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It is well known that Littlewood-Richardson sequences give a combinatorial 
characterization for the invariant factors of a product of two matrices over a principal 
ideal domain. Given partitions a and c,  let LR(a,  c)  be the set of partitions b for which at  
least one Littlewood-Richardson sequence of type (a,  b ,  c)  exists. I .  Zaballa has shown 
in [20] that LR(a,  c)  has a minimal element w and a maximal element n, with respect to 
the order bf majorization, depending only on a and c. In general, LR(a ,c )  is not the 
whole interval [w. n]. Here a combinatorial algorithm is provided for constructing all the 
elements of LR(a,  c). This algorithm consists in starting with the minimal Littlewood- 
Richardson sequence of shape cia and successively modifying it until the maximal 
Littlewood-Richardson sequence of shape cla is achieved. Also explicit bijections 
between Littlewood- Richardson sequences of conjugate shape and weight and between 
Littlewood-Richardson sequences of dual shape and equal weight are presented. The 
bijections are defined by means of permutations of Littlewood- Richardson sequences. 

Keywords: Invariant factors; Young tableaux; Littlewood-Richardson sequences 

AMS Subject Classifications: 15A23, 15A33, 05A17, 05E10 

1. INTRODUCTION 

Several papers [ I - 3 ,  17, 19, 201 have been written to show that 
Littlewood-Richardson (for short LR) sequences give a complete 
combinatorial characterization for the invariant factors of a product 
of two matrices over a principal ideal domain. More precisely, 
necessary and sufficient conditions for the existence of nonsingular 
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matrices A,  B and C, with prescribed invariant factors and such 
that AB = C were given in terms of Littlewood-Richardson 
sequences. 

Littlewood-Richardson sequences arose in the representation 
theory of the symmetric group S,, as a combinatorial tool for deter- 
mining the coefficients in the Schur functions expansion of the product 
of two given Schur functions [lo, 11, 121. 

P. Hall, J. A. Green and T. Klein 14, 81 have shown that 
Littlewood-Richardson sequences also give a complete solution of 
the existence problem of finitely generated torsion modules A, t? and C 
over a principal ideal domain, with prescribed invariant factors and 
such that A c C and t? = CIA. 

In [17] it is shown that the matrix product and the module extension 
problems are equivalent. The analysis of these two problems is redu- 
cible to the local case (for the matrix product problem, see [l] or [17]), 
i .e. ,  to the case where a local principal domain with maximal ideal (p) 
is considered. The localization of these two equivalent problems means 
that we shall be working essentially with powers of a prime p. Thus, 
the invariant factors of a nonsingular matrix A over a local principal 
domain with maximal ideal (p) will be identified with the partition of 
integers defined by the exponents in decreasing order of the invariant 
factors of A which are powers ofp.  We call this partition the invariant 
partition of A .  

Therefore, given partitions a, b and c there are nonsingular matrices 
A, B and C with invariant partitions a, b and c respectively, and such 
that AB = C if and only if there is a Littlewood- Richardson sequence 
of type (u, h, c). 

Littlewood- Richardson sequences give an implicit solution to the 
matrix product and extension module problems. Although, several 
explicit conditions are already known in terms of divisibility relations 
involving the invariant factors of A, B and C (see, for example, [13, 15, 
17, 18]), the problem, as far as we know, is not completely solved. 

Let LR(u, b, c) be the set of Littlewood--Richardson sequences of 
type (u, h, c). It is now clear that the problem of characterizing the 
invariant factors of the product of two matrices (or of the module 
extension) is equivalent to the problem of characterizing the partitions 
a, b and c for which LR(u, h, c) # 0. That is, given partitions u, h and c, 
we would like to know under which conditions an LR sequence (or an 
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LR tableau) of type (a, b, c) exists. (A good account for this, can be 
found in [20].) 

Following the terminology of 1201, given the partitions a s  c, let 
LR(a, c) be the set of partitions b for which there is a t  least one LR 
sequence of type (a, b, c). Our matrix problem has therefore the 
following combinatorial translation: given the partitions a C c, 
determine the partitions b in LR(a, c). I. Zaballa [20] has given a 
necessary condition for this problem by showing that LR(a, c) C [w, n], 
where w and n* (* means conjugate) are, respectively, the difference 
partitions associated with the skew-diagrams cla and its conjugate, 
and w and n are the minimal and maximal elements of LR(a, c) with 
respect to the majorization order of integer partitions. Hence, given 
partitions a C: c and b, there are matrices A,  B and C, with invariant 
partitions a, b and c, respectively, such that AB = C only if w 5 b 5 n 
(5  stands for majorization order). The converse is not in general true. 
We call [w,n] the admissible interval for the invariant factors of a 
product of two matrices A and B, where a and c are the invariant 
partitions of A and AB respectively. 

Our aim, in this work, is to give a method for determining 
LR(a, c) n [w, n]. Also explicit bijections between Littlewood - Richard- 
son sequences of conjugate shape and weight and between Little- 
wood-Richardson sequences of dual shape and equal weight are 
presented by means of certain permutations of LR sequences. Purely 
combinatorial techniques are used. 

The structure of the paper is the following. In Section 2 we present the 
basic combinatorial tools: dual and conjugate of a Young diagram and 
a skew-diagram; dual and conjugate of a tableau (see [2] for duality); 
and the role played by the majorization order in this context. To a skew- 
diagram c/u and its conjugate we can associate the difference partitions 
w = c - a and n* = c* - a* [9], respectively, that is, the partitions 
defined, respectively, by the length of each row and each column of c/a 
by decreasing order. These two partitions are related by the order of 
majorization, i.e., w 5 n. I. Zaballa 1201 proofs this relation using 
inequalities in the context of LR sequences. We deduce this property by 
using a purely combinatorial argument on the skew-diagram c/a where 
the relation between the partitions w and n becomes apparent. 

In Section 3 we exhibit explicit bijections between LR tableaux of 
conjugate shape and weight and between LR tableaux of dual shape 
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and equal weight. Our construction is based on transpositions of 
consecutive integers of an LR tableau [3]. Although it is known from 
the representation theory of the symmetric group S, that there exists 
a bijection between LR(a, b, c) and LR(a', b*, c*) (see [lo, p. 1 101, [12]) 
our aim is to present explicitly such a bijection. There are several 
equivalent ways of defining an LR sequence (see, for example, [2, 31 
and [19]). The terminology in [2] is slightly different from that in [19]. 
Namely, in [2] opposite LR sequences are called in [19] increasing LR 
sequences. I. Zaballa [19, Theorem 3.11 has shown a connection 
between decreasing (the usual LR sequences), increasing LR sequences 
(or opposite LR sequences) and increasing LR sequences of conjugate 
shape. More precisely, he constructed a bijection between decreasing 
LR sequences of type (a, b, c) and increasing LR sequences of type 
(a*, b*, c*). Following his ideas [19], to exhibit an explicit bijective 
mapping between LR sequences of conjugate shape and weight we 
need only to transform LR sequences of type (a, b, c) into opposite LR 
sequences (or, in the terminology of [19], increasing LR sequences) of 
the same type and show that this transformation is a bijection. 

Finally, in Section 4, given a C c and following the terminology of 
[20], we identify the partitions b of the set LR(u, c). AS mentioned 
above, I. Zaballa has shown, in the context of LR sequences [20], that 
LR(a, c) & [w, n], where w is the minimal element and n the maximal 
element with respect to the majorization order. Furthermore, he has 
exhibited the corresponding minimal and maximal LR sequences using 
inequalities involving the partitions a and c. 

On the basis of Sections 2 and 3, it is worth to mention a different 
approach to Zaballa's result. In [9] a complete characterization of 
Young id-tableaux in terms of the difference partition is given. 
(id denotes the identity permutation. For the definition of &-tableau, 
where E is a permutation of apropriate order, see [2] and Section 2.C.) 
That is, there exists an id-tableau of type (a, b,c) if and only if 
b E [w, i], where i is the top element of the lattice of integer partitions 
of Iw ordered by majorization ( 1  I means weight). In fact, there is 
only one id-tableau of type (a, w, c) which is an LR tableau. Since the 
majorization order is self dual under the map which sends each 
partition to its conjugate, we have the equivalent reasoning: there 
exists an id-tableau of type (a*, b*, c*) if and only if b E [o, n] (recall 
that n* = c* -a*), where 0 means the bottom element of the lattice 
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considered above. By symmetry, there is only one id-tableau of type 
(a*, n*, r * )  which is an LR tableau. Thus, since w 5 n, given an id- 
tableau of type (a,  b, c) there is an id-tableau of type (a*, b*, c') if and 
only if b E [w, n]. According to Section 3, since there is only one id- 
tableau of type (a*, n*, c*), which is precisely an LR tableau, there is 
also only one LR tableau of type (a ,n ,  c). Therefore, since for each 
LR tableau of shape c/a there is always an LR tableau of conjugate 
shape and weight, it follows that LR(a, r )  G [w, n]. (We remark that 
taking into account [2, Algorithm 2.17 and Theorem 2.231 the 
characterization given in [9] of Young id-tableaux can be extended to 
&-tableaux). 

2. COMBINATORICS OF DIAGRAMS, 
SKEW-DIAGRAMS AND TABLEAUX 

A. Partitions and Diagrams 

A partition is a (finite or infinite) sequence of non negative integers 
a = ( a l ,  a2 , .  . . ,an,  . . .) by decreasing order, almost all zero. The 
number la1 = a ,  + a2 + . . . + a, -t . . . is called the weight of a; the 
maximum value of i for which ai > 0 is called the length of a and is 
denoted by /(a). If ai = 0, for i > n, we shall write a = (a, ,  a2 , .  . . ,an). 
For example, we regard (3 ,2 ,2 ,  I), (3 ,2 ,2 ,  l,O, 0 )  and (3 ,2 ,2 ,1 ,0 ,  . . .) 
as the same partition. 

Sometimes we find it useful to use the notation 

where xl > ~2 > . . . > xk > 0 and xMi, with mi > 0 ,  means that the 
integer xi appears mi times as a part of a. 

Let a = ( a l ,  a2, .  . . ,an) be a partition of length r. The Young 
diagram of a may be defined as the set of points (i, j )  E N x N such 
that 1 < j < ai and 1 < i 5 r. We draw these diagrams with the first 
coordinate i (row index) strictly increasing from top to bottom 
and the second coordinate j (the column index) strictly increasing 
from left to right. For example, the Young diagram of the partition 
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We often replace the dots by boxes, in which case the diagram is 

Thus the boxes of the Young diagram may be referred by their 
coordinates. We shall identify a partition with its diagram. 

Given two partitions cr and h,  we write a < h or a c: h to mean a, 5 b,, 
for all i. Geometrically, this means that the Young diagram of a is 
contained in the Young diagram of h. 

