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Plan

@ Motivation: LR coefficients as structure constants versus
combinatorial numbers

@ LR tableaux, Gelfand-Tsetlin patterns and LR hives

@ Involution commutators of LR tableaux and LR hives

> based on the Schiitzenberger involution
> our involution commutators

)
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Littlewood-Richardson coefficients as structure constants

@ The basis of Schur polynomials for the ring A,. Let x = (x1,...,X,). Schur
polynomials sy(x) for all partitions with ¢(\) < n, form a Z-linear basis for
the ring A, := Z[x]®" of symmetric polynomials in x,
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@ These numbers c ,, also arise as

> tensor product multiplicities. Schur polynomials sy(x) may be
interpreted as irreducible characters of the general linear group GL,(C).
The decomposition of the tensor product of two irreducible polynomial
representations V# and V" of the general linear group GL,(C) into
irreducible representations of GL,(C), is given by

Vi v = @ VAT
L(N)<n



Littlewood-Richardson coefficients as structure constants

@ > intersection numbers. Schur polynomials sy(x) may be interpreted as
representatives of Schubert classes o, with X inside the rectangle
d x (d — n). Schubert classes o with X inside the rectangle
d x (d — n), form a Z-linear basis for the cohomology ring H*(G(n, d))
of the Grassmannian G(n, d) of complex n-dimensional linear subspaces

of C9, and
_ A
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@ Positivity of Littlewood-Richardson coefficients in existence problems. There
exist n X n non singular matrices A, B and C, over a local principal ideal
domain, with Smith invariants u, v and A respectively, such that AB = C iff

A
¢, > 0.
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Littlewood-Richardson coefficients as structure constants

@ > intersection numbers. Schur polynomials sy(x) may be interpreted as
representatives of Schubert classes o, with X inside the rectangle
d x (d — n). Schubert classes o with X inside the rectangle
d x (d — n), form a Z-linear basis for the cohomology ring H*(G(n, d))
of the Grassmannian G(n, d) of complex n-dimensional linear subspaces

of C9, and
0,0, = Z C;L\ LOA-
ACnx(d—n)
@ Positivity of Littlewood-Richardson coefficients in existence problems. There

exist n X n non singular matrices A, B and C, over a local principal ideal
domain, with Smith invariants u, v and A respectively, such that AB = C iff

A
¢, > 0.

@ The commutativity of Littlewood-Richardson coefficients

A A
C;Ll/ - Cuy,

A e A
¢, >0 iff ¢, > 0.



Littlewood-Richardson coefficients as numbers which
count

@ The Littlewood-Richardson (LR) rule (D.E. Littlewood and A. Richardson
34; M.-P. Schiitzenberger 77; G.P. Thomas 74) states that the coefficients
appearing in the expansion of a product of Schur polynomials s, and s,

) su(x) = Z

are given by

ey = #{T € LR\ 1, v)} = #LR(A 1, v)
= #{T e LR\ v, 1)} = #LR(\/v, 11).

v, p

LR(N/ i, v) the set of Littlewood-Richardson tableaux of shape A/u and
weight v.
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Littlewood-Richardson tableaux (D.E. Littlewood and A.
Richardson, 1934)

@ A Young tableau T of shape A\/u is said to be a Littlewood-Richardson
tableau if

> it is semistandard (SSYT)

@ the entries in each row of \/u are weakly increasing from left to right,
and

@ the entries in each column of A\/u are strictly increasing from top to
bottom,

» and satisfy the lattice permutation property

@ the number of entries s occurring in the first r rows of T does not
exceed the number of entries s — 1 occurring in the first r — 1 rows of
T, forall r >1ands>2.

