrate the use of two bundles (as opposed to a single

one) in finding the set of generators of the halfcanonical ring of a nonsingular curve

of genus 10. In what follows the emphasis will be on exhibiting a set of relations for

R(C, A) rather that setting up an embedding into a weighted Grassmannian. We refer

the reader to the paragraph were we study these curves on page 61 for the necessary

background.

Proposition IV.10. Let C be a nonsingular curve of genus 10. Suppose that

gon(C) = 6 and let ξ be a g1
6 on C. Let A be a halfcanonical divisor on C such that
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dimH0(A) = 4. The map

H0(A + ξ)⊗H0(ξ) → H0(A + 2ξ) (2.2)

has a two dimensional cokernel. By Lemma III.7 there exists two nonsplit extensions,

E1 and E2, of OC(ξ) by OC(A + ξ) with 3 global sections. These vector bundles are

stable.

Proof. By Castelnuovo’s free-pencil trick the kernel of the map (2.2) is isomorphic

to H0(A) whose dimension is 4. The dimension of the tensor is 14 and the dimension

of H0(A+2ξ) by RR is 2 deg(ξ) = 12. Hence there is a two dimensional cokernel. By

Lemma III.7 this cokernel classifies extensions

0 → OC(A− ξ) → E → OC(ξ) → 0

with maximum number of global sections, this is with dimH0(E ) = 3. Let us now

show that such extensions are stable. Let η ⊂ E be a subbundle. Suppose that

dimH0(η) ≥ 2. Then η ⊂ ξ. Since ξ is free this would imply that E splits which is

not true. Hence dimH0(η) ≤ 1. Since

0 → OC(η) → E → OC(A− η) → 0

we have dimH0(A− η) ≥ 2 and so

deg(A− η) ≥ 6 ⇐⇒ deg(η) ≤ 4 <
deg(E )

2
. ¤

Proposition IV.11. Let C be a nonsingular curve with a halfcanonical divisor A

such that dimH0(A) = 4. Assume that gon(C) = 6. Let E be a stable bundle of rank

2 with det(E ) = A and dimH0(E ) = 3. Then

(i) the map
∧2 H0(E ) → H0(A) is injective.

(ii) The map H0(A)⊗H0(E ) → H0(E (A)) has a 1-dimensional cokernel.

Proof. Suppose that there exist s1, s2 ∈ H0(E ) such that s1 ∧ s2 = 0. Then the

saturation η of the bundle OC · s1 + OC · s2 ⊂ E yields a subbundle η ⊂ E with

dimH0(η) ≥ 2. But by stability deg(η) ≤ 4 which is not possible, since gon(C) = 6.

This shows (i).
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To describe the cokernel of the map

H0(A)⊗H0(E ) → H0(E (A)) (2.3)

we look into the adjacent morphisms

σ1 : H0(A)⊗H0(A− ξ) → H0(2A− ξ)

σ2 : H0(A)⊗H0(ξ) → H0(A + ξ)

It is easily seen using RR that σ1 has a 1-dimensional cokernel. Plus Castelnuovo’s

free-pencil trick shows that σ2 is surjective. We deduce that the cokernel of (2.3) is

at most 1-dimensional. By RR and Serre duality the dimension of H0(E (A)) equals

dimH0(E )− 2 deg(A) + 3 deg(A) = 12.

Thus all we need to show is that there exist a nontrivial kernel to (2.3). It is easily

checked that

(s2 ∧ s3)⊗ s1 − (s1 ∧ s3)⊗ s2 + (s1 ∧ s2)⊗ s3

is an element of H0(A)⊗H0(E ) that gets mapped to zero. ¤

We do not go into too much detail in what follows. Partly because this is an

example of some conjectural nature. Let 〈s1, s2, s3〉 = H0(E ) be a choice of basis

for the space of global sections of E and t ∈ H0(E (A)) be a section spanning a

complementary space to the image of (2.3). Then, since E is a vector bundle of rank

2 the skew matrix 


s1 ∧ s2 s1 ∧ s3 s1 ∧ t
s2 ∧ s3 s2 ∧ t

s3 ∧ t




has rank 2 and therefore its Pfaffian vanishes. Regarding the entries of this matrix

as elements of R(C, A) this Pfaffian is expressing a relation between the generators of

this ring. Indeed we obtain a cubic relation. As we have chosen the section t com-

plementary to the product H0(A)⊗H0(E ) this guaranties that we have not a trivial

relation. We do not show this here (see the sections below for similar computations).

But we can show that replacing t with any section in the image of (2.3) produces a

trivial relation. Let
∑

i fisi be such an element; where fi ∈ H0(A). Then

Pf(s1, s2, s3,
∑

i

fisi) =
∑

i

fi Pf(s1, s2, s3, si) =
∑

i

fi · 0 ≡ 0,
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where we are using the notation Pf(a1, a2, a3, a4) to mean the Pfaffian of the skew

matrix (ai ∧ aj)ij .

Conjecture IV.12. Let C be a nonsingular curve of genus 10 with a halfcanonical

divisor with dimH0(A) = 4. Assume that gon(C) = 6. Fix a choice of a g1
6 on C and

let E1 and E2 be the two stable bundles of rank 2 with det(E1) = det(E2) = A and

dimH0(E1) = dimH0(E2) = 3 as in Proposition IV.10. Consider the cubic relation

Fi yielded by Ei. Then F1 and F2 are linearly independent. In other words IA is

generated by F1 and F2.

IV.3. Genus 8 and h0(A) = 3

As result of independent work, Mukai and Ide have recently proved the main

theorem of this section. See [IM]. Their point of view is fundamentally different. We

are chiefly concerned with the geometrical aspects of (Gorenstein) codimension 3 ring

theory. They focus on a complete description of curves of genus 8. Curiously, as in

the following section, in the proof of the main theorem, we will use Mukai’s vector

bundle method. This is not the case in [IM]. We refer the reader to [IM] for an

excellent treatment of curves of genus 8 and to compare both approaches.

This is the main result of this section.

Theorem IV.13. Let C be a nonsingular curve of genus 8. Then C has a free

halfcanonical net if and only if C is isomorphic to a complete intersection of a quasi-

homogeneous form of degree 3 and four quasihomogeneous forms of degree 2 in the

weighted Grassmannian G(1
2

3
, 3

2

2).

Proof. In this paragraph we only prove the easy direction. Let X denote the

weighted Grassmannian G(1
2

3
, 3

2

2). Recall from Section IV.1 that X is the subscheme

of P[mij , nlk, z], where

wt(M) = wt




m12 m13 n11 n12

m23 n21 n22

n31 n23

z


 =




1 1 2 2
1 2 2

2 2
3




defined by the 5 submaximal Pfaffians of the skew matrix M . Let C be the complete

intersection of a cubic quasihomogeneous form, F3 and four quadric quasihomogeneous
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forms F i
2:

C = X ∩
4⋂

i=1

F i
2 ∩ F3.

Lemma IV.14. C is a nonsingular curve of genus 8 with a free halfcanonical net.

Proof. The affine cone of the singular locus of X, which we denote by a(Sing X)

is contained in the cone over

rank


 n11 n21 n31

n12 n22 n32


 ≤ 1

with vertex at z. The rank condition defines the affine cone of the Segre embedding

of P1 × P2; therefore a(Sing X) has dimension ≤ 5. Since we are including a cubic

form in the section yielding C, this eliminates the cone variable. Together the five

general quasihomogeneous forms cut out the empty set on a(Sing X), which is to say

C does not meet Sing X. By Bertini’s theorem C is nonsingular. The dualising sheaf

on X is given by O(−9) (Proposition IV.5). Thus, by adjunction A = O(1)|C is a

halfcanonical divisor. If follows from the vanishing of the cohomology H i(OX(i)) for

each 0 < i < 6 that the dimension of H0(A) is 3 and since by what we said above,

C ∩ (mij = 0) = ∅,

the net |A| is free. Further, deg X = 7
3·24 and so deg(A) = 7. ¤

IV.3.1. The ring R(C, A).

Proposition IV.15. Let C be a nonsingular curve of genus 8 with a halfcanonical

net A. Assume that A is free. Then R(C, A) is generated in degree 1 by x1, x2, x3 and

in degree 2 by y1, y2. The ideal IA has no generators in degree ≤ 2, the dimension of

IA,3 is 2 and the dimension of the quotient IA,4/I ′A,4 is 3.

Proof. Let us show that gon(C) ≥ 4. Denote by ξ a complete free linear system of

degree ≤ 3. Then by Proposition III.9 there exists a symmetric tensor of rank 3 in

the kernel of the map

sym2 : S2H0(A) → H0(2A).

We deduce that the morphism ϕA maps C onto a plane conic. But then |A| cannot

be free. We conclude that gon(C) ≥ 4. Hence from Proposition III.5 we get that
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R(C, A) is generated in degree 2. By the reasoning above there are no generators of

IA in degree ≤ 2. In particular this implies that R(C, A) is generated by x1, x2, x3 in

degree 1 and by a further two generators y1, y2 in degree 2. In degree 3 we have:

H0(3A) ⊃ S3(x1, x2, x3) + 〈xiyj〉 ;

and thus we will necessarily have two cubic relations. Not more than two, since the

ring R(C, A) is generated in degree 1 and 2. We write these two cubics in the form:




L1y1 + L2y2 = F (x1, x2, x3)

L3y1 + L4y4 = G(x1, x2, x3)

The following is an obvious but useful remark.

Lemma IV.16. det
(

L1 L2
L3 L4

)
6= 0.

Proof of the lemma. Suppose that det
(

L1 L2
L3 L4

)
= 0. Then there exist α and β

constants, not simultaneously zero, such that αF + βG = 0. Since A is free and thus

there is no cubic through x1, x2, x3, this leads to a α = β = 0 which is not true. ¤

In degree 4 we have

H0(4A) ⊃ S4(x1, x2, x3) + S2(x1, x2, x3) · 〈y1, y2〉+ S2〈yi〉 .

The number of generators in each summand is 15, 12 and 3, respectively. Subtracting

6 to account for the multiples of the two cubic relations (notice that there are no

syzygies in degree 4 holding between the two cubics) we conclude that there exist an

extra 3 relations in degree 4. In other words the dimension of IA,4/I ′A,4 is 3. ¤

IV.3.2. The bundle.

Proposition IV.17. Let C be a nonsingular curve of genus 8 with a halfcanonical

net A. Assume that A is free. Then, as E ranges over all stable bundles of rank 2 and

determinant A over C the maximum value of h0(E ) is 3 Moreover, up to isomorphism

there exists a unique stable bundle attaining the value h0(E ) = 3.

Proof. Fix a general point p ∈ C. Since A is free, the linear system ξp = |A− p| is

a free g1
6.
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Lemma IV.18. The map

H0(A + ξp)⊗H0(ξp) → H0(A + 2ξp)

has a 1-dimensional cokernel.

Proof of the lemma. By Castelnuovo’s free-pencil trick, the kernel of this map is

isomorphic to H0(A) and thus is 3-dimensional. The dimension of the tensor product

is 14 and the dimension of the target space is 12. ¤

By this and Lemma III.7 we conclude that there exists a unique nondecomposable

extension

0 → A− ξp → Ep → ξp → 0 (3.1)

having h0(Ep) = 3. Let us show that the bundle Ep is stable. If η is any subbundle

we have

0 → η → Ep → A− η → 0. (3.2)

We have to show that deg(η) ≤ 3. Suppose that deg(η) ≥ 4, then deg(A − η) ≤ 3

and since C is not trigonal this implies that h0(A − η) ≤ 1. We deduce that in this

situation we must have h0(η) ≥ 2. In particular this shows that η ⊂ ξp by composing

(3.1) with the exact sequence above. But since ξp is free we obtain η = ξp implying

that Ep is decomposable. Such is not true. Hence deg(η) ≤ 3 and Ep is a stable

bundle. We conclude that

max
{
h0(E ) | E stable, rankE = 2 and detE = A

} ≥ 3.

Consider now a stable bundle E of rank 2 and determinant A having h0(A) ≥ 3. There

exists at least one section of E vanishing at p. We denote by OC(δ) the saturation of

OC(p) ↪→ E . From this we obtain

0 → OC(δ) → E → OC(A− δ) → 0.

If deg(δ) ≥ 2 then h0(A − δ) ≤ h0(ξp) − 1 = 1 and therefore h0(δ) ≥ 2. But this is

impossible since by stability deg(δ) ≤ 3 and C is not trigonal. Hence deg(δ) = 1, i.e.

δ = p, and E ' Ep. It follows that

max
{
h0(E ) | E stable, rankE = 2 and detE = A

}
= 3,

and that there exists a unique stable bundle of rank 2 for which h0(E ) = 3. ¤
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Proposition IV.19. Let C be a nonsingular curve of genus 8 with a halfcanonical

net A. Assume that A is free. Let E be the unique stable bundle of rank 2 and

determinant A on C having h0(A) = 3. Then

(i) the map
∧2 H0(E ) → H0(A) is an isomorphism and

(ii) the cokernel of H0(A)⊗H0(E ) → H0(E (A)) is 2-dimensional.

Proof. Suppose there exist two sections s1, s2 ∈ H0(E ) such that s1 ∧ s2 = 0.

Then s1 and s2 generate a line bundle L. Consider the composition L → E → OC(ξp)

with E → OC(ξp) and ξp as in (3.1). Since 〈s1, s2〉 ⊂ H0(L) we have h0(L) ≥ 2.

This shows that the line bundle L is not contained in the kernel of E → OC(ξp) and

therefore the composition map has to be injective. But since the linear system ξp is

base point free, we conclude that L ' OC(ξp) and this way E would have to split.

This is a contradiction. We have shown (i).

To prove item (ii) we start by writing down the exact sequence

0 → OC(−A) → 3OC → E → 0 (3.3)

that we obtain considering the evaluation epimorphism: 3OC ³ E given by a choice

of a basis of H0(E ). Notice that by (i) and the fact that A is free, we deduce that the

bundle E is spanned by its global sections. Tensoring (3.3) with A and taking global

sections we conclude that the map H0(A)⊗H0(E ) → H0(E (A)) has a 1-dimensional

kernel. Furthermore, by Riemann–Roch, h0(E (A)) = h0(E )+deg(A) = 10. Therefore

the dimensional of its cokernel is 10− 8 = 2. ¤

Proposition IV.20. Let C be a nonsingular curve of genus 8 with a halfcanonical

divisor net A. Assume that A is free. Let E be the unique stable bundle of rank 2

and determinant A on C having h0(A) = 3. Denote by 〈s1, s2, s3〉 a choice of basis

of H0(E ) and by 〈t1, t2〉 ⊂ H0(E (A)) a complementary space to H0(A) ⊗ H0(E ).