The carijugutr of a partition a is the partition a* : = ( ( 1 ; .  u;, . . . ,a ; )  
given by u; : = #{z : a, 2 k)  (# means cardinality), for k = 1 , .  . . , s, 

where s = a,.  Geometrically, a* is the partition whose diagram is the 
transpose of the a diagram. For example, the conjugate of (3,2,2,1) is 
(4,3, l), whose diagram (2) is the transpose of ( I )  

The M-dual of a partition a = (a l ,a2 , .  . .,a,,), with length r and 
M > a, ,  is the partition a i  := ( M  - a,, M a,-I , .  . . , M - u2, M - 01) .  
Geometrically, a; is the partition whose diagram is the complemen- 
tary of the diagram of a in (Mr) ,  reading the rows from bottom to top 
and the columns from right to left (turn the sheet upside down). When 
M = a* we just write a' and call it the dual partition of a.  (A discussion 
of the properties of a ,  can be found in [2].) For example, the dual of 
(3,2,2,1) is (2,1, l), whose diagram is the shaded region in the picture 
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below 

turning the sheet upside down. 
Observe that the two operations, conjugate and dual, are per- 

mutable, i.e., (ap)* = (a*)-. Geometrically, (ap)* is defined by the 
boxes of the complementary of a in (a;) reading the rows from right to 
left and the columns from bottom to top (rotate the sheet 7r/2 anti- 
clockwise and reflect it vertically). Or, equivalently, (a*)- is defined by 
the boxes of the complementary of a* in (a;'') reading the rows from 
bottom to top and the columns from right to left. For example, 
((3,2,2.1)*)- is (3 , l )  whose diagram is the shaded region in (3) 
rotating the sheet 7r/2 anti-clockwise and reflecting it vertically. 

Given partitions a and b, we define a u b to be the partition whose 
parts are those of a and b, arranged in decreasing order; and a + b to 
be the partition which is the sum of the sequences a and 6 .  

B. The Lattice of Partitions 

Let Pk be the set of all partitions with weight k. Let a and b be 
partitions. We say that a majorizes 6 ,  written a k b, if a ,  + . . . + a, 2 
6, + . . .  + b,, for r = 1 , . . . ,  k [5, 9, 141. 

( P k .  k) is a lattice with maximal element (k) and minimal element 
(lk) and is self dual under the map which sends each partition a to its 
conjugate a*. Henceforth we shall denote the top element by i and the 
bottom element by 0. Note that ? is linear if and only iff k 5 5. For a 
discussion of these properties see, for instance [ 5 ]  and [14]. 

Geometrically, a ? b if and only if the diagram of b is obtained from 
a by "lowering" at least one box in the Young diagram of a.  This 
means that a dominates b by rows. This is equivalent to say that b* 
dominates a* by columns or that b* is obtained from a* by "lifting" at 
least one box in the Young diagram of a*. For example, (3,2,2,1) > 
(3,2,1, 1 , l )  and (3,2,1,1, I)* k (3,2,2, I)*. 
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Let a + b. Then a covers b if and only if a is obtained from b by 
"lifting" exactly one box in the diagram of h to the next available 
position such that the transfer must either be from some b,+ to h, or 
from b:-, to b; (see [ 5 ]  and [14]). 

Given a 5 b, we denote by [a, b] the interval defined by all partitions 
a 5 x 5 h. We say that a = a* 3 a '  3 a* 3. . . + a' = b is a connected 
chain from a to b if akovers  a" -', for i = 1, .  . ., r .  

C. Skew-diagrams, Tableaux and Dual Tableaux 

Let a and c be partitions such that a c c. We define 

c/a := { ( i ,  j )  E c : (i, j )  f a) ,  

called a s k ~ ~ 4 i u g r u n z  modulo a. The number Ic/al : = ici - 1 0 1  is called 
the weight of cia, and /(cia): = #{i: c, - aif 0) the number of rows of 
cia. For example, if a = (4,3,2,1,1) and c = (63, 14), the skew-diagram 
cia is the shaded region in the picture below 

Let { j l , .  . . , j k }  = { j :  a; = c;} and { i , ,  . . . ,ir} = {i:ci  = ai)  Let c' 
and a' be the diagrams obtained from c and a deleting respectively the 
rows i,, . . . , ir and the columns j , ,  . . . , jk .  We do not distinguish the 
skew-diagrams cia and c'la'. For example, the shaded region of (4) 
and the following shaded regions are regarded as the same skew- 
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diagram 

The conjugate of a skew-diagram r / a  is the skew-diagram 
(cia)* : = c'la*. (c/a)* is obtained from cia by transposition. For 
example, the conjugate of the skew-diagram (5 )  is 

The dual of a skew-diagram c / a  is the skew-diagram ( c j a ) -  := 

( ( M ~ )  U a & ) / c &  = ( ( c : )  U a ; ) j c - ,  where M >  cl and k = l (c ) -  /(a). 
(c/a)-  is obtained from c /a  by a vertical and a horizontal reflection. Or 
just read the rows of c/a from bottom to top and the columns from 
right to left (turn the sheet upside down). For example, the dual of (5 )  
is 
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As before ((c/a)-)* = ((c/a)*)-. ((c/a)*)- is obtained from c/o 
reading the rows along the columns of cia from right to left, and the 
columns along the rows of c/u from bottom to top (rotate the sheet 7r/2 
anti-clockwise and reflect it vertically); or, from ((-/a)* turning the sheet 
upside down. For example, the dual of the conjugate of (5) is the dual 
of (6) and the conjugate of (7). 

A skew-diagram is called a vertical [horizontal] m-strip, where 
m > 0, if it has m boxes and at most one box in each row (column). 
For example, 

are vertical and horizontal 4-strips, respectively. 
Clearly, the conjugate of a vertical [horizontal] strip is a horizontal 

[vertical] strip; and the dual of a vertical [horizontal] is also a vertical 
[horizontal] strip. In (9), one is the dual of the conjugate of the other. 

Two strips of a skew-diagram are disjoint if they have no boxes in 
common. 

Given cia, we define a sequence of vertical strips and a sequence of 
horizontal strips, called the V-sequmcr and the H-sequence of ria, 
respectively. We say that V = (V,, . . . ,Vf.) is the V-sequence of cla iff 
is the length of the longest row of and V, is the vertical strip defined 
by the i-th box of each row of c/a, counting from left to right, for 
i = 1 , .  . . ,J/ and H = ( H I , .  . . ,HI )  is the H-sequence of clrc if I is the 
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length of the longest column of cla and H, is the horizontal strip 
defined by the i-th box of each column of cla, counting from bottom 
to top. 

Let (H*)- := ( ( H T ) - ,  . . . , (H2) - ) .  We remark that (H*)- is the V- 
sequence of ((c/a)*)-. 

Let S, be the symmetric group of degree t ,  and id the identity 
permutation. As usual (ul u2, . . . , ut)  denotes a cycle in S,. 

A Young tableau 7 [16] of type (a, b, c) with b* = (ml , .  . . , nz,) is a 
skew-diagram cla with a labelling T = {r , :  (i,j) E c and (i,j) f a) of 
the boxes of c/a with positive integers 1 , .  . . , t ,  where the labels 7 ,  of 
the boxes (i,j) are as follows: 

(a) For all (i, j), (i + 1, j) and (i, j + 1) in c/a 

Labels are strictly increasing along rows from left to right and 
increasing along columns from top to bottom. 

(b) For each k~ (1 , .  . . , t), #{(i, j ) : ~ ~  = k} = mE(k), for some permu- 
tation E E St. 

The skew-diagram c/a is called the shape of the tableau I and b the 
vveight of 'T. Henceforth we regard a tableau as a skew-diagram with a 
labelling T satisfying conditions (a) and (b). 

If 7 is a tableau of type (a, b, c) and we want to stress that the 
multiplicity of the labels k is rn,-(k), with E E St, ie. ,  the labels 
multiplicity order is given by E E S,,  we say that 7 is an &-tableau. The 
number of &-tableaux and id-tableaux of type (a, b,c) is the same, 
see [2, Theorem 2.231. 

A Young tableau 7 of type (a, b, c) may also be regarded as the 
sequence of partitions 

(uO,  a ' ,  . . . ,a1)  

such that u = a0 C a' C . . .Car = c and each skew-diagram a k / a k  ' is a 
vertical strip labelled by k, I 5 k 5 r = b,, where b' is (la'laol, . . . , lar/ 
a t - ' [ )  by decreasing order. In this work, as mentioned, we shall think 
of a tableau as a labelled skew-diagram. 

The indexing sets J 1 , .  . . , Jr of 7 [I, 21 are the subsets of { I , .  . . ,n)  
such that, for k = 1, .  . . , t, Jk is defined by the row indices of the boxes 
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of c/a labelled by k .  Clearly, h* is ( # J I ,  #J2, .  . . , #Jt)  by decreasing 
order. We identify the indexing sets J 1 , .  . . , Jt of 7 with the vertical 
strips a k /a  - ' of c/o,  1 5 k 2 t .  

Let us denote by op the reverse permutation of S,. The dual of 
I = (a0,  u l ,  . . . , a t )  [2] is the tableau 7- of shape (cia)- with indexing 
sets defined by the vertical strips (aop(')/aop('+ ' ) )  labelled by i, for 
i = 1,. . . , t (we convention op(t + 1) = 0). Equivalently, if J 1 , .  . . , J ,  
are the indexing sets of 7 then its dual is the tableau of shape 
( c l a )  with indexing sets J ; ,  . . . , J ; .  So I- is a tableau of type 
(c,, h ,  ( M k )  U a;) with M > L',  and k = l(c) - /(a) (we may consider 
M = c L )  Clearly, there is a bijection between the tableaux of shape ciu 
and weight h and their duals which send 7 to I-. We call this 
bijection the canonical one. 

are &-tableaux of type ( (2 ,  l , O ,  O), (3 ,2 ,  13)'; (4,4,2, l)), with E = (23) 
(12), (12) and id E Ss respectively, and their duals are 

turning the sheet upside-down. 

D. Difference Partitions 

Given a skew-diagram c / o  we define the parti t ion c - n  as 
(el - a , ,  . . . , c,, - a,) by decreasing order, called the dzjference partition 
of cia. (In [9], T .  Y. Lam calls difference partition the conjugate of c - a).  
Equivalently, c - a is defined by the length of each row of cia by 
decreasing order. We shall write ( c  - a),  for the i-th component of c - a. 
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Geometrically, ( c  - a)* = (z:,, . . . , of), with f the length of the longest 
row of cia, is defined inductively as follows: for i = 1, . . . ,S, vi is the 
number of rows of c/a after deleting the first i - 1 boxes of each row of 
c,'a. Or, equivalently, ( c  - a)' = ( 1  V l  1 ,  . . . , I Vfj j .  

The difference partition of (c/a)* is c*- a*, being defined by the 
length of each column of c ' a  by decreasing order. Geometrically, 
(e*- a*)f  = ( h I ,  . . . , hl), with I the length of the longest column of cia, is 

defined inductively as follows: for = 1 , .  . . ,1, hi is the number of 
columns of c!a after deleting the last i - 1 boxes of each column of cla. 
Or, equivalently, (c*- a*)* = ( I  HI 1, . . . , I Hll).  

