Linear time equivalence of Littlewood-Richardson coefficient symmetry maps

O. Azenhas, A. Conflitti, R. Mamede

CMUC, Centre for Mathematics, University of Coimbra

FPSAC09 Hagenberg, Österreich, July 20-24, 2009

- Pak and Vallejo have introduced in [Reductions of Young tableau bijections, SIAM J. Discrete Math.] the notion of linear reduction of Young tableau bijections. In [Combinatorics and geometry of Littlewood-Richardson cones, Europ. J. Combinat] they have shown that the S_{3}-symmetries of Littlewood-Richardson coefficients, defined by the action of the subgroup of index 2 , can be given by maps of linear cost, and, therefore, the commutative symmetries are given by linearly equivalent maps. As a follow-up, the $\mathbb{Z}_{2} \times S_{3}$-symmetries are analysed: the symmetries defined by the action of a subgroup of index 2 can be given by maps of linear cost, thus commutative symmetry maps, conjugation symmetry maps and Schützenberger involution are linearly reducible to each other; three known Young tableau conjugation symmetry maps are shown to be identical. The difficulty to exhibit commutative and conjugation symmetries seems to be a common feature of the universe of Littlewood-Richardson rules.

Littlewood-Richardson coefficients: $c_{\mu \nu}^{\lambda}$

- Schur functions form a basis for the algebra of symmetric functions

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda} .
$$

- Decomposition of the tensor product of two irreducible polynomial representations V^{μ} and V^{ν} of the general linear group $G L_{d}(\mathbb{C})$ into irreducible representations of $G L_{d}(\mathbb{C})$

$$
V^{\mu} \otimes V^{\nu}=\sum_{I(\lambda) \leq d} c_{\mu \nu}^{\lambda} V^{\lambda}
$$

- Schubert classes σ_{λ} form a linear basis for $H^{*}(G(d, n))$, the cohomology ring of the Grassmannian $G(d, n)$ of complex d-dimensional linear subspaces of \mathbb{C}^{n},

$$
\sigma_{\mu} \sigma_{\nu}=\sum_{\lambda \subseteq d \times(n-d)} c_{\mu \nu}^{\lambda} \sigma_{\lambda} .
$$

- There exist $d \times d$ non singular matrices A, B and C, over a pid, with Smith invariants μ, ν and λ respectively, such that $A B=C$ iff $c_{\mu \nu}^{\lambda}>0$.

Conjugate partitions /mirror reflections of 01-strings \& 0's and 1's swapped

$$
n=10
$$

$$
n-d=6
$$

$$
\begin{aligned}
& \lambda=(4,2,1,0) \leftrightarrow 0010010101 \\
& \lambda^{\vee}=(6,5,4,2) \leftrightarrow 1010100100
\end{aligned}
$$

$$
\lambda^{t}=(3,2,1,1,0,0)
$$

$$
\left(\lambda^{\vee}\right)^{t}=(4,4,3,3,2,1)
$$

I: Littlewood-Richardson tableaux

- $c_{\mu \nu \lambda}$ is the number of semistandard Young tableaux with shape λ^{\vee} / μ and content ν, with the following property:
- If one reads the labeled entries in reverse reading order, that is, from right to left across rows taken in turn from bottom to top, at any stage, the number of i 's encountered is at least as large as the number of $(i+1)$'s encountered, $\# 1^{\prime} s \geq \# 2^{\prime} s \ldots$.

$$
c_{210,532,320}=c_{210,532}^{643}=c_{000010101010010100} 000101001
$$

2	3	3			
μ	1	2	2	λ	
		1	1	1	1

$$
v=(5,3,2)
$$

II: Knutson-Tao-Woodward puzzle rule

- A puzzle of size n is a tiling of an equilateral triangle of side length n with puzzle pieces each of unit side length.
- Puzzle pieces may be rotated in any orientation but not reflected, and wherever two pieces share an edge, the numbers on the edge must agree.
- (Knutson-Tao-Woodward) $c_{\mu \nu \lambda}$ is the number of puzzles with μ, ν and λ appearing clockwise as 01 -strings along the boundary.