Consider a polynomial ring C[mij , nkl, z] where

wt(M) = wt




m12 m13 n11 n12

m23 n21 n22

n31 n32

z


 =




1 1 2 2
1 2 2

2 2
3




and define a map ev+ : C[mij , nkl, z] → R(C, A) by setting ev+(mij) = si ∧ sj,

ev+(nkl) = sl ∧ tk and ev+(z) = t1 ∧ t2. Then
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(i) ev+ is surjective.

Additionally, consider ev : C[x1, x2, x3, y1, y2] → R(C, A), a minimal surjection. De-

note by Pf1, . . . , Pf5 the 5 submaximal Pfaffians of M . Then, for any choice of

〈s1, s2, s3〉, 〈t1, t2〉 and of a surjection λ : C[mij , nkl, z] → C[x1, x2, x3, y1, y2] such

that ev+ = λ ◦ ev, we have:

(ii) λ {Pf1, Pf2, Pf3, Pf4, Pf5} ⊂ IA

(iii) λ(Pf4), λ(Pf5) form a basis of IA,3.

(iv) λ(Pf1), λ(Pf2), λ(Pf3) project to a basis of IA,4/I ′A,4.

Proof. The matrix ev+(M) has rank 2 on C since E is a vector bundle of rank

2. Hence ev+(Pfi) = 0. In particular λ(Pfi) ∈ IA. Item (i) follows from (i) of

Proposition IV.19, Lemma IV.16 and item (iii) below.

Proof of (iii). Suppose there exist α, β ∈ C such that αλ(Pf4) + βλ(Pf5) = 0.

Consider u = βt1 + αt2 and define ẽv+ with respect to 〈s1, s2, s3〉 and 〈u, t2〉. Also,

define a surjection λ̃ by

λ̃(mij) = λ(mij), λ̃(nl1) = βλ(nl1) + βλ(nl1),

λ̃(nl2) = λ(nl2), and λ̃(z) = βλ(z).

We see that λ̃ is still a surjective homomorphism and moreover we have

λ̃(Pf5) = βλ(Pf5) + αλ(Pf4) = 0. (3.4)

Hence we could have assumed from start that λ(Pf5) = 0. By Proposition IV.19, the

map
2∧

H0(E ) → H0(A)

is an isomorphism. Thus {λ(mij)} is a regular sequence in C[x1, x2, x3, y1, y2], and

so if λ(Pf5) = λ(m12)λ(n13) − λ(m13)λ(n12) + λ(m23)λ(n11) = 0 then there exist

A,B, C ∈ 〈x1, x2, x3〉 such that



λ(n11)

λ(n12)

λ(n13)


 =




Aλ(m12) + Bλ(m13)

Cλ(m12) + Bλ(m23)

Cλ(m13)−Aλ(m23)




and in particular s1 ∧ t1 = ev(A)s1 ∧ s2 + ev(B)s1 ∧ s3, which means that

s1 ∧ (t1 − ev(A)s2 − ev(B)s3) = 0.
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The proof of (iii) finishes with the following lemma.

Lemma IV.21. Let t ∈ H0(E (A)) be such that t 6∈ H0(A)⊗H0(E ). Then the map

H0(E ) ∧t−→ H0(2A) is injective.

Proof of the lemma. Let us write δ for the divisor of zeros of t. Since E is spanned

by its global sections, wedging with t yields the following sequence:

0 → OC(δ −A) → E
∧t−→ OC(2A− δ) → 0.

If the dimension of H0(δ−A) is > 0 then t ∈ f ·H0(E ) ⊂ H0(E (A)) where f ∈ H0(A),

which is false by assumption. Therefore the dimension of H0(δ − A) is zero and

accordingly the map H0(E ) ∧t−→ H0(2A) is injective. ¤

Proof of (iv). Suppose that there exist α, β, γ ∈ C and f, g ∈ 〈x1, x2, x3〉 such that

αλ(Pf1) + βλ(Pf2) + γλ(Pf3) = fλ(Pf4) + gλ(Pf5).

We argue by contradiction. Without loss in generality we may assume that α = 1.

Consider the sections:

a = s2 + βs1, b = s3 + γs3 ∈ H0(E ) and

c = t1 − fs1, d = t2 − gs2 ∈ H0(E (A)).

Then by the skew multilinearity of Pf,

Pf




a ∧ b a ∧ c a ∧ d
b ∧ c b ∧ d

d ∧ d


 = ev+(Pf1 +β Pf2 +γ Pf3−f Pf4−g Pf5) = 0.

By defining ẽv+ with respect to these new bases and λ̃ accordingly, we deduce that

it enough to treat the case λ(Pf1) = 0. Let us write

λ(Pf1) = Pf




x3 q1 + Ax3 q3 + Cx3

q2 + Bx3 q4 + Dx3

p3




where qi ∈ 〈y1, y2〉 ⊕ S2〈x1, x2, x3〉 do not contain any multiples of x3 and p3 is a

quasihomogeneous form of degree 3 in the variables x1, x2, x3, y1, y2. Consider the

change of basis:

t1 7→ t1 −As3 + Bs2 t2 7→ t2 − Cs3 + Ds2.
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Define ev+ with respect to these t1, t2 and λ̃ by setting

n21 7→ q1, n22 7→ q3, n31 7→ q2 and n32 7→ q4.

Then ev+ = ev ◦λ̃. Therefore we can assume that A = B = C = D = 0. But then

λ(Pf1) = 0 implies that p3 = 0. In particular t1∧t2 = 0. This implies that u1∧u2 = 0

for every two distinct points u1, u2 on the line P[〈t1, t2〉].
Consider the exact sequence:

0 → 2A− ξp → E (A) → A + ξp → 0

obtained by twisting (3.2) with OC(A). Let ∆ be a divisor on C consisting of two

general points. By RR and Serre duality, h0(A + p) = 3, hence h0(A−∆ + p) ≤ 1.

On the other hand h0(A + ξp − ∆) = h0(A − ξp + ∆) + 4 ≤ 5 since C is not trig-

onal. We deduce that h0(E (A − ∆)) ≤ 6. This implies that the subvariety V of

P[H0(E (A))] consisting of sections which vanish at least at two points has dimension

≤ 6− 1+2 = 7. This variety contains P[H0(A)⊗H0(E )] which by Proposition IV.19

is 7-dimensional. We conclude that for every choice of sections 〈t1, t2〉 ⊂ H0(E (A))

spanning a complementary set to H0(A) ⊗ H0(E ) ⊂ H0(E (A)), the line P[〈t1, t2〉]
is not contained in V. Let u ∈ P[〈t1, t2〉] be such that u 6∈ V. Consider the exact

sequence:

0 → OC(δ) → E (A) ∧u−−→ OC(3A− δ) → 0

where we have denoted by δ the divisor of zeros of u. (Notice that E (A) is spanned by

its global sections). By assumption deg(δ) ≤ 1 and thus h0(δ) = 1. But if t1 ∧ t2 = 0

as above then h0(δ) ≥ 2. This is a contradiction. ¤

IV.3.3. Proof of Theorem IV.13.

Proposition IV.22. Let C be a nonsingular curve of genus 8 with a free half-

canonical net, A. Let E be the unique stable bundle of rank 2 and determinant A

with h0(A) = 3. Let 〈s1, s2, s3〉 be a choice of basis of H0(E ) and 〈t1, t2〉 a choice of

a complementary space to the image of H0(A)⊗H0(E ) in H0(E (A)). Let X denote

denote the weighted Grassmannian G(1
2

3
, 3

2

2). Define a map

η : C → X

by setting p 7→ (si ∧ sj(p), sl ∧ tk(p), t1 ∧ t2(p)). Then
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(i) η is an embedding

(ii) η(C) ⊂ X is cut out by a quasihomogeneous form of degree 3 and four

quasihomogeneous forms of degree 2.

Proof. The map η fits in a commutative diagram:

C

ϕA+

²²

η
// X

²²
P[x1, x2, x2, y2, y3]

P(λ)

// P[mij , nkl, z]

where P(λ) is the projectivised of the surjective homomorphism

λ : C[mij , nkl, z] → C[x1, x2, x3, y1, y2].

Since P(λ) is an embedding and so is ϕA+ we deduce that

η = P(ev+) = P(λ) ◦ ϕA+

is also an embedding. We have shown in the proof of Proposition IV.15 that the

curve C is not trigonal. Clearly C is not isomorphic to a plane quintic. We deduce

from Theorem III.14 that the image of C under the embedding of ϕA+ is cut out set-

theoretically by forms of degree ≤ 4. Therefore the image of C under P(λ)◦ϕA+ is cut

out by Kerλ + λ−1(IA,3 ⊕ IA,4). By Proposition IV.20, λ−1(IA,3 ⊕ IA,4) is generated

〈Pf4, Pf5〉 ⊕ 〈Pf1, Pf2, Pf3〉 which cut out X ⊂ P[mij , nkl, z]. Hence we conclude that

the image of C under the embedding η is cut out by Kerλ, which is generated by a

cubic quasihomogeneous form and four quadric quasihomogeneous forms. ¤

Proof of Theorem IV.13. The intersection of a cubic quasihomogeneous form and

four quadric quasihomogeneous forms on X has degree 7 (see Proposition IV.5), which

is equal to the degree of ϕA+(C) ⊂ P[x1, x2, x3, y1, y2]. Therefore by Proposition IV.2,

C is a complete intersection of these forms in X. ¤

Corollary IV.23. Let C be a nonsingular curve of genus 8 with a free halfcanon-

ical net. Then the ring R(C, A) has codimension 3 and is given as

C[x1, x2, x3, y1, y2]/IA
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where the ideal IA is generated by 2 cubic and 3 quartic quasihomogeneous forms in

the variables x1, x2, x3, y1, y2, that are the 5 submaximal Pfaffians of a skew matrix

M =




x1 x2 q1 q2

x2 q3 q4

q5 q6

p3




where qi ∈ 〈y1, y2〉 ⊕ S2〈x1, x2, x3〉 and p3 is a quasihomogeneous form of degree 3 in

the variables x1, x2, x3, y1, y2. ¤

IV.4. Genus 14 and h0(A) = 5

What is special about this case when compared against the previous case is that

the ideal IA is generated in degree 3. Theorem III.14 says that the image of C by the

ϕA : C → P4 is cut out by forms of degree ≤ 4 and for our purposes we need to know

that it is, in fact, cut out by forms of degree ≤ 3. Below we prove that ϕA(C) is a

component of the intersection of all cubics through ϕA(C) and use for the first time

to its full strength Proposition IV.2. The aim of this section is to prove the following

theorem.

Theorem IV.24. Let C be a nonsingular curve of genus 14. Assume that C has

no g2
9. Then C has a halfcanonical divisor A such that h0(A) = 5 if and only if C is a

complete intersection of two quasihomogeneous forms of degree 1 and four quasihomo-

geneous forms of degree 2 in the generalised weighted Grassmannian P(1)nG(1
2

4
, 3

2).

Proof. Denote by X the generalised weighted Grassmannian P(1)nG(1
2

4
, 3

2). Re-

call from Section IV.1 that X is the projectively Gorenstein subscheme of P[v, mij , ni]

defined by the ideal generated by the five submaximal Pfaffians of the skew matrix:



m12 m13 m14 n1

m23 m24 n2

m34 n3

n4


 .

Let C be the 1-dimensional subscheme of X given by the complete intersection of

two general quasihomogeneous forms of degree 1 and four general quasihomogeneous

forms of degree 2:

C = X ∩
4⋂

i=1

F i
2 ∩

2⋂

j=1

F j
1 .
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The singularities of X lie on the set defined by mij = 0 which includes the vertex of

the cone, P(1). Let us denote this locus by S. The affine cone of S is of dimension

5. Therefore, choosing the forms F j
2 and F i

1 general, aC, the affine cone of C will

not meet aS, the affine cone of S. Thus by Bertini’s theorem C is nonsingular. By

Proposition IV.9, the dualising sheaf of X is given by OX(−8) and therefore, by

Gorenstein adjunction,

KC = OX(10− 8)|C .

Hence A = OX(1)|C is a halfcanonical divisor on C. Additionally the vanishing of

cohomology H i(OX(j)) for 0 < i < 7 gives dimH0(A) = 5. By Proposition IV.9

the degree of X is 13
24 . Therefore C is a curve of genus 14. Moreover, the map

sym2 is surjective. We will see below in Proposition IV.25 that this implies that

W 2
9 (C) = ∅. ¤

The assumption that W 2
9 (C) = ∅ is convenient from the point of view of moduli

of curves and Brill–Noether theory. However, especially when considering C ∈ |KS |,
a curve in the canonical linear system of a surface of general type with pg = 6 and

K2 = 13, or, as above, when working with quasilinear sections, it is better to have on

C equivalent assumptions on sym2 and/or on the linear system |A|.

IV.4.1. The linear system |A|.

Proposition IV.25. Let C be a nonsingular curve of genus 14. Let A be a half-

canonical divisor on C with dim H0(A) = 5. Then C has no g2
9 if and only if sym2 is

surjective. If either is true then |A| is very ample.

Proof. Suppose that C has no g2
9. We deduce that gon(C) ≥ 4. In fact we can show

that gon(C) ≥ 6. If ξ is a pencil of degree 5 then ξ is free and by Proposition III.2,

the dimension of H0(A− ξ) is ≥ 3. Therefore |A− ξ| would yield a g2
8.

Let |B| ⊂ |A| denote the free part of |A|. The morphism ϕB has degree ≤ 3. If

this degree is 3 then ϕB maps C onto a rational curve and this would imply that C
is trigonal. If the degree of ϕB is 2 and consequently the degree of ϕB(C) is ≤ 6;

the projection off a secant line to ϕB(C) composed with ϕB yields a g2
d where d ≤ 8.

This is impossible. Hence deg(ϕB) = 1. To show that |A| is free and that sym2 is

surjective we must divide the proof into two cases.
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Firstly observe that by Proposition III.2 the gonality of C cannot be 7. Hence

either gon(C) = 6 or gon(C) = 8. If gon(C) = 8 the proof that sym2 is surjective

follows easily from Proposition III.9. Let us show that in this case we also have |A|
free. Let η be a free g1

8 on C and let p be any point on C. By Castelnuovo’s free-pencil

trick we have

0 → OC(A− p− η) → 2OC(A− p) → OC(A− p + η) → 0.

Therefore 2h0(A− p) ≤ h0(A− p− η) + h0(A− p + η). The degree of A− p− η is 4

hence h0(A− p− η) ≤ 1. By RR and Serre duality, h0(A− p+ η) = h0(A+ p− η)+7.