Note that the difference partition of clu and its dual are the same, so 
(c*- a')* is the conjugate of the difference partition of ((c, 'a)*)-. 

For example, the difference partitions of (5 )  and (6) and their 
conjugate are respectively c - a = (4 ,3 ,2 .  1, I ) ,  ( c  - a)* = (5 ,3 ,2 ,  I )  
and c*-a* = (3 ,3 ,2 ,2 ,  I ) ,  (c*-a*)" = (5 ,4 ,2) .  

THEOREM 1 There ic one and onljs one rd-tableau of tjpe (a ,  c - a, c )  
and of t jpe  (c;; , c* - a*. ( M ' )  U at;) ,  respectivelj . Tlzere is at least 
one id-tableau o j  type (a ,  ( c *  a*)*, c) .  

Proof Consider the V-sequence of c/a and label each box of the 
vertical strip Vi by i. Clearly, c  - a = ( I  V 1 / ,  . . . , / l/fJ)* and c,'a with 
this labelling is an id-tableau and it is the only one of shape c/u 
and weight c  - a. Consider the H-sequence of c/a and label the 
boxes of the horizontal strip Hi, from bottom to top and from left 
to right by 1 , .  . . , IHJ.  Clearly, (c'- a*)* = ( I H , ,  . . . , lHll) and c/a 
with this labelling is an id-tableau of type (a ,  (c*- a*)*. c) .  To prove 
that there is only one id-tableau of type (c;. c*- a*,  ( M ~ )  U (I>-) 

use duality and the fact that there is only one id-tableau of type 
(a*, c*- a*, c*) or recall that ( H * )  is the V-sequence of ((c,la)*)- 
whose difference partition is c*- a* = ( H I  I, . . . , I H,l)* (note that 
I ( H f ) -  = H i i ) .  

Remark1 According to t h ~ s  theorem, there is only one id-tableau 
of type (a', c'- a*, c*) but, in general, there are more than one id- 
tableau of type (a ,  ( c a p  a*)". c). For example. if a = (1 ,1 ,0 )  and 
c - (3 .3 .2) ,  the sequences ( ( 1 ,  1, 0 ) ,  (2 ,2 .  I), (3 ,2 ,2) ,  ( 3 ,3 ,2 j )  and 
((1,1,0). ( 2 , 2 ,  I), (3 ,3 ,1 ) .  ( 3 ,3 ,2 ) )  are both id-tableaux of type 
( ( I ,  l ,0) ,  (3 ,2 ,  I ) ,  (3 .3 ,2) )  where (c' -a*)* = (3 ,2 .1) .  
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The Young diagram of (c*- a*)" = (h l ,  . . . , hl) may also be obtained 
from c/a by the following procedure: 

Let c0 : = c and a0 : = a.  
For i = 1,. . . , I  - 1, push up [down] the first [last] box of each 

column of c i - ' / a i ' .  After this operation we obtain a row with h,  
boxes and a skew-diagram ci/a', such that (ci'- a' ')* = (hi+, , . . . , hl) .  

Pushing to the left all the rows [pushing to the right and turning 
the sheet upside down] we obtain finally the Young diagram of 
(c*- a*)* = ( h ,  . . . , h1). 

For example, 

From this geometrical procedure we get 

THEOREM 2 Let a C: c. Then c - a 5 (c*- a*)* 

Proof Recall that c - a is the length of each row of c/a by decreasing 
order. On the other hand, for i = 1, .  . . , I ,  hi is the length of the 
horizontal strip defined by the last boxes of each column of c i - ' 1 a i . ~  I. 
Fix i ~ ( 1 ,  . . . , I), and let wi : = ( h l ,  . . . , hi) u ci - ai. According to the 
procedure above, we have transformed the sequence of integers 

Ci-' - uL- l )  into x = (ci-1 - a'-1 - 1 > ' . . l  ,, (ci-l - ai-I q : . . . , c ; - l - a ; - ' +  
Cj+, E,, . . . , c;;' - u ;-I - E , ~ )  where ,.i> 0 and L'; -- a + CjlY E, ;: hi, 
for some r.  Clearly, hi = (el- '  - a")' + 6 ,  for some S> 0. So 
x by decreasing order is ( ( c i  ' - c r i - I ) ,  + 6 ,  ( c '  ' - - 

h2, . . . , (  t i- '  -ai - I ) p I  -6 tl ) + - cl- 1 - u;- 1 , where Cd, = d.  011 the other 
. . 

hand, x by decreasing order is (hi) U c1 - a'. Therefore, ci-- - c l i p  3 
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(hi) u ci - ai and (h l ,  . . . , hi-  1) u ci- ' -ai- ' 5 (h , ,  . . . , h i l ,  hi)  u ci - a'. 
That is, wi- ' 3 wi. Hence, c - a = wO 5 w1 5 w2 5 . . .3 w' = (c*- a*)*. 

THEOREM 3 c - a = (c*- a*)" if and only if c/a or ( c / a )  is a Young 
diagram. 

Proof Straightforward. 

The geometric conditions given for the shape of cia by this theorem 
are equivalent to those given in [20, Corollary 3.91. Graphically, they 
mean that a tableau of shape c/a  whose partitions c - a and (c* - a*)* 
coincide should have one of the following forms, where the shaded 
region represents the shape 

Remark2 Given u and v E P, such that u 5 v, there are not always 
partitions a C c satisfying u = c - a and v = (c*- a*)'. Let A ,  be the set 
of partitions 2: E P?, for which a skew-diagram c/a with c - a = 14 and 
(c* - a*)* = v exists. Clearly, A,, [u. 11. The following examples show 
that A,  is not always the whole interval [u. i]. 

A A 

1. If u = i, A, = {i) and if u = 0. A,, = [ O .  11. 
2. If u = @),A,,  = ( (2 ,2 ,2 ) ,  ( 3 ,2 ,  I ) ,  (4 ,2) ,  ( 5 ,  I), (6)). The partitions 

(4, 1, 0, (3% AL,. 
In general. i f  u = (mk),  with k > 2 and rvt > 2, ( ( k  - l)(m - 1) 
+ 117, l k  l ) $ i  A,. 

3. If u E P, is such that l(u) = 2, then A ,  = [u,  i]. 
Remark 3 Given the skew-diagram cla, the difference partitions c - a 
and c*- a* do not, in general, characterize completely cia. For 
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example, 

have the same difference partitions c - a = (2,2,1) and c*- a* = 

(2, 1, 1, 1). 

3. LR TABLEAUX AND LR TABLEAUX OF DUAL 
AND CONJUGATE SHAPE 

In [9, Theorem 3.11 a complete characterization of Young idtableaux 
with prescribed shape, in terms of the diflerence partition is given. 
That is, there is an id-tableau of type (a, h, c) if and only if 
b E [C - a, i], where i is the top element of the lattice of partitions 
of Ic - a/  ordered by majorization. (In fact, this characterization can be 
extended to an &-tableau, see [2, Algorithm 2.17 and Theorem 2.231.) 
Hence. from Theorem 2, given a skew-diagram c/a ,  the interval 
[c  - a,  (c*- a*)*] provides a complete characterization of the id- 
tableaux of type (a. h, c) for which at least one id-tableau of type 
(a*, h*. c*) exists. In general, givcn b E [c - a, (c*- (I*)*], the number of 
id-tableaux of type (a, b, c) is not equal to the number of id-tableaux of 
type ( ( I * ,  b*, c*) (see Theorem 1 and Remark 1). On the other hand, we 
shall see that the number of LR tableaux of type (o, h,  c) is the number 
of LR tableaux of type (u*, b*, c*). Also the number of LR tableaux of 
type (a, h,  c) is the number of LR tableaux of dual shape and weight 6 .  

In what follows we shall be concerned mainly with certain special id- 
tableaux and op-tableaux, although in Subsection B also some special 
&-tableaux will take place. These cases will be clear from the context. 

A. LR and LR, Tableaux 

In this subsection we begin by introducing the concepts of LR, dual 
LR and opposite LR tableaux. The dual LR tableau is the geometric 
translation of the opposite LR tableau: the dual of an LR tableau is an 
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opposite LR tableau of dual shape. In fact, there is a bijection between 
the LR tableaux with prescribed type and their duals [2, Theorem 
2.151. Using these notions, in Corollary 3 we restate Theorem 3.1 of 
I. Zaballa [19] which says that there is a bijection between LR tableaux 
of type (a ,  h, c) and the opposite LR tableaux (increasing LR tableaux 
in the terminology of [19]) of type (a*, b*, c*). 

DEFINITION 1 Let J = { x l , .  . . , x,) and K = {y,, . . . ,y,) be finite 
sets of integers, where we are assuming that xl > . . . > x, and 
1.1 > . . . >. j lM .  Then we write J >  K (or K < J )  whenever s > m and 
x , ~ y , , f o r i =  1 , . . . .  m. 

Observe that J >  K if and only if there is A G J  such that #A  = #K 
and A > K. 

D E F ~ N I T I O N  2 Let J and K be the finite sets of integers defined 
above, where we are assuming that xl < . . . < x ,  and yl < . .  . < y,. 
We write J>,, K (or K I , ,  J )  whenever s < m  and x, >J.,, for 
i =  1, . . . ,  s. 

This is equivalent to saying that there is A c K, such that #A  = #J  
and J 2 A. 

D E F ~ N I T I O N  3 [ I ]  Let 7 be a tableau of type (a, b, c)  with indexing 
sets J 1 , .  . . , J,. We say that 7 is a Littlewood- Richardson (LR for 
short) tableau or a Littlewood- Richardson sequence if 

This definition is an equivalent formulation of what is usually called 
the Littlewood -Richardson sequence [X, 10, 1 11. 

DEFINITION 4 [2] Let 7 be a tableau of type (a ,  h,  c )  with indexing 
sets J I ,  . . . , J,. We say that 7 is an opposite Littlewood- Richardson 
(LR, for short) tableau or an opposite LittlewoodRichardson 
sequence if 

THEOREM 4 A tableau 7 is an LR ,  tableau i fand  only i f T  is an LR 
tableuu. 
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Proof' See [2, Theorem 2.151. 

That is, there is a bijection between LR tableaux of type (a, b, c) and 
LR, tableaux of dual shape and weight b. 

DEFINITION 5 Let 7 be a tableau of type (u, b, c), with labelling 7 .  

Let k E (1, .  . . , l(b)) and S = { ( X I ,  j l ) ,  . . . , (xb,, jbk)} be an horizontal 
bk-strip of cla, where we are assuming x l  > . . . 2 xhk. We say that S is 
a bk-string of 7 if r , r , ,  = r, for r = 1 , .  . . , bk. 

If J , ,  . . . , J ,  are the indexing sets of 7 then S = { ( X I ,  j , ) ,  . . . , 
(xbk ,  jhk)) is an horizontal hk-string of I if and only if x , ~  J,, for 
i  = 1, ..., bk. 