1[1]2] 1[1]1] 1[1]1]

1]2 2|3 1]2
112]2]2]3 1/2]2]3]|4 1/2]2]2|3

lattice permutation property = v is a partition, £(v) < 4()\) S?T rCaA



LR tableaux split into Gelfand-Tsetlin patterns led to hives

@ |.M. Gelfand, A.V. Zelevinsky (1986), A.D. Berenstein, A.V.Zelevinsky
(1989)

1(1
1(1(2(2
T = 111(2 w=75300 v =75200 X\ =99641
1(2(2(3
13]
Q - 7
A
6= ©° G — o G— 15
MmN o o WV 9 6 2
O o MmN P ¢ O 9 8 4 1
A A © N v v Qo oo o 9 9 6 4 1
1)1(1)1[1/1]1{3][3
1]2]2]2[3][3]4] 1[1]2]2[3]3]4] 2(2(2]2|2(3|4]|4|5
T#:23344 T,= [2[2]3]4]4 A= |3[3[4]4|5]5
41515 415 415]5]5
15]
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Interlock the three GT patterns

Q/\—\
7
ST
7 57\
M ON QW
96 27\
LD v P™Hh YN O
9—-8—X-4 17\
AvRvAvRPoOoOoNwonN©
VA WV, T VAN L VAl TR VA TR

@ A hive in the edge representation form, R.C. King, C. Tollu, F. Toumazet
(2006), is a labelling of all edges of a planar, equilateral triangular graph
satisfying the triangle and the betweeness conditions

Y Y-
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From edge KTT (2006), to vertex representation of a hive
A. Knutson, T. Tao (1999), and A.S. Buch (2000)

The transformation from edge to vertex labelling starts with the bottom left
vertex with label 0, and, inductively, find the label of a vertex as the the sum of a
vertex label to its left with the label of the edge connecting these two vertices.

The triangle condition ensures a consistent result.

/\/\/\/\

7— 16 —24 — 28 — 29

/NN NN N

0—9—18—24—28—29
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Edge and vertex representation of a hive A. Knutson, T.

Tao (1999), and A.S. Buch (2000)

pRY 15

7\ / N\

? A8 % AN
/§7 57\ 15 — 22 — 27
AN / N/ N/ \

kg%ﬁ 27\ 12— 21— 27 — 29
Po»mn e N O /N/ N/ N/ N\

kg 8 4 1 7— 16 —24 —28 — 29

/\v—“\v-ﬂoovo'wi /NN NN N

6— 4\ ¢ 0—9— 18— 24— 28 —29

70

- >0
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Gradient representation of a hive

The hive is expressed only in terms of the p, v and A edge labels, and upright rhombus gradients.

N\

o <
NJ 3
© v
X
AR A
S < P < (n—i) )
;V* 'z \Qv v’y M Vi

i +
/< Una Uzs % (-1) (n—i+1)

i

> N 3 i
R R A
Uss Uoq Uss )\
S < » o< N < A < . :
A\ o & N\ o < /5 - —_ 1
o2 e > £ T (n ’)_ (n—i+1)
Ny SN N N Uj = Hii” = Hjit1
A Uro Ux Usq Uss )\ =v - V,-(J D>

49
W
o)

4
L0
0

,Q]ﬂ?}
18
Q)

,Q](?j
M
k’q\

,QJ(J/
SN
O
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Gradient representation of a hive

Hiv1 + ZJI.(:I Uk i+1 < pi + 211;11 Ui,
Viyl — Z::j-‘rl Uit1,x <vi— ZZ=j Ui,
k—
Ak = (Mk + Z,-le U; ) + (Vk - Z;:k+1 Ukj)

NV

@ n-hives H(" in the gradient representation and n-LR tableaux LR™ are in
bijection.

Uj=#of i'sinrow jof T, 1 <i <j<n, add the boundary edge labels A\, u and v.
A
e = #HO N 1, v) = #LR(A . v)
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The interlocking GT pattern pair (7,, T,)) and the tensor
product of gl -crystal bases

@ Let B) denote the crystal basis of the irreducible representation V) of
Uq(gly)-

@ B, can be taken to be the set of all SSYTs of shape A, in the alphabet
{1,...,n}, equipped with crystal operators. The highest weight element is
the Yamanouchi tableau Y}, and the lowest weight element £(Y)) =: Yievx,
with & the Schiitzenberger involution.

