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It is well known that Littlewood—Richardson sequences give a combinatorial
characterization for the invariant factors of a product of two matrices over a principal
ideal domain. Given partitions a and ¢, let LR(a, ¢) be the set of partitions 4 for which at
least one Littlewood — Richardson sequence of type (a, b, ¢) exists. I. Zaballa has shown
in [20] that LR(a, ¢) has a minimal element w and a maximal element n, with respect to
the order of majorization, depending only on @ and ¢. In general, LR(a, ¢) is not the
whole interval [w, n]. Hete a combinatorial algorithm is provided for constructing all the
elements of LR(a, ¢). This algorithm consists in starting with the minimal Littlewood -
Richardson sequence of shape c/a and successively modifying it until the maximal
Littlewood — Richardson sequence of shape c/a is achieved. Also explicit bijections
between Littlewood — Richardson sequences of conjugate shape and weight and between
Littlewood — Richardson sequences of dual shape and equal weight are presented. The
bijections are defined by means of permutations of Littlewood - Richardson sequences.

Keywords. Invariant factors; Young tableaux; Littlewood — Richardson sequences

AMS Subject Classifications: 15A23, 15A33, 05A17, 0SE10

1. INTRODUCTION

Several papers [1-3, 17, 19, 20] have been written to show that
Littlewood ~ Richardson (for short LR) sequences give a complete
combinatorial characterization for the invariant factors of a product
of two matrices over a principal ideal domain. More precisely,
necessary and sufficient conditions for the existence of nonsingular
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52 O. AZENHAS

matrices A4, B and C, with prescribed invariant factors and such
that 4B = C were given in terms of Littlewood—Richardson
sequences.

Littlewood — Richardson sequences arose in the representation
theory of the symmetric group S, as a4 combinatorial tool for deter-
mining the coefficients in the Schur functions expansion of the product
of two given Schur functions [10, 11, 12].

P. Hall, J. A. Green and T. Klein [4, 8] have shown that
Littlewood — Richardson sequences also give a complete solution of
the existence problem of finitely generated torsion modules A4, B and C
over a principal ideal domain, with prescribed invariant factors and
such that A CC and B=C/A.

In [17] it is shown that the matrix product and the module extension
problems are equivalent. The analysis of these two problems is redu-
cible to the local case (for the matrix product problem, see [1] or [17]),
i.e., to the case where a local principal domain with maximal ideal (p)
is considered. The localization of these two equivalent problems means
that we shall be working essentially with powers of a prime p. Thus,
the invariant factors of a nonsingular matrix 4 over a local principal
domain with maximal ideal ( p) will be identified with the partition of
integers defined by the exponents in decreasing order of the invariant
factors of 4 which are powers of p. We call this partition the invariant
partition of A4.

Therefore, given partitions a, b and ¢ there are nonsingular matrices
A, B and C with invariant partitions a, b and ¢ respectively, and such
that 4B = (if and only if there is a Littlewood ~ Richardson sequence
of type (a, b, ¢).

Littlewood - Richardson sequences give an implicit solution to the
matrix product and extension module problems. Although, several
explicit conditions are already known in terms of divisibility relations
involving the invariant factors of 4, B and C (see, for example, [13, 13,
17, 18]), the problem, as far as we know, is not completely solved.

Let LR(a,b,c) be the set of Littlewood - Richardson sequences of
type (a,b,¢). It is now clear that the problem of characterizing the
invariant factors of the product of two matrices (or of the module
extension) is equivalent to the problem of characterizing the partitions
a, b and ¢ for which LR(a, b, ¢} # (. That is, given partitions a, b and ¢,
we would like to know under which conditions an LR sequence (or an
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LR tableau) of type (a, b, c) exists. (A good account for this, can be
found in [20].)

Following the terminology of [20], given the partitions aCec, let
LR(a,c) be the set of partitions b for which there is at least one LR
sequence of type (a,b,c). Our matrix problem has therefore the
following combinatorial translation: given the partitions aCe,
determine the partitions b in LR(a,c¢). I. Zaballa [20] has given a
necessary condition for this problem by showing that LR(a, ¢) C{w,n],
where w and n* (* means conjugate) are, respectively, the difference
partitions associated with the skew-diagrams c/a and its conjugate,
and w and n are the minimal and maximal elements of LR(a,c) with
respect to the majorization order of integer partitions. Hence, given
partitions @ C ¢ and b, there are matrices 4, B and C, with invariant
partitions a, b and ¢, respectively, such that 4B = C only if w<h=<n
(= stands for majorization order). The converse is not in general true.
We call [w,n] the admissible interval for the invariant factors of a
product of two matrices 4 and B, where ¢ and ¢ are the invariant
partitions of 4 and AB respectively.

Our aim, in this work, is to give a method for determining
LR(a, c)n{w,n]. Also explicit bijections between Littlewood — Richard-
son sequences of conjugate shape and weight and between Little-
wood — Richardson sequences of dual shape and equal weight are
presented by means of certain permutations of LR sequences. Purely
combinatorial techniques are used.

The structure of the paper is the following. In Section 2 we present the
basic combinatorial tools: dual and conjugate of a Young diagram and
a skew-diagram; dual and conjugate of a tableau (see [2] for duality);
and the role played by the majorization order in this context. To a skew-
diagram c¢/a and its conjugate we can associate the difference partitions
w=c—a and n" = ¢"—a" [9], respectively, that is, the partitions
defined, respectively, by the length of each row and each column of ¢/a
by decreasing order. These two partitions are related by the order of
majorization, i.e., w=<n. [. Zaballa [20] proofs this relation using
inequalities in the context of LR sequences. We deduce this property by
using a purely combinatorial argument on the skew-diagram c/a where
the relation between the partitions w and n becomes apparent.

In Section 3 we exhibit explicit bijections between LR tableaux of
conjugate shape and weight and between LR tableaux of dual shape
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and equal weight. Our construction is based on (transpositions of
consecutive integers of an LR tableau [3]. Although it is known from
the representation theory of the symmetric group &, that there exists
a bijection between LR(a, b, c) and LR(a", b, ¢*) (see [10, p. 110], [12])
our aim is to present explicitly such a bijection. There are several
equivalent ways of defining an LR sequence (see, for example, [2, 3]
and [19]). The terminology in [2] is slightly different from that in [19].
Namely, in [2] opposite LR sequences are called in [19] increasing LR
sequences. 1. Zaballa [19, Theorem 3.1] has shown a connection
between decreasing (the usual LR sequences), increasing LR sequences
(or opposite LR sequences) and increasing LR sequences of conjugate
shape. More precisely, he constructed a bijection between decreasing
LR sequences of type (a, b, ¢) and increasing LR sequences of type
(a*,b",c"). Following his ideas [19], to exhibit an explicit bijective
mapping between LR sequences of conjugate shape and weight we
need only to transform LR sequences of type (a, b, ¢) into opposite LR
sequences (or, in the terminology of [19], increasing LR sequences) of
the same type and show that this transformation is a bijection.

Finally, in Section 4, given a C ¢ and following the terminology of
[20], we identify the partitions b of the set LR(a,c). As mentioned
above, 1. Zaballa has shown, in the context of LR sequences [20], that
LR(a,c)C{w,n], where w is the minimal ¢lement and n the maximal
element with respect to the majorization order. Furthermore, he has
exhibited the corresponding minimal and maximal LR sequences using
inequalities involving the partitions @ and c.