Two strings of 7 are said to be disjoint if their strips are disjoint. 
Under the conditions (10) of a tableau, it is clear that two horizontal 

strings S =  { ( x ~ , j l )  . . . . ,  (xb,,jhk)) and S ' =  ( ( ~ 1 ,  ~ I ) , . . . , ( Y  h , ,  a , ) )  
are disjoint if and only if x, # y,, for i = 1 , .  . . , min{bk, b,}. So, without 
ambiguity, we may identify the strings S and S' with { X I .  . . . , xb,) and 
{y , ,  . . . , yb,), i.e., we identify the string boxes with the row indices. 

W e s a y t h a t S > S 1 i f b k > b , a n d x , > y , , f o r i =  I ,  . . . ,  b x . I f S ' a n d S  
are disjoint then x, > yi, for all i, and, in this case, S  > S' .  

Example 2 

There are no 6-horizontal strings and there are 2 and 3-horizontal 
strings. S2 = {3,3) and S3 = {4,4,3) are disjoint strings but S', = (4, 3) 
and Sj are not. 

DEFINITION 6 Let be a tableau of type (a ,b ,c )  with b = 

(b,, . . . , b,,), nz = 1(b). We say that ( S h l . .  . . , Sb,,,) is a complete se- 
quence of horizontal strings (for short complete sequence of strings) of 
7 if the strings are pairwise disjoint. 

Clearly, (# Sh, , . . . , # Shm) = (# J1,. . . . # J t ) * ,  
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Remark4 By Definition 5 ,  a tableau with a complete sequence of 
strings is necessarily an id-tableau. 

Example 3 

The sequences of strings (S4 = {5,4,3, I ) ,  S3 = {4,3,2) ,  S2 = {3 ,2) ,  
s, = { l } ) ,  (s;  = (3 ,  3, 3 ,  I ) ,  S', = (4 ,  4 ,  2 ) ,  S', = (5 ,  2) ,  S' ,  = {I ) )  
and ( S i  = (4: 3, 2, I ) ,  S ; '=  { 5 ,  4, 31, S ;  = (3 ,  21, Sy  = { I ) )  are 
complete. 

has no complete sequence of strings. 

We have characterized an LR tableau by means of vertical strips i.e., 
the indexing sets J 1 , .  . . , J ,  (see Definition 3). Next theorem describes 
an LR tableau in terms of horizontal strings. 

T H E O R E M  5 Let 7 be a tableau of type ( a , b , c )  where 
b = (bl,  b2, .  . . , b,,). 7 is an LR tableau if and only i f  7 has a complete 
sequence of striitgs; and, in this case, 7 has a complete seqztence oj 
strings ( S h l . .  . . , Sh,,) satisfiing Sbl > Sh2 > . . . > Sh,. 

Proof For the " i f "  part, suppose that ( S b l , .  . . , Sh,,) is a complete 
sequence of strings of 7.  Let r E { I ,  . . . , b l )  and ( x ,  y)  be a box of c/a 
labelled by r. Then ( x ,  y )  belongs exactly to one string Sbn, for some 
k E ( 1 ,  . . . , m )  with bk 2 r .  By definition of a string (Definition 5) ,  if 
r > 1, there exists always a box (x' .  y') E Sbk,  marked with r - 1, such 
that x ' >  x. This means that J,- 2 J,. So, 7 is an LR tableau. 
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The "only i j  " part will be handle by induction on the number n of 
rows of cia. We shall show that I has a complete sequence of strings 
(Sh,, . . . . Sb, )  satisfying Sh, > Sb, > . . . > Sh,,. If n = 1, C I U  has exactly 
one row and there is only the string H I .  

If n = 2, then b  = ( h l )  or h = ( h l ,  b2). In case b = (h , ) ,  the two rows 
of cia are necessarily disconnected, meaning that c* - a' = ( l h l ) ,  and 
there is only one string H I  formed by all the boxes of L . / ( I .  In case 
h = ( b l ,  b?), let St), be the string defined by the lowest h, boxes in the 
horizontal strip H I  of c/a  labelled by 1 ,2 , .  . . , hl and Sb, be the string 
defined by the remaining boxes in the first row of cla. Clearly, 

Sb, > Sbz. 
Let n > 2. Consider the string Sb, defined by the lowest 6 ,  boxes in 

the horizontal strip H I  of c:a labelled by 1 ,2 , .  . . , b l .  Since 7 is an LR 
tableau, we have the following property: 

So we may consider the tableau I' obtained from I deletlng the 
string Sh,.  T' is an LR tableau with weight ( h ] , .  . . , b,,,) and n - 1 rows. 
(Note that the last row of cia is necessarily labelled by consecutive 
integers starting with 1.) By induction, 7' has a sequence of strings 
Sb2 > . . . > Sh,,. Since Sh, C H I  and is defined by the lowest boxes 
labelled by 1 , .  . . , b, ,  it is clear that Sb, > Sb, > . . . > Sh,, . H 

COROLLARY 1 The id-tableau of type (a . c -a ,c )  is an LR tableau. 
There is an LR tableau of type (a,  (c' - a*)*, c). 

Proof The indexing sets of the idtableau of type (a,  c - a, c) may be 
identified with V = (V , ,  . . . , V,) which satisfy VI 2.. . >  V? On the 
other hand, H = ( H I , .  . . , HI)  is a complete sequence of strings of the 
idtableau of type (a ,  ( ( a * -  a")", c) constructed in Theorem 1. H 

We r e m a r k  t h a t  L.- a -- ( ( V l (  . . .  . , / V f / ) *  3 (ISh,/,.. ., ISh,,,/) 3 
(lHlj . . . . , I  Hll) = ( c* -a*)" .  

The foregoing theorem says that a tableau I with weight 
( b l , .  . . , h,,) is an LR tableau if and only if it has a sequence of strings 
Sh, > .Shz > . . . > Sh,,, . This sequence is the maximal sequence o f  strings 
n f 7  with respect to the lexicographic order in the set of all complete 
sequences of strings of I. 
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In Example 3, (S4,  S3,  S2,  S 1 )  is the maximal sequence of strings 
of 7 .  H = ( H I , .  . . ,HI)  is the maximal sequence of strings of the 
tableau of type (a ,  (c*- a*)*, c) constructed in Theorem 1. 

PROPERTIES 1 The maximal .sequence of strings ( S h l ,  Sb2. .  . . , Sh,) of 
an LR tableau 7 satisfies the follo\ving properties: 

1. I f  (.u, j) E Sh, and ( x f ,  j) E Sb,, , then 

2. I f ( . w ,  j) E St,, and (x, j f )  E Sh,,, then 

3 .  I f  Sb, = { ( x : , j ; )  . . . . .  ( x r h r , j ) ) )  a n d  Sb,,, ={(x,!+,. j;+,) . . . . .  
h (.xr;i, j :yi )}, then, for all k = 1, . . . , br + 1 ,  

DEFINITION 7 Let 7 be an LR tableau with shape c/o and maximal 
sequence of strings Sb, > Sh2 > . . . > Sb,,. We define the labelling p in 
((c/o)*)- such that p , , , ~  = r if ( x ' ,  y ' )  E ( S i r ) - ,  for all r ,  called the 
labelling induced by the maximal sequence of strings of 7 .  

Let J , ,  . . . , J ,  be the indexing sets of 7 and identify each J, with the 
vertical strip of cla labelled by i. Define the labelling pf in ((c/a)*)- such 
that, for i = 1 , .  . . , t ,  

whenever (x '. y ') = ( (xb)*) - ,  1 < r 5 m,. (((x:)*)- means the coordi- 
nates of the image of the box x: E J ,  by the map that sends the vertical 
strip J, to ( J : ) - ) .  

Clearly, p' = p (recall that X: E J ,  e x; E Sh,.) SO the labellings 
induced by the indexing sets and the maximal sequence of strings of 7 
are the same. For short, we call p the labelling of ((cia)*)- induced 
by 7. 
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THEOREM 6 Let 7 be an L R  tableau of type (a,  b,  c), ~rlith maximal 
sequence of strings ( S h , ,  . . . , SbnT) and indexing sets J , ,  . . . , J,. Then 
((c/u)*)- with the labelling induced by 7 is an LR-tableau qf type 
( (c i , ) - ,  b*% ( M k )  U a h - )  with indexing wls (S$ , ) - , . .  . , (S;,n)-  undmuxi- 
ma1 sequence of strings ( ( J ; )  , . . . , ( J j ; ) - ) .  

Proof Let p be the induced labeling in ((c/a)*)-. . 
Claim ( ( c / a ) * )  with the labelling p is an LR tableau of type 
( ( c L ) - ,  b*. ( M k )  U a;). 

Using 2 of Properties 1 the labels of ( ( c / a ) * )  are increasing along 
columns (read cla along rows from right to left); and using 1 of 
Properties 1, the labels of ((c/a)*)- are strictly increasing along rows 
(read c/a along columns from bottom to top). Finally, from 3 of 
Properties 1, we conclude that ( S i )  , . . . , ( S l l )  are the indexing sets 
of ((c./a)*)- and ( ( J T ) - ,  . . . , ( J T ) - )  its maximal sequence of strings. . 

From this theorem it follows 

COROLLARY 2 There exist a bijection v between LR tableaux of type 
(a,  b, c) and L R  tableaux of type ( ( c h ) - ,  b*, ( M ~ )  U a;-) dejned by 
v ( 7 )  equals the tableau of shape ((c/a)*) with the labelling induced 
by T .  . 

Since there is a bijection between L R  tableaux of type (a,  6,  c) and 
their duals which are LRop tableaux, (see Theorem 4), it follows 

COROLLARY 3 [19, Theorem 3.11 There exist a bijection 4 between 
L R  tableaux of type (a ,  b,  c) and L R ,  tableaux oftype (a*, b*, c*) dejined 

by 4 ( 7 )  = ( ~ ( n - .  . 
Next example illustrates Corollary 3. 

Example4 L e t a = ( 3 , l , O , O ) , b = ( 4 , 2 , 2 , 1 ) * a n d c = ( 5 , 4 , 3 , l ) . T h e  
L R  tableaux of type (a ,  b, c) and the L R ,  tableaux of type (a*, b*, c*) 
are given by first and last labelled skew-diagrams, respectively: 
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B. An Algorithm to Transform LR Tableaux 
into LR,, Tableaux and vice-versa 

For establishing an explicit bijection between the LR tableaux of type 
(a,  b,  c)  and the LR tableaux of type (a*, b*, c*) or the LR tableaux of 
type (c,, b, ( M ~ )  U a&), it remains to exhibit a process of transform- 
ing an LR tableau of type (a,  b,  c)  into an L R ,  tableau of type (a ,  b, c) 
and show that the process is reversible. 

Algorithm 1 Let 7 he an LR tableau with shape cia and indexing sets 

J1> J2. 