Since the degree of A + p − η is 6 we have h0(A + p − η) ≤ 1. Adding up we have

h0(A− p) ≤ 9
2 which means that h0(A− p) ≤ 4. In other words |A| is free.

Let us show that if C has no g2
9 and gon(C) = 6 then sym2 is surjective. The proof

of this case is quite lengthy and will involve a case-by-case analysis of the intersection

of quadrics through ϕA(C). First off, let us show that |A| is very ample. Let ξ be

any gonality divisor and let p, q be any two points of C. By Castelnuovo’s free-pencil

trick, we have

0 → OC(A− p− q − ξ) → 2OC(A− p− q) → OC(A− p− q + ξ) → 0.

Taking global sections we get

2h0(A− p− q) ≤ h0(A− p− q − ξ) + h0(A− p− q + ξ).

The divisor A − p − q − ξ has degree 5, hence h0(A − p − q − ξ) ≤ 1. On the other

hand, by RR and Serre duality, h0(A− p− q + ξ) = h0(A + p + q − ξ) + deg(ξ)− 2.

Hence 2h0(A− p− q) ≤ h0(A + p + q− ξ) + 5. The divisor A + p + q− ξ has degree 9

and since by assumption there are no g2
9 we have h0(A + p + q − ξ) ≤ 2. Altogether

this implies that h0(A − p − q) ≤ 7
2 which is to say h0(A − p − q) ≤ h0(A) − 2 and

thus |A| is very ample.

Denote the image of C under the embedding ϕA by C13. To show that sym2 is

surjective we argue by contradiction. Assume that Ker sym2 contains two linearly

independent quadrics, Q1, Q2. The proof now breaks into two cases.
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Suppose that Q1 ∩Q2 = S is irreducible.

Lemma IV.26. The surface S has at most du Val singularities.

Proof of the lemma. Suppose that S is a cone with vertex p over some curve of

degree 4 in a hyperplane of P4. (This happens, for example, if Q1 and Q2 are two

quadrics of rank 4 with common singular locus). Let us denote this space curve by

C4. The genus of C4 is either 0 or 1. The projection off p restricts to a map of degree

≤ 3 on the curve C13. In particular C13 must go through the vertex. If the genus

of C4 is 0 then we deduce that C13 is trigonal or hyperelliptic. This however, is not

true if we assume that there are no g2
9. If C4 is a nonsingular elliptic curve then the

isomorphism C4 ' E3 ⊂ P2 composed with the projection from p yields a g2
9 on C13.

Again this is a contradiction. Hence we can assume that S is not a cone.

Suppose now that S has a positive dimensional singular locus. By reasoning on

the degree of S the positive dimensional part of the singular locus is either a line or

a conic. Let q be a point on S\Sing S. Then the projection maps S to a surface

of degree 3 in P3. (Recall that we know that S is not a cone). Let us denote the

cubic surface by Σ3. This cubic must have a positive dimensional singular locus and

it has to be a line of double points. In particular away from the plane section of S

determined by this line and q, the projection is an embedding. By choosing q not on

C13 the projection of S onto Σ3 restricts to C13 has a birational morphism which is

an embedding away from where C13 meets the plane section determined by Sing Σ3

and q. Denote the birational transform of C13 on Σ3 by D13. Finally the projection

from a point on Sing Σ3\D13 determines a birational morphism onto the projective

plane which is an embedding away from Sing Σ3. We deduce that C13 has a plane

birational transform of degree 13 and geometric genus 14. The composite birational

map is an embedding of C13 away from a finite set of points that get mapped to

a single point of the plane (where the plane meets the line Sing Σ3). Let µ be the

multiplicity of the birational transform of C13 at this point. By the genus formula we

have 14 = 1
212 · 11− 1

2µ(µ− 1) which has no integer solution.

We have shown that S has only isolated singularities. All that remains to be seen

is that these are ordinary double points. The surface S is a complete intersection of
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a pencil L of quadrics in P4. Let p ∈ S be a singular point. Suppose that

p ∈
⋂

Q∈L
Sing Q.

Then any secant line to S passing through p must be contained in Q for every Q ∈ L
and hence is contained in S. But we have shown that S is not a cone. Thus we can

assume that the general quadric Q ∈ L is nonsingular at p. Let Q1 and Q2 be two

nonsingular quadrics at p in L. Write their equations locally as:

Q1 = (x + q1(x, y, z, w) = 0) and Q2 = (x + q2(x, y, z, w) = 0)

where qi are quadratic forms. By the implicit function theorem on an analytic nei-

bourhood of p in Q1 the variable x is a implicit function of y, z and w. Let us denote

this function by φ. Using φ and Q2 we deduce that, locally analytically at p, S is

given by

φ(y, z, w) + q2(φ(y, z, w), y, z, w) = 0. (4.1)

Since p is not a smooth point, the power series φ has no linear terms. Additionally

since q2 is not divisible by x there is a nontrivial term of order 2 in (4.1). Since

p is an isolated singularity this must be a nondegenerate quadratic form in y, z, w.

This shows that p is analytically isomorphic to an isolated hypersurface singularity

of multiplicity 2 in C3. In other words p is an ordinary double point. This finishes

the proof of the lemma. ¤

Lemma IV.27. S is the birational transform of the projective plane by a linear

system of plane cubics through 5 (including possibly infinitely near) points.

Proof. If S is nonsingular this is well-known. See for example [Beau, p. 52].

In this case we know that S is isomorphic to P2 blown up at 5 general points and

embedded in P4 via the linear system of plane cubics through these points.

If S is singular, there exists a birational map π : S → P2 given by projecting from

a secant line to S at a singular point. Its inverse π−1 : P2 → S ⊂ P4 is given by a

linear system H ⊂ |nL| where L is the class of a line in P2. We resolve this linear

system by blowing up the plane at a set of (possibly including infinitely near) points.

Let Ei with i = 1, . . . , t, be the birational transforms of the exceptional divisors of

these blow-ups and denote the resulting blown-up plane and composite morphism by
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σ1 : P̂2 → P2. Furthermore, let us denote by σ2 : P̂2 → S the morphism yielded by Ĥ,

the resolved linear system. Since S has only du Val singularities, by adjunction we

know that KS = −HS and thus,

Ĥ = σ∗2(HS) = σ∗2(−KS) = −KcP2 +
∑

αjE
′
j = 3σ∗1(L)−

t∑

i=1

Ei +
∑

αjE
′
j

where E
′
j are curves on P̂2 contracted by σ2. This shows that n = 3. Additionally

notice that if we blow up more than 6 points in the plane the degree of Ĥ is ≤ 3

which if false. However it possible that that H consists of cubics through 4 points of

the projective plane with a fixed tangent direction at one of them. ¤

Since C13 ⊂ S is nonsingular, its birational transform in P̂2 is also nonsingular.

We use the same notation for the transform. Let us write

C13 = mL−
5∑

i=1

miEi.

with m and mi positive integers. The curve C13 is not rational so we can assume that

m 6= 0. The linear system |2L −∑5
i=1 Ei| is at least 0-dimensional and its members

are lines in P̂2 since
(

3L−
5∑

i=1

Ei

)(
2L−

5∑

i=1

Ei

)
= 6−

(
5∑

i=1

Ei

)2

= 6− 5 = 1.

(Notice that from deg Ĥ we can deduce that
(∑5

i=1 Ei

)2
= 5). By the nonexistence

of 4-secant lines,

C13

(
2L−

5∑

i=1

Ei

)
= 2m +

(
5∑

i=1

miEi

) (
5∑

i=1

Ei

)
≤ 3.

Combining this with the formula for the degree

13 = 3m +

(
5∑

i=1

miEi

) (
5∑

i=1

Ei

)

we get m ≥ 10. From the genus formula,

26 =

(
mL−

5∑

i=1

miEi

)2

− deg(C13) = m2 +

(
5∑

i=1

miEi

)2

− 13
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which implies that

m2 − 39 = −
(

5∑

i=1

miEi

)2

=⇒ −
(

5∑

i=1

miEi

)2

≥ 61.

For each j the line Ej cannot meet C13 more than 3 times, thus
(
−

5∑

i=1

miEi

)
Ej ≤ 3 =⇒ 61 ≤ −

(
5∑

i=1

miEi

)2

≤ 3
5∑

i=1

mi =⇒
5∑

i=1

mi ≥ 21

and this implies that mj0 = max {mi} ≥ 4. Since the curve Ej0 is not contracted by

|3L−∑5
i=1 Ei| we must have

(
−

5∑

i=1

Ei

)
Ej0 > 0 =⇒

(
−

5∑

i=1

miEi

)
Ej0 ≥ mj

(
−

5∑

i=1

Ei

)
Ej0 ≥ mj ≥ 4

which is a contradiction. Hence we have shown that S cannot be a complete intersec-

tion of the two quadrics Q1, Q2.

Suppose Q1 ∩Q2 = S is reducible.

Then the component of S containing C13 is an irreducible non degenerate surface

of degree ≤ 3. Therefore C13 is contained in either F(3, 0) or F(1, 2), the cone over

a rational normal curve of degree 3, or the cubic surface scroll, respectively. In the

first case, by projecting off the vertex we obtain a pencil of degree ≤ 4 and this is not

possible.

Assume that C13 ⊂ F(1, 2). Write H for the hyperplane section of F(1, 2) and L

for the class of the ruling of F(1, 2). We have C13 = aH + bL. By adjunction we get

3a2 + 2ab− 5a− 2b = 26; (4.2)

and since C13H = 13, b = 13 − 3a. Substituting we see that (4.2) has no integer

solutions. We have proved

C has no g2
9 =⇒ sym2 is surjective.

Conversely, suppose that sym2 is surjective. Let us start by showing that this

implies that gon(C) ≥ 6. We will make use of Lemma III.41 on page 70. Suppose

there exists a divisor on C with h0(D) = 2 and deg(D) ≤ 5. Since

dimH0(A)− dimH0(A− (A−D))− 1 = 2,
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applying Lemma III.41, we deduce that h0(A−D) ≥ 8− deg(D). Hence

dimH0(A)− dimH0(A−D)− 1 ≤ deg(D)− 4.

In particular deg(D) = 4 or 5. By the same lemma, we deduce that deg(D)− 2 ≤ 2,

if deg(D) = 5, or that deg(D)− 2 ≤ 0, if deg(D) = 4. A contradiction in both cases.

We have shown that gon(C) ≥ 6.

Assume that for some d ≤ 9, there exists a free g2
d on C and let us denote it by η.

Since gon(C) ≥ 6 we have 8 ≤ d ≤ 9. By Proposition III.2 we have dimH0(A−η) > 0.

In fact since deg(A−η) ≤ 5 we actually have dimH0(A−η) = 1. On the other hand,

let D be a divisor of degree d such that η ⊂ H0(D). Then dimH0(D) ≥ 3 and

therefore,

dimH0(A)− dimH0(A− (A−D))− 1 ≤ 1,

thus, from Lemma III.41, we deduce that

deg(A−D)− dimH0(A−D) ≤ 2 ⇐⇒ dimH0(A−D) ≥ 2

which is a contradiction. We have proved

sym2 surjective =⇒ there exists no g2
9

and so finished the proof of Proposition IV.25. ¤

IV.4.2. The ring R(C, A).

Proposition IV.28. Let C be nonsingular curve of genus 14 with a halfcanonical

divisor A such that h0(A) = 5. Assume that sym2 is surjective. Then R(C, A) is

a codimension 3 ring generated in degree 1. The ideal IA has a single generator in

degree 2 and the quotient IA,3/I ′A,3 has dimension 4.

Proof. Since sym2 is surjective, by Proposition IV.25 and its proof, the linear

system |A| is free and the gonality of C is ≥ 6. From Proposition III.5 we deduce that

R(C, A) is generated in degree ≤ 3. Let us show that the map

H0(A)⊗H0(2A) → H0(3A) (4.3)
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is surjective. According to Lemma III.7 to an element of the cokernel of (4.3) corre-

sponds an extension

0 → OC → F → OC(A) → 0 (4.4)

with h0(F ) = 1+5 = 6. In particular for any two p, q ∈ C there exists a section of F

vanishing on p + q. Denote the divisor of zeros of such a section by δ ⊃ p + q. Then

saturating the embedding OC(δ) ↪→ F we obtain

0 → OC(ξ) → F → OC(A− ξ) → 0

where ξ ⊃ δ is an effective divisor. Since p, q can be chosen general enough we have

h0(A−ξ) ≤ h0(A)−2 and accordingly h0(ξ) ≥ 3. Since C has no g2
9 (Proposition IV.25)

we deduce that deg(ξ) ≥ 10. But then h0(A − ξ) ≤ 1 since gon(C) ≥ 6. Therefore

h0(ξ) ≥ h0(A) and we must have ξ ⊂ OC(A). By the fact that A is free we conclude

that ξ = A. In other words, an element of the cokernel of (4.4) corresponds to the

split extension, i.e. the cokernel is null. We conclude that R(C, A) is generated in

degree 1.

By our assumptions it is clear that there is exactly one generator of IA in degree

2. In degree 3 the space S3〈x1, . . . , x5〉 must surject onto H0(3A). The former has

dimension
(
7
3

)
= 35 and to this we have to subtract the 5 multiples of the quadratic

generator of IA. We still get an excess of 4 generators, since by RR, the dimension of

H0(3A) is 26. Thus there will be 4 new cubic forms in IA,3. ¤

IV.4.3. Remark. This proposition fails to conclude the description of R(C, A) in

degree ≤ 4. This means we will not be able to use Theorem III.14 on page 40 as

we have been doing so far. One way to deal with this problem would be to try to

run a Petri-style analysis on the generators of R(C, A). All attempts in this direction

were unfruitful. Notice that such analysis would have to be specific to the genus 14

case. (Although the assumption that W 2
9 (C) = ∅ may point us to the right direction).

This is supported by the fact that there are nontrigonal curves whose ring R(C, A) is

generated in degree 1 and yet whose ideal IA needs generators in degree 4. Consider

the case of curves of genus 9 with a halfcanonical divisor A with dimH0(A) = 4. (See

page 59). On the other hand, that the ideal IA is indeed generated by IA,2 + IA,3 is

true by an application of Buchsbaum–Eisenbud’s theorem.
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IV.4.4. The bundle.

Proposition IV.29. Let C be a nonsingular curve curve of genus 14 with a half-

canonical divisor such that h0(A) = 5. Assume that W 2
9 (C) = ∅. Then there exists a

bundle E on C of rank 2 and determinant A with the following properties.

(i) dimH0(E ) = 4.

(ii) The map H0(A)⊗H0(E ) → H0(E (A)) has a cokernel of dimension 1. Let

t ∈ H0(E (A)) span a complementary space to the image of this map.