On the basis of Sections 2 and 3, it is worth to mention a different
approach to Zaballa’s result. In [9] a complete characterization of
Young id-tableaux in terms of the difference partition is given.
(id denotes the identity permutation. For the definition of e-tableau,
where ¢ is a permutation of apropriate order, see [2] and Section 2.C.)
That is, there exists an id-tableau of type (a,b,¢) if and only if
b€ [w, i], where 1 is the top element of the lattice of integer partitions
of |w| ordered by majorization (| | means weight). In fact, there is
only one id-tableau of type (a,w,¢) which is an LR tableau. Since the
majorization order is self dual under the map which sends each
partition to its conjugate, we have the equivalent reasoning: there
exists an id-tableau of type (¢*,b".c") if and only if b € [ﬁ, n] (recall
that n* = ¢* —a*), where 0 means the bottom element of the lattice
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considered above. By symmetry, there is only one id-tableau of type
(&",n*,c*) which is an LR tableau. Thus, since w=n, given an id-
tableau of type (a, b, ¢) there is an id-tableau of type (a”, b*, ¢*) if and
only if b€ [w,n]. According to Section 3, since there is only one id-
tableau of type (a*,n", ¢*), which is precisely an LR tableau, there is
also only one LR tableaun of type (a,n,¢). Therefore, since for each
LR tableau of shape c/a there is always an LR tableau of conjugate
shape and weight, it follows that LR(a,c) C[w,n]. (We remark that
taking into account [2, Algorithm 2.17 and Theorem 2.23] the
characterization given in [9] of Young id-tableaux can be extended to
e-tableaux).

2. COMBINATORICS OF DIAGRAMS,
SKEW-DIAGRAMS AND TABLEAUX

A. Partitions and Diagrams

A partition is a (finite or infinite) sequence of non negative integers
a={(a,as,...,4,...) by decreasing order, almost all zero. The
number |a| =a; +a,+ -+ a,t+ --- is called the weight of a; the
maximum value of i for which a; > 0 is called the length of a and is
denoted by Ka). If a; = 0, for i > n, we shall write a = (a,aa, ..., ay).
For example, we regard (3,2,2,1), (3,2,2,1,0,0) and (3,2,2,1,0,...)
as the same partition.
Sometimes we find it useful to use the notation

where x; > x3 > -+ > x; > 0 and x}", with m; >0, means that the
integer x; appears m; times as a part of a.

Let a = (aj,ay,...,a,) be a partition of length r. The Young
diagram of a may be defined as the set of points (i, j) € N x N such
that 1 <j<gq; and 1<i<r. We draw these diagrams with the first
coordinate / (row index) strictly increasing from top to bottom
and the second coordinate j (the column index) strictly increasing
from left to right. For example, the Young diagram of the partition
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(3,2,2, 1) is
o(11) o(12) (1,3
o(2,1) (2,2)
(3, 1) (3,2)
(4, 1)

We often replace the dots by boxes, in which case the diagram is

|

(1)

Thus the boxes of the Young diagram may be referred by their
coordinates. We shall identify a partition with its diagram.

Given two partitions ¢ and b, we write a < b or a C b to mean ¢, < b;,
for all /. Geometrically, this means that the Young diagram of a is
contained in the Young diagram of b.

The conjugate of a partition q is the partition a* := (a4}, a3,...,a})
given by af :=#{i : a; > k} (# means cardinality), for k= 1,...,s,
where 5 = a;. Geometrically, ¢ is the partition whose diagram is the
transpose of the a diagram. For example, the conjugate of (3,2,2,1) is
(4,3,1), whose diagram (2) is the transpose of (1)

|

(2)

The M —dual of a partition a = (ay,as,. .., 4,), with length r and
M > ay, is the partition ay, .= (M —a,, M —a,_y,..., M —a,, M —a)).
Geometrically, ay, is the partition whose diagram is the complemen-
tary of the diagram of @ in (M"), reading the rows from bottom to top
and the columns from right to left (turn the sheet upside down), When
M = a; we just write a” and call it the dual partition of a. (A discussion
of the properties of a3, can be found in [2].) For example, the dual of
(3,2,2,1)1s (2,1, 1), whose diagram is the shaded region in the picture
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below

turning the sheet upside down.

Observe that the two operations, conjugate and dual, are per-
mutable, ie., (¢ )" = (a")". Geometrically, (a )" is defined by the
boxes of the complementary of a in (a]) reading the rows from right to
left and the columns from bottom to top (rotate the sheet «/2 anti-
clockwise and reflect it vertically). Or, equivalently, (¢")” is defined by
the boxes of the complementary of ¢” in (a]”') reading the rows from
bottom to top and the columns from right to left. For example,
((3,2,2, 1)) is (3,1) whose diagram is the shaded region in (3)
rotating the sheet 7/2 anti-clockwise and reflecting it vertically.

Given partitions g and b, we define ¢ U b to be the partition whose
parts are those of a and b, arranged in decreasing order; and a + b to

be the partition which is the sum of the sequences a and b.

B. The Lattice of Partitions

Let P be the set of all partitions with weight k. Let a and & be
partitions. We say that a majorizes b, written a>=b, if a; +--- + ¢, >
by -+t b, forr=1,.. k][5 9, 14].

(Py, =) is a lattice with maximal element (k) and minimal element
(1%y and is self dual under the map which sends each partition a to its
conjugate a”. Henceforth we shall denote the top element by 1 and the
bottom element by 0. Note that > is linear if and only iff £ < 5. For a
discussion of these properties see, for instance {5] and [14].

Geometrically, a = b if and only if the diagram of b is obtained from
a by “lowering” at least one box in the Young diagram of «. This
means that a dominates b by rows. This is equivalent to say that b*
dominates a* by columns or that b™ is obtained from 4" by “lifting” at
least one box in the Young diagram of ¢*. For example, (3,2,2,1) >
(3,2,1,1, ) and (3,2,1,1,1)" = (3,2,2, 1)".
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Let a > b. Then a covers b if and only if a is obtained from b by
“lifting” exactly one box in the diagram of b to the next available
position such that the transfer must either be from some b, | to b; or
from b7_, to b} (see [5] and [14]).

Given a = b, we denote by [a, b] the interval defined by all partitions
a=x=h. We say that a = d~a' <a’<---<da =bis a connecred
chain from a to b if &' covers &'~ !, fori=1,....r.

C. Skew-diagrams, Tableaux and Dual Tableaux

Let a and ¢ be partitions such that a C ¢. We define

c/a ={(i,j) €c: (i j)¢a},

called a skew-diagram modulo a. The number |¢/a|:= |¢| — |a] is called
the weight of c/a, and {(c/a) . = #{i: c; — a;# 0} the number of rows of
c/a. For example, if a = (4,3,2,1, 1) and ¢ = (67, 1*), the skew-diagram
c/a is the shaded region in the picture below

Let {ji,....k} ={j:af =¢;} and {i1,...,i} = {it¢; = a;} Let ¢
and &' be the diagrams obtained from ¢ and a deleting respectively the
rows Iy, ..., and the columns jj,...,j.. We do not distinguish the
skew-diagrams c¢/a and ¢'/a’. For example, the shaded region of (4)
and the following shaded regions are regarded as the same skew-
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diagram

The conjugate of a skew-diagram c¢/a is the skew-diagram
(c/a)*:= c*/a”. (c/a)* is obtained from c/a by transposition. For
example, the conjugate of the skew-diagram (5) is

[T]

The dual of a skew-diagram cja is the skew-diagram (c/a)” :=
(MY Uay) /ey = ((c¥)Uag)/c™, where M > ¢y and k = l(c) — Ka).
(c/a)” is obtained from ¢/a by a vertical and a horizontal reflection. Or
just read the rows of c¢/a from bottom to top and the columns from
right to left (turn the sheet upside down). For example, the dual of (5)
is

(c/a)™ = (7)
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As before ((c/))" = ((c/a)")”. ((c/a)")” is obtained from c/a
reading the rows along the columns of ¢/a from right to left, and the
columns along the rows of ¢/u from bottom to top (rotate the sheet 7/2
anti-clockwise and reflect it vertically); or, from (¢/a)” turning the sheet
upside down. For example, the dual of the conjugate of (5) is the dual
of (6) and the conjugate of (7).