Littlewood-Richardson number $\mathbb{Z}_{2} \times S_{3}$-symmetries

- Littlewood-Richardson coefficients $c_{\mu \nu \lambda}$ are invariant under the action of $\mathbb{Z}_{2} \times S_{3}$ as follows: the non-identity element of \mathbb{Z}_{2} transposes simultaneously μ, ν and λ, and S_{3} permutes μ, ν and λ
- S_{3}-symmetries

$$
\begin{gathered}
c_{\mu \nu \lambda}=c_{\lambda \mu \nu}=c_{\nu \lambda \mu} \\
c_{\mu \nu \lambda}=c_{\nu \mu \lambda} \\
c_{\mu \nu \lambda}=c_{\mu \lambda \nu} \\
c_{\mu \nu \lambda}=c_{\lambda \nu \mu}
\end{gathered}
$$

- $\mathbb{Z}_{2} \times S_{3}$-symmetries

$$
\begin{gathered}
c_{\mu \nu \lambda}=c_{\lambda \mu \nu}=c_{\nu \lambda \mu} \\
c_{\mu \nu \lambda}=c_{\nu^{t} \mu^{t} \lambda^{t}=c_{\mu^{t} \lambda^{t} \nu^{t}}=c_{\lambda^{t} \nu^{t} \mu^{t}}} \begin{array}{ll}
c_{\mu \nu \lambda}=c_{\nu \mu \lambda} & c_{\mu \nu \lambda}=c_{\mu^{t} \nu^{t} \lambda^{t}} \\
c_{\mu \nu \lambda}=c_{\mu \lambda \nu} & c_{\mu \nu \lambda}=c_{\lambda^{t} \mu^{t} \nu^{t}} \\
c_{\mu \nu \lambda}=c_{\lambda \nu \mu} & c_{\mu \nu \lambda}=c_{\nu^{t} \lambda^{t} \mu^{t}}
\end{array} .
\end{gathered}
$$

Littlewood-Richardson rules and $\mathbb{Z}_{2} \times S_{3}$-symmetries

- Six of the twelve $\mathbb{Z}_{2} \times S_{3}$-symmetries, in particular, three of the six S_{3}-symmetries, can be easily exhibited in the Littlewood-Richardson rules

$$
\begin{gathered}
c_{\mu \nu \lambda}=c_{\lambda \mu \nu}=c_{\nu \lambda \mu} \\
c_{\mu \nu \lambda}=c_{\nu^{t} \mu^{t} \lambda^{t}}=c_{\mu^{t} \lambda^{t} \nu^{t}}=c_{\lambda^{t} \nu^{t} \mu^{t}}
\end{gathered}
$$

Either the conjugation symmetry or the commutativity are difficult to exhibit in the Littlewood-Richardson rules.

$$
\begin{array}{ll}
c_{\mu \nu \lambda}=c_{\nu \mu \lambda} & c_{\mu \nu \lambda}=c_{\mu^{t} \nu^{t} \lambda^{t}} \\
c_{\mu \nu \lambda}=c_{\mu \lambda \nu} & c_{\mu \nu \lambda}=c_{\lambda^{t} \mu^{t} \nu^{t}} \\
c_{\mu \nu \lambda}=c_{\lambda \nu \mu} & c_{\mu \nu \lambda}=c_{\nu^{t} \lambda^{t} \mu^{t}}
\end{array}
$$

\diamond Involution

- $\operatorname{LR}(\mu, \nu, \lambda) \xrightarrow{\bullet} L R\left(\lambda^{t}, \nu^{t}, \mu^{t}\right)$
- $c_{\mu \nu \lambda}=c_{\lambda^{t} \nu^{t} \mu^{t}}$

$\mathrm{T}=$| 1 | 1 | 3 | 3 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | 2 | 2 | 2 | |
| | | | 1 | 1 | 1 |
| 1112223311 | | | | | |

5			
4			
2	3		
1	2	3	
	1	2	
			1

A Involution

- $\operatorname{LR}(\mu, \nu, \lambda) \xrightarrow{\bullet} \operatorname{LR}\left(\nu^{t}, \mu^{t}, \lambda^{t}\right)$
- $c_{\mu \nu \lambda}=c_{\nu^{t}} \mu^{t} \lambda^{t}$

$\mathrm{T}=$| 1 | 3 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 2 | 2 | 3 | | | |
| | | 1 | 2 | 2 | | |
| | | | | 1 | 1 | 1 |
| a | 2 | 2 | 3 | | | |
| a | b | 1 | 2 | 2 | | |
| a | b | c | d | 1 | 1 | 1 |\rightarrow

