The involutive nature of the Littlewood-Richardson commutativity bijection

Olga Azenhas, CMUC, University of Coimbra joint with
Ron C. King, Southampton University and
Itaru Terada, Tokyo University

arXiv:1603.05037
KIAS, June 2016

Plan

(1) Motivation: LR coefficients as structure constants versus combinatorial numbers
(2) LR tableaux, Gelfand-Tsetlin patterns and LR hives
(3) Involution commutators of LR tableaux and LR hives

- based on the Schützenberger involution
- our involution commutators

Littlewood-Richardson coefficients as structure constants

- The basis of Schur polynomials for the ring Λ_{n}. Let $x=\left(x_{1}, \ldots, x_{n}\right)$. Schur polynomials $s_{\lambda}(x)$ for all partitions with $\ell(\lambda) \leq n$, form a \mathbb{Z}-linear basis for the ring $\Lambda_{n}:=\mathbb{Z}[x]^{\mathfrak{S}_{n}}$ of symmetric polynomials in x,

$$
s_{\mu} s_{\nu}=\sum_{\substack{\lambda \\ \ell(\lambda) \leq n}} c_{\mu \nu}^{\lambda} s_{\lambda}
$$

Littlewood-Richardson coefficients as structure constants

- The basis of Schur polynomials for the ring Λ_{n}. Let $x=\left(x_{1}, \ldots, x_{n}\right)$. Schur polynomials $s_{\lambda}(x)$ for all partitions with $\ell(\lambda) \leq n$, form a \mathbb{Z}-linear basis for the ring $\Lambda_{n}:=\mathbb{Z}[x]^{\mathfrak{S}_{n}}$ of symmetric polynomials in x,

$$
s_{\mu} s_{\nu}=\sum_{\substack{\lambda \\ \ell(\lambda) \leq n}} c_{\mu \nu}^{\lambda} s_{\lambda} .
$$

- These numbers $c_{\mu, \nu}^{\lambda}$ also arise as
- tensor product multiplicities. Schur polynomials $s_{\lambda}(x)$ may be interpreted as irreducible characters of the general linear group $G L_{n}(\mathbb{C})$. The decomposition of the tensor product of two irreducible polynomial representations V^{μ} and V^{ν} of the general linear group $G L_{n}(\mathbb{C})$ into irreducible representations of $G L_{n}(\mathbb{C})$, is given by

$$
V^{\mu} \otimes V^{\nu}=\bigoplus_{\ell(\lambda) \leq n} V^{\lambda^{\oplus c_{\mu \nu}^{\lambda}}}
$$

Littlewood-Richardson coefficients as structure constants

- \quad intersection numbers. Schur polynomials $s_{\lambda}(x)$ may be interpreted as representatives of Schubert classes σ_{λ}, with λ inside the rectangle $d \times(d-n)$. Schubert classes σ_{λ} with λ inside the rectangle $d \times(d-n)$, form a \mathbb{Z}-linear basis for the cohomology ring $H^{*}(G(n, d))$ of the Grassmannian $G(n, d)$ of complex n-dimensional linear subspaces of \mathbb{C}^{d}, and

$$
\sigma_{\mu} \sigma_{\nu}=\sum_{\lambda \subseteq n \times(d-n)} c_{\mu \nu}^{\lambda} \sigma_{\lambda}
$$

Littlewood-Richardson coefficients as structure constants

- \quad intersection numbers. Schur polynomials $s_{\lambda}(x)$ may be interpreted as representatives of Schubert classes σ_{λ}, with λ inside the rectangle $d \times(d-n)$. Schubert classes σ_{λ} with λ inside the rectangle $d \times(d-n)$, form a \mathbb{Z}-linear basis for the cohomology ring $H^{*}(G(n, d))$ of the Grassmannian $G(n, d)$ of complex n-dimensional linear subspaces of \mathbb{C}^{d}, and

$$
\sigma_{\mu} \sigma_{\nu}=\sum_{\lambda \subseteq n \times(d-n)} c_{\mu \nu}^{\lambda} \sigma_{\lambda}
$$

- Positivity of Littlewood-Richardson coefficients in existence problems. There exist $n \times n$ non singular matrices A, B and C, over a local principal ideal domain, with Smith invariants μ, ν and λ respectively, such that $A B=C$ iff $c_{\mu \nu}^{\lambda}>0$.