A skew-diagram is called a vertical [horizontal] m-strip, where
m > 0, if it has m boxes and at most one box in each row (column).

For example,

E T (9)

are vertical and horizontal 4-strips, respectively.

Clearly, the conjugate of a vertical [horizontal] strip is a horizontal
[vertical] strip; and the dual of a vertical [horizontal] is also a vertical
[horizontal] strip. In (9), one is the dual of the conjugate of the other.

Two strips of a skew-diagram are disjoint if they have no boxes in
common.

Given c/a, we define a sequence of vertical strips and a sequence of
horizontal strips, called the V-sequence and the H-sequence of c/a,
respectively. We say that V = (Vy,...,V}) is the V-sequence of ¢/a if f
is the length of the longest row of ¢/a and V; is the vertical strip defined
by the i-th box of cach row of ¢/a, counting from left to right, for
i=1,....fiand H=(H,,...,H) is the H-sequence of ¢/a if [ is the
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length of the longest column of ¢/a and H; is the horizontal strip
defined by the i-th box of each column of ¢/a, counting from bottom
to top.

Let (H)” .= ((H}) ,...,(H)”). We remark that (H")™ is the V-
sequence of ((c/a)")".

Let S, be the symmetric group of degree ¢, and id the identity
permutation. As usual (u;u,,...,u,) denotes a cycle in S,.

A Young tableau T [16] of type (a, b,c) with b™ = (my,...,m,) is a
skew-diagram c/a with a labelling 7 = {7,;:(i,)) € c and (i,j) ¢ a} of
the boxes of ¢/a with positive integers 1,...,t, where the labels 7; of
the boxes (i,/) are as follows:

(a) Forall (4, ), ( +1,)and (4, j + 1) in ¢/a
T < Tij+l and TUSTi+1j' (10)

Labels are strictly increasing along rows from left to right and
increasing along columns from top to bottom.

(b) For each ke {l,...,t}, #{(i, )): 7y = k} = m.qq,, for some permu-
tation £ € S,.

The skew-diagram c/a is called the shape of the tableau 7 and & the
weight of T. Henceforth we regard a tableau as a skew-diagram with a
labelling 7 satisfying conditions (a) and (b).

If 7 is a tableau of type (a,b,¢) and we want to stress that the
multiplicity of the labels & is m,y), with € € §,, ie., the labels
multiplicity order is given by ¢ € §;, we say that 7 is an e-tableau. The
number of e-tableaux and id-tableaux of type (a,b,c) is the same,
see [2, Theorem 2.23].

A Young tableau T of type (a,b,c) may also be regarded as the
sequence of partitions

(d, d, ... a")

such that a = ¢° Ca' C---Cda’ = ¢ and each skew-diagram ¢*/a* ' isa
vertical strip labelled by k£, 1 <k <t = by, where b" is (|a1/a°|, Lo dy
a'~!|) by decreasing order. In this work, as mentioned, we shall think
of a tableau as a labelled skew-diagram.

The indexing sets Jy,...,J, of T [1, 2] are the subsets of {1,...,n}
such that, for k = 1,...,t,J, is defined by the row indices of the boxes
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of c/a labelled by k. Clearly, b* is (#J1,#J5....,#J,) by decreasing
order. We identify the indexing sets Ji,...,J, of T with the vertical
strips a*/a* "' of cla, 1<k <.

Let us denote by op the reverse permutation of &,. The dual of
T =(a% d',...,a") [2] is the tableau 7~ of shape (c/a)” with indexing
sets defined by the vertical strips (a”?/a®P"* V)~ labelled by i, for

i=1,...,t (we convention op(t + 1) = 0). Equivalently, if J,,...,J,
are the indexing sets of 7 then its dual is the tableau of shape
(c¢/a)~ with indexing sets J,,...,J7. So 7 is a tableau of type

(¢3pr b, (M¥) Uay,) with M > ¢, and k = I(¢) —I(a) (we may consider
M = ¢)). Clearly, there is a bijection between the tableaux of shape ¢/a
and weight b and their duals which send 7 to 7. We call this
bijection the canonical one.

Example 1

2[3 23 12
2] 2] 2]

are e-tableaux of type ((2,1,0,0), (3,2, 1°)%; (4,4,2,1)), with £ = (23)
(12), (12) and id € 8s respectively, and their duals are

412 5|2 512
5131 5141 513
413 413 5|4
4 4

turning the sheet upside-down.

D. Difference Partitions

Given a skew-diagram c/a we define the partition ¢—a as
(¢c1 —ay, ..., ¢y — ay) by decreasing order, called the difference partition
of ¢/a. (In[9], T. Y. Lam calls difference partition the conjugate of ¢ — a).
Equivalently, ¢ —a is defined by the length of each row of c/a by
decreasing order. We shall write (¢ — a); for the i-th component of ¢ — a.
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Geometrically, (¢ —a)" = (vy,...,vy), with f the length of the longest
row of ¢/a, is defined inductively as follows: for i = 1,...,f,v; is the
number of rows of ¢/a after deleting the first i — 1 boxes of each row of
cfa. Or, equivalently, (c—a)” = (|Vy],...,|V/]).

The difference partition of (¢/a)” is ¢"—a”, being defined by the
length of each column of c¢/a by decreasing order. Geometrically,
(c"—da") = (hy,...,h), with [ the length of the longest column of ¢/a, is
defined inductively as follows: for=1,...,/, h is the number of
columns of ¢/a after deleting the last / — 1 boxes of each column of c/a.
Or, equivalently, (¢"—a")" = (|H\|,...,|H]|).

Note that the difference partition of ¢/a and its dual are the same, so
(c"—a"™)" is the conjugate of the difference partition of ((¢/@)")".

For example, the difference partitions of (5) and (6) and their
conjugate are respectively ¢c—a = (4,3,2,1,1), (c—a)" =(5,3,2,1)
and ¢"—a* = (3,3,2,2, 1), (¢"—da")" = (5,4,2).

THEOREM | There is one and only one id-tableau of type (a,c—a,c)
and of type (¢, ¢*—a*, (M*)Uay;), respectively. There is at least
one id-tableau of type (a,(¢"—a*)", ¢).

Proof Consider the V-sequence of c/a and label each box of the
vertical strip V; by i. Clearly, c—a = ({V\|,...,|Vr])" and c¢/a with
this labelling is an id-tableau and it is the only one of shape c/a
and weight ¢ —qa. Consider the H-sequence of c¢/a and label the
boxes of the horizontal strip H;, from bottom to top and from left
to right by 1,...,|H]. Clearly, (¢’—a"y = (|Hi|,...,|H)) and c/a
with this labelling is an id-tableau of type (a,(c”—a")*, ¢). To prove
that there is only one id-tableau of type (¢} . ¢*—a*, (M) Ualy)
use duality and the fact that there is only one id-tableau of type
(@, c*—a’,c") or recall that (H")™ is the V-sequence of ((¢/@)")”
whose difference partition is ¢"—a" = (|Hi|,...,|H/)" (note that
(H)| = |H). =

Remark I According to this theorem, there is only one id-tableau
of type (a*,¢"—a",¢") but, in general, there are more than one id-
tableau of type (a,(¢"—a")",¢). For example, if «=(1,1,0) and
c = (3,3,2), the sequences ((1,1,0), (2,2, 1), (3,2,2), (3,3,2)) and
(1,1,00, (2,2,1), (3,3,1), (3,3,2)) are both id-tableaux of type
((1,1,0), (3,2, 1), (3,3,2)) where (¢" —a")" = (3,2, 1).
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The Young diagram of (¢*—a™)" = (hy, ..., h) may also be obtained
from c¢/a by the following procedure:

Let ¢”:=cand ¢°:=a.