1. Define 

2. Define 

a" / a  := J', 

We observe that the minimum in step 1 is with respect to the order 
relation given in Definition 1. Also observe that J1 n J2 C J', . 

Clearly, (a.  a" ,  ar2  = c )  is an L R ,  tableau of shape cla with 
indexing sets J', , J k .  

Let T be the set of all tableaux of type (a, b, c) with l(b*) = t ,  such 
that the vertical strips labelled by k and k+ 1, respectively, satisfy the 
L R  rule, and L the set of all tableaux of type (a ,  b, c) with l(b*) = t ,  
such that the vertical strips labelled by k and k + 1, respectively, satisfy 
the L R ,  rule. 
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Let 7 = (a0 ,  . . . , u k ,  uk+' ,  . . . . a r )  be a tableau in T with indexing 
scts J , ,  . . . , Jt .  Let (a" I ,  a t k ,  a'' ' I )  be the LR, tableau generated 
by Algorithm 1 when applied to ( a k p ' ,  a" ,ak+ '). Then 7' = 

(a0.  . . . ,ak- ' .  a'', dk+'. . . . , a t )  is a tableau in L with indexing sets 
J l , .  . . . J i .  JL+ ' , .  . . Jr .  

We denote by $+" + ') the map that sends I to 7'. Clearly, u(k k + ' )  

is a bijection between T and L. For this, let L and T- be the sets of the 
duals of the elements of L and T respectively. Denote by d('-' . I p  + ') 

the bijection between L- and T- induced by Algorithm 1 when applied 
to the vertical strips labelled by t - k and t - k + 1, respectively. Let X 
and p be the canonical bijections, respectively, between L and L , and 
T and T-. Now, consider the diagram 

(hh  . I )  and define the map $,, between the sets L and T such that 
( k k f l )  .- -1 ( r -XI-A+I)  

0 .- p c f j  

Then 

In particular, when t = 2, $ ( I  2 ,  is a bijection between the set of LR 
tableaux of type (a ,  h, I . )  and the set of LR, tableaux of type (a ,  b, c), 
defined by Algorithm 1. 

The following algorithm defines the map $$2) expl~citly. 

Algorithm 2 Let 7 he cm LR, tuhlrnu bvith shape cla u i d  indexing sets 

J I  >op J2. 
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2.  Define 

We observe that the maximum in step 1 is with respect to the order 
relation given in Definition 1. Also observe that .TI n J 2  C J 2 .  

Next algorithm gives a bijection between LR tableaux of type 
(a ,  6, c)  and LR, tableaux of type (a,  b, c). 

Algorithm 3 Let 7 be an LR tableau with indexing sets J 1 , .  . . , J,. 

1. Let 50: = id and I(' '01 := 7 .  Do k :  = 0 and go to 2. 
2.  For j = 1 ,  . . . , t - k - 1 ,  define indzrctivrlj. 

Go to 4. 
3 .  Do k : =  k + 1  andgo  to 2. 
4. Define the c , j d e ~ ~ ~ ~ : =  ( k i  l . . . t -  I t )  o f S , .  

Dejine 7 1 0 .  ~ " 1 , .  . q , ~ o 1  .- I ( , -k-1.z~ ..... ii . E O )  . - 
I f k  = t - 2,  de$ne 

and stop. Othervvise, go to 3 .  4 

This algorithm is based on the decomposition of the reverse 
permutation of S,, 

L E M M A  1 Let F, G C  (1,. . . , 1 1 )  such thuf F >  G. Let B L  G and 
F 1 = m i n { A & F : # A = # B , A > B ) .  Then 

Proof It is an easy exercise. 
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T H E O R E M  7 For j = 1 ,  . . . , t - 1 ,  T(J"O) defined in step 2 of Algorithm 
3 is a tableau with indexing sets L1 ,  LZ, . . . , Lt satisfiing 

and, for i = t -j + I , .  . ., t ,  we de$ne inductively 

Proof The proof will be handle by induction on j. Let j = 1. Clearly, 
attending to the definition of the map ?,/I"-"), 

is a tableau with indexing sets L, , .  . . , L,, where L, = J, for i = 

1, . . . ,  t - 2 ,  and 

SO, L1 2 . .  . >LIp2 2 Lr-1 > op Lt. 
Since Jc_l  = Lt-I U (J,_I L,-I) and L I p 2  > J l P l ,  it follows, from 

Lemma 1, that 

Claim LtPz \ L >-- L,\L,. 
Since + $ - I 1 )  (I(' '0)) = I, it is clear that L, = J,. On the other 

hand, J ,  l\,L,-I = L,\,J,. Hence, J-~\L,-I = L,\J, = &\f, and, from 
(14), it follows LrP2\L iP2  2 L,\L,. 

Let j > 2. By induction, 
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where T ( J - ' , ~ O )  is a tableau with indexing sets F 1 , .  . . , F, satisfying 

with 

- 
FI-;+l : = Fl-j+, 

~ ; = m a x { ~ C  Fi : # A = # F ~ - ~ ,  F , - ~  > A ) .  
(17) 

Using the definition of the map ' )  and since the vertical strips 
F 1 , .  . . ,Fl-,+ 1 of T(~- ' , 'O)  form an LR tableau it follows from the case 
j  = 1 that I(J"~) is a tableau with indexing sets L 1 ,  . . . , L, satisfying 

with L i = F i =  J,, for i =  1 , . . . ,  t - j - 1 ,  L , =  F,, for t - j + 2  , . . . ,  t ,  
and L,-, = F:_j, 

and 

where 
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So, from ( 1  5 ) ,  (16), (17), ( l 8 ) ,  we have Lt ,+ ,  2 f i - l + 2 ~  (F,-,+2\ F,-,+~) 
- -F,-,+2=L,-,+2. On the other hand, 

Finally, observe that Li = F,, for i = t -.j + 2, .  . . , t - 1 ,  t .  rn 
DEFINITION 8 Let j~ { I , .  . . , t  - I}. A tableau C is called a ( ( t  - j  
f - j + 1 ) ,  . . . , ( t  - 2 t - l ) ,  ( t  - 1 t ) )  L R  tableau if there exists an L R  
tableau 7 such that C = T( .~ . 'O) ,  where I(".') is the tableau generated 
by step 2 of Algorithm 3 when applied to I .  rn 
THEOREM 8 Let j E 11, . . . , t - 1). A t(iblem C with indexing sets L 1 .  
Lz , . . . .  L,  i s a ( ( t - J t - j +  I )  , . . . .  ( t - 2  t - l ) ,  ( t - 1 ,  t ) )  L R  tableau 
i f '  a id  only i f '  it sati,rfirs thr conditions (I), (2 )  and (3) of' Tlrcorern 7 
ubow. 

Proof The "only iJ" part is Theorem 7 .  To prove the "iJ" part. 
suppose conditions ( I ) ,  ( 2 )  and (3)  of Theorem 7 are satisfied. Let 
3 = p - l + ' )  C Th 

OP . en, by induction on j, 3 = 7 ( ~ ' , ' ~ ' ,  for some L R  
tableau 7 .  

C O R O L L A R V ~  For cach J - 1 ,  , / - I .  q l ( ' ~ " - ' t l )  7 5  m hr/ectron 
bet~twt i  theset\ o f ( ( t  - jt - j + 1 ) .  . , 2 t - l ) ( t  - 1 r ) )  L R  frrhlcuz~r 
of t j pe  (a ,  b. C) and the ( ( t  -1 + I t - 1  + 2),  . . ( t  - 2 t - I )  ( t  - 1 1 ) )  L R  
tahleaux of t j pe  (a,  b,  c) .  

Proof Straightforward. 

 THEOREM^ For each k€{0 ,1 ,  . . . ,  t - 2 )  a n d , €  ( 1  , . . . ,  t - k - - l ' ,  I r 

7 ( ~ . - ' i ; . . .  , C , , E , , j  defined in .step 2 o f  Algorithm 3 ,  is a tableau ~vith in(ko.xing 
.sets L 1 ,  L2, . . . , L, suclz that: 

1 .  L1 >,)p , , . .> Lb >op . fX+, > . . .  > ~ ~ - 1  > L,. tt.l?ere for. i = 

k + 1 , .  . . . t ,  we dejine inn'mctiwly 
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2. Lk+ ,, . . . , L, satisfy the conditions of a ( ( t  -j t -j + I ) ,  . . . , ( t  - 2 
t - I ) ,  ( t  - 1 t ) )  LR tableau. 

Proof The proof will be handle by induction on k. When k = 0 the 
condition 1 is vacuous and condition 2 gives Theorem 7.  In particular, 
i f j =  t - 1  we have LI 2,  L2 > . . .  Z L ,  and L ~ \ L ~  > . . .  2 Ll\Ll. 
So, a tableau with indexing sets L2,. . . , L, is an LR tableau. Let k 2 1 
a n d j ~  (1, . . . , t - k -1). Then ~ ( i > ' k , ~ . . ~ & l ~ & ~ O ) = + ( l - ~ l - j + ~ )  ( ~ ( i - l , & k , . . . . ~ , & o )  

B~ induction on j, ~O' -~ ,E~ , . . . ,EI .EO)  . 
1. 

is a tableau with indexing sets F1, . .. , F, 
such that: 

(a )  F1 Top .. . >, Fk >op F ~ + ~  > . . . > PI-1 2 F,, where . for  i = 

k + 1 , .  . . , t ,  we define inductively 

F k  : = Fk 

: = m a x { A C  Fi : # A = # F i p l 1  Fi-l 2 A) .  

(b) Fk+ 1 ,  . . . , Ft satisfy the conditions of a ( ( t  - j + 1 t - j + 2), . . . , 
( t  - 2 t - I ) ,  ( t  - 1 t ) )  LR tableau. 

Since a tableau with indexing sets Fk+ . . , Ft satisfies the conditions 
of Theorem 7, the condition 2 follows. 

To prove the condition 1 observe that Li = Fi, for i # t - j, t - j + 1 ,  
L l - j=~- j lL t - j+I  =Fl - ,+I~(Fl - j \~ - j ) .  On the other hand, &-j-l 2 
F , - , ~ F , - ~ + ~  and Ft-j-l > FzPj2  FtPj+ So, there exist Z &  Ft-,-l and 
Y  C F , ,  such that R-,- U Z ~  F1-?u YIFI-j+l and # (I',-,-I u Z )  = 

#(Ft-ju Y)=#Fl-,+l. Therefore, FtPj-~ UZ2 F,-,u Y><-,>F,-j+l. 
Hence, Ll-,-l lLl-j2Ll-j+l and condition 1 follows. 

C O R O L L A R Y ~  7(0.0p) i san  LR, tableau. 