(iii) The image of the map H0(E ) ∧t−→ H0(2A) is 4-dimensional.

(iv) The kernel of the map
∧2 H0(E ) → H0(A) is at most 2-dimensional.

Proof. The first part of this proof works out quite differently for gon(C) = 6 than

it does for gon(C) = 8 and we will have to break it into two cases. (Recall from the

proof of Proposition IV.25 that if C has no g2
9 either gon(C) = 6 or gon(C) = 8).

IV.4.5. Existence for gon(C) = 8. Suppose that C has gon(C) = 8. Then the map

ϕA is an embedding onto a curve of P4 contained in a quadric of rank 5 (Proposi-

tion III.9). In other words,

ϕ|A| : C → C13 ⊂ G(2, 4) ∩H ⊂ P5 ∩H.

View C as a subvariety of G(2, 4). Consider the universal bundles of G(2, 4).

0 → FG(2,4) → 4OG(2,4) → EG(2,4) → 0.

The bundle FG(2,4) is the tautological subbundle of G(2, 4). Its fibre over a point

[L] ∈ G(2, 4) is the vector space L. The quotient of 4OG(2,4) by FG(2,4) is a bundle

of rank 2 for which dimH0(EG(2,4)) = 4. Let E be its restriction to C. Consider the

restriction sequence:

0 → EG(2,4) ⊗ IC → EG(2,4) → E → 0

If h0(EG(2,4) ⊗ IC) > 0 then there exists a section of EG(2,4) vanishing on C. This

implies that C ⊂ G(2, 4) is contained in the corresponding Schubert cycle, which is

a 3-dimensional linear space. This is impossible since ϕA(C) ⊂ P4 is nondegenerate.

Hence h0(E ) ≥ 4 and we also have det(E ) = O(1)|C = A. Consider

2∧
H0(E ) → H0(A).
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If h0(E ) > 4 then by Castelnuovo’s linear-bilinear principle there exist two sections

s1, s2 ∈ H0(E ) spanning a line bundle L, subsheaf of E . Saturating this line bundle

we get a sequence

0 → OC(δ) → E → OC(A− δ) → 0.

Since h0(δ) ≥ 2 and gon(C) = 8 we deduce that deg(δ) ≥ 8 and thus deg(A− δ) ≤ 5

which implies that h0(A− δ) ≤ 1. But then h0(δ) ≥ 4. Since OC(δ) ⊂ det E = OC(A)

there are two cases to consider. Either h0(δ) = 4 or h0(δ) = 5. Suppose that

h0(δ) = 4, then |A− δ| = |p| and the map

H0(2A− δ)⊗H0(A− δ) → H0(3A− 2δ)

is surjective, which means that the only extension of OC(A − δ) by OC(δ) with 5

global section splits. But then
∧2 H0(E ) only spans a linear space of dimension 4 in

H0(A). This is a contradiction since ϕA(C) is nondegenerate and H0(E ) contains the

restriction of the global sections of EG(2,4). In the other case, when h0(A − δ) = 5

and consequently δ = A we argue exactly in the same way. We have shown that

h0(E ) = 4. Which settles (i) in the case of gon(C) = 8. Additionally, notice that in

this case E is generated by its global sections.

Existence for gon(C) = 6. From now on, let ξ denote a fixed g1
6 on C.

Lemma IV.30. The map

H0(2A− ξ)⊗H0(A− ξ) → H0(3A− 2ξ) (4.5)

has a 1-dimensional cokernel.

Proof of the lemma. Denote A − ξ by η. Since deg(η) = 7, the dimension of

H0(η) is ≤ 2. Furthermore, by Proposition III.2 indeed h0(A − ξ) ≥ 2. We have

two possibilities. Either η is free, in which case the kernel of the map (4.5) is, by

Castelnuovo’s free-pencil trick, isomorphic to H0(A), or η has a (single) base point

that we denote by p and the kernel of (4.5) is then isomorphic to H0(A + p). But as

A is free h0(A− p) = 4, so that by RR and Serre duality, h0(A + p) = 5. Since

dimH0(3A− 2ξ) = 2(deg(A)− deg(ξ)) = 14,

dimH0(2A−ξ)⊗H0(A−ξ) = 18, we deduce that the cokernel of (4.5) has dimension

14− 18 + 5 = 1. ¤
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From this and Lemma III.7, it follows that there exists a single nonsplit extension

0 → ξ → E → η → 0 (4.6)

with maximum number of global sections, that is, h0(E ) = 4. The vector bundle E is

of rank 2 and determinant A. Notice that E is generated by its global sections if and

only if η is free.

Proof of (ii) for gon(C) = 8. Since in this case the bundle E is spanned by its global

section we have

0 → F → 4OC → E → 0 (4.7)

where F is a rank 2 vector bundle of determinant −A. In particular F (A), whose

global sections give the kernel of

H0(A)⊗H0(E ) → H0(E (A)),

has determinant A. As such, by repeating the argument played on E when proving

that h0(E ) ≤ 4 we show that h0(F (A)) ≤ 4. Hence to show (ii) we need to find

4 linearly independent tensors in the kernel of (4.7). For each set of 3 elements of

〈s1, s2, s3, s4〉 = H0(A), say for example s1, s2, s3, the tensor

(s2 ∧ s3)⊗ s1 − (s1 ∧ s3)⊗ s2 + (s1 ∧ s2)⊗ s3

maps to zero.

Proof of (ii) for gon(C) = 6. By (4.6) it is enough to analyse the maps:

σ1 : H0(ξ)⊗H0(A) → H0(A + ξ)

σ2 : H0(η)⊗H0(A) → H0(A + η).
(4.8)

Recall that ξ is a free pencil, hence dim(Kerσ1) = h0(A− ξ) = 2. Since

h0(A + ξ) = h0(η) + deg(ξ) = 8

(by RR and Serre duality) it follows that σ1 has no cokernel. So the cokernel must

come from σ2. The kernel of this map is isomorphic to H0(A− η), in the case when

η is free, and is isomorphic to H0(A− η + p) in the case when η has a base point. In

the free case it is 2-dimensional, but it is 2-dimensional as well in the non free case

since A− η + p has degree 7 and by assumption there are no g2
9 on C. Finally, as the
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dimension of H0(A + η) equals to 9 we deduce that the cokernel of σ2 has dimension

9− 10 + 2 = 1. This shows item (ii). Notice that by Serre duality and RR,

h0(EC(A)) = h1(EC) = 4 + deg(A) = 17,

and on the other hand the dimension of H0(A) ⊗ H0(E ) is 20. Thus there are 4

linearly independent tensors in the kernel of the map of item (ii). As before we can

write them explicitly.

Proof of (iii). If gon(C) = 6 then from (4.6) we see that

0 → A + ξ → E (A) → A + η → 0

and since, by RR, both A+ξ and A+η are free we deduce that E (A) is spanned by its

global sections. If gon(C) = 8 the vector bundle E is globally spanned and therefore

so is E (A). Let us denote the divisor of zeros of t ∈ H0(E (A)) by δ. Wedging sections

of E with t produces the following surjective morphism:

E
∧t−→ OC(2A− δ) → 0

The kernel is a sheaf of rank 1 and therefore, as we are working on a nonsingular curve,

must be invertible. Taking determinants we deduce that the kernel of the morphism

above is OC(δ − A). If h0(δ − A) > 0, then t ∈ H0(A)⊗H0(E ) and this is not true.

Hence h0(δ−A) = 0. We conclude that the space H0(E )∧ t ⊂ H0(2A) has dimension

4.

Proof of (iv). Let us denote the kernel of the map

2∧
H0(E ) → H0(A)

by W . If gon(C) = 8 then we know that dimW = 1 and we are done. Thus we

can assume that gon(C) = 6. P[W ], the projectivised of W is a linear subspace of

P(
∧2 H0(E )), which also contains G(2,H0(E )), the variety of skew tensors of rank 2.

Lemma IV.31. There exists a injective map

P[W ] ∩G(2,H0(E )) → W 1
6 (C).
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Proof of the lemma. Let a ∧ b represent an element of P[W ] ∩ G(2,H0(E )). By

definition a, b ∈ H0(E ) span a subsheaf of E which after saturated yields a line

subbundle:

0 → OC(δ) → E → OC(A− δ) → 0.

Since gon(C) = 6 we deduce that deg(δ) ≥ 6. But if h0(E (−δ)) > 0 (as we see from

above) then from (4.6) we deduce that deg(δ) ≤ 7. Suppose that deg(δ) = 7. Then

A− δ is a free pencil and since

h0(E (−δ)) > 0 =⇒ δ ⊂ η =⇒ ξ ⊂ A− δ,

if follows that A − δ = ξ and thus E would be split. As this is not the case δ has

degree 6 and is therefore a g1
6. This establishes a map

P[W ] ∩G(2,H0(E )) → W 1
6 (C). (4.9)

Let us show now that this map is injective. Take a ∧ b and c ∧ d, two distinct

elements of P[W ] ∩ G(2,H0(E )) giving rise to the same g1
6, which we denote by ξ1.

This means that there are two distinct embeddings of ξ1 into E . In other other words

E (−ξ1) ≥ 2. But then, from (4.6) we deduce that ξ1 = ξ (the g1
6 we have fixed from

the beginning) and furthermore, ξ ⊂ η. Summing up, we have

0 → OC → E (−ξ) → OC(p) → 0.

To see this cannot happen, notice that

H0(2A)⊗H0(p) → H0(2A + p)

is surjective, and hence any extension like E (−ξ) having 2 global sections must split.

Therefore the map (4.9) is injective. ¤

We use this lemma to proof (iv). Suppose that dimP[W ] ≥ 2. Then, the in-

tersection P[W ] ∩ G(2, H0(E )) is positive dimensional and so W 1
6 (C) is also positive

dimensional. It follows from Proposition III.9 that P[Ker sym2] must as well, be pos-

itive dimensional (one quadric yields at most two distinct g1
6). However, by Propo-

sition IV.25 the map sym2 is surjective and consequently P[Ker sym2] is a point.

Therefore, P[W ] has dimension strictly less that 2, that is to say

2∧
H0(E ) → H0(A)
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has a kernel of dimension at most 2. ¤

Proposition IV.32. Let C be a nonsingular curve of genus 14 with a halfcanonical

divisor such that h0(A) = 5. Assume that W 2
9 (C) = ∅. Let E be a bundle on C given

as in Proposition IV.29. Consider a polynomial ring C[v, mij , ni] with

wt(M) = wt




m12 m13 m14 n1

m23 m24 n2

m34 n3

n4


 =




1 1 1 2
1 1 2

1 2
2


 (4.10)

and wt(v) = 1. Let 〈s1, s2, s3, s4〉 be a choice of basis of H0(E ) and t ∈ H0(E (A))

be an element spanning a complementary space to the image of the map of (ii) of

Proposition IV.29. Choose 〈u〉 ⊂ H0(A) a complementary space to the image of the

map in (iv) of Proposition IV.29. Let ev+ be the map ev+ : C[v,mij , ni] → R(C, A)

defined by

v 7→ u, mij 7→ si ∧ sj and ni 7→ si ∧ t.

Denote by Pf1, . . . ,Pf5 the 5 submaximal Pfaffians of M . Then,

(i) ev+ is surjective.

Let ev be a minimal surjection C[x1, . . . , x5] → R(C, A). Then, there exists a surjec-

tion, λ : C[v,mij , ni] ³ C[x1, . . . , x5], such that ev+ = ev ◦λ and

(ii) λ {Pf1, · · · ,Pf5} ⊂ IA.

(iii) λ−1IA,3 ⊂ (Pf1, . . . ,Pf5).

Proof. Item (i) is straightforward. Likewise item (ii) is a consequence of the fact

that E is a rank 2 bundle on C and therefore the matrix in (4.10) has rank 2 on C.
Finally the crucial point of this Proposition is item (iii).

Let us start with a few remarks. Notice that the map λ is not unique. Since

by Proposition IV.28, R(C, A) has a quadric relation, a minimal surjection like ev is

uniquely determined (up to linear isomorphism) only in degree 1, simply by setting

λ(c) = ev−1 ◦ ev+(c) for any element c ∈ C[v, mij , ni] of degree 1. However, λ2

is unique only up to Ker ev2. Nevertheless let us make the following observation.

Since by item (iii) of Proposition IV.29 the space 〈s1, s2, s3, s4〉 ∧ t ⊂ H0(2A) is 4-

dimensional, we have, in particular that ev+(ni) 6= 0 and therefore λ(ni) 6= 0 for any
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choice of λ. We should bear this mind as we will use it in the end of this proof. To

show (iii), by Proposition IV.28, it will be enough to prove the following lemma.

Lemma IV.33. Given a surjective homomorphism λ : C[v, mij , ni] → C[x1, . . . , x5],

such that ev ◦λ = ev+, we have

(i) λ(Pf5) 6= 0.

(ii) The set λ {Pf1,Pf2, Pf3, Pf4} is linearly independent modulo

I ′A,3 = 〈x1, . . . , x5〉 · λ(Pf5).

Proof of the lemma. The form Pf5 is a quadric of rank 6 in the variables mij . By

item (iv) of Proposition IV.29, the restriction of the map λ to the linear space 〈mij〉
has at most a 2-dimensional kernel but since Pf5 is a quadric of rank 6 this implies

that λ(Pf5) 6= 0. In fact, as quadric in the variables x1, . . . , x5 the quadric λ(Pf5) has

rank ≥ 3. From this we deduce that λ(Pf5) can be taken as a generator of the space

IA,2. In particular the assertion of item (ii) is independent of the ambiguity of the

definition of λ in degree 2. Suppose that there exist αi ∈ C and L ∈ 〈x1, . . . , x5〉 such

that
4∑

i=1

αiλ(Pfi) + Lλ(Pf5) = 0.

In particular

ev

(
4∑

i=1

αiλ(Pfi) + Lλ(Pf5)

)
=

4∑

i=1

αi ev+(Pfi) + ev(L) ev+(Pf5) = 0

By (i) of this lemma, we can assume that α1 6= 0. And indeed to ease notation we set

it to 1. Consider the following set of sections of E and E (A):

ai = si + αis1 and b = t + ev(L)s1

where i = 2, 3 or 4. Let us also rename the section s1 by a1. Define a new surjection

ẽv+, using the same procedure as for ev+ but using 〈a1, a2, a3, a4〉 and b ∈ H0(E (A)),

and maintaining the choice of u ∈ H0(A). Also choose a surjection λ̃ defined by

c 7→ ev−1(ẽv+(c)) for c ∈ 〈v,mij〉 and λ̃(ni) = λ(ni).
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Then, λ̃(mij) = λ(mij)− αiλ(m1j)− αjλ(m1i) where m11 is interpreted as 0. There-

fore, we have that

λ̃(Pf1) =
4∑

i=1

αiλ(Pfi) + Lλ(Pf5) = 0.