1[a]1]1]1]1]1] 1[1]1]2]2]3]3]
Y73 = [2]2]2]2]2 Y57 = [2]2]2]3]3
3[3]3 3[3]3
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gl,-Littlewood-Richardson rule. The map U® V — (P(U® V), Q(U ® V))
gives the gl -isomorphism
B.@B,= @  B\(T),

A
TELR(N )
with B\(T) = By x {T} = By. The multiplicity of By in B, ® B, is

#highest (lowest) weight elements of weight A (rev)) in B, ® B,
= [LR(Nmv) = ¢,
The lowest and the highest weight elements of B\(T) in B, ® B,. Each
crystal connected component in B, ® B,, isomorphic to B\(T), has highest
weight element Y, ® T,, and lowest weight element T, ® Yy, where
(Tu, T,) is the GT-pattern pair obtained from T € LR(\/p, V).
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Involution commutators and the Schiitzenberger involution

@ Henriques-Kamnitzer crystal commutator (arxiv 2004). For each
T € LR(N p,v) there exists T* € LR(A/v, ) such that the map

B(p) @ B(v) — B(v)@ B(p)
UsV = (V) &)

sends
YH®TV - T:®£Yu’ §T, =1,
T.@8Y, — Y, @T;, ¢&ET,=T;].
@ Henriques-Kamnitzer LR involution commutator
Compk: LR(N u,v) — LR(N v, u)
T — T* : T;‘:gT,,,T;:fTM
@ Pak-Vallejo LR commutators (arxiv 2004): p, =y~ 1¢7 and
ph=7"1y=p;"
pa: T € LR(Npv) — T, vy &(T) = Q€ LR(N v, 1)

ph: T € LR(N i) — T —> €(T,) = Q@' € LR(Vv. )
v 1

Conjectured pp = ph & Q = Q'.
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The nature of the LR tableau and LR hive commutators
p3 (A. 1999) and o(" (A., King, Terada 2016)

@ The general philosophy of the maps p3 and o(": an LR tableau
T € LR(MN u,v) and an LR hive H € H("(\, i1, ) can be completely
specified by means of the GT pattern with type v, and the shape pu.

@ The nature of the map p3 on T € LR(\/u,v) and of the map o(" on
H € H( (X, i, v) is that it proceeds by providing:

> a sequence consisting of successively smaller LR tableaux in which the
sequence of inner shapes determines the image S € LR(\/v, u); and

> a sequence consisting of successively smaller LR hives in which the
sequence of left-hand boundary edges determine the image
K e HM(\ v, p).
They do so by specifying completely a GT pattern with type p
associated with S and K.

» Both maps have inverses acting in a reverse manner. Their action on
T € LR(M p,v) and H € H("W(\, u, v) culminate in the same images
S and K. The maps p3 and o(") are involutions.
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p3: The action of deletion operators on LR tableaux

@ For any given T € LR(A/u,v), and any corner cell (r, ;) the deletion
operator 9, , is defined to be such that:

» 1< T(r,A\;) < r: the terminating row number is in {1,...,r — 1}
111 111
111]2{2 1121212
T= 1/1[2 — 04T = 113
1
13 13

» T(r,\;) = r: terminating row number is always 0.

1

1

2[2

T =

N[—

(O8] [

1{2

o L

315

> the cell (r, A,

1
2

1
2

T =

N[

(o8]

— 55’27_ =

— (55’17— =

o[

[

1
3]

) is blank: terminating row number is always r.
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The terminating row numbers of full deletion operators

@ For any given T € LR(A/p,v) with £(X) = r the full r-deletion operator ¢,

is defined by
O 1= 6r,16r,2 te 5r7/\,

The operator §, produces A, terminating row numbers in {0,1,...,r} where
the multiplicity of 0 is v, and the multiplicity of r is y,.

@ Example

2[2 1

T= 1[1[2[3 — 05T = 065105, T = 1]2[2]3
12 4

13/5

The full 5-deletion operator 5 has terminating row numbers 0, 2, recorded
as .

@ Goal: piling up the terminating row numbers of §, applied T, followed with
the terminating row numbers of §;_; applied to §;...6, T, i=r,...,2.
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The LR tableau commutator p3

: 1[1]
1202 g )
121213 ,
4)

5(0)
I

NSNS
12 weight 1 — pu®
1[2[2[2]3 —
73) 5
[
T weight p®) — 4
11212|2{2
11212]2]
1{2[3]3

72 5
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T weight p®) — u
112121212 SRR
1[2|3(3
T(2) 5(2)
g
weight (@ — (1)
[ T T I1[1[1]111] ,-1/?‘
2 1[2|2]2
S”{1233
T(l) 5(3)
Ja
weight (1)
—N—
] % 1[1]
( 2 se) 1R
1[2]3[3