Littlewood-Richardson coefficients as structure constants

- \quad intersection numbers. Schur polynomials $s_{\lambda}(x)$ may be interpreted as representatives of Schubert classes σ_{λ}, with λ inside the rectangle $d \times(d-n)$. Schubert classes σ_{λ} with λ inside the rectangle $d \times(d-n)$, form a \mathbb{Z}-linear basis for the cohomology ring $H^{*}(G(n, d))$ of the Grassmannian $G(n, d)$ of complex n-dimensional linear subspaces of \mathbb{C}^{d}, and

$$
\sigma_{\mu} \sigma_{\nu}=\sum_{\lambda \subseteq n \times(d-n)} c_{\mu \nu}^{\lambda} \sigma_{\lambda}
$$

- Positivity of Littlewood-Richardson coefficients in existence problems. There exist $n \times n$ non singular matrices A, B and C, over a local principal ideal domain, with Smith invariants μ, ν and λ respectively, such that $A B=C$ iff $c_{\mu \nu}^{\lambda}>0$.
- The commutativity of Littlewood-Richardson coefficients

$$
\begin{gathered}
c_{\mu \nu}^{\lambda}=c_{\nu \mu}^{\lambda} \\
c_{\mu \nu}^{\lambda}>0 \text { iff } c_{\nu \mu}^{\lambda}>0
\end{gathered}
$$

Littlewood-Richardson coefficients as numbers which

count

- The Littlewood-Richardson (LR) rule (D.E. Littlewood and A. Richardson 34; M.-P. Schützenberger 77; G.P. Thomas 74) states that the coefficients appearing in the expansion of a product of Schur polynomials s_{μ} and s_{ν}

$$
s_{\mu}(x) s_{\nu}(x)=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}(x)
$$

are given by

$$
\begin{aligned}
c_{\mu \nu}^{\lambda} & =\#\{T \in \mathcal{L} \mathcal{R}(\lambda / \mu, \nu)\}=\# \mathcal{L} \mathcal{R}(\lambda / \mu, \nu) \\
c_{\nu, \mu}^{\lambda} & =\#\{T \in \mathcal{L R}(\lambda / \nu, \mu)\}=\# \mathcal{L R}(\lambda / \nu, \mu)
\end{aligned}
$$

$\mathcal{L} \mathcal{R}(\lambda / \mu, \nu)$ the set of Littlewood-Richardson tableaux of shape λ / μ and weight ν.

Littlewood-Richardson tableaux (D.E. Littlewood and A. Richardson, 1934)

- A Young tableau T of shape λ / μ is said to be a Littlewood-Richardson tableau if
- it is semistandard (SSYT)
(1) the entries in each row of λ / μ are weakly increasing from left to right, and
(2) the entries in each column of λ / μ are strictly increasing from top to bottom,
- and satisfy the lattice permutation property
(1) the number of entries s occurring in the first r rows of T does not exceed the number of entries $s-1$ occurring in the first $r-1$ rows of T, for all $r \geq 1$ and $s \geq 2$.

					1	1	2
				1	2		
1	2	2	2	3			

					1	1	1
				2	3		
1	2	2	3	4			

					1	1	1
				1	2		
1	2	2	2	3			

lattice permutation property $\Rightarrow \nu$ is a partition, $\ell(\nu) \leq \ell(\lambda) \underset{S S T}{\Rightarrow} \nu \subseteq \lambda$

LR tableaux split into Gelfand-Tsetlin patterns led to hives

- I.M. Gelfand, A.V. Zelevinsky (1986), A.D. Berenstein, A.V.Zelevinsky (1989)