Hence we have reduced the question to assuming that λ(Pf1) = 0. We argue by

contradiction. Suppose that

λ(Pf1) = λ(m23)λ(n4)− λ(m24)λ(n3) + λ(m34)λ(n2) = 0.

Since by item (iv) of Proposition IV.29, ev+ restricted to 〈m23,m24,m34〉 has at most

a 2-dimensional kernel, and therefore λ restricted to 〈m23,m24,m34〉 has at most a

2-dimensional kernel, we can assume that λ(m23) 6= 0. Furthermore, proceeding as we

did before in the proof of this lemma, we can change the basis 〈s2, s3, s4〉, the section

t modulo H0(A) ⊗H0(E ) and the map λ to assume, without loss of generality, that

on the right hand side of

λ(m23)λ(n4) = λ(m24)λ(n3)− λ(m34)λ(n2)

we have polynomial of zero degree in the linear form λ(m23). But then necessarily

λ(n4) = 0, which is not true. ¤

IV.4.6. Proof of Theorem IV.24.

Proposition IV.34. Let C be a nonsingular curve of genus 14 with a halfcanon-

ical divisor A such that h0(A) = 5. Assume that W 2
9 (C) = ∅. Let E be any

bundle of rank 2 and determinant A as in this Proposition IV.29. Choose a basis

〈s1, s2, s3, s4〉 ⊂ H0(E ), a section t ∈ H0(E (A)) spanning a complementary space to

H0(A) ⊗ H0(E ) ⊂ H0(E (A)) and a section u ∈ H0(A), spanning a complementary

space to the image of
∧2 H0(E ) → H0(A). Denote by X the generalised weighted

Grassmannian P(1)nG(1
2

4
, 3

2). Define a map η, from C into X by

C 3 p 7→ (u(p), si ∧ sj(p), si ∧ t(p)) ∈ X ⊂ P(1, 16, 24).

Then

(i) η is an embedding.
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(ii) Let λ : C[v, mij , ni] → C[x1, . . . , x5] be the as in Proposition IV.32. The

forms generating the ideal Kerλ cut out in X a 1-dimensional scheme con-

taining η(C).

Proof. We have the following commutative diagram.

C

ϕA

²²

η
// X

²²

P[H0(A)]
P(λ)

// P(1, 16, 24)

(4.11)

where P(λ) is the projectivised of the homomorphism λ. By Proposition IV.28,

R(C, A) is generated in degree 1 hence the map ϕA is an embedding. The homo-

morphism λ is surjective, thus P(λ) is an embedding. Since η = ϕA ◦ P(λ) this map

must also be an embedding.

Since λ(Pf1), . . . , λ(Pf5) ⊂ IA and the forms of IA vanish on ϕA(C) ⊂ P4, we

deduce that the intersection of

λ(Pf1) = · · · = λ(Pf5) = 0 (4.12)

contains ϕA(C). The subscheme of P[H0(A)] defined by (4.12) is the preimage of the

subscheme of X cut out by the forms of Kerλ. Therefore to prove (ii) is equivalent

to showing that the equations of (4.12) define a subscheme of P[H0(A)] of dimension

1. Let us the denote by S the irreducible component of (4.12) containing ϕA(C). We

write λ(ni) = qi ∈ S2〈x1, . . . , x5〉. Recall from Lemma IV.33 that λ(Pf5) is a nonzero

quadratic polynomial in the variables x1, . . . x5 and that λ(Pf1), . . . λ(Pf4) are cubic

forms in the same variables such that no linear combination of λ(Pf1), . . . λ(Pf4) is a

multiple of λ(Pf5).

To make the argument clear we split the proof in two cases.

Suppose that map
∧2 H0(E ) → H0(A) is surjective.

In this case Kerλ has a single generator in degree 1, in other words we do not

need to take a cone; the variety X is the weighted Grassmannian G(1
2

4
, 3

2). This can

be made consistent with our notation for v ∈ C[v, mij , ni] and u ∈ H0(A) by setting
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u = 0 and ev+(v) = 0. Let us write (4.12) in a matrix format.

Pf




λ(m12) λ(m13) λ(m14) q1

λ(m23) λ(m24) q2

λ(m34) q3

q4


 = 0 (4.13)

where 〈λ(mij)〉 = 〈x1, . . . , x5〉. We deduce that the locus of P[x1, . . . , x5] defined by

(4.13) is isomorphic to a hyperplane section of

Pf




z1 z2 z3 q1

z4 z5 q2

z6 q3

q4


 = 0. (4.14)

(All we did was to change variables 〈x1, . . . , x5〉 ⊂ 〈z1, . . . , z6〉, in particular notice

that we are not saying that z6 = 0 is the hyperplane section). Let us denote the

linear form defining the hyperplane section by L = L(z1, . . . , z6) so that P[H0(A)] is

given by L = 0. Let Ŝ denote the intersection of the five Pfaffians of (4.14). Hence

S ⊂ Ŝ ∩ P[H0(A)]. We want to show that dim Ŝ = 2 and that Ŝ is not contained in

P[H0(A)] for this will show that dimS = 1.

Claim. If the dimension of Ŝ is 2 then Ŝ is not contained in P[H0(A)].

Proof of the claim. Since Ŝ inside G(1
2

4
, 3

2) is given as the intersection of 4 hyper-

surfaces of degree 2, the dimension of G(1
2

4
, 3

2) is 6 and this variety is arithmetically

Cohen–Macaulay, if the dimension of Ŝ is 2 we deduce that these 4 quasihomoge-

neous forms form a regular sequence in the weighted Grassmannian’s homogeneous

ring. (Proposition II.15). Since H i(OG(j)) = 0 for 0 < i < 6, (see Proposition IV.5)

and we are taking a regular sequence of quadratic forms, we deduce that

H0(OG(1)) ³ H0(ObS(1)).

From the definition of G(1
2

4
, 3

2) we know that

H0(OP(1)) ³ H0(OG(1)),

where P = P[mij , ni]. Hence Ŝ is not contained in any hyperplane. In particular it is

not contained in P[H0(A)]. ¤
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To show dim Ŝ = 2 we argue by contradiction. From now on we assume that the

component of Ŝ containing ϕA(C) has dimension ≥ 3. Let us denote this component

by S ⊂ Ŝ.

Claim. There is only one quadric through S, namely the quadratic Pfaffian of

(4.14); and the cubic Pfaffians of (4.14) are linearly independent modulo the quadratic

Pfaffian. In particular dimS ≤ 3.

Proof of the claim. Suppose that there is a second quadric through S. Denote its

equation by Q. Also, denote by Q6 the quadratic Pfaffian:

z1z6 − z2z5 + z4z3.

Recall that we are assuming in the main statement of this proposition that W 2
9 (C) = ∅.

As a consequence, by Proposition IV.25, there is only one quadric of P[H0(A)] through

ϕA(C). Since ϕA(C) ⊂ S ∩ P[H0(A)] this implies that there is only one quadric of

P[H0(A)] through S ∩ P[H0(A)]. Thus we have

Q6 −Q = LA

with A another linear form in the variables z1, . . . , z6. In particular this means that

S ⊂ P[H0(A)]. Since we are assuming that dimS ≥ 3 and P[H0(A)] is 4-dimensional,

this implies that S ∩ P[H0(A)] = Q6 ∩ P[H0(A)]. In particular all the cubic Pfaffians

of (4.13) are multiples of the quadratic Pfaffian. This is a contradiction. Furthermore

if there exists a linear combination of the cubic Pfaffians of (4.14) then its restriction

to P[H0(A)] givens a linear combination between the cubic Pfaffians of (4.13), which

has to be trivial. ¤

Let us summarise our argument up to now. We are assuming that S, the compo-

nent of Ŝ ⊂ P[z1, . . . , z6] containing ϕA(C) ⊂ P[H0(A)] ⊂ P[z1, . . . , z6] has dimension

≥ 3, that there is only one quadric though it, Q6 and that the cubic Pfaffians of (4.14)

are linearly independent modulo Q6.

The variety Sred is a Weil divisor in the smooth quadric 4-fold, V , given by Q6 = 0.

By Lefschetz’s hyperplane theorem Pic(V ) = ZHV . Hence S = nHV . In particular

S is the complete intersection of V with some hypersurface of degree n. Since S

is also contained in a cubic hypersurface whose defining equation is not a multiple
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of Q6 we deduce that n ≤ 3. If n = 3 then S is the complete intersection of V

and the hypersurface cut out by one of the cubic Pfaffians. But then, there cannot

be 4 of them linearly independent through S. If n = 2 then there are two linearly

independent quadrics through S, which again is not true. If n = 1 then S is contained

in a hyperplane section, since ϕA(C) ⊂ S and ϕA(C) is nondegenerate in P[H0(A)]

this hyperplane can only be P[H0(A)]. But then repeating the argument of above on

dimension, we see that this leads to a contradiction.

We have shown that the variety S, the component of Ŝ containing ϕA(C), has

dimension ≤ 2. This finishes the proof of (ii) in the case when
∧2 H0(E ) → H0(A) is

surjective.

Suppose that
∧2 H0(E ) → H0(A) is not surjective.

Let us start by writing λ(Pfi) in the form:

Pf




z1 z2 z3 q1

z4 z5 q2

z6 q3

q4


 = 0 plus L1 = L2 = 0 (4.15)

where the forms qi are quasihomogeneous polynomials of degree 2 in the variables

z1, . . . , z6, v and L1, L2 are linear forms in z1, . . . , z6. Notice that P[H0(A)] is the

linear section L1 = L2 = 0.

Recall from the proof of item (iv) in Proposition IV.29 on page 110 that there

are at most two elements of the kernel of
∧2 H0(E ) → H0(A) meeting G(2,H0(E )),

the variety of skew tensors of rank 2. This means that there exists an element of

the kernel of this map that is a skew tensor of rank 4. In other words in the pencil

〈L1, L2〉 there exists a linear form defining a hyperplane that is not tangent to Q6,

the quadratic Pfaffian of (4.15). Say L1 = 0 is not tangent. Let us show that

Pf




z1 z2 z3 q1

z4 z5 q2

z6 q3

q4


 = 0 plus L1 = 0 (4.16)

defines a variety of dimension ≤ 2 not contained in any hyperplane other than L1 = 0.

This will be enough to prove item (ii). Denote the component of the intersection (4.16)

containing ϕA(C) by Ŝ.
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Claim. If dim Ŝ = 2 then Ŝ is not contained in any hyperplane other than the

given by L1 = 0.

Proof. We repeat the argument already used before. If dim Ŝ = 2 then Ŝ is the

intersection of a regular sequence in X made of one quasihomogeneous form of degree

1 and 4 quasihomogeneous forms of degree 2. By the vanishing of cohomology of X

(see Proposition IV.9) we deduce that Ŝ is contained in no hyperplane other than

that given by L1 = 0. ¤

To show that dim Ŝ = 2 we argue by contradiction. Suppose that dim Ŝ ≥ 3.

Claim. The variety Ŝ is contained in a single quadric, namely that given by that

quadratic Pfaffian of (4.16); and the cubic Pfaffians of (4.16) are linearly independent

modulo the quadratic Pfaffian. In particular dim Ŝ ≤ 3.

Proof of the claim. We repeat a previous argument. If there is another quadric

through Ŝ then Ŝ ⊂ P[H0(A)] and this means that the cubic Pfaffians of (4.15) are

linearly dependent modulo the quadric Pfaffian. Likewise any linear combination of

the cubic Pfaffians of (4.16) as a multiple of the quadratic Pfaffian of (4.16) restricts

to P[H0(A)]. ¤

Set v = L(z1, . . . , z6) a general linear form. Denote by

S = Ŝ ∩ (v = L) ⊂ (v − L = L1 = 0) ' P4,

the intersection Ŝ ∩ (v = L). By generality we can assume that S is of dimension

2, is contained in a single quadric Q5 (the smooth quadric of rank 5, restriction to

P4 ' (v − L = L1 = 0) of the quadratic Pfaffian, Q6) and that the cubic Pfaffians

when restricted to v = L are linearly independent modulo Q5.

If dimS = 3 then Sred is a Weil divisor in Q5. By Lefschetz’s hyperplane theorem

the Picard group of Q5 is generated by the hyperplane section. As in the previous

case we deduce that S is cut out by a single hypersurface in Q5. From here the proof

follows exactly in the same way as before.

We have finished the proof of (ii) of Proposition IV.34. ¤

Proof of Theorem IV.24. Consider the ideal Kerλ ⊂ C[x1, . . . , x5]. Proposi-

tion IV.34 says that the image of C under the embedding η is contained in Z(I)∩X.
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It also says that the dimension of Z(I) ∩X is 1. Moreover, since the degree of X is
13
24 (see Proposition IV.9) we deduce that deg(η(C)) = deg(X) · 24. Applying Propo-

sition IV.2 we conclude that I(η(C)) = I + (Pf1, . . . ,Pf5). Which implies that η(C) is

a complete intersection in X. ¤

Since IA = λI(η(C)) = (λ(Pf1), . . . , λ(Pf5)) we also have the following character-

isation of R(C, A).

Corollary IV.35. Let C be a nonsingular curve of genus 14 having a halfcanon-

ical divisor A such that h0(A) = 5. Assume that W 2
9 (C) = ∅. Then, the ring R(C, A)

is a codimension 3 ring, generated in degree one. Moreover the ideal IA is generated

by the 5 submaximal Pfaffians of a skew matrix



m12 m13 m14 q1

m23 m24 q2

m34 q3

q4




where mij ∈ 〈x1, . . . x5〉 ' H0(A), span a subspace of H0(A) of dimension ≥ 4 (not

necessarily the whole of H0(A)) and qi are general quadrics in the variables x1, . . . x5.



CHAPTER V

Applications to surfaces of general type

In this chapter we give two applications of the results of Chapter IV. We construct

the canonical model of a surface of general type in a family of each of the following

birational classes:

q = 0, pg = 4 and K2 = 7,

q = 0, pg = 6 and K2 = 13.

In both examples the basic idea is to explore the canonical linear system |KS | and

derive our results from the previous chapters. Using a general member of |KS | and the

hyperplane principle we obtain an initial description of the canonical ring R(S,KS).

Next, we construct a vector bundle E on S which yields and embedding of the canon-

ical model of the surface into a generalised weighted Grassmannian.