7(0)

S —s4
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The partner tableau

@ The partner tableau of T

1]1]
€ LR(M\/v, )

[y
N

p3(T)=S=

—

WIN

@ The GT pattern of type i of the partner tableau. The sequence of inner
shapes produced in the deletion procedure gives the GT pattern of type u of
S, the partner tableau of T

® The multiplicity of the positive terminating row numbers of operator d; is
given by i — =1, i =1,2,3, 4.
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The inverse p;

@ To prove that p3 is a bijection, we exhibit its inverse pjs.

@ Given T € LR(M/p,v) we use the GT pattern T, to construct by insertion
of blank boxes the inner shape v of p3 T € LR(A/v, 1), and adding, to each

row i, p;j boxes marked with i.

[1]1]
T = I 30
1202 v 4 2 0

=
1
=
=
=
=
=
=
1
=]
L]
|
=
=
=
=
=
1
N
N
N[
-
A
=
=

T[] 1[1[11] 1[1[11]
2121212] — 1[21212] — 1212[2] =
112] 122 112121313
T | A
212133 — [121213 7 [AzR2 =p3(T)
1] 11213 1[2[3]3 25/38
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Properties of operators ¢,

Lemma

@ p3(T) =S5 = p3(6,T) = S~ obtained by removing the nth row of S.
o T, T' € LR\ u,v), 6,T =6, = T =T
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Proposition
(A. 2000); A., King, Terada (2016)

LR —L R
= S——T
T3 :
s 2 6, T'. | 0n
2 @ ,05‘ = T :
ﬁR(n—l) L:R(n—l)
Theorem
p3=id.

Proof. By induction on n.

p3(57) = dn(p3(S))-

n=1T= [[IIIII] 7 S = 111 7 T = [[IIAII]
3 3

n>1 TeLRA nv), ps(T)=5S
036, T)=S" = p3(0,T)=6,T = p3S~

induction

S0, T=pS" = alps(S) = p3(S) = T.

Proposition
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An LR hive commutator (A.,King, Terada, 2016)

@ Path removals in a hive with gradient representation. Three path removal
operators x,, ¢, and w, on a hive H. In each case the action on the hive H
is to decrease the label of each red edge by 1 and to increase that of each
blue edge by 1, along a path starting from the edge labelled A,.

ur >0

v, >0
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Reduction in gradients of upright rhombi

Q
o
L

The only reductions in gradient are of the form:

§- ¢

The triangle conditions are preserved under any of the three path removal
procedures




The path removal operator

@ For any given hive H € H()(\, u,v) with r = £(\), the path removal
operator 6, , is defined by

Xr if v, > 0;

Orx, = Or if v, =0 and U; > 0 for some i < r;
wy if v, =0, U, =0forall i <r, and p, > 0.

@ For any given hive H € H((\, u, v) with £(\) < r the full r-hive path
removal operator 0, is defined by

or = 0r,10r72 te 9r,A, 5

— Ar—r—V, v,
0, = whr G HVr \r
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An LR hive commutator (A., King, Terada, 2016)

Ha N\ V1 M1 Vg N\ 1
3 %3 M2 V3 H2
K2 V3 w3 — .o, 2 3
M1 V4 Ha 141 Ha

)\1 )\2 )\3 )\4 )\1 )\2 )\3 )\4

(H(4), K(O)) N (H(°)7 K(4))
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The LR hive commutator o(" (A., King, Terada, 2016)

AogA

444444444




= o
~ 2 A




o
R
e 1




O
5.

il

3!:0
3

:
i

0 :
b
%

i

31!5
8

0

2 B
/N
5 4

N
0

1]1]1]

112[3]3




Example: Comuyx = v 7

o LR(A p,v) = LROA/v, 1), HEO(N, p,v) = HB (N, v, )

11 ?
v 30
12%%2 m 4 2 0
5 4 1 0
4
sy I
2= s 2 1 2T T M
5 4 1 0 L1203

H* =
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Example: 771¢y

o
1,1|1]
T= e = 6
121213 -
3
41
= 5 4 0 =@

3
H
3
2 0
1[111]
1[2]
1 2
1[2
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