$\left.T_{\mu}=\begin{array}{|l|l|l|l|l|l|}\hline 1 & 2 & 2 & 2 & 3 & 3\end{array}\right]$

$$
T_{\nu}=\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 1 & 2 & 2 & 3 & 3 \\
\hline 2 & 2 & 3 & 4 & 4 & \\
\hline 4 & 5 & & & & \\
\hline
\end{array}
$$

$$
\begin{gathered}
G_{\lambda}=\begin{array}{cccc}
& 7 & 5 \\
9 & 6 & 2 \\
& 9 & 8 & 4
\end{array} \quad 1 \\
9
\end{gathered}
$$

$$
T_{\lambda}=
$$

Interlock the three GT patterns

- A hive in the edge representation form, R.C. King, C. Tollu, F. Toumazet (2006), is a labelling of all edges of a planar, equilateral triangular graph satisfying the triangle and the betweeness conditions

From edge KTT (2006), to vertex representation of a hive A. Knutson, T. Tao (1999), and A.S. Buch (2000)

The transformation from edge to vertex labelling starts with the bottom left vertex with label 0 , and, inductively, find the label of a vertex as the the sum of a vertex label to its left with the label of the edge connecting these two vertices. The triangle condition ensures a consistent result.

Edge and vertex representation of a hive A. Knutson, T. Tao (1999), and A.S. Buch (2000)

Gradient representation of a hive

The hive is expressed only in terms of the μ, ν and λ edge labels, and upright rhombus gradients.

$$
\begin{aligned}
& U_{i j}=\mu_{j-i}^{(n-i)}-\mu_{j-i+1}^{(n-i+1)} \\
& \quad=\nu_{i}^{j}-\nu_{i}^{(j-1)} \geq 0
\end{aligned}
$$

Gradient representation of a hive

$$
\begin{gathered}
\mu_{i+1}+\sum_{k=1}^{j} U_{k, i+1} \leq \mu_{i}+\sum_{k=1}^{j-1} U_{k i}, \\
\nu_{i+1}-\sum_{k=j+1}^{n} U_{i+1, k} \leq \nu_{i}-\sum_{k=j}^{n=j} U_{i k}, \\
\lambda_{k}=\left(\mu_{k}+\sum_{i=1}^{k-1} U_{i k}\right)+\left(\nu_{k}-\sum_{j=k+1}^{n} U_{k j}\right)
\end{gathered}
$$

- n-hives $\mathcal{H}^{(n)}$ in the gradient representation and n-LR tableaux $\mathcal{L R}^{(n)}$ are in bijection.

$U_{i j}=\#$ of i 's in row j of $T, 1 \leq i<j \leq n$, add the boundary edge labels λ, μ and ν.

$$
c_{\mu, \nu}^{\lambda}=\# \mathcal{H}^{(n)}(\lambda, \mu, \nu)=\# \mathcal{L} \mathcal{R}(\lambda / \mu, \nu)
$$

The interlocking GT pattern pair $\left(T_{\mu}, T_{\nu}\right)$ and the tensor product of $\mathfrak{g l}_{n}$-crystal bases

- Let B_{λ} denote the crystal basis of the irreducible representation V_{λ} of $U_{q}\left(\mathfrak{g l}_{n}\right)$.
- B_{λ} can be taken to be the set of all SSYTs of shape λ, in the alphabet $\{1, \ldots, n\}$, equipped with crystal operators. The highest weight element is the Yamanouchi tableau Y_{λ}, and the lowest weight element $\xi\left(Y_{\lambda}\right)=: Y_{\text {rev }}$, with ξ the Schützenberger involution.

$$
Y_{753}=\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 2 & 2 & 2 & 2 & 2 & & \\
\hline 3 & 3 & 3 & & & & \\
\hline
\end{array}
$$

$$
Y_{357}=\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 2 & 2 & 3 & 3 \\
\hline 2 & 2 & 2 & 3 & 3 & & \\
\hline 3 & 3 & 3 & & & & \\
\cline { 1 - 3 }
\end{array}
$$