$\boldsymbol{A} \boldsymbol{A}$ involution

- $L R(\mu, \nu, \lambda) \xrightarrow{\text { ath }} L R\left(\mu^{t}, \lambda^{t}, \nu^{t}\right)$
- $c_{\mu \nu \lambda}=c_{\mu^{t} \lambda^{t} \nu^{t}}$

$\mathrm{T}=$| 1 | 3 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 2 | 2 | 3 | | | |
| | | 1 | 2 | 2 | | |
| | | | | 1 | 1 | 1 |\rightarrow| 1 | 3 | a | b | c | d | e |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 2 | 2 | 3 | a | b | c |
| | | 1 | 2 | 2 | a | b |
| | | | | 1 | 1 | 1 |\rightarrow

a	b	1	c	d	3	e
	a	b	2	2	c	3
		a	1	b	2	2
				1	1	1

a	b	1	2	2	3	3
	a	b	1	1	2	2
			a	c	d	1
			1			
				b	c	e

e			
c			
b	d		
	c		
	a	b	
			a
		b	
			a

Puzzle mirror reflections with 0's and 1's swapped

- $c_{\mu \nu \lambda}=c_{\nu^{t}} \mu^{t} \lambda^{t}$
- $c_{\mu \nu \lambda}=c_{\lambda^{t} \nu^{t} \mu^{t}}$
- $c_{\mu \nu \lambda}=c_{\mu^{t} \lambda^{t} \nu^{t}}$

Puzzle $2 \pi / 3$-rotations

$c_{\mu \nu \lambda}=c_{\nu \lambda \mu}=c_{\lambda \mu \nu}$

An index 2 subgroup of $\mathbb{Z}_{2} \times S_{3}$-symmetries easy to exhibit

- The group generated by the puzzle mirror reflections with the 0's and 1 's swapped / simple involutions $\boldsymbol{\uparrow}$, form a subgroup of index 2 of $\mathbb{Z}_{2} \times S_{3}$
$<$ puzzle mirror reflections \& $0 \leftrightarrow 1>$

$$
<\boldsymbol{\phi}, \gg=\{1, \boldsymbol{\phi}, \boldsymbol{\|}, \boldsymbol{\phi} \downarrow \boldsymbol{\phi}, \boldsymbol{\phi} \downarrow, \downarrow \boldsymbol{\phi}\}
$$

- $\boldsymbol{\wedge}$ and $\boldsymbol{\wedge}$ are involutions of linear cost
- Conjugation and commutative symmetry maps are linearly reducible to each other
- Commutativity symmetry is as difficult as transposition symmetry to be exhibited

Linear reduction of LR-symmetry maps and Pak-Vallejo's question

- Pak-Vallejo Theorem The following maps are linearly equivalent:
(1) RSK correspondence.
(2) Jeu de taquin map.
(3) Littlewood-Robinson map.
(4) Tableau-switching map.
(5) Schützenberger involution E for normal shapes.
(6) Reversal e.
(7) (Fundamental) commutative symmetry map $\rho: \operatorname{LR}(\mu, \nu, \lambda) \rightarrow L R(\nu, \mu, \lambda)$.
- Pak-Vallejo's question: Conjugation symmetry maps
$\varrho: \operatorname{LR}(\mu, \nu, \lambda) \rightarrow L R\left(\mu^{t}, \nu^{t}, \lambda^{t}\right):$
- White-Hanlon-Sundaram bijection $\varrho^{W H S}$ (1992)
- Benkart-Sottile-Stroomer bijection $\varrho^{B S S}$ (1996)
- $\varrho^{A Z}$ (1999)
- Are $\varrho^{W H S}, \varrho^{B S S}$ and $\varrho^{A Z}$ identical and linearly equivalent to a map already in the list?
- Theorem $\varrho^{B S S}, \varrho^{W H S}$ and $\varrho^{A Z}$ are identical, and linearly equivalent to the Schützenberger involution E,