Proof When k = t -2 and j = 1 in Algorithm 3 we get a tableau with 
indexing sets LI >, . . . 2,  LIp2 zop Lt-1 2 Ll, where L, = max 

- 

{ A C L t  : # A = # L I - I , L ~ - I  > A ) .  S o ,  L I  > , p . ~ . 2 0 p L t P ~ > o p  
Ll-1 > 0, Lt. rn 

THEOREM 10 Algorithm 3 defines a bijection between the set of LR 
tableaux of type (a ,  b, c) and the set of LR, tableaux of type (a,  b,  c). 
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Proof Let $('-" -'-I '1 := II;=,$('-l '-I+", for k = 1 , .  . . , t - 1. Then 
4, = d,(r- 1 I), ( r ~ - 2  r 1 r )  ,@. r I I) ,(I 2 . r - 1 2 )  

l) . . .  $1 is a composition of 
bijective maps. 

THEOREM 11 Let p be the bijection dejned in Corollury 3.  Then 

(a) 4 is a bijection between the LR tableaux of type (a ,  h, r )  and the 
LR tubleaux of t jpe (a*, b*, c*) .  

(b) the map 7 + y-' (I-) defines a bijection bettveen the LR tableaux 
of  t p e  (a ,b ,  c )  and the LR tableaux of  type (c,, b. J M ' )  U a , ) .  

Proqf (a) It follows from Corollary 3 and Theorem 10. (b) It follows 
from Theorem 4 and Theorem 10. W 

COROLLARY 6 Thcw is onlj* one LR tubleau of type (u. ((.*- a')*, c). 

Proof There is only one LR tableau of type (a*, c*- a', c*). So, from 
the previous theorem, there is only one LR-tableau of type 
(a ,  (c*- a*)*, c). rn 

The process described in the Algorithm 3 is quite easy to carry out. 
We will give two explicit constructions to impart the flavor of the 
algorithm. 

E.untnple5 L e t n = ( 3 , 1 , 0 , 0 ) , h = ( 4 , 2 , 2 , l ) * a n d c = ( 5 , 4 , 3 , I ) a s i n  
Example 4. We may check the algorithm to determine all the LR 
tableaux of type (a ,  b,  c) and (u*, b*, c*), respectively. 

We start with the LR, tableaux of type (a*, b*,c*), determined in 
Example 4, to transform them into LR tableaux of type (a*, b*, c*). 



ADMISSIBLE INTERVAL 81 

4. THE ADMISSIBLE INTERVAL [w, n] 

Given partitions a &  c, we present an algorithm to describe all the 
partitions of LR(u, c). This algorithm stresses the significance played 
by the majorization order among the partitions of LR(u, c). 

In this section the L R  tableaux are taken under the point of view of 
Theorem 5. The symbols w and n will stand for the difference parti- 
tions c - u and (c*- a*)*, respectively. 

For convenience, we shall assume that an L R  tableau 7 of type 
(a, b, c) with l(b) = m, has an infinite number of infinitely long columns 
where the boxes in column r .  outside the c-diagram, are labelled by 
x,, with the convention oo, < m, iff i < r ,  and cc, > i, for all i and r 
positive integers. So, if (Sblr.. . ,Sb,,) is the maximal sequence of 
strings of 7, we define: for all j >. m, b,: = 0 and Sb, := 0; and, for all 
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j < 1, bj:  = m ,  with the convention rn > i, for all i positive integer, 
and Sbl by the boxes labelled by m,, . . .,m,, . . . such that m,  is 
the label of the j-th box in column r, outside the c-diagram (counting 
from top to bottom). Under these conventions, we shall assume 
(Sb l , .  . . , Sb,) = (. . . , S m r  Sb, ? .  . . Sb,, 0 , .  . .) and (bl, . . . , b,) = (. . . , m ,  
b l , .  . . , b,, 0 , .  . .). 

Let 7 be an LR tableau of type (a, b, c), with maximal sequence 
of strings (Sb,,  . . . , Sb,). For i €  { I , .  . . , m ) ,  we denote by T(') the LR 
tableau of shape ci/a and weight (. . . , m ,  bi+ ,, . . . , b,, 0,.  . .) obtained 
from I('-') deleting the string Sb,, where I(') := 7 and cO: = c. 
Clearly, I(,) = a = P. 

Example 6 

 LEMMA^ Let 7 be an LR tableau with maximal sequence of strings 
(Sb l , .  . . , Sb,). Suppose the boxes of the string Sb,, with i E (1 , .  . . , m ) ,  
belonging to the first row of c/a are labelled by x + I , .  . . , x  + 
u = bi, u > 0 , x  > 0,  and the previous box belonging to the string 
Sbl ( j  > i )  is such that 0 5 bi < x ( i f  bj = 0 we agree j = m + 1). Then 
if we change the labels x + 1, . . . , x + u to b, + 1, x + 1, . . . , x + u - 1 
respectively, we obtain an LR tableau of type (a, b', c), where b >- b' and 
b' is obtained from b lowering exactly one box. Moreover, b covers 6' in 

P lh l ,  if and only if either hi+ = b, or bi = b,+ 2 and bi+ = 
- - bi+2 - . . . - bjpl  = b i  1. 

Proof Under the assumptions of the string Sb, we may write 
Sb, = Ki U R,, where lKil = x and Ri is defined by the last u boxes of 
Sh, contained in the first row of c/a which are labelled by 
x + 1 , .  . . , x  + u. Note that, by Properties 1, since Sb, has boxes in 
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the first row of cla, it follows that bi 2 x + 1 > bi+ I which implies 
bi > .x 2 hi+ On the other hand, bi > x > b,, therefore, bi 2 bi + 2. 

Now, let 7' be the tableau obtained from 7 changing thk labels 
X +  1 , . . . ,  , x + u = b i  of Ri to b , + l , x +  1 , . . . ,  x + u - 1  = b i - 1 ,  
respectively. 

Claim 7' is an LR tableau of type (a, b', c) where b' is obtained 
from b lowering exactly one box from the i-th to the k-th row such that 
bk = hi where i < k _ < j  and bk-, > bJ-. 

Now let 3 be the tableau obtained from ? ( ' - I )  changing the labels 
x +  1 , . . . ,  x +  u o f R i t o b , +  1 , x +  I , . . . , .  x + u - 1  = bi-1.  Clearly, 
3 is an L R  tableau with maximal sequence of strings (Ni,  . . . , N,,, 
Nm+ (if b, > 0,  Nm+ = 0 )  such that Ni = Ki U R i, where R is 
formed by the boxes of the the first row of the skew-diagram of 3 
labelled by x + 1 , .  . . , x + u - 1 = bi- Ni+] = Sb,+, , . . . , Nh = Sbh, for 
some i I h  < j, with b i 2 b h  > bh+l = . . .  = bh+g = bj, and g = j -h ,  
Nh+ 1 is equal to Sbh+, plus the box of the first row of the skew-diagram 
of F labelled by bj + 1, and N, = Sb,, for s > h + 1. So, INi/ = bi - 1 
and jNh+ll = b, + 1. Let be the weight of 3. Then 

- 
where b =  (hi-  - 1 ,  b i+~, . . . ,bhi  bh+l + l , b h + 2 , . . . , b ~ + ~ >  bj+l1. . . ,bm),  
if bj > 0, and b = (b, - 1 ,  b,+,, . . . , b,, I ) ,  otherwise. Note that the 
k-th row claimed above is precisely h + 1. 

So, (b , ,  . . . , bi-1, bi, . . . , b,) + (b l ,  . . . , bi-1) U 6. 
Clearly, 7' is the tableau obtained from 3 adjoining the strings - 

Sb,- l ,  . . . Sbl . Therefore, the weight of 7' is b' = ( b l l  . . . , bi-I) U b. 
rn 

Next example illustrates the lemma. 

Example 7 1. W i t h i =  1 ,  j =  5 a n d k = 4 ,  

b does not cover b' in P14. 
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i = 2 , j = S a n d k = i +  1 = 3 ,  

7' = 

b' = ( 7 , 5 , 4 , 3 , 3 ) .  

b covers h' in p2-,. 
3.  W i t h  i = 1 and j = k = 4, 

h covers b' in pI6. 
4. W i t h i =  1 a n d j = i +  1 = k = 2 ,  

h covers bf in p32. 

THEOREM 12 Let I he un LR tahlcazr as irz Lcrvzw~a 2 .  Let 
t. = x - b, > 1 and 0 < r 5 min{u, I:}. Then if' 1r.e change the labels 
x + 1,. . . . x + u qf the j?r.rt ron of' C / L ~  to b, + 1 , .  . . ,hi + i.. Y + 
1 ,  . . . . x + 14 - r = hi - r i . e s ~ ~ e c i i v e ~ ~ ,  t h ~ n  we obtain an LR tuhleazc I /  
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o f  type (a ,  b', c )  where h + b' and b' is obtained from h lowering exactly r 
ho.ues. Moreover, there is a sequence o f  L R  tableaux of t jye  

I (u. b ,  c), for. 1 = 0 , .  . .. r, ,r.ith 'To = 7 ,  7' = 7' such that bO = b + 
b1 + . . . F br = h', ,,*here b' is obtained from b'-' lowwing exactly one 
box, for I = 1 , .  . . , r. 

Proqf For I = I , .  . . . r, let 7' be the tableau obtained from 7'-' 
changing the labels .u + I , .  . . , x + u - 1 + 1 to b, + 1, s + 1, . . . , x 
+ u - 1. From. the lemma above, (I '); ,~ is a sequence of LR tableaux 
of type (a,  h'. c). for 1 = 0 , .  . . , r ,  where b' is obtained from b'-' 
lowering exactly one box, for 1 = I . .  . . , r. H 

COROLLARY 7 Let 7 be an L R  tableau with the jirst k + u boxes 
of the first row of c a labelled by 1, . . . . k ,  x + 1, . . . , x + u, where 
s > k > 0. Let c = u - k > 1 and r = min{u. v) .  Let 7' be the tableau 
obtained from 7 changzng the labels x + 1 ,  . . . , x + u of the first row o j  
cla to k + 1, k + 2, . . , k + u, respectively. then there exist a sequence 
of L R  tableaux of type (a ,  b', c) ,  I = 0 , .  . . , r, with 'lo = 7, 
I' = I ' ,  such that bo = b + b1 + .  . . > br = b', where h' is obtained.from 
b" lolzwing e.uactlj one box. for I = 1, . . . , r. 

Proof I t  is a particular case of the previous theorem with 
r = min{u, c } .  Therefore,  if r = u = c, then x + u - r = k + 
r = k + u = k + v = x ;  if r = v < u ,  then x + u - r = k + u > k +  
r = k + c = x ;  if r = u < v ,  t h e n  x + u - r = x = k + v >  
k + u = k + r .  

COROLLARY 8 Let 7 be an L R  tableau of type (a ,  b,  c). Let k he the 
length of the first rort qf c,a. If 7 '  is the tableau obtained from 7 
chnngzng the labels oj  the j r s t  roil oj  cla to I ,  2, . . . , k ,  respectrvely 
(readatg jrorn left to rzght) then I' is an L R  tableau q f  type (a ,  b', c) 
vrherr b >- b'. 