For i=1,...,]—1, push up [down] the first {last] box of each
column of ¢~ '/a’~!. After this operation we obtain a row with h;
boxes and a skew-diagram c¢'/d’, such that (¢"— @' )" = (A, hy).

Pushing to the left all the rows {pushing to the right and turning
the sheet upside down] we obtain finally the Young diagram of
(c"—a™) = (hy,...,h).

For example,

[ ] N L]

From this geometrical procedure we get
THEOREM 2 Let aCc. Then ¢ —a=(c*~a*)".

Proof  Recall that ¢ — a is the length of each row of c/a by decreasing
order. On the other hand, for i=1,...,/,A; is the length of the
horizontal strip defined by the last boxes of each column of ¢/~ /o’ 1.
Fix i€{l,...,[}, and let w':= (hy,....h)Uc —d'. According to the
procedure above, we have transformed the sequence of integers

eyt —drt, e —d ) into x = (¢ — @t — ey, - a4
Sigrejy et —alit —e,) whereg;> 0and ¢! — a4 B8 = by,
for some r. Clearly, h;=(¢'"'—=d Y + 68, for some §>0. So
x by decreasing order is ((¢/ '—d" "N, + 86 (T —d Y, -
8y (@7 =a"" 1), 8 ¢! =’ where £6;, = 5. On the other

hand, x by decreasing order is (h;)Uc'—a'. Therefore, ¢/ "' — ¢/ ' <
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(h)Uc'—d and (hy,... hi_ DU = "V <(hy, .. h, ) U — d.
That is, w' = '<w'. Hence, c—a = v’ <w' <w?=<...<w/ = (¢"— a)".

THEOREM 3 c¢—a= (¢"—a")" if and only if c/a or (¢c/a)” is a Young
diagram.

Proof Straightforward. »

The geometric conditions given for the shape of ¢/a by this theorem
are equivalent to those given in [20, Corollary 3.9]. Graphically, they
mean that a tableau of shape ¢/a whose partitions ¢ —a and (¢* — a*)"
coincide should have one of the following forms, where the shaded
region represents the shape

Zan

L] L

Remark 2 Given u and v € P, such that u <v, there are not always
partitions a C ¢ satisfyingu = ¢ —a and v = (¢"— a")". Let 4, be the set
of partitions v € P, for which a skew-diagram c/a with ¢ —a = « and
(¢* —a")" = vexists. Clearly, 4, C [u, i] The following examples show
that 4, is not always the whole interval [y, i].

I. Ifu= i, A, = {i} and if u= 6, A, = [ﬁ i}

2 Ifu= (2%, 4, = {(2,2,2),(3,2,1),(4,2), (5, 1), (6)}. The partitions
4,1,1), 3% ¢ A,
In general, if u=(m"), with k>2 and m>2, ((k—1)(m—1)
+m 15" ¢ A4,

3. If u € P, is such that (u) = 2, then A4, = [u, 1].

Remark 3 Given the skew-diagram c/a, the difference partitions ¢ — a
and ¢"—a" do not, in general, characterize completely c¢/a. For
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example,

—

have the same difference partitions ¢ —a = (2,2,1) and ¢"—a" =
2,1,1,1).

3. LRTABLEAUX AND LR TABLEAUX OF DUAL
AND CONJUGATE SHAPE

In {9, Theorem 3.1} a complete characterization of Young id-tableaux
with prescribed shape, in terms of the difference partition is given.
That is, there is an id-tableau of type (a,b,¢) if and only if
b elc—a, 1], where 1 is the top element of the lattice of partitions
of |¢ — 4| ordered by majorization. (In fact, this characterization can be
extended to an e-tableau, see [2, Algonthm 2.17 and Theorem 2.23}.)
Hence, from Theorem 2, given a skew-diagram c¢/a, the interval
[e—a,(c"—d")"] provides a complete characterization of the id-
tableaux of type (a,b,c¢) for which at least one id-tableau of type
(a*, b*, c*) exists. In general, given b €[c—a, (¢*— a”)"], the number of
id-tableaux of type (a, b, ¢) is not equal to the number of id-tableaux of
type (¢, 6%, ¢") (see Theorem 1 and Remark 1). On the other hand, we
shall see that the number of LR tableaux of type (a, b, ¢) is the number
of LR tableaux of type (a”, 5", ¢"). Also the number of LR tableaux of
type (a, b, ¢) is the number of LR tableaux of dual shape and weight 5.

In what follows we shall be concerned mainly with certain special id-
tableaux and op-tableaux, although in Subsection B also some special
c-tableaux will take place. These cases will be clear from the context.

A. LR and LR, Tableaux

In this subsection we begin by introducing the concepts of LR, dual
LR and opposite LR tableaux. The dual LR tableau is the geometric
translation of the opposite LR tableau: the dual of an LR tableau is an
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opposite LR tableau of dual shape. In fact, there is a bijection between
the LR tableaux with prescribed type and their duals [2, Theorem
2.15). Using these notions, in Corollary 3 we restate Theorem 3.1 of
1. Zaballa [19] which says that there is a bijection between LR tableaux
of type (a, b, ¢) and the opposite LR tableaux (increasing LR tableaux
in the terminology of [19]) of type (4", b, ¢*).

DeriNniTiON 1 Let J = {x,...,x;} and K= {y,..., )} be finite
sets of integers, where we are assuming that x; > ... >x, and
y; > - >y, Then we write J>K (or K<J) whenever s>m and
x; =y, fori=1,....m.

Observe that J> K if and only if there is 4 CJ such that #4 = #K
and A > K.

DeriniTion2 Let J and K be the finite sets of integers defined
above, where we are assuming that x; < -+ < x;and y, < -+ < y,,.
We write J>,,K (or K<,,J) whenever s<m and x;>y; for
i=1,...,s

This is equivalent to saying that there is 4 C K, such that #4 = #J
and J> A.

DerinNiTION 3 [1] Let 7 be a tableau of type (a, b, ¢) with indexing
sets Jy....,J,. We say that 7 is a Littlewood— Richardson (LR for
short) tableau or a Littlewood - Richardson sequence if

Jy > e> (11)

This definition is an equivalent formulation of what is usually called
the Littlewood — Richardson sequence |8, 10, 11].

DeriniTiION4  [2] Let 7 be a tableau of type (g, b, ¢) with indexing
sets Ji,...,J;. We say that 7 is an opposite Littlewood — Richardson
(LR,, for short) tableau or an opposite Littlewood - Richardson
sequence if

Jl zop Zop Jt‘ (12)

THEOREM 4 A tableau T is an LR, tableau if and only if T~ is an LR
tableau.
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Proof See (2, Theorem 2.15]. |

That is, there is a bijection between LR tableaux of type (a, b, ¢) and
LR,, tableaux of dual shape and weight 5.