$\varrho^{B S S}$ bijection

- Benkart-Sottile-Stroomer bijection $\varrho^{B S S}$

$$
\begin{array}{clc}
\varrho^{B S S}: L R(\mu, \nu, \lambda) & \longrightarrow & L R\left(\mu^{t}, \nu^{t}, \lambda^{t}\right) \\
T & \mapsto & \varrho(T)=\left[Y\left(\nu^{t}\right)\right]_{K} \cap\left[\widehat{T}^{t}\right]_{d K}
\end{array}
$$

- $L R(\mu \nu \lambda) \mapsto L R\left(\mu^{t} \lambda^{t} \nu^{t}\right)$ standardization + tableau-switching

$T=$| 4 | | |
| :--- | :--- | :--- |
| 1 | 3 | |
| | 2 | |
		1	$\rightarrow \widehat{T}=$	5			
1	4						
	3						
		2	$\rightarrow \hat{T}^{t}=$	N			
:---	:---	:---	:---				
	n	+					
		-	n	\rightarrow			

2	a	a	b
	3	4	a
		1	5

2	3	4	5
	a	b	1
		a	a

\rightarrow| | | | |
| :--- | :--- | :--- | :--- |
| | a | b | |
| | | a | a |

- $\rho: \operatorname{LR}\left(\mu^{t} \lambda^{t} \nu^{t}\right) \mapsto \operatorname{LR}\left(\mu^{t} \nu^{t} \lambda^{t}\right)$ tableau-switching

1	1	1	2
	a	b	1
		a	a

1	a	a	b
	1	2	a
		1	1

1			
	1	2	
		1	1

Linear reduction of $\varrho^{B S S}$ bijection

- $L R(\mu \nu \lambda) \xrightarrow{\text { a } \Delta \boldsymbol{A}} L R\left(\mu^{t} \lambda^{t} \nu^{t}\right) \xrightarrow{\rho} L R\left(\mu^{t} \nu^{t} \lambda^{t}\right)$
- $\varrho^{B S S}=$ puzzle mirror reflection + commutative symmetry
- AかA : $T=$| 4 | | |
| :--- | :--- | :--- |
| 1 | 3 | |
| | 2 | |
| | | 1 |\rightarrow

4	a	b
1	3	a
	2	a
		1

a	b	4				
a	1	3				
	a	2				
		1	\rightarrow	a	1	4
:---:	:---:	:---:				
a	b	3				
	a	2				
		1				

	a	b	
		a	a

- $\rho=$ Tableau-switching

1	1	1	2
	a	b	1
		a	a

1	a	a	b
	1	2	a
		1	1

1			
	1	2	
		1	1

$\varrho^{A Z}$ bijection
$\varrho^{A Z}=$ puzzle mirror reflection+ commutative symmetry map

- $\rho^{A Z}: L R(\mu \nu \lambda) \xrightarrow{\rho=\bullet e} L R(\lambda \nu \mu) \xrightarrow{\bullet} L R\left(\mu^{t}, \nu^{t}, \lambda^{t}\right)$

$$
\rho: L R(\mu, \nu, \lambda) \quad \xrightarrow{e} L R\left(\mu, \nu^{*}, \lambda\right) \quad \underset{\pi \text {-rotation }}{\bullet} L R(\lambda, \nu, \mu)
$$

- $\rho^{A Z}=(\bullet \bullet) e=\diamond \rho$

2	3	3			
	1	2	2		
		1	1	1	1

1111221332

3	3	3			
	2	2	2		
		1	1	3	3

$\rightarrow 3311222333$

$\rightarrow 1231231245$

$$
\begin{aligned}
11(1(12) 2)(1332) \longrightarrow & 22(1(12) 2)(1332) \longrightarrow 2211(2(213) 3) 2 \longrightarrow 3311(2(213) 3) 3 \\
& 33(1(12) 2) 1333 \longrightarrow 3311222333 \\
& \quad * 1112223311 \longleftrightarrow 1231231245
\end{aligned}
$$

A bijection between puzzles and LR tableaux: Tao's bijection

	1	1	2	2	3	4	4						
					1	1	2	2	3	3			
								1	1	1	2	2	2
											1	1	1

Purbhoo mosaics are in bijection with puzzles and LR

 tableauxA mosaic is a tiling of an hexagon, which has angles and side lengths as below, with unitary triangles, unitary squares, and unitary rhombi with angles 30° and 150° all packed into the three 150° nests.

-		-
	3	-
-	-2	-
-		$\bullet 1$