Theorem V.1. Let S be a nonsingular regular surface of general type with pg = 4

and K2 = 7. Assume that |KS | yields a birational morphism onto a surface with at

most ordinary singularitites. Then the canonical model ProjR(S, KS) is a complete

intersection of four quasihomogeneous forms of degree 2 and one quasihomogeneous

form of degree 3 in the generalised weighted Grassmannian P(1)nG(1
2

3
, 3

2

2).

Theorem V.2. Let S be a nonsingular regular surface of general type with pg = 6

and K2 = 13. Assume that the map sym2 is surjective. Then the canonical model

ProjR(S, KS) is a complete intersection of four quasihomogeneous forms of degree 2

and one quasihomogeneous form of degree 1 in the generalised weighted Grassmannian

P(1)nG(1
2

4
, 3

2).

Conventions. Let S be a smooth surface. Following Kodaira’s classification, the

surface S is of general type if and only if for some n À 0 the map ϕnKS
is birational.

In the modern terminology we say that KS is big. Following the philosophy of the

Minimal Model Programme, the assumption that KS is nef implies that S is minimal:

121
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if C is a −1-curve on S then by adjunction KSC < 0. In this work we adopt the

following definition.

Definition V.3. A surface S is of general type if and only if the canonical divisor

KS is nef and big.

For a nef divisor L on a projective reduced variety, L is big if and only if Ln > 0.

Hence an equivalent definition of surface of general type is given by KS nef and

K2
S > 0. Accordingly, in the theorems above we can replace “of general type” by

“with KS nef.”

V.1. The hyperplane principle

In this section we describe an important result that makes it possible to reduce

the analysis of a graded ring R to a lower dimensional ring R̄. This idea comes from

geometry and corresponds to the basic operation of taking a hyperplane section of an

embedded variety X ⊂ Pn.

Theorem V.4. Let R be a graded ring and x0 ∈ Rd a nonzero-divisor. There

exists an exact sequence:

0 → R(−d) x0−→ R
π−→ R̂ = R/(x0) → 0;

and we have:

(i) If x̂1, . . . , x̂n ∈ R̂ generate the ring R̂ then choosing preimages x1, . . . , xn

under π of x̂1, . . . , x̂n the elements x0, . . . , xn ∈ R generate R.

(ii) If f1, . . . , fm are relations between x̂1, . . . , x̂n, i.e. if

R̂ = C[x̂1, . . . , x̂n]/(f1, . . . , fm)

then there exist F1, . . . , Fm between x0, . . . , xn such that π(Fi) = fi and Fi

generate the ideal Ker ev, where

ev : C[x0, . . . , xn] → R.
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Proof. Consider the following diagram

0

²²

0

²²
J

²²

I

²²

0 // (x0)

²²Â
Â
Â

// C[x0, . . . xn] //

²²

C[x̂1, . . . , x̂n] //

²²

0

0 // R(−d)
x0 // R

π // R̂

²²

// 0

0

where the two horizontal sequences are exact and the dashed morphism is unique

morphism making the diagram commute. Let fx0 ∈ (x0). Then under the dashed

morphism fx0 maps to f ∈ Rdeg(f) = R(−d)deg(fx0). This morphism is well defined

since x0 is a nonzero-divisor (in other words (x0) ⊂ R is a free R-module). Moreover,

it is an isomorphism. Hence, by the snake lemma, we deduce that

C[x0, . . . , xn] → R

is surjective. In other words R is generated by x0 and any choice of preimages of

x̂1, . . . , x̂n under π. At the same time we deduce that J ' I as modules over

C[x0, . . . xn]. Suppose that f1, . . . , fm are generators of I over C[x̂1, . . . , x̂n] then

f1, . . . , fm are generators of I over C[x0, . . . , xn]. Therefore there exist F1, . . . Fm

that generate J over C[x0, . . . , xn]. Finally notice that the isomorphism J ∼−→ I is

simply the restriction of C[x0, . . . , xn] → C[x̂1, . . . , x̂n], which is uniquely defined by

xi 7→ x̂i for i ≥ 1 and x0 7→ 0. ¤

If S is a surface of general type and |KS | is not empty then we can take a “hyper-

plane section” corresponding to a nonzero-divisor, f ∈ H0(KS) of degree 1 in the ring

R(S, KS). If the corresponding section (f = 0) = C ∈ |KS | is a nonsingular curve, we

have automatically on C a halfcanonical divisor A given by adjunction as KS|C . The

point is that under some assumptions, the ring R(S, KS)/(f) is the halfcanonical ring

R(C, A).
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Proposition V.5. Let S be a nonsingular regular surface of general type. If

C ∈ |KS | is a nonsingular curve cut out by f ∈ |KS |, then R(C, A) = R(S, KS)/(f).

Proof. By regularity and Kodaira vanishing the cohomology space H1(nKS) is

null for any integer n. Hence from the restriction exact sequence we deduce that

0 → H0((n− 1)KS)
f−→ H0(nKS) → H0(C, nA) → 0;

and hence taking the direct sum of these sequences:

0 → R(S,KS)(−1) → R(S, KS) → R(C, A) → 0

in other words, R(C, A) ' R(S, KS)/(f). ¤

This illustrates the role of the regularity of S in this work. There will be one more

place where regularity of S is important. This is when we apply the vector bundle

method to S.

V.2. Indecomposability

The notion of indecomposable linear system will be used for the first birational

class of surfaces we study in this chapter, and will appear again for the surfaces

with pg = 6 and K2 = 13. However indecomposability of |KS | for surfaces with

pg = 4 is almost automatic. Indeed it follows from the assumption that |KS | is

base-point free. The latter is a classical case assumption in the study of a particular

birational class of surfaces of general type. The point we wish to make is that the

assumption of an indecomposable canonical linear system in the study of a birational

class of surfaces of general type, when not itself a case assumption (distinguishing, for

example, canonical rings of different codimension) is a generality assumption. This is

not clear in the pg = 4 and K2 = 7 case but it is in the case pg = 6 and K2 = 13, where

indecomposability translates to a condition on the rank of the quadric containing the

canonical image of S. The motivation to introduce this notion comes from the vector

bundle method. This is, off course, already clear in Mukai’s work [M95a] and has

appeared recently in Takagi’s work of classification of Q-Fano 3-folds [T03].
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Definition V.6. Let X be a variety and D a divisor on X. We say that a

complete linear system |D|, or simply D, is decomposable if there exist A and B Weil

divisors on X such that A and B are mobile, i.e. h0(A), h0(B) ≥ 2 and

D = A + B.

We refer to A, B as a mobile decomposition of D. The linear system |D| or simply D

is called indecomposable if it has no mobile decompositions.

Even by requiring that |KS | be free we can still have |KS | decomposable. This

can be checked against the case of regular surfaces of general type with pg = 6 and

K2 = 13 below.

Proposition V.7. Let X be a variety and D an effective divisor on X. Then D

is decomposable if and only if there exists a symmetric tensor on rank 3 or 4 in the

kernel of the map

S2H0(D) → H0(2D). (2.1)

Proof. The main idea has already showed up in the proof of Proposition III.9 on

page 36. Suppose D is decomposable. Then there exist A and B Weil divisors such

that

D = A + B

and h0(A), h0(B) ≥ 2. Let V1 ⊂ H0(A) and V2 ⊂ H0(B) be two subspaces of

dimension 2. There is map

V1 ⊗ V2 → H0(D) (2.2)

defined by sending (u, v) ∈ V1 × V2 to vu ∈ H0(D). If the kernel of this map is of

dimension ≥ 2 its projectivised kernel in P[V1 ⊗ V2], being at least one dimensional,

must meet the hypersurface P[V1]× P[V2] and therefore∗ there exists 0 6= u ∈ V1 and

0 6= v ∈ V2 such that uv = 0, which is false. Thus the kernel has dimension ≤ 1. In

other words, denoting by {u1, u2} and {v1, v2} bases for V1 and V2, respectively, there

is a single linear relation holding between

u1v1, u1v2, u2v1, u2v2, ∈ H0(D).

∗This idea is Castelnuovo’s linear-bilinear principle.



V.3 Surfaces with pg = 4 and K2
S = 7 126

There is a relation holding between these generators:

(u1v1)(u2v2)− (u2v1)(u1v2) = 0

and by what we have showed, this tensor corresponds to an element of the kernel of

(2.1) of rank 4 if the kernel of (2.2) is trivial, or of rank 3 in case that kernel is one

dimensional.

Conversely if the image of the map ϕ|D| : X → Σ ⊂ Pn is contained in a quadric of

rank 3 or 4 then the hyperplane section has a mobile decomposition (this is still true if

n = 2 and X maps to a plane conic) and therefore D = ϕ−1∗ (H) is decomposable. ¤

V.3. Surfaces with pg = 4 and K2
S = 7

Regular surfaces of general type with pg = 4 and birational canonical map were

systematically studied by Enriques in [En]. In the article [C81] Ciliberto constructs a

family of regular surfaces of general type with pg = 4, birational canonical morphism

and K2 in the set {5, 6, 7, 8, 9, 10}. See our introductory discussion on page 2 for

general background.

If the canonical linear system |KS | is free then the canonical map ϕKS
maps S

to a surface Σ of degree 7 in P3. In particular, there are no quadrics through the

image of S and consequently |KS | is indecomposable. By Bertini’s theorem, a general

member C ∈ |KS |, is a nonsingular irreducible curve. By adjunction, it comes with a

halfcanonical divisor A = KS|C . By the regularity of S the dimension of |A| is 2. The

canonical map ϕKS
restricts to C as the birational morphism

ϕA : C → C7 ⊂ P2,

mapping C to a septic plane curve. Since the genus of C is 8, and by the genus formula

pa(C7) = 15, the septic C7 must be singular. A general curve C ∈ |KS | like above,

moves in a positive dimensional family. We conclude that Σ, the image of S by ϕKS
,

has a singular locus of positive dimension. In particular there exists a curve γ ⊂ Σ

on which Σ is singular. We add to this the assumption that Σ has at most ordinary

singularities. This means that only a finite number of points of γ are not ordinary

double points of Σ and those that are not double points are triple points of Σ and are

the origins of three linear branches of γ with non coplanar tangent lines. (See [C81]).
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The following proposition gives a lower bound for the gonality of a nonsingular

curve in |KS |. It is clear that for most surfaces of general type a curve C in the

canonical linear system cannot be Brill–Noether general. In fact if pg > 2 then C
has a halfcanonical linear system of positive dimension and then by Gieseker’s result

(see [Gie]) C cannot be Petri general. However, in the case of regular surfaces, the

hyperplane principle imposes on the halfcanonical ring the same codimension as the

canonical ring. Therefore we expect to get a lower bound for, say, the gonality of a

nonsingular member of the canonical linear system.

Proposition V.8. Let S be a nonsingular regular surface of general type with

pg = 4 and K2
S = 7. Assume that |KS | yields a birational morphism onto a surface

with at most ordinary singularities. Then a nonsingular curve C in the canonical

linear system |KS | is nontrigonal.

Proof. A nonsingular member of |KS | is a curve of genus 8. The canonical divisor

of S restricts to C as a halfcanonical divisor A. Since KS is free so is A. Suppose

that C has a g1
3. Denote it by ξ. Then by Proposition III.2 on page 31 the space

H0(A− 2ξ) is positive dimensional. Since h0(2ξ) ≥ 3 and h0(A) = 3, we deduce that

A cannot be free. This is a contradiction. Hence C is nontrigonal. ¤

Proposition V.9. Let S be a regular nonsingular surface of general type with

pg = 4 and K2 = 7. Assume that |KS | yields a birational morphism onto a surface

with at most ordinary singularities. Then there exists a nonsingular curve C ∈ |KS |
with gon(C) = 4.

Proof. Let Σ denote the image of the canonical morphism. Since by assumption

Σ has at most ordinary singularities, it follows that the number of triple points of

γ (which will be triple points of Σ) equals
(
7−4
3

)
= 1. (The general formula for the

number of triple points of the double curve of a surface in P3 with only ordinary

singularities is
(
d−4
3

)
; where d is the degree of the surface. This is classical result by

Enriques. Proofs are given in the original text by Enriques [En, p 174] and in Griffith

and Harris’ textbook [GH]). We deduce that a generic plane section of Σ through

the triple point of γ is an irreducible curve with a triple point and double points at
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every other point of intersection with γ. Therefore, the inverse image under ϕKS
is a

nonsingular curve in |KS | with a free g1
4. ¤

V.3.1. The ring R(S, KS). For a general curve C ∈ |KS |, C is a nonsingular curve

of genus 8 with a free halfcanonical linear system A of dimension 2. Therefore by

Corollary IV.23 the ring R(C, A) is a codimension 3 ring generated by elements of

degree 1 and 2 and the ideal IA is generated by two cubics and three quartics. Thus

the following proposition is a straightforward application of the hyperplane principle,

Theorem V.4.

Proposition V.10. Let S be a nonsingular regular surface of general type with

pg = 4 and K2 = 7. Assume that |KS | yields a birational morphism onto a surface

with at most ordinary singularities. Then the ring R(S,KS) is a codimension 3 ring

generated by elements of degree 1 and 2. Furthermore, the canonical ideal IKS
is

generated by two cubics and three quartics. ¤

What we show in the next paragraphs is that the Pfaffian format of R(C, A) can,

as well, be pulled back to R(S,KS).

V.3.2. The bundle.

Proposition V.11. Let S be a nonsingular regular surface of general type with

pg = 4 and K2 = 7. Assume that |KS | yields a birational morphism onto a surface

with at most ordinary singularities. Then there exists a vector bundle E on S of rank

2 and determinant KS with the following properties:

(i) dimH0(E ) = 3.

(ii) The map
∧2 H0(E ) → H0(KS) is injective.

(iii) The map H0(KS)⊗H0(E ) → H0(E (KS)) has a 2-dimensional cokernel.

Proof. Let C be as given by Proposition V.9 and let ξ be a free g1
4 on C. The bundle

OC(ξ) is globally generated and accordingly there exists a surjective morphism

2OS ³ 2OC ³ OC(ξ).

Let us denote the kernel of the map 2OS → OC(ξ) by F . We have

0 → F → 2OS → OC(ξ) → 0 (3.1)
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The rank 2 sheaf F is locally free and is called an elementary modification of 2OS

along OC(ξ). See [HL, pag. 129]. Denote the restriction of KS to C by A and by E

the dual of F .

Lemma V.12. The dual sequence to (3.1) is

0 → 2OS → E → OC(A− ξ) → 0. (3.2)

In other words, Ext1
S(OC(ξ),OS) = OC(A− ξ).