DeriniTiON S Let 7 be a tableau of type (a, b, ¢), with labelling 7.
Let ke {l,...,I(h)} and S = {(x1, 1),..., (Xs,, J»,)} be an horizontal
bg-strip of c¢/a, where we are assuming x; > --- > x;,. We say that S'is
abestringof Tif 7 ;, =r,forr=1,... b

If /y,....J, are the indexing sets of T then S = {(x1,/1),--.,
(xp,, jn)} 1s an horizontal bg-string of 7  if and only if x;€J;, for
1= 1, ey bk.

Two strings of 7T are said to be disjoint if their strips are disjoint.
Under the conditions (10) of a tableay, it is clear that two horizontal
strings 8= {(x1, j1),..., (X5, Jn,)} and "= {(n1, g1).- -, (¥»,, 85,)}
are disjoint if and only if x; £ y;, for i = 1,..., min{by, b,}. So, without
ambiguity, we may identify the strings S and S’ with {x,...,x,,} and
{y1,. ..,y }. i.e., we identify the string boxes with the row indices.

We say that S> S'if by > byand x; >y, fori=1,...,b,. If S’ and S
are disjoint then x; > y,, for all i, and, in this case, § > S'.

Example 2

There are no 6-horizontal strings and there are 2 and 3-horizontal
strings. S = {3,3}and S; = {4, 4, 3} are disjoint strings but S/, = {4, 3}
and S are not,

DerFiniTION 6 Let 7 be a tableau of type (a,b,¢) with b=
(by,....by),m = [b). We say that (Sp,,...,Ss,) is a complete se-
quence of horizontal strings (for short complete sequence of strings) of
7 if the strings are pairwise disjoint.

Clearly, (#Sbn--'s#sbm) = (#le--n,#']t)*'
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Remark4 By Definition 5, a tableau with a complete sequence of
strings is necessarily an id-tableau.

Example 3

L. 174

[»—a»—-.—a

The sequences of strings (Ss = {5,4,3,1}, S5 ={4,3,2}, S, = {3,2},
Sy={1}), (S4=1{3,3,3,1}, Sy =1{4,4,2}, S, ={5,2}, St ={1})
and (S§ =1{4,3,2,1}, S5={5.4,3}, S5 ={3,2}, S{={1}) are
complete.

2 112
213
T‘124
13

has no complete sequence of strings.

We have characterized an LR tableau by means of vertical strips i.e.,
the indexing sets Jy, ..., J, (see Definition 3). Next theorem describes
an LR tableau in terms of horizontal strings.

THEOREM S Let T be a tableau of type (a,b,c) where
b=(b,bo,....bm). T is an LR tableau if and only if T has a complete
sequence of strings; and, in this case, T has a complete sequence of
strings (Sh,, ..., S», ) satisfying Sp, > Sp, > -+ > Sp,,.

Proof For the “if ” part, suppose that (Sp,,...,S;,) is a complete
sequence of strings of T. Let r€{1,...,b;} and (x,y) be a box of c/a
labelled by r. Then (x,y) belongs exactly to one string Sp,, for some
ke{l,...,m} with b, >r. By definition of a string (Definition 5), if
¥ > 1, there exists always a box (x', ') € Sp,, marked with r — 1, such
that x’ > x. This means that J,_; > J,. So, 7 is an LR tableau.
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The “only if'” part will be handle by induction on the number n of
rows of c/a. We shall show that 7 has a complete sequence of strings
(Sky, ... Sp,) satisfying Sy, > Sp, > --- > Sy, . If n = 1, c/a has exactly
one row and there is only the string H,.

If n =2, then b = (b)) or b = (b1, b»). In case b = (b)), the two rows
of ¢/a are necessarily disconnected, meaning that ¢*— a* = (1%), and
there is only one string H, formed by all the boxes of ¢/a. In case
b = (by, by), let Sy, be the string defined by the lowest ;, boxes in the
horizontal strip H, of ¢/a labelled by 1,2, ..., 5, and S;, be the string
defined by the remaining boxes in the first row of c¢/a. Clearly,
Sb1 > sz'

Let n > 2. Consider the string S;, defined by the lowest b; boxes in
the horizontal strip H; of ¢/a labelled by 1,2, ...,b,. Since 7 is an LR
tableau, we have the following property:

(6, /) € Sy and (v, j+ 1) € Hy = (x. j+ 1) € Sy (13)

So we may consider the tableau 7' obtained from 7 deleting the
string Sp,. 7' is an LR tableau with weight (b,, ..., b,,) and n — 1 rows.
(Note that the last row of ¢/a is necessarily labelled by consecutive
integers starting with 1.) By induction, 7' has a sequence of strings
Sp, > -+ > 8, . Since Sy, € H; and is defined by the lowest boxes
labelled by 1,..., by, it is clear that Sp, > Sp, > - > S, |

CoroOLLARY 1  The id-tableau of type (a,c—a,c) is an LR tableau.
There is an LR tableau of type (a,(c" —a")", ¢).

Proof The indexing sets of the id-tableau of type (a, ¢ — a, ¢) may be
identified with V = (¥V,..., V) which satisfy ¥, >---> V. On the
other hand, H = (H, ..., H;) is a complete sequence of strings of the

id-tableau of type (a, (¢*—a™)", ¢) constructed in Theorem 1. |
We remark that c—a=({Vil,.... (V)" = (ISe,ls-- 5 1Senl) =<
(Hl. . JH) = (= a)".

The foregoing theorem says that a tableau 7 with weight
(by....,b,) 1s an LR tableau if and only if it has a sequence of strings
Sy, > Sp, > -+ > S,, . This sequence is the maximal sequence of strings
of T with respect to the lexicographic order in the set of all complete
sequences of strings of 7.
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In Example 3, (S84, 53, S2,S1) is the maximal sequence of strings
of 7. H=(H,,...,H) is the maximal sequence of strings of the
tableau of type (a,(c"— &), ¢) constructed in Theorem 1.

PrOPERTIES | The maximal sequence of strings (Sp,, Spys ..., Sh,) of
an LR tableau T satisfies the following properties:

1. If (x, ) € Sy, and (X', j) € Sp,,, then
X>xer<r

2. If (x,]) € Sy, and (x,j') € Sp,,, then
Ji>jer<r

3.0 Sp =0 ) (0 Y and Se = {0 )
(X0t G0, then, for all k= 1,.. ., b, .y,

r+1s
k k +k -k
Xy >xr+1 and Jr+1 er' .

DerFINITION 7 Let 7 be an LR tableau with shape ¢/« and maximal
sequence of strings S, > Sp, > -+ > S, We define the labelling p in
((¢/a)")” such that p,. =7 if (x', p") € (S})", for all r, called the
labelling induced by the maximal sequence of strings of 7.

Let J,...,J, be tile indexing sets of 7 and identify each J; with the
vertical strip of ¢/a labelled by i. Define the labelling p’ in ((¢/@)*)” such
that, fori=1,...,1,

T

whenever (x', y’) = ((x))")7, 1 <r<m; (((x1)")” means the coordi-
nates of the image of the box x! € J; by the map that sends the vertical
strip J; to (J)7).

Clearly, p' = p (recall that x! € J; & x € S,.) So the labellings
induced by the indexing sets and the maximal sequence of strings of T
are the same. For short, we call p the labelling of ((c/a)*)” induced

by 7.
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THEOREM 6 Let T be an LR tableau of type (a,b, ¢), with maximal
sequence of strings (Sp,,...,Sy,) and indexing sets Jyi,...,J;. Then
((¢/a)Y")y™ with the labelling induced by T is an LR-tableau of type
((e3) ™5 b*, (M*) U ay,”) with indexing sets (S} )™,...,(S3 )~ and maxi-
mal sequence of strings ((J3)™,...,(J7) 7).