Proof By successive applications (from left to right) of the previous 
corollary we attain the result. 

E.~unlple9 In Example 7, 2, i f  we apply Lemma 2 to T', with i = 1 
and j = 3 ,  we obtain 7" of type (a,  b = ( 6 , 5 , 5 , 3 , 3 ) ,  c) ,  with the first 
row labelled by 1 ,2 ,3 ,4 ,5 .  

We remark that if we apply repeatedly the operation described in 
Lemma 2, that is, the procedure of Corollary 8 to each row of the 



86 0. AZENHAS 

skew-diagram cla of 7, from top to bottom, we will reach the minimal 
L R  tableau of type (a,  w, ( m ) .  Reversing these operations we obtain 7 
from the minimal L R  tableau of type (a,  w, c). 

In what follows we shall present an algorithm to construct system- 
atically all the elements of LR(a, c). Along the process all the L R  
tableaux of shape c/a are also exhibited. This algorithm consists in 
changing successively the labels of each row of the minimal LR tableau 
from the last to the first row of cla. These changing of labels in each row 
of a tableau of shape c/a are described in the two following lemmas. 

For this we need an additional definition. 

DEFINITION 9 Given clu, we define the length of the i-th step of cla, 
written si(i./a), (counting from top to bottom) as being the number of 
boxes in row i of cla having no common sides with any of the boxes of 
the i+ 1-th row. 

LEMMA 3 Let T he an L R  tableau with maximal sequence of strings 
(Sb , ,  . . . , Sb,), m > 2.  Let m > j > i > I. Suppose the string Sb, has at 
least one box in thejirst row of c/a and the strings SbJ-, , . . . , Sb , Sn,,  
with g = j - i > 1, which have no boxes in thejirst row of cla are such 

- that b, 1 = . . . - b,-,+ 1 = b, < b,-1. Moreover, the box immediately to 
the right of the box labelled by b, E ShJ is labelled by z. Then 

1. I f  z > hi + 1, it follows: 

(a) sl(ci-'la) = 0. (TAP labels bJ E Sb and b,_, E Sb, , are in the same 
column, for some 1 5 r I g). There is no L R  tableau of shape c/a 
obtainedfrom 7 changing the label b, in thejirst row of cla to b,+ 

(b) sl(c'-'la) 0. (The labels b, E Sb and b,-, E SbJ_, are not in the 
same column, for all I 5 r 5 g). There is an L R  tableau of type 
(a ,  6, c ) ,  with b=  ( b ~ ,  . . . ,  h,+ 1 ,  . . . ,  b, - 1 ,  b,+l , . . .  ,b,) >- b, - 

g 
obtained from 7 changing the label bj in theJirst row of cla to 
hi + 1 .  Moreover, & covers b i f  either g = 1 or bi = hi. 

2. If 2 = b, + 1, there is no L R  tableau of shape clu ohtainedfrom 7 
changing the label b, in the jrst  row of c/a to b, + 1. 

Proof Attending to Properties 1 and the definition of an L R  tableau, 
it is an easy exercise to check these conditions. It is ckar that we may 
change the label hi to hi + 1 iff we are in case l.(b). (Recall the 
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conventions made at the begining of this section and note that z is the 
label of a box belonging to a string Shy-, with q < i ) .  

Finally, observe that if S4 has one box in the first row of cla then 
bj+ I < b,. 

The following is a generalization of the previous lemma 

P R O P O S I T I O N  1 Let 7 be an LR tableau with maximal sequence of 
strings ( S b l ,  . . . , Sh,), m > 2. Let m > j > i > 1 .  Suppose the string Sb, 
has at least one box in the first row of cla and the box to the right of the 
label b, E Sq belonging to SbY-, is labelled with z .  Moreover, suppose the 
strings Sb,-l, . . . , Sb,-hll. Sbq, with h = j - q > 1, have no boxes in the first 
row of c/o. Then 

(a) sl(ci-"-',la) = 0. (The labels bi E Sb, and b,-, E Sb,-, are in the 
same column, for some 1 < r < g). There is no L R  tableau of shape 
cla obtained from 7 changing the label b, in the first row of cla to 
bj-" + 1. 

(b) ~ ~ ( c ' - ~ - ' / a )  > 0. (The labels bj E Sb, and bj-, E Sb,-, are not in 
the same column, for all 1 < r < g).  There is an L R  tableau of type - - 
(a ,  b ,  c ) ,  with b = ( b l , .  . . ,b,-, + 1, .  . . ,b j  - 1 ,  b,+l,. . . ,b,) + b, - 
obtained from 'T changing the label bj in the jirst row of cla to - 
b,-, + I .  Moreover, b covers b ijf either g = 1 or b,-, = by 

2. I f z =  b,-,+ 1 ,  f o r a l l g ~ ( 1 ,  . . . ,  h } ,  thereisno LRtableauofshape 
c/a obtained from 7 changing the label b, in thejirst row of cla to 
b,-,+ 1 ,  for a l l g ~ ( 1 ,  . . . ,  h ) .  

Proof We obtain the previous lemma with i equals the minimum 
g E (1 ,  . . . , h )  for which b,-, < hjPn 

Attending to Properties 1 and the definition of an LR tableau, it is 
an easy exercise to check these conditions. If Shy has no boxes in the 
first row of cla, then b, < z. So, if hi ..,_ > bj-,, for some 1 5 g < h, 
then z > b,> bj-g-l > bj-,, and, therefore, z > bj-, + 1 ,  for some 
1 5 g < h. As a consequence, in case 1 we have b,-, + 1 < z,  for some 
g E ( 1 , .  . . , h}.  It is now clear that we may change the label bj to 
bj-, + 1 ,  with g E ( I , .  . . , h ) ,  iff we are in case l.(b). 
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Finally, observe that if Sh, has one box in the first row of c,'a then 
bl+ 1 < 17,. rn 

In the previous proposition, let gl  < g2 E { I , .  . . . h )  such that b ,-,, < 
b ,-,,- 1 I b ,-,, 5 h ,-,,- I .  Suppose gl and g, satisfy l.(b). Let TI be the 
LR tableau obtained from 7 changing the label h, E Sh, to b,-,, + 1, 
and 7 2  the LR tableau obtalned from T changing the label b, E S,,, to 
b,-,, + 1. Then 1 2  may be obtained from 71 changing the label 
b ,-,, $ 1  t o h ,  , , + I .  

The next example 1s an illustration of Lemma 3 and Proposition 1 .  

Example Y 

1. With i =  2 , j = 4 ,  z = 4 , g = 2  and q X 2 ,  

,- = h3 + 1 = h2 + 1 = 4. There is no L R  tableau obtained from 7 
changing the label 2 E Si,, to 4. 

2. With i =  3, j =  4,: = 4. g = 1,2 and q = 2, 

z = h2 + I > b3 + 1. There is no L R  tableau obtained from T 
changing the label 2 E Sb, to 4 but we may change 2 E Sb, to 3. 

3. W i t h i = 3 , j = 4 , 2 = 6 . g =  1 , 2 a n d q = 2 ,  

: = 6 > b2 + 1, h2 > h3 and sl(cl/a) = 0, sl(c2;a) > 0. There is no 
L R  tableau obtained from 7 changing the label 2 c Sh, to 5, but we 
may change the label 2 E Sh, to 3. 
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We may change the label 3 E Sb, to 4 or 5. We obtain LR tableaux 
71 and 7 2  of type ( a ,  b'  = (6 ,4 ,4 ,3 ,2 ) ,  c )  and ( a ,  b' = 

(6,5,3,3.2), c)  respectively. T2 may be obtained from 7 ,  changing 
4 to 5. 

LEMMA 4 Let 7 be arz LR mbleau with maximal sequence of strings 
( S h , ,  . . . . Sh,,), m > 2.  Suppose the string Sh,,  m > i 2 1, hus u bo.ues in 
the Jrrst rotr of ( (1 labelled by x + 1 , .  . . , x + u = b,, with x > 0,  
respectively, H here 6,  = b l p 1  = . . . = b ,-,, < b ,-,, with g 2 1 .  More- 
over, the box zrnmeduztely to the left of the box labelled by x + 1 € Sh, 
belongs to the ctring Sh,, and the box immediatel~s to the rzght of the box 
labelled bq. b, E Sb is labelled by z .  Then. 

1. If z > bi + 1, it follows: 

(a) sl(ci-'!a) = u. (The labels bj E Sh, and b, E Sh, are in the same 
colun~n,,for some i 5 r < j.) There is no LR tableau obtained from 
7 changing the labels bi,x + 1 , .  . . ,hi  in the ,first row of c!a to 
x +  1, . . . ,  h i +  1. 

(b) sl(ci-';a) > u. (The labels b, E Sh, and h,. E Sbr are not in the 
same colunzn, for all i < r < j.) There is an LR tableau of type 
( a > b ? c ) ,  w i th  b==(bl , . . .  % bi-R,h,+l , . . .  bi ,..., b,-1, . . . .  bm),  - 

R 
obtained jrom 7 changing the labels h,, x + 1, . . . . b, in the first 
row of cla to x + 1 , .  . . , b, + 1. Moreover, b cover5 b 1SJ.j = i + 1 
andg  = 1. 

2. IJ  z = b, + 1, there is no LR tableau ohtained.from 7 chavlgirlg the 
lrrbels h,, .Y + 1 , .  . . , b, in the,first row oj"c/a to x + 1 , .  . . , h, + 1. 

Proof It is an easy exercise to check these conditions. By Properties 
1, clearly h, 5 x and if sl(cZ-' la) > u the label of the box immediately 
below the box b, (recall the conventions made at the begining of this 
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section) is > x 2 b,, therefore, we may change the labels b,, x + 
1 , .  . . , b, in the first row of c/a to x + 1,.  . . , bi + 1. Finally, note that, if 
g > 1 the strings Sh,-, ,. . .,Sb,+,+, have no boxes in the first row of cia. 

The next example is an illustration of Lemma 4. 

1.  With i = 3, j = 5,  b1 b2 = b3, s1(c2/a) = 2 = u and z = mil, 

We cannot change the label 4 E Sb,to 5. 
2. With i = 2, j = 3, cc = bo > b ,  = b2, u = 1 ,  s l ( c l /a )  = 2 > 1 and 

Z = Wllr 

We may change the label 6 of Sh3 and the label 7 of 
respectively. 

to 7 and 8 

The next example is an illustration of Lemmas 3 and 4. 

Example 1 I 

la- 
b = (7,2,1) 

LET- 
b = (7) 3).  
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6 '  does not cover h and b" does not cover b'. LR(a,  c)  C [(4,3,3),  
(6,3,1)1. (4 ,4 ,2) ,  (5 ,4 ,1) ,  (6 ,2 ,2)  6 L N a ,  4. 
We say that an L R  tableau 7 of shape cia contains an L R  tableau 

7 of shape 2lii if 7 is precisely the L R  tableau defined by the last 
I(2lci) rows of 7. 