Proof of the lemma. From the exact sequence

0 → OS(−C) → OS → OC → 0

applying the functor Hom(·,OS) we obtain Ext1
S(OC ,OS) = OC(A). Let δ ∈ |ξ| be

an effective divisor. From the exact sequence of sheaves on S

0 → OC → OC(δ) → Oδ → 0,

applying the functor Hom(·,OS) we obtain

0 → Ext1
S(OC(δ),OS) → OC(A) → Ext2

S(Oδ,OS) → Ext2
S(OC(δ),OS) → 0. (3.3)

Applying Hom(·,OS) to the exact sequence

0 → F → 2OS → OC(δ) → 0

we see that

0 → 2OS → E → Ext1
S(OC(ξ),OS) → 0

and additionally we deduce that Ext2
S(OC(δ),OS) = 0. In the exact sequence of (3.3)

the sheaf Ext1
S(OC(δ),OC) is supported on C (see [HL, pag. 5]) and as a sheaf on C

is torsion free, therefore, since C is nonsingular, it is a locally free sheaf on C. Since

Ext2
S(OC(δ),OS) = 0 and Ext2

S(Oδ,OS) is supported on δ, by taking determinants on

C we deduce that

Ext1
S(OC(δ),OS) = OC(A− δ). ¤

From the sequence (3.2) we get detE = KS . By invoking the regularity of S, item

(i) is likewise straightforward. (Recall that ξ corresponds to the projection from a

singular point of multiplicity 3 on the plane septic C7 = ϕA(C) ⊂ π ' P2).
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Proof of (ii). To show (ii) we argue by contradiction. Suppose that there exists a

nontrivial skew tensor in the kernel of

2∧
H0(E ) → H0(KS).

Since H0(E ) is 3-dimensional, such tensor is necessarily of rank 2. Which is to say

that there exist two sections s1, s2 ∈ H0(E ) such that OS · s1 +OS · s2 span a (torsion

free) subsheaf of E of rank 1. Denote the saturation of OS · s1 +OS · s2 ↪→ E by L1

and the torsion free quotient E /L1 by L2. In virtue of

0 → L1 → E → L2 → 0

we deduce that KS = c1(L1) + c2(L2). The sheaf L1 is locally free, whereas for some

subscheme Z of codimension 2, the sheaf L2 equals IZ ⊗L∨∨2 . Since s1, s2 ∈ H0(L1)

the system | c1(L1)| is mobile. The existence of a nonzero morphism E → L2 implies

that h0(E ∨ ⊗ L2) > 0. As a consequence of E ∨ = F ⊂ 2OS we get E ∨ ⊗ L2 ⊂ 2L2.

Therefore we deduce that h0(L2) > 0. Suppose that L2 ' OS . Then E is an extension

of OS by OS(KS). The group Ext1(OS ,OS(KS)) classifies all such extensions and

is easily seen to be trivial, by the regularity of S. Hence L2 ' OS implies that

E ' OS ⊕OS(KS) which is not true. (Incidentally the case of L2 ' OS is also ruled

out by the fact that L1 being invertible has no second Chern class, whereas E has

nonzero Chern class coming from the degree of ξ on the curve). If h0(L2) > 0 and

L2 6' OS then either c1(L2) moves or the linear system it spans consists of a (fixed)

effective divisor. But from (3.2) we see that E is spanned by its global sections outside

the support of the divisor |A − ξ| on C. Therefore c1(L2) must be a mobile linear

system. This is a contradiction since |KS | is not decomposable.

Proof of (iii). As we mention above, by (3.2) the bundle E is globally generated

everywhere except at the support of |A−ξ|. Thus, the evaluation morphism associated

to a choice of basis of H0(E ) yields

0 → OS(−KS)⊗IZ → 3OS → Ẽ → 0 (3.4)

where IZ is the ideal sheaf of a subscheme Z of codimension 2 and Ẽ ⊂ E is the image

of 3OS → E . Even though the sections H0(E ) do not generate E at δ = supp(A− ξ)
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they still span a a vector space of dimension 1, hence Ẽ is a little larger than E ⊗Iδ,

in fact it fits in the exact sequence

0 → Ẽ → E → Oδ → 0

and consequently ct Ẽ = 1+KS +0[pt]. This implies that c2(OS(−KS)⊗IZ) = 0, by

taking total Chern classes of (3.4). Consequently, Z = ∅. The map

H0(KS)⊗H0(E ) → H0(Ẽ (KS)) ⊂ H0(E (KS)) (3.5)

can now be obtained by tensoring (3.4) with OS(KS) and taking global sections. We

see that it has a kernel isomorphic to H0(OS). The fact that H0(E (KS)) = 13, which

we require to finish this proof, can be deduced from (3.2) using the regularity of S

and Riemann–Roch on C

h0(C, 2A− ξ) = h0(C, ξ) + deg(A)− deg(ξ) = 5. ¤

Notice that we can easily find a generator of the kernel of the map of (iii). It

corresponds to the tautology:

(s2 ∧ s3) · s1 − (s1 ∧ s3) · s2 + (s1 ∧ s2) · s3 = 0.

As we shall see, E is the restriction of the tautological orbi-bundle of a generalised

weighted Grassmannian. The above relation is one of the ten relations between the

five generators of the Serre module of E . (See our introduction on page 9).

V.3.3. R(S,KS) and the bundle E .

Proposition V.13. Let S be a regular nonsingular surface of general type with

pg = 4 and K2 = 7. Assume that |KS | yields a birational morphism onto a surface

with at most ordinary singularities. Let E be a vector bundle on S of rank 2 and

canonical determinant satisfying items (i), (ii) and (iii) of Proposition V.11. Fix

〈s1, s2, s3〉, a choice of basis of H0(E ) and 〈t1, t2〉 ⊂ H0(E (KS)) an orthogonal to

H0(KS)⊗H0(E ). Let u ∈ H0(KS) span a complementary space to the image of the

map
∧2 H0(E ) → H0(KS). Consider the polynomial ring C[x, mij , nkl, z] where

wt(M) = wt




m12 m13 n11 n12

m23 n21 n22

n31 n32

z


 =




1 1 2 2
1 2 2

2 2
3
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and wt(x) = 1. Define a map ev+ : C[x,mij , nkl, z] → R(S, KS) by setting ev+(x) = u,

ev+(mij) = si ∧ sj, ev+(nkl) = sl ∧ tk and ev+(z) = t1 ∧ t2. Then

(i) ev+ is surjective.

Let ev : C[x1, x2, x3, x4, y1, y2] → R(S, KS) be a minimal surjective morphism. Denote

by Pf1, . . . , Pf5 the 5 submaximal Pfaffians of the matrix M above. Then, for any

choice of basis 〈s1, s2, s3〉, 〈t1, t2〉, u and of a surjection

λ : C[x,mij , nkl, z] → C[x1, x2, x3, x4, y1, y2]

such that ev+ = λ ◦ ev, we have:

(ii) λ {Pf1, Pf2, Pf3, Pf4, Pf5} ∈ IKS
;

(iii) λ(Pf4), λ(Pf5) are a basis of IKS ,3;

(iv) λ(Pf1), λ(Pf2), λ(Pf3) are a basis of IKS ,4/I ′KS ,4.

Proof. We reduce the proof of this result to an earlier result. (Proposition IV.20).

Lemma V.14. There exists nonsingular curve C ∈ |KS | such that A = KS|C is

base-point free and EC is a stable bundle on C of rank 2 and determinant A with

dimH0(EC) = 3.

Proof of the lemma. Since |KS | is free, by Bertini’s theorem we know that a

general member C of |KS |, is a nonsingular curve with a free halfcanonical net. The

restriction of E to C is such that

0 → E (−KS) → E → EC → 0

From (3.2) we deduce that h0(E (−KS)) = 0. Since E (−KS) = F , by (3.1) we also

have h1(E (−KS)) = 0. Thus h0(EC) = 3. We are left with showing that EC is a stable

bundle. We will show that EC is isomorphic to the unique indecomposable extension

0 → OC(A− ξp) → Ep → OC(ξp) → 0

having h0(Ep) = 3 (where p is a general point of C and ξp = |A− p| is a free g1
6) since,

as we saw in the proof of Proposition IV.20, Ep is a stable bundle. We proceed in a

similar way to the proof of that proposition. From h0(EC) = 3 we deduce that there

exist a section vanishing at p. We saturate the embedding OC(p) ↪→ EC to obtain

0 → OC(δ) → EC → OC(A− δ) → 0.
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This argument was used in the proof of Proposition IV.20 to prove uniqueness. There

we assumed stability of EC to show that h0(δ) ≤ 1. Here we cannot use stability but

we can use what we know of E on S. Suppose that h0(δ) > 1. Then the map

2∧
H0(EC) → H0(A) (3.6)

has a nontrivial kernel. Let V be the image of the map
∧2 H0(E ) → H0(KS) as in

(ii) of Proposition V.11. Then (3.6) above implies that C ∈ P[V ] ⊂ P[H0(KS)] which

is not true for a general C ∈ |KS | since P[V ] has codimension 1 in P[KS ]. Hence

h0(δ) ≤ 1. We draw together with the proof of Proposition IV.20 once more. If

deg δ > 1 then surely h0(A− δ) < h0(ξp) < 2 and this means that h0(EC) < 3, which

is a contradiction. Therefore δ = p. ¤

Consider the following commutative diagram:

C[x,mij , nkl, z]
λ //

²²

C[x1, . . . , x4, y1, y2]

²²

ev // R(S, KS)

²²
C[mij , nkl, z]

λC // C[x1, . . . , x3, y1, y2]
evC // R(C, A)

given by restriction to C ∈ |KS | whose equation, by the lemma, we may take to

be ev−1(u) = x4 = 0, without any loss in generality. The proof follows from an

application of Proposition IV.20 on page 93 ¤

V.3.4. Proof of Theorem V.1.

Proposition V.15. Let S be a regular nonsingular surface of general type with

pg = 4 and K2 = 7. Assume that |KS | yields a birational morphism onto a surface

with at most ordinary singularities. Let E be a vector bundle on S of rank 2 and

canonical determinant satisfying items (i), (ii) and (iii) of Proposition V.11. Fix

〈s1, s2, s3〉, a choice of basis of H0(E ) and 〈t1, t2〉 ⊂ H0(E (KS)) a complementary

space to H0(KS) ⊗ H0(E ). Let u ∈ H0(KS) span a complementary space to the

image of the map
∧2 H0(E ) → H0(KS). Let X denote the generalised weighted

Grassmannian P(1)nG(1
2

3
, 3

2

2). Define a map

η : S → X (3.7)

by setting p 7→ (u(p), si ∧ sj(p), sl ∧ tk(p), t1 ∧ t2(p)). Then
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(i) η factors through the pluricanonical map S → Proj R(S, KS).

(ii) The canonical model is cut out on X by 4 quasihomogeneous forms of degree

2 and one quasihomogeneous form of degree 3 in X.

Proof. The map η fits into the commutative diagram:

S //

ϕ

²²

X

²²
P[xi, yk]

P(λ)
// P[x, mij , nlk, z]

(3.8)

where ϕ : S → ProjR(S, KS) ⊂ P[x1, . . . , x4, y1, y4] is the projectivised of the map

ev : C[x1, . . . , x4, y1, y2] → R(S,KS) and the map P(λ) : R → P[x,mij , nlk, z] is the

projectivised of the surjection:

λ : C[x,mij , nlk, z] → C[x1, . . . , x4, y1, y2]

as in Proposition V.13. The vertical arrow is the embedding of X into weighted

projective space. Since η = P(λ) ◦ ϕ item (i) is proved.

The image of S under ϕ is cut out by the generators of IKS
which we denote by

A4, B4, C4, and F3, G3 (three quartics and two cubics) and consequently the image of S

under η = P(λ)◦ϕ is cut out by λ−1 {A4, B4, C4, F3, G3} plus four quasihomogeneous

forms of degree 2 and one quasihomogeneous form of degree 3 that span Ker ev. But

from Proposition V.13 and Proposition V.10 it follows that

λ−1(A4, B4, C4, F3, G3) = (Pf1, . . . ,Pf5)

Where (Pf1, . . . , Pf5) is the homogeneous ideal of X in P[x,mij , nlk, z], Therefore

Proj(S) is set-theoretically cut out in X by four quasihomogeneous forms of degree 2

and one quasihomogeneous form of degree 3. ¤

Proof of Theorem V.1. This is straightforward from Proposition V.15. We use the

computation of the degree of X, which by Proposition IV.9 is 7
24·3 · 24 · 3 and apply

Proposition IV.2. ¤
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V.4. Surfaces with pg = 6 and K2
S = 13

Assume that S is a nonsingular regular surface of general type with pg = 6 and

K2
S = 13. If |KS | is free then, since 13 is prime, the canonical morphism is automati-

cally birational. Suppose additionally that sym2 is surjective. A general member C of

the canonical linear system |KS | is a nonsingular curve of genus 14 with a halfcanon-

ical divisor A = KS|C such that dimH0(A) = 5. By Corollary IV.35 on page 120, the

halfcanonical ring R(C, A) is a codimension 3 ring. We deduce that R(S, KS) is a codi-

mension 3 ring. Evidently, if sym2 is not surjective then R(S,KS) has codimension

≥ 4, since it requires generators in degree 2.

Proposition V.16. Let S be a nonsingular regular surface of general type with

pg = 6 and K2 = 13. Then if sym2 is surjective the linear system |KS | is free.

Proof. Suppose that sym2 is surjective and that |KS | is not spanned by its global

sections. Then |2KS | is not spanned by its global sections. However, by a Theorem of

Bombieri (see [Bom]) the linear system |2KS | is spanned by its global sections. ¤

Corollary V.17. Let S be a nonsingular regular surface of general type with

pg = 6 and K2 = 13. Then

sym2 is surjective ⇐⇒ R(S,KS) has codimension 3. ¤

We want to show that the canonical model ProjR(S, KS) is a complete intersection

in a generalised weighted Grassmannian. We will use the vector bundle method.

Before we need some preliminary results concerning the elements of the canonical

linear system.

Proposition V.18. Let S be a nonsingular regular surface of general type with

pg = 6 and K2
S = 13. Assume that sym2 is surjective. Then a nonsingular curve of

the canonical linear system has no g1
5. Additionally, there exists a nonsingular curve

in |KS | with a (free) g1
6.