- $\mathfrak{g l}_{n}$-Littlewood-Richardson rule. The map $U \otimes V \rightarrow(P(U \otimes V), Q(U \otimes V))$ gives the $\mathfrak{g l}_{n}$-isomorphism

$$
B_{\mu} \otimes B_{\nu} \cong \bigoplus_{\substack{\lambda \\ T \in \mathcal{L R}(\lambda / \mu, \nu)}} B_{\lambda}(T)
$$

with $B_{\lambda}(T)=B_{\lambda} \times\{T\} \cong B_{\lambda}$. The multiplicity of B_{λ} in $B_{\mu} \otimes B_{\nu}$ is
\#highest (lowest) weight elements of weight $\lambda(\operatorname{rev} \lambda)$ in $B_{\mu} \otimes B_{\nu}$

$$
=|\mathcal{L R}(\lambda / \mu, \nu)|=c_{\mu, \nu}^{\lambda}
$$

- The lowest and the highest weight elements of $B_{\lambda}(T)$ in $B_{\mu} \otimes B_{\nu}$. Each crystal connected component in $B_{\mu} \otimes B_{\nu}$, isomorphic to $B_{\lambda}(T)$, has highest weight element $Y_{\mu} \otimes T_{\nu}$, and lowest weight element $T_{\mu} \otimes Y_{\text {rev } \nu}$, where (T_{μ}, T_{ν}) is the GT-pattern pair obtained from $T \in \mathcal{L R}(\lambda / \mu, \nu)$.

Involution commutators and the Schützenberger involution

- Henriques-Kamnitzer crystal commutator (arxiv 2004). For each $T \in \mathcal{L R}(\lambda / \mu, \nu)$ there exists $T^{*} \in \mathcal{L} \mathcal{R}(\lambda / \nu, \mu)$ such that the map

$$
\begin{array}{cl}
B(\mu) \otimes B(\nu) & \rightarrow B(\nu) \otimes B(\mu) \\
U \otimes V & \mapsto \xi(V) \otimes \xi(U)
\end{array}
$$

sends

$$
\begin{array}{cll}
Y_{\mu} \otimes T_{\nu} & \rightarrow T_{\nu}^{*} \otimes \xi Y_{\mu}, & \xi T_{\nu}=T_{\nu}^{*} \\
T_{\mu} \otimes \xi Y_{\nu} & \rightarrow Y_{\nu} \otimes T_{\mu}^{*}, & \xi T_{\mu}=T_{\mu}^{*}
\end{array}
$$

- Henriques-Kamnitzer LR involution commutator

$$
\begin{array}{clc}
\operatorname{Com}_{H K}: \mathcal{L R}(\lambda / \mu, \nu) & \rightarrow & \mathcal{L R}(\lambda / \nu, \mu) \\
T & \rightarrow & T^{*}
\end{array}: T_{\nu}^{*}=\xi T_{\nu}, T_{\mu}^{*}=\xi T_{\mu}
$$

- Pak-Vallejo LR commutators (arxiv 2004): $\rho_{2}=\gamma^{-1} \xi \tau$ and

$$
\begin{aligned}
\rho_{2}^{\prime}=\tau^{-1} \xi \gamma= & \rho_{2}^{-1} . \\
& \rho_{2}: T \in \mathcal{L} \mathcal{R}(\lambda / \mu, \nu) \underset{\tau}{\longrightarrow} T_{\nu} \underset{\xi}{\longrightarrow} \xi\left(T_{\nu}\right) \underset{\gamma^{-1}}{\longrightarrow} Q \in \mathcal{L R}(\lambda / \nu, \mu) \\
& \rho_{2}^{\prime}: T \in \mathcal{L R}(\lambda / \mu, \nu) \underset{\gamma}{\longrightarrow} T_{\mu} \underset{\xi}{\longrightarrow} \xi\left(T_{\mu}\right) \underset{\gamma^{-1}}{\longrightarrow} Q^{\prime} \in \mathcal{L R}(\lambda / \nu, \mu)
\end{aligned}
$$

Conjectured $\rho_{2}=\rho_{2}^{\prime} \Leftrightarrow Q=Q^{\prime}$.