Proof Let p be the induced labeling in ((¢/a)*)". ]

Claim ((c/a)")” with the labelling p is an LR tableau of type
()7, b7, (M%) Uas).

Using 2 of Properties 1 the labels of ((¢/a)*)” are increasing along
columns (read c/a along rows from right to left); and using 1 of
Properties 1, the labels of ((c/@)")” are strictly increasing along rows
(read c¢/a along columns from bottom to top). Finally, from 3 of
Properties 1, we conclude that (S;)",..., (S;)" are the indexing sets
of (¢/a)”)” and ((J1)™,...,(J3)7) its maximal sequence of strings. Wl

From this theorem it follows

CoRrROLLARY 2 There exist a bijection v between LR tableaux of type
(a,b,¢) and LR tableaux of type ((c3,)”, b*, (M*)Ua};) defined by
v(T) equals the tableau of shape ((c/a)") ™ with the labelling induced
by T. |

Since there is a bijection between LR tableaux of type (a, b, ¢) and
their duals which are LR,, tableaux, (see Theorem 4), it follows

CoroLLARY 3 [19, Theorem 3.1] There exist a bijection ¢ between

LR tableaux of type (a, b, ¢) and LR,, tableaux of type (a*,b", ¢*) defined

by 6(T) = (v(T)) . n
Next example illustrates Corollary 3.

Example4 Leta=(3,1,0,0), b = (4,2,2,1)" and ¢ = (5,4,3, 1). The

LR tableaux of type (a,b,¢) and the LR,, tableaux of type (a",b", ")

are given by first and last labelled skew-diagrams, respectively:
1.

1] 3[4
12;41 214] 2
efa = [1]2]3 (clay) = B (e = et
L] [ 0
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—
o

(cfa)) = | (c/a) =

cla = |1

¥+

—
[
—

B. An Algorithm to Transform LR Tableaux
into LR,, Tableaux and vice-versa

For establishing an explicit bijection between the LR tableaux of type
(a, b, ¢) and the LR tableaux of type (a", 5", ¢*) or the LR tableaux of
type (c3;, b, (M*) U ay,), it remains to exhibit a process of transform-
ing an LR tableau of type (a, b, ¢) into an LR, tableau of type (a, b, ¢)
and show that the process is reversible.

Algorithm 1  Let T be an LR tableau with shape c/a and indexing sets
J1> s

1. Define

JUi=min{ACJ i H#A=H£D, A> D}
le =L U (N \Jll)

2. Define

d! Ja:=J '1,
a/2 a/l - J’,
/ 2 -

We observe that the minimum in step 1 is with respect to the order
relation given in Definition 1. Also observe that J; NJ> C J7.

Clearly, (a.a’’,a’”> =¢) is an LR,, tableau of shape c/a with
indexing sets J1, J5.

Let T be the set of all tableaux of type (a, b, ¢) with {(6™) = ¢, such
that the vertical strips labelled by & and & + 1, respectively, satisty the
LR rule, and L the set of all tableaux of type (a, b, ¢) with I(b*) = ¢,
such that the vertical strips labelled by k and k + 1, respectively, satisfy
the LR,, rule.
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Let T =(a° ... .d* d""',....d") be a tableau in T with indexing
sets Ji,....J,. Let (& La*,a*") be the LR,, tableau generated
by Algorithm 1 when applied to (', a5 d*""). Then T' =
(@, ..., d ! % &% ... a") is a tableau in L with indexing sets
N /TR L A

We denote by v “* D the map that sends 7 to 7". Clearly, ¢* ** !
is a bijection between T and L. For this, let L. and T~ be the sets of the
duals of the elements of L and T respectively. Denote by ¢t/ =%/ =4+ D
the bijection between L™ and T™ induced by Algorithm | when applied
to the vertical strips labelled by 1 — &k and ¢ — k& + 1, respectively. Let A
and p be the canonical bijections, respectively, between L and L , and
T and T™. Now, consider the diagram

L T

A pt
(t=k t—k+1)
o9

T.—

1)

and define the map 1/)((,;‘"“ between the sets L and T such that

w(()l[()kﬂ) - u—l (p(hkf—k—H) A

Then

wg];kﬂ) kD) kD) Ug/;k“) =id.

In particular, when ¢ = 2, L/J“ Yisa bijection between the set of LR
tableaux of type (a, b, ¢) and the set of LR,, tableaux of type (a, b, ¢),
defined by Algorithm 1.

The following algorithm defines the map w,(,},z) explicitly.

op

Algorithm 2 Let T be an LR, tableau with shape c/a and indexing sets
Jl 20p J2

1. Define

Jyi=max {4 CJy: #A=HJ,J1 > A4}
jl = Ji U(Jg\jyv).
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2. Define

We observe that the maximum in step 1 is with respect to the order
relation given in Definition 1. Also observe that /; N/, C Js.

Next algorithm gives a bijection between LR tableaux of type
(a,b,c) and LR,, tableaux of type (a, b,c).

Algorithm 3 Let 7 be an LR tableau with indexing sets Jy, ..., J,.

1. Let go:= id and T'"% .= T. Do k:=0 and go 10 2.
Forj=1,...,t—k— 1, defire inductively

o

T(j\5k~wwfl-50) i Lb(z—jr—j#}) (T(j—l.sk“..f‘m:o)).

Go to 4.

3. Dok:=k+1andgo to?2.

4. Define the cycle epoy:=(k+1...t=11) of §,.
Deﬁne T(O.fk,‘,],,..}sl,;’o) — T(iwk—l,a‘».m‘a].&))‘
If k =t =2, define

T(O‘op) = T(O.f, L3 E1.20)

and stop. Otherwise, go to 3. |

This algorithm is based on the decomposition of the reverse
permutation of &,

op=t-10=2t—10)...(k...t—=10)...2...0=10)(L...t—11)

where (k...t—10N=(kk+1...(¢—=1t),fork=1,... =1

LeEMMA | Let F,GC{l,...,n} such that F>G. Let BCG and
F'=min{ACF:#A=#B,A>B}. Then

F\F'> G\B.

Proof Tt is an easy exercise. [ |
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THEOREM 7 Forj=1,...,t—1, 7 Vo) defined in step 2 of Algorithm
3 is a tableau with indexing sets Ly, L, ..., L, satisfying

L2 2L 0202000012 2L,
2. Li=Jufori=1,...,1—j—1.
3. Lz—j-l \Ll,ﬁj_l > Lt—j+1 \Lz—j+l 22 Lt\Lta where

L;—j—] = min {A g L,__,'_] : #A = #L[*j, A Z L,*j}
and, for i = t—j + 1,... t, we define inductively

E[_j I:LFJ'
Z,[ ::max{A Q Ll' : #A = #i,‘_], Lﬁi‘l > A}

Proof The proof will be handle by induction on ;. Let j = 1. Clearly,
attending to the definition of the map "7,

T(lAeo) = ’45([_10 (T)

is a tableau with indexing sets L,,...,L, where L;,=J; for i=
1,...,t—2, and

Loy i=min{dCJy : #A=#T, 4> ),
L[ ::JtU(J[—l\Ll~1>-

So, L1Z>---2L,x>L, 1>, L,
Since J,_, =L, U(J,_1\L,_)) and L,_,>J,_y, it follows, from
Lemma 1, that

Lio\L, 3> J 1\ L. (14)

Claim L, ;\L| 5> L\L,.