Next theorem shows that the reverse of the operation described in 
Lemma 2 is given by Lemma 3 or Lemma 4. 
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THEOREM 13 Let 3 be an L R  tableau of shape cla in the conditions 
of Lemma 2 and F' the L R  tableau of type (a.bl,c) obtained from 
3 b,y chang ing  t h e  labe l s  x + 1,. . . ..x + u E Sh, t o  b ,  + I ,  
x + 1 ,  . . . , x + u - 1. Then F is obtained from 3' bjl applying the 
operation described in Lemma 3 ,  l . (b),  if u = I ,  and the operation 
described in Lemma 4,  1 .(b), if u > 1. 

Proof Since the string Sb, has u boxes in the first row of clu labeled by 
x + 1, .  . . ,x + u, the label of the box immediately under the label 
x +  1 E Sh, is >X + 1 and, on the other hand, by Properties 1, 
hi+ 5 x. Therefore, the label immediately under the label .x + 1 E Sh, 
belongs to a string Shh with h < i. 

Let (Sh; ,  . . . , Sh;, . Sh;",, ) be the maximal sequence of strings of F' 
(possibly S b ~  = 0). 

m- I 

1st Case. 14 = 1. 
Sh', with bi = x, has no boxes in the first row of c/a and the tableau 

3' is'in the conditions of Lemma 3.1, (b),  with s l ( c i  I /  a )  > 0. Then F is 
obtained from 3' by applying the operation described in Lemma 3.1, 
(b), that is, changing the label bj + 1 in the first row of cla to .r + 1. 

2nd Case. u > 1. 
Sb', with b{ = x + u - 1 >_ x + 1, has at least one box in the first row 

of ell?. Naming u - 1 by "nevr, u", the tableau 3' is in the conditions of 
Lemma 4.1, (h )  with s l (c ipl /a)  > "nen' u". Then 3 is obtained from 3' 
by applying the operation described in Lemma 4.1 (b) ,  that is, 
changing the labels bi + 1, x + 1,. . . , x + u - 1 to x + 1, . . . , .r -+ u in 
the first row of cla. 

THEOREM 14 Let 7 be an L R  tableau of shape i.16 and 7 the L R  
tableau of shape cla obtained from 7 by adjoining to the top qf 216 one 
row labeled by consecutive integers 1,2, . . . , k.  Then 2 is an L R  tableau 
of type (a ,b ,c)  containing ? 8 7 is obtuined from 7 by applying 
successively the operations described in Lemma 3 and 4. In this case, 
b +  b u ( k ) .  

Proof The " i f "  part is a consequence of Lemma 3 and 4. It remains 
to prove the "only if" part. If ? is an L R  tableau of shape c/a 
containing ? then, from Corollary 8, 7 is obtained from 7 by 
successive applications of Lemma 2. Reversing these operations we 
obtain ? from 7. From the previous theorem, these reversing opera- 
tions are described in Lemma 3 and 4. 
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Taking into account Theorem 14 we may now present an algorithm 
to construct all the elements of LR(a, c). This algorithm starts with the 
minimal L R  tableau. Since the operations in which this algorithm is 
based on are reversible it is clear that we may also construct an 
algorithm starting with the maximal L R  tableau. 

Algorithm 4 Let a C c and suppose c/a has n roivs. For i = 0,  1, . . . , 
n - 1, let (c/o)["-'I be the skew-diagram dejined by the n ,  . . . , n - i-th 
rows of c,a. 

1 .  Let 'Ti') be the minimal L R  tableuu q f  type (a,  w, c). 
Let 71n1 be the L R  tableau ojshape (c/u)lN1. 

2. Do i := 0 and go to 3. 
3 .  To each each LR tableau 7 E 7 inpi], adjoin to the top qf ' the skew- 

diagram of 7 the (n  - i - 1)-th row of the skew-diagram of 7 { 0 1  such 
that the L R  tableau obtained is of shape (c,a)[npi-". Apply the 
operations described in Lemma 3 and 4 to construct all L R  tableaux 
o f  shape (c /u)[~- ' - ' ]  containing E I["-']. Denote by I["-"! the 
set of all L R  tableaux of shape (c,'a)["-' ' I .  

Go to 4. 
4. Add the remaining roMa q f 7 { 0 }  to each L R  tableau E I["- '- '~.  W e  

obtain L R  tableaux of shape c/a. Denote this set by l i i + ' ) .  
If i = n - 2, stop. Otherwise, do i := i + 1 and go to 3.  

(We write 7 ' { 0 1  both for the minimal tableau of type (a,  w; c)  and for 
the set defined by this tableau. A similar convention is made with 7 [ " ] ) .  

This algorithm produces a sequence of sets of L R  tableaux of shape 
cia: 

such that, for I = 0,. . ., n - 2, the first n - 1 - 2 rows of T{ ']  and 7{'+11 
are the first n - i - 2 rows of 7 { 0 1 .  The set I{'+') is obtained from 7{'} 
by applying to the n - i -  1-th row of each tableau of I{') the 
admissible operations described in Lemmas 3 and 4. 

If 7' E l i ' + ' 1  \ 'Ti') is of type (a,  I,', c) then there exist always 
7 E li') of type (a,  b,  c) with b' +b, such that 7' is obtained from 7 by 
applying to the n - 1 + 1-th row the operations defined in Lemmas 3 
and 4. However, if 7' E 'Ti1+') \ 7 { ' }  is of type (a,bl, c)  and 7 E I { ' )  is 
of type (a, b. c) with b1 + b, we cannot say, in general, that 7' is 
obtained from 7 using the operations defined in Lemmas 3 and 4. 
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We remark that the maximal L R  tableau of type (a,  n, c)  is contained 
in T { ~ - ~ I  = 

DEF~NITION 10 Given partitions v = ( v l , .  . . , v,) and y = b l , .  . . , y,), 
we write c/a  = vop + y if a = u- and c = (I.--) + y.  In this case, 
w = (ui + y,-i+ l)l5i5, by decreasing order and n = (vi + yi)15i5,. 

(a) If c/a is equal to (v,  + y)* and cl,/a' is equal to ([v + (x")], + y)*. 
Then, b E LR(a, c)  I# b U (nx) E LR(al, c'). 

(b) I f  cla is equal to vop + y and cl/a' is equal to [v + ( x " ) ] ~ ~  + y. Then, 
h E LR(a, c)  i f  h + (x") E LR(d, c'). 

Proof Since b E LR(a,  c) iff b * ~  LR(a*, c*) it is sufficient to prove (a).  
First observe that c'/a1 is obtained from c/a by adding x boxes under 

the last box of each column of cla. So every L R  tableau of shape cl/a' 
is obtained from an L R  tableau of shape c/a by adding x boxes 
labelled by j under the last box of the j-th column of c/a,  for 
j =  1, . . . ,  n. 

Therefore, ( S b l , .  . . , Sbm) is the maximal sequence of strings of an 
LR tableau of shape cla iff ( H I , .  . . , H,, Sb,, . . . , Sbm) is the maximal 
sequence of strings of an L R  tableau of shape c'la', where H I , .  . . , H x  
are the first x components of the H-sequence of c',/al. Hence, 
b E LR(a, c )  iff b U (nx) E LR(af ,  c'). Equivalently, b* E LR(a*, c*) iff 
b* + (xn)  E LR(af*,  c"). rn 
LEMMA 6 Let ? be a tableau of shape E / i i  with only one string S l , .  
Then all L R  tableaux of type (a,  b,  c) containing 7 by adjoining one row 
of length k to the top of Eli? are such that the b' s form a connected chain 
in P l b .  Moreover, if 

1 .  k 5 6, and s l ( c / a )  = r ,  we have the  chain bo = ( b l ,  k )  1 

( 6  1 k -  1) . -  1 ( 6 ' 1  + r ,  k - r )  = br. 
2, k > bl  and sl(c/a) = rl + r2 with b l  + r2 = k ,  we have the chain 

b O = ( k , b l ) + ( k + l , h * l - l ) ~ . ~ ~ + ( k + r ~ , b ~ - r l ) = b r ~ .  

Proof It follows from Algorithm 4 and Theorems 13 and 14. . 
THEOREM 15 I fc la  has exactly two rows then LR(a, c) = [w,  n] and is 
a connected chain. 
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Proof We are in the conditions of the previous lemma with k and b^l 

equal to the length of the first and second row of c/a respectively. So, 
w = b0 and n = br or b r l .  [w,n] is precisely the connected chain 
h0 = ( d l .  k )  4 (bl  + 1, k - 1 )  < . . .  < (b l  + r,  k - r)  = br or b0 = ( k .  b l )  4 

(k+ l :h l  - l ) - : . . . < ( k + r l , b l - r l ) = b r l .  rn 
COROLLARY 9 Let c, a or (c/a)-  be equal to r ,  i- y, 1i.here either 
I: = ( v l ,  ,xr ) and y = ( k ,  O n - ' )  or v = (v; .  x )  and y = ( k r ,  0 ) ,  with 
r + 1 = n. Then LR(a, c) = [w, n]. 

Proof It is a consequence of the previous theorem and Lemma 5. 
Observe that, in the first case, w = ( c , ,  x + k )  U ( x r p ' )  by decreasing 
order and n = (vl  + k ,  .xr) and, in the second case, w = ((vl  + k)'-') 
U ( x  + k, v,)  by decreasing order and n = ((q + k)', x) .  rn 

(a) LR(a,  c)  = {w = n} zflc,'a or (c/o)-  is a partition. 
(b) LR(a,  c) = {w, n}, w # n ~ f f  c/a or (c/a)-  is equal to cop + y ,  where 

either t' = (v'; , x-'), y = (1, 017-1) or v = (t$, ( v ,  - y = (k ,  OIZ-') 
or 2' = (vy-l. 0 ,  - l ) ,  y = (kl,Ofl-') or 2: = (v;-',  x), y = (lr,Orlpr), 
with cl > x 1 0 ,  k > 0 ,  r, s > 0 ,  r + s = n. 

Proof 

(a) Without using Theorem 3, this result also follows from 
Algorithm 4. 

(b) Observe that L R ( a ,  c) = L R  (c;. ( M ~ )  U a k ) .  On the other hand, 
from (a) and Algorithm 4, we conclude that for i = 0 ,1 , .  . . , n - 2, 
# 11.1 = . . . = # 7 ; n - l l  and # 7ln-'p11 - - # 7["-'1 + I iff (c/a)[n-'-'l 

has the form indicated substituting n by i + 2. rn 
In the following we give some examples of the set LR(a,  c). 

Exumple 12 
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The underlined partitions are the elements of LR(a, c). 

Example 13 

The underlined partitions are the elements of LR(a, c). 
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APPENDIX 

After this paper was written the author was informed by A. Kovacec 
that in [6] and references therein other explicit bijections betwen L R  
sequences of conjugate shape and weight can be found based on 
properties of Schensted insertion or using a jeu de Impin approach. 
Thanks are given to A. Kovacec for his indication. 