The nature of the LR tableau and LR hive commutators

 ρ_{3} (A. 1999) and $\sigma^{(n)}$ (A., King, Terada 2016)- The general philosophy of the maps ρ_{3} and $\sigma^{(n)}$: an LR tableau $T \in \mathcal{L R}(\lambda / \mu, \nu)$ and an LR hive $H \in \mathcal{H}^{(n)}(\lambda, \mu, \nu)$ can be completely specified by means of the GT pattern with type ν, and the shape μ.
- The nature of the map ρ_{3} on $T \in \mathcal{L R}(\lambda / \mu, \nu)$ and of the map $\sigma^{(n)}$ on $H \in \mathcal{H}^{(n)}(\lambda, \mu, \nu)$ is that it proceeds by providing:
- a sequence consisting of successively smaller LR tableaux in which the sequence of inner shapes determines the image $S \in \mathcal{L R}(\lambda / \nu, \mu)$; and
- a sequence consisting of successively smaller LR hives in which the sequence of left-hand boundary edges determine the image $K \in \mathcal{H}^{(n)}(\lambda, \nu, \mu)$.
They do so by specifying completely a GT pattern with type μ associated with S and K.
- Both maps have inverses acting in a reverse manner. Their action on $T \in \mathcal{L R}(\lambda / \mu, \nu)$ and $H \in \mathcal{H}^{(n)}(\lambda, \mu, \nu)$ culminate in the same images S and K. The maps ρ_{3} and $\sigma^{(n)}$ are involutions.
$\rho_{3}:$ The action of deletion operators on LR tableaux
- For any given $T \in \mathcal{L} \mathcal{R}(\lambda / \mu, \nu)$, and any corner cell $\left(r, \lambda_{r}\right)$ the deletion operator $\delta_{r, \lambda_{r}}$ is defined to be such that:
- $1 \leq T\left(r, \lambda_{r}\right)<r$: the terminating row number is in $\{1, \ldots, r-1\}$

- $T\left(r, \lambda_{r}\right)=r$: terminating row number is always 0 .

- the cell $\left(r, \lambda_{r}\right)$ is blank: terminating row number is always r.

The terminating row numbers of full deletion operators

- For any given $T \in \mathcal{L R}(\lambda / \mu, \nu)$ with $\ell(\lambda)=r$ the full r-deletion operator δ_{r} is defined by

$$
\delta_{r}:=\delta_{r, 1} \delta_{r, 2} \cdots \delta_{r, \lambda_{r}}
$$

The operator δ_{r} produces λ_{r} terminating row numbers in $\{0,1, \ldots, r\}$ where the multiplicity of 0 is ν_{r} and the multiplicity of r is μ_{r}.

- Example

The full 5 -deletion operator δ_{5} has terminating row numbers 0,2 , recorded as 2 .

- Goal: piling up the terminating row numbers of δ_{r} applied T, followed with the terminating row numbers of δ_{i-1} applied to $\delta_{i} \ldots \delta_{r} T, i=r, \ldots, 2$.

The LR tableau commutator ρ_{3}

The partner tableau

- The partner tableau of T

$$
\rho_{3}(T)=S=\begin{array}{|l|l|l|l|l|l|l}
\hline & & & & & 1 & 1 \\
\hline & & & & 1 & 2 & \\
\hline 1 & 2 & 2 & 2 & \\
\hline 1 & 2 & 3 & 3 & & \\
\hline
\end{array} \in L R(\lambda / \nu, \mu)
$$

- The GT pattern of type μ of the partner tableau. The sequence of inner shapes produced in the deletion procedure gives the GT pattern of type μ of S, the partner tableau of T

$S_{\mu}=$	3				
		4		1	
	5		4		0
		5		2	

- The multiplicity of the positive terminating row numbers of operator δ_{i} is given by $\mu^{i}-\mu^{(i-1)}, i=1,2,3,4$.

The inverse $\bar{\rho}_{3}$

- To prove that ρ_{3} is a bijection, we exhibit its inverse $\bar{\rho}_{3}$.
- Given $T \in \mathcal{L R}(\lambda / \mu, \nu)$ we use the GT pattern T_{ν} to construct by insertion of blank boxes the inner shape ν of $\bar{\rho}_{3} T \in \mathcal{L R}(\lambda / \nu, \mu)$, and adding, to each row i, μ_{i} boxes marked with i.

$$
\rho_{3}(T)=\bar{\rho}_{3}(T)
$$

Properties of operators δ_{n}

Lemma

- $\rho_{3}(T)=S \Longrightarrow \rho_{3}\left(\delta_{n} T\right)=S^{-}$obtained by removing the nth row of S.
- $T, T^{\prime} \in \mathcal{L R}(\lambda / \mu, \nu), \delta_{n} T=\delta_{n} T^{\prime} \Longrightarrow T=T^{\prime}$.