Since zbf,'p_“) (T“‘a”)) =T, it is clear that L, = J,. On the other
hand, J, |\L,_, = L)\J,. Hence, J, |\L,_; = L\J; = L\L, and, from
(14), it follows L, ,)\L'_, > L\L,.

Let j> 2. By induction,

T Um) — ==+ (7—(./?1,60))
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where TU=1%) is a tableau with indexing sets Fy, ..., F, satisfying

Fi>- - >F ;1 2F 2F i 2pFirjm>2>2F,
F=J, fori=1,...,t—],

Ft—j\F;_jZFt—j+2\Ft—j+22"‘2F1\Ft- (15)
with
Fi_=min{ACF_: #A=#F_j1, 4>F_1} (16

and, fori=t—-j+2,...,¢,

Fz—j+1 = F,,j+1

- - - 17
Fl«:max{A CF: #A:#F,'_l, Fiy _>_A} ( )

Using the definition of the map /""" Y and since the vertical strips
Fi,....,F_jyof T7U=14) form an LR tableau it follows from the case
j=1that TU:* is a tableau with indexing sets L,, ..., L, satisfying

Ly > 2L 12 Lij 20 Liju,
Lij2>->2L,

with Li=F;,=J, fori=1,...,t—j~1, L;y=F, for t—j+2,...,1,
and L,_; = F|

1~
Lijp1 = Frj U (Fi\ F’,_j), (18)
and
Leja\NLi ;4 2 Ly \Lji
where

Ll[—j“‘ = mln {A g L[_jf] . #A = #L[_j. A Z Ll—j}

and L,_;1 = Fr 1
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So, from (15), (16), (17), (18), we have L, ;11> F, ;12U (Frjia\Fi_j2)
=F,_jo=L, ;1. On the other hand,

Liji\ Ly = Ly \Frji = F ;)\ Fi; 2 Frja)\ Frjoa
= L2\ Lo

Finally, observe that L; = F;, for i=t—j+2,...,t~ 1,z |

DeriNiTiIONS8 Let je{l,...,r—1}. A tableau £ is called a ((r—)
t—j+ 1), .., (t=2¢t=1), (t—1 1) LR tableau if there exists an LR
tableau 7 such that £ = 7%, where 7U-* is the tableau generated
by step 2 of Algorithm 3 when applied to 7. |

THEOREM 8 Letrje{l,...,t—1}. 4 tableau L with indexing sets L,
Ly,....Liisa{(t—jt—j+1),.... (t—=21t—1), (=1, 1)) LR tableau
if and only if it satisfies the conditions (1), (2) and (3) of Theorem 7
above.

Proof The “only if” part is Theorem 7. To prove the “if” part,
suppose conditions (1), (2) and (3) of Theorem 7 are satisfied. Let
F = u,»ﬁ,;*-f’*’*” L. Then, by induction on j, F = TV "5 for some LR
tableau 7. |

CoROLLARY 4 For cach j=1,...,(—1, ¥"7"7"V iy g bijection
between the setsof (1 —jt—j+ 1),...,(t =2t - 1)(t = 1 D)) LR tableaux
of type (a,b.c)and the (t—j+ 1t—j+2),...,(t—2t-1){r—110)) LR
tableaux of type (a, b, ¢).

Proof  Straightforward. |

THEOREM Y For each k< {0,1,...,t=2} and je {1,....1—k—1},
T U0 defined in step 2 of Algorithm 3, is a tableau with indexing
sets Ly, Lo, ..., L, such that:

1oLy Zop o Zop L 20p f‘k+1 Ze 2 LNrfl > i!e where for i=
k+1,...,t, we define inductively

Zk =1Ly
Lic=max{ACL;: #A=#Li_,, L, > A}.

(When k =0 we agree Ly = 0.)
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2. Li+y,..-, L, satisfy the conditions of a (t—j t—j+ 1),...,(t—2
t—1), (t—1 1)) LR tableau.

Proof The proof will be handle by induction on k. When &k = 0 the
condition 1 is vacuous and condition 2 gives Theorem 7. In particular,
if j=t—1wehave Ly >,, Ly > - > L,and L\ L, > --- > L\ L,.
So, a tableau with indexing sets L,,..., L, is an LR tableau. Let k> 1
andje{1,...,t—k—1}. Then T U500 —qplt=it=+1) (T U1 ek 1,00))
By induction on j, TV~ 1#1%) i5 a tableau with indexing sets Fy, ..., F,
such that:

(@) F1 2o~ 2op Fx 20p Fip1 2+ > Fry 2 F,, where for i=
k+1,...,t, we define inductively

ﬁk :=Fk
Fii=max{ACF : #A4=#F_, F_, > A}.

(b) Fr+1,...,F, satisfy the conditions of a (¢t —j+ 1 ¢r—j+2),...,
(t—21t—-1), (t—1 1) LR tableau.

Since a tableau with indexing sets Fi . 1,..., F, satisfies the conditions
of Theorem 7, the condition 2 follows.

To prove the condition 1 observe that L; = F;, fori#t—j,t—j+ 1,
Ij,_j=€',_j,L,_j+1 :F,_jHU(F,_j\Ft_j). On the other hand, ﬁ,_j_l >
Fj>F,_j1and F,_;_>F, ;> F, ;. So, there exist ZC F,_; ; and
YCF,_; such that F,_, jUZ>F,_UY>F,_ ;1 and #(F__UZ)=
#(F, jUY)=#F,_;,. Therefore, F,; 1UZ> F_jUY>F,_ 2F_j1.
Hence, L,_j_1>L, ;> L, ;+; and condition 1 follows. »

CorOLLARY 5 T js an LR, tableau.

Proof Whenk = t—2andj = 11in Algorithm 3 we get a tableau with
indexing sets Ly >, -+ Zop Liz Zop Li1 2 L, where L, = max
{ACL : #A=#L1, Li > A} So, L, ZopZop L, 326,
L,_12op Lt |

THEOREM 10  Algorithm 3 defines a bijection between the set of LR
tableaux of type (a, b, ¢) and the set of LR,, tableaux of type (a,b,c).
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Proof Let g% =10 .= TIF U~/ "~*Y for k=1,....,t—1. Then
1/) = w(r—rl t)w(t—it 1 r)' . /L‘"’(l RS z)w(l 2 -l is a composition of
bijective maps. |

THEOREM 11 Let ¢ be the bijection defined in Corollary 3. Then

(@) ¥~ ¢ is a bijection between the LR tableaux of type (a, b, ¢} and the
LR tableaux of type (a*,b", ¢").

(b) the map T — ~' (T ™) defines a bijection between the LR tableaux
of type (a,b, ¢) and the LR tableaux of type (c3;, b, (M*) U ay,).

Proof (a) It follows from Corollary 3 and Theorem 10. (b) It follows
from Theorem 4 and Theorem 10. |

COROLLARY 6 There is only one LR tableau of type (a,(¢"—a”™)", ¢).

Proof There is only one LR tableau of type (a*, ¢"—a", ¢”). So, from
the previous theorem, there is only one LR-tableau of type

(as (C*_a*)*a C)- .

The process described in the Algorithm 3 is quite easy to carry out.
We will give two explicit constructions to impart the flavor of the
algorithm.

Example 5 Leta=(3,1,0,0),h=(4,2,2, 1) and ¢ = (5,4,3,1) as in
Example 4. We may check the algorithm to determine all the LR
tableaux of type (a, b, c) and (a”, b*, ¢*), respectively.