Proof. Let C ∈ |KS | be a nonsingular curve. Then C has genus 14 and has a

halfcanonical divisor A = KS|C such that dimH0(A) = 5, by the regularity of S.
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Additionally

dimKer
{
S2H0(C, A) → H0(C, 2A)

}
= dim Ker

{
S2H0(KS) → H0(2KS)

}
= 1

and accordingly, S2H0(C, A) → S2H0(C, 2A) is surjective. Thus, as in the proof of

Proposition IV.25, we deduce from Lemma III.41 that C has no g1
5. Notice that since

R(S, KS) is generated in degree 1 the map

ϕKS
: S → Σ ⊂ P5

is an embedding away from −2-cycles. The image of S is the canonical model of S

and therefore it has at most Du Val singularities. By a numerical argument Σ is

contained in a quadric of rank Q of rank ≥ 3. To show that a smooth C ∈ |KS | has a

pencil of degree 6, in view of Proposition III.9 on page 36 it is enough to show that

sym2 : S2H0(C, A) → H0(C, 2A)

contains in its kernel a symmetric tensor of rank ≤ 4. In other words, it is enough

to show that the hyperplane section of Σ determining C is contained in a quadric of

rank ≤ 4. If rankQ ≤ 4 then this is obvious: all hyperplane sections satisfy this

requirement. In the remaining cases we must show that there exists a hyperplane H

such that Q ∩ H is a quadric of rank ≤ 4 and Σ ∩ H is a nonsingular curve, that

is to say, H is not tangent to S at any point of Σ ∩ H. Suppose that rankQ ≥ 5.

One way to make rankQ ∩H ≤ 4 is to take a tangent hyperplane to Q. The variety

parametrising tangent hyperplanes to Q (the dual of Q) is a quadric in dual projective

space. Therefore its dimension is 4. The dual variety of Σ (containing an open

subset parametrising hyperplanes containing tangent planes at nonsingular points)

has dimension ≤ 2+2 = 4. These two varieties cannot be equal. Hence there exists a

hyperplane tangent to Q and not containing any tangent plane to a point of Σ. The

curve C ∈ |KS | determined in this way is a nonsingular curve whose image by ϕKS
is

contained in quadric of rank ≤ 4. ¤

Proposition V.19. Let S be a nonsingular regular surface of general type with

pg = 6 and K2 = 13. Assume that sym2 is surjective. Then the canonical ideal is

generated by a quadric and four cubic forms.
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Proof. Let C ∈ |KS | be general nonsingular curve in the canonical linear system.

Then as we have shown in the proof of the previous proposition, the map

S2H0(A) → H0(2A)

is surjective. Therefore by Corollary IV.35, the ideal IA is generated by 4 cubics

and one quadric. Hence, this result follows from the hyperplane principle, Theo-

rem V.4. ¤

V.4.1. The bundle.

Proposition V.20. Let S be a nonsingular regular surface of general type with

pg = 6 and K2 = 13. Assume that sym2 is surjective. Then there exists a bundle E

of rank 2 such that:

(i) ct E = 1 + KS + 7[pt];

(ii) dimH0(E ) = 4;

(iii) the map
∧2 H0(E ) → H0(KS) has a kernel of dimension ≤ 1.

(iv) the map H0(KS)⊗H0(E ) → H0(E (KS)) has a 1-dimensional cokernel.

Proof. Let C ∈ |KS | be a nonsingular curve in the canonical linear system having

a g1
6. (See Proposition V.18).

Proof of existence. Denote by ξ a g1
6 on C. Since C has no g1

5 the linear system ξ is

base-point free. Hence the evaluation morphism 2OC → ξ given by (f, g) 7→ fs1 + gs2

for a choice of basis 〈s1, s2〉 of H0(ξ), is surjective. Let us denote by E ∨ the kernel of

2OS → OC(ξ). We have

0 → E ∨ → 2OS → OC(ξ) → 0. (4.1)

The sheaf E ∨ is an elementary modification of 2OS and therefore it is locally free.

Applying the functor Hom(·,OS) to (4.1)

0 → 2OS → E → Ext1
OS

(ξ,OS) → 0.

Since Ext1(ξ,OS) = OC(A−ξ) (see Lemma V.12) and denoting A−ξ by η, we deduce

that there exists a vector bundle E of rank 2 fitting into the exact sequence

0 → 2OS → E → OC(η) → 0 (4.2)
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Proof of (i). Taking total Chern class in (4.2)

ct E = (ct 2OS)(ctOC(η)) = ctOC(η) = 1 + KS + c2OC(η)

From the sequence

0 → OS(−KS) → OS → OC → 0

we have 1 = ctOS = (1−KS) ctOC so that ctOC = 1 + KS . From

0 → OC → OC(η) → Oη → 0

we have ctOC(η) = (1 + KS)(1 + deg(η)[pt]) = 1 + KS + 7[pt].

Proof of (ii). By regularity of S, dimH1(2OS) = 0. Therefore after taking global

sections of the exact sequence (4.2)

0 → H0(2OS) → H0(E ) → H0(OC(η)) → 0.

By Proposition III.2 we have dimH0(OC(η)) ≥ 2. Since sym2 is surjective, by Propo-

sition IV.25, C has no g2
9. We deduce that dimH0(OC(η)) = 2. Thus dimH0(E ) = 4.

Restriction of E to C. In the proof of the following item it will be convenient to

know the restriction of the bundle E to the curve C.

Lemma V.21. The restriction of E to C is the unique nonsplit extension

0 → OC(ξ) → EC → OC(η) → 0

with dimH0(E ) = 2.

Proof of the lemma. Consider the following diagram:

0 // E ∨

²²

// 2OS

²²

// OC(ξ) //

²²

0

0 // E

²²

id // E //

²²

0

EC OC(η)

and apply the snake lemma. ¤
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Proof of (iii). We use the restriction of E to C to prove this item. However, there

exists a different proof when |KS | is slightly more general then we are assuming here.

Lemma V.22. In addition to the assumptions of this proposition, suppose that |KS |
is indecomposable. Then the kernel of the map in item (iii) is at most 1-dimensional.

Proof of the lemma. We refer the reader to the proof of item (ii) of Proposition V.11

for a more detailed proof of a similar result. Suppose that the kernel of the map

2∧
H0(E ) → H0(KS)

has dimension ≥ 2. Then its projectivised contains a line and thus must intersect

G(2,H0(E )), the variety of skew tensors of rank 2. A point of this intersection yields

a splitting of E

0 → L → E →M→ 0 (4.3)

where L is a reflexive sheaf of rank 1 (thus locally free) and M is a torsion free sheaf

of rank 1. Moreover dimH0(L) ≥ 2. Taking first Chern classes,

KS = c1(L) + c1(M).

We want to show that dimH0(M) ≥ 2 and this way obtaining a contradiction to

indecomposability. From the sequence (4.2) we see that E fails to be spanned by its

global sections eventually at the base points of the linear system η. Therefore M
is spanned by global sections except at a finite set of (base) points. From (4.3) and

(4.2) since dimH0(E ∨ ⊗M) > 0 we deduce that dimH0(M) > 0. Therefore, either

M = OS or dimH0(M) ≥ 2. Notice that

M torsion free =⇒ M' OS(c1M)⊗OZ

from some subscheme Z ⊂ S of codimension 2. If M' OS then

dimHom(E ,OS) = dimH0(E ∨) > 0

and this is false as one checks from (4.1). ¤
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Remark. If the linear system is indecomposable then the kernel of sym2 contains

no quadrics of rank ≤ 4 (Proposition V.7). In other words the rank of the quadric

through Σ ⊂ P5 (the image of S be the canonical map) is ≥ 5. By the argument of

the proof of the previous lemma, when nonempty, the projectivised kernel of the map
∧2 H0(E ) → H0(KS) does not lie in G(2,H0(E )).

In the general case, the argument relies on item (iv) of Proposition IV.29. Recall

that we showed that the kernel of the map

2∧
H0(EC) → H0(A)

had dimension ≤ 2. Suppose that
∧2 H0(E ) → H0(KS) has a kernel of dimension

≥ 2. Then, composing with the restriction map H0(KS) → H0(A) we deduce that

2∧
H0(E ) → H0(A)

has a kernel of dimension ≥ 3, since we can see from (4.2) that there exist two sections

s1, s2 such that s1 ∧ s2 6= 0 on S but s1 ∧ s2 = 0 on C. This is a contradiction.

Proof of (iv). Tensoring (4.2) with OS(KS) we have

0 → 2OS(KS) → E (KS) → OC(A + η) → 0.

So that, by RR and Serre duality on C, and by regularity of S,

dimH0(E (KS)) = 2 · dimH0(KS) + dimH0(OC(A + η)) = 21.

Since dimH0(KS)⊗H0(E ) = 24 we are left to prove that the kernel of the map:

H0(KS)⊗H0(E ) → H0(E (KS)) (4.4)

is 4-dimensional. To see this, we identify this map with the map on global sections of

a map of sheaves. We choose a 2-dimensional subspace of H0(E ) projecting down to
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H0(η) and write evaluation maps in the following diagram:

0 //

²²

2OS

²²

∼ // 2OS

²²
0 // N // 2OS

⊕
2OS

//

²²

E

²²
2OS

// η

Tensoring the middle sequence with OS(KS), we see that the global sections map of

2OS(KS)⊕ 2OS(KS) → E (KS)

is exactly that of (4.4). Thus its kernel is isomorphic to H0(N (KS)). Notice that

none of the evaluation maps needs to be surjective, as η and consequently E might

have base points. The snake lemma applies to the first two rows, giving

0 → N → 2OS → η.

Lemma V.23. dimH0(N (KS)) = 4.

Proof. By Castelnuovo’s free-pencil trick, the map

H0(C,OC(η))⊗H0(C, A) → H0(C,OC(A + η))

has a kernel isomorphic to H0(C,OC(ξ+B)), where B denotes the base locus of η. As

the curve C has no g1
5, the base locus of η can consist of at most one point. However,

since by Proposition IV.25 the curve C has no g2
9 and in particular no g2

7, whether B

consists of a point or is empty is irrelevant for always h0(ξ + B) = 2. Finally, since

the restriction map

2H0(KS) → 2H0(C, A)

has a 2-dimensional kernel and is surjective, we deduce that

dimH0(N (KS)) = 4. ¤
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Remark. As we have pointed out earlier in this work one can easily write 4 linearly

independent tensors in the kernel of H0(KS)⊗H0(E ) → H0(E (KS)):




(s2 ∧ s3)s1 − (s1 ∧ s3)s2 + (s1 ∧ s2)s3

(s2 ∧ s4)s1 − (s1 ∧ s4)s2 + (s1 ∧ s2)s4

(s3 ∧ s4)s1 − (s1 ∧ s4)s3 + (s1 ∧ s3)s4

(s3 ∧ s4)s2 − (s2 ∧ s4)s3 + (s2 ∧ s3)s4

which, gives a straightforward proof that the kernel has dimension≥ 4. Looking ahead

for the next proposition, take each of these tensors and wedge it with t ∈ H0(E (KS)),

a generator of the cokernel of H0(KS)⊗H0(E ) → H0(E ). In this way we obtain four

cubic Pfaffians that together with the quadric tensor in the kernel of sym2 generate

the canonical ideal IKS
.

Proposition V.24. Let S be a nonsingular regular surface of general type with

pg = 6 and K2 = 13. Assume that sym2 is surjective. Let E be a bundle on S given

as in Proposition V.20. Consider a polynomial ring C[v,mij , ni] with

wt




m12 m13 m14 n1

m23 m24 n2

m34 n3

n4


 =




1 1 1 2
1 1 2

1 2
2


 (4.5)

and wt(v) = 1. Let 〈s1, s2, s3, s4〉 be a choice of basis of H0(E ) and t ∈ H0(E (KS))

be an element spanning a complement to the image of the map in (iv) of Proposi-

tion V.20. Choose u ∈ H0(KS) such that 〈u〉 is a complement to the image of the

map in (iii) of Proposition V.20. Let ev+ be the map ev+ : C[v, mij , ni] → R(S,KS)

defined by

v 7→ u, mij 7→ si ∧ sj and ni 7→ si ∧ t.

Denote by Pf1, . . . ,Pf5 the 5 submaximal Pfaffians of the skew matrix in (4.5). Then,

(i) ev+ is surjective.

Let ev be a minimal surjection C[x1, . . . , x6] → R(S, KS). Then, there exists a sur-

jection, λ : C[v1, v2,mij , ni] ³ C[x1, . . . , x6], such that ev+ = ev ◦λ and

(ii) λ {Pf1, . . . ,Pf5} ⊂ IKS
.

(iii) λ−1IKS ,3 ⊂ (Pf1, . . . , Pf5) thus, since the ideal IKS
is generated in degree 3,

we have λ−1IKS
= (Pf1, . . . ,Pf5).
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Proof. Consider a commutative diagram:

C[v, mij , ni]
λ //

²²

C[x1, . . . , x6]

²²

ev // R(S, KS)

²²

C[v, mij , ni]
λC // C[x1, . . . , x5]

evC // R(Ĉ, A)

given by restriction to the curve C, whose equation we can take to be given by x6 = 0.

Thus, we can reduce the reduce the proof of this proposition to Proposition IV.32. ¤

V.4.2. Proof of Theorem V.2.

Proposition V.25. Let S be a nonsingular regular surface of general type with

pg = 6 and K2 = 13. Assume that sym2 is surjective. Let E , 〈s1, s2, s3, s4〉 ⊂ H0(E ),

t ∈ H0(E (KS)) and u ∈ H0(KS) be as in Proposition V.24. Let X denote the

generalised Grassmannian P(1)nG(1
2

4
, 3

2). Define a map from S to X by

S 3 p 7→ [v(p), si ∧ sj(p), si ∧ t(p)] ∈ X.

Then,

(i) η factors through the pluricanonical morphism S → ProjR(S, KS) and

(ii) the canonical model Proj R(S, KS) is cut out by four quasihomogeneous

forms of degree 2 and one quasihomogeneous forms of degree 1 in X.

Proof. Consider the commutative diagram:

S

ϕKS

²²

η
// X

²²
P[x1, . . . , x5]

P(λ)
// P(1, 16, 24)

where P(λ) is the projectivised of the homomorphism

λ : C[v,mij , ni] → C[x1, . . . , x6]

and where the unlabeled vertical morphism is the embedding X ⊂ P(1, 16, 24). From

this and the fact that R(S,KS) is generated in degree 1, item (i) is clear. Addition-

ally, as the image of S by ϕKS
is cut out by IKS

we deduce that the transform of
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ProjR(S, KS) by λ is cut out in P(1, 16, 24) by

Kerλ + λ−1IKS
= Kerλ + (Pf1, . . . ,Pf5).

The ideal (Pf1, . . . ,Pf5) ⊂ C[v, mij , ni] is the homogeneous ideal of X in P(12, 16, 24).

Therefore we deduce that η(S) is cut out in X by Kerλ. Since this ideal is generated

by four quasihomogeneous forms of degree 2 and one quasihomogeneous forms of

degree 1 we have proved item (ii). ¤

Proof of Theorem V.2. We apply Proposition IV.2 using the result of the pre-

vious proposition and the computation of the degree of X, which is 13
24 (Proposi-

tion IV.9). ¤
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