Proposition

(A. 2000); A., King, Terada (2016)

Theorem
$\rho_{3}^{2}=i d$.
Proof. By induction on n.

$$
\begin{gathered}
n=1, \quad T=\square \square 1111 \underset{\rho_{3}}{\rightarrow} S=\square T 11 \underset{\rho_{3}}{\rightarrow} T=\square \square 1111 \\
n>1, \quad T \in \mathcal{L R}(\lambda / \mu, \nu), \quad \rho_{3}(T)=S \\
\rho_{3}\left(\delta_{n} T\right)=S^{-} \underset{\text { induction }}{\Rightarrow} \rho_{3}^{2}\left(\delta_{n} T\right)=\delta_{n} T=\rho_{3} S^{-} \\
\Leftrightarrow \delta_{n} T=\rho_{3} S^{-} \underset{\substack{- \\
\text { Proposition }}}{ } \delta_{n}\left(\rho_{3}(S)\right) \Rightarrow \rho_{3}(S)=T .
\end{gathered}
$$

An LR hive commutator (A.,King, Terada, 2016)

- Path removals in a hive with gradient representation. Three path removal operators χ_{r}, ϕ_{r} and ω_{r} on a hive H. In each case the action on the hive H is to decrease the label of each red edge by 1 and to increase that of each blue edge by 1 , along a path starting from the edge labelled λ_{r}.

$\nu_{r}>0$

$\lambda_{r}-\mu_{r}-\nu_{r}>0$

$\mu_{r}>0$

Reduction in gradients of upright rhombi

The only reductions in gradient are of the form:

The triangle conditions are preserved under any of the three path removal procedures

$$
0 \sqrt{-1}+1 \sqrt[0]{-1}
$$

The path removal operator

- For any given hive $H \in \mathcal{H}^{(r)}(\lambda, \mu, \nu)$ with $r=\ell(\lambda)$, the path removal operator $\theta_{r, \lambda_{r}}$ is defined by

$$
\theta_{r, \lambda_{r}}= \begin{cases}\chi_{r} & \text { if } \nu_{r}>0 ; \\ \phi_{r} & \text { if } \nu_{r}=0 \text { and } U_{i r}>0 \text { for some } i<r ; \\ \omega_{r} & \text { if } \nu_{r}=0, U_{i r}=0 \text { for all } i<r, \text { and } \mu_{r}>0 .\end{cases}
$$

- For any given hive $H \in \mathcal{H}^{(r)}(\lambda, \mu, \nu)$ with $\ell(\lambda) \leq r$ the full r-hive path removal operator θ_{r} is defined by

$$
\begin{aligned}
& \theta_{r}:=\theta_{r, 1} \theta_{r, 2} \cdots \theta_{r, \lambda_{r}}, \\
& \theta_{r}=\omega_{r}^{\mu_{r}} \phi_{r}^{\lambda_{r}-\mu_{r}-\nu_{r}} \chi_{r}^{\nu_{r}}
\end{aligned}
$$

An LR hive commutator (A., King, Terada, 2016)

$$
\left(H^{(4)}, K^{(0)}\right) \longrightarrow\left(H^{(0)}, K^{(4)}\right)
$$

The LR hive commutator $\sigma^{(n)}$ (A., King, Terada, 2016)

$$
\xrightarrow[4]{\phi_{3}}
$$

$$
\xrightarrow[4]{\zeta_{2}}
$$

Example: $\operatorname{Com}_{H K}=\gamma^{-1} \xi \tau$

- $\mathcal{L R}(\lambda / \mu, \nu) \rightarrow \mathcal{L R}(\lambda / \nu, \mu), \quad \mathcal{H}^{(4)}(\lambda, \mu, \nu) \rightarrow \mathcal{H}^{(4)}(\lambda, \nu, \mu)$

$$
\begin{aligned}
& H^{*}=\underbrace{5}_{8}
\end{aligned}
$$

Example: $\tau^{-1} \xi \gamma$