We start with the LR,, tableaux of type (a”,b", c*), determined in
Example 4, to transform them into LR tableaux of type (a*, 5", ¢").

! 34 34 34|
24 2]4 214
4 34 4
1]3 1]3 2
4 3 2]




ADMISSIBLE INTERVAL 81

34 34| 2]4]
1[4 1]3 1]2
1[4 1[3 1[3
1]2 1 1]2
L L 1]

4 2 213
304 3 2]4
1]4 1]4
3] 3 2
T Tafe) [ ] J1l4] [174]
103 1]3 2
214 213 203
14 113 112
UL L L

4. THE ADMISSIBLE INTERVAL [w, n]

Given partitions a¢ C ¢, we present an algorithm to describe all the
partitions of LR(a,c). This algorithm stresses the significance played
by the majorization order among the partitions of ZR(a, ¢).

In this section the LR tableaux are taken under the point of view of
Theorem 5. The symbols w and n will stand for the difference parti-
tions ¢ —a and (¢*— a")", respectively.

For convenience, we shall assume that an LR tableau 7 of type
(a, b, ¢) with I(h) = m, has an infinite number of infinitely long columns
where the boxes in column r, outside the c-diagram, are labelled by
oc,, with the convention oo; < oo, iff i < r, and oo, > i, for all i and r
positive integers. So, if (Sp,,...,Ss,) is the maximal sequence of
strings of 7, we define: for all j > m, b;:= 0 and S, := 0; and, for all
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J <1, b;:= o0, with the convention oo > i, for all i positive integer,
and S, by the boxes labelled by oco,...,00,,... such that oo, is
the label of the j-th box in column r, outside the ¢-diagram (counting
from top to bottom). Under these conventions, we shall assume
(Sbl,...,Sbm) =(...,Soo, Sbl,...,Sbm,@,...) and (bl,...,bm) = (, o,
bi,. .. b, 0,...).

Let T be an LR tableau of type (a, b, c), with maximal sequence
of strings (Ss,,...,Ss, ). For i€ {1,...,m}, we denote by T the LR
tableau of shape ¢'/a and weight (...,00,b;41,...,b0,...) obtained
from 7Y~V deleting the string Sh,, where 7 © =7 and :=c.
Clearly, T = g = ¢

Example 6
2 | oos
1] 3]s
1| 21 o005 | oo |oos

LEMMA 2 Let T be an LR tableau with maximal sequence of strings
(Sbys-.ySh,). Suppose the boxes of the string Sy, with i€ {1,...,m},
belonging to the first row of c/a are labelled by x +1,...,x+
u="b,u>0,x>0, and the previous box belonging to the string
Sp, (j > i) is such that 0 <b; < x (if b; = 0 we agree j = m + 1). Then
if we change the labels x +1,...,x Yutob;+ 1, x+1,...,x Tu—-1
respectively, we obtain an LR tableau of type (a, b, ¢), where b~ b’ and
b’ is obtained from b lowering exactly one box. Moreover, b covers b’ in
P, if and only if either b;y =b; or b;="5b;+2 and b;, =
bivy = =bi_1=b_.

Proof Under the assumptions of the string Sy we may write
Sy, = K; U R;, where |K;| = x and R; is defined by the last # boxes of
Sy, contained in the first row of c/a which are labelled by
x + 1,...,x + u Note that, by Properties 1, since S has boxes in
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the first row of c/a, it follows that b;>x + 1 > b, which implies
b; > x> b,+,. On the other hand, b; > x > b;, therefore, b; > b; + 2.

Now, let 7’ be the tableau obtained from 7 changing the labels
x+1l...,x+u=b; of R to by, x+1,....x+u—-1=b—-1,
respectively.

Claim T’ is an LR tableau of type (a,#’,c) where b’ is obtained
from b lowering exactly one box from the i-th to the k-th row such that
by =b;where i <k<jand by_; > by

Now let F be the tableau obtained from 7! changing the labels
x+1,...,x+tuof Rjtob;+ 1,x+1,...,x + u—1=b;—1. Clearly,
F is an LR tableau with maximal sequence of strings (N,..., N,
Np+1) Gf &> 0, N,+1 =0) such that N; = K;URj, where R is
formed by the boxes of the the first row of the skew-diagram of F
labelled by x + 1,...,x +u—1=b;_, Nit1 = Sp.yy .-+ s Np = Sp,, for
some i<h <j, with b;>b, > by 1= =byrg=0b;, and g=j—h,
Ny is equal to Sp,,, plus the box of the first row of the skew-diagram
of F labelled by b; + 1, and Ny = Sp,, for s > h + 1. So, |[N;j = b;~ 1
and [Nj«| = b, + 1. Let b be the weight of F. Then

(biy... bw) > b,
where b = (b, - 1, bigtye oo biy bpar + 1, s, . abh+g, bj+1, e ,bm),
if b;>0, and b= (b; — 1, bis1,..., b, 1), otherwise. Note that the
k-th row claimed above is precisely 2 + 1.
S0, (br, ..., bicys biy ..y b)) > (b1, ..., bisy) Ub.
Clearly, 7' is the tableau obtained from F adjoining the strings

Sp_.,...+Sp. Therefore, the weight of 7" is ¥’ = (by,...,bi-1) Ub.
n

Next example illustrates the lemma.

Example 7 1. Withi=1, j= 5 and k = 4,

1]2]4]5] 1]2]3]4]
T = 11213 T = 172]3
1213 1213
1]2]3 1213
b=(53,3,2,2) v =(4,3,3,3,2).

b does not cover ¥ in Pia.
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2. Withi=2, j=5andk=i+1=3,

b covers b’ in Pyg.

7-'/

1[213]6]7] B 1[2]3]4]7]
1/2]3]6 1[2]3]6
1[2]3 T = 1]2]3
1/2/3]4]5 1]2]3]4]5]
112]3]4]5 1]2]3]4]5]
b=1(7,6,3,3,3) b= (7,5,4,3,3).
b covers b in Py,.
3. Withi=1and )=k =4,
112[3]5] 1/2(3]4
1[2]3]4 1{2[3]4
= T/:
7 1[2/3]4 1[2]3]4
1[2]3]4 10234
b= (5,4,4,3 b= (4,4,4,4).
4 Withi=landj=i+1=k=2,
1[213]5]6]7[8[10]11]
1/2[3]4]5]8]9
213]4l5]7 ,b=(11,8,5,5,3),
11121346
1[2[3]4]5
112]3]5]6]7]8]9]10]
1[2]3[4]5]8]9
12]3]4]5]7 b =(10,9,5,5,3).
1[213]4]6
1/2]3]4]5

b covers b in Ps).

THEOREM 12 Let T be an LR tableau as in Lemima 2

Let

v=x—-b>1 and 0 <r<min{u,v}. Then if we change the labels
x+1,...,x+u of the first row of cla to b+ 1,...,by+rx +
Loo..x +u—r=b;—r respectively, then we obtain an LR tableau T’
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of type (a, b, c) where b= b and b’ is obtained from b lowering exactly r
boxes. Moreover, there is a sequence of LR tableaux (T[)fzo of type
(a,b',¢), for, 1=0,....r, with T =T, T =T such that b° = b»>
b > =B = b, where b' is obtained from b'"! lowering exactly one
box, forI=1,...,r.

Proof For I=1,...,r, let T’ be the tableau obtained from 7!
changing the labels x+1,...,.x+u—{+1to b+ x+1,...,x
+ 4 — 1. From, the lemma above, (77)_, is a sequence of LR tableaux
of type (a,b'.c), for 1=0,...,r, where b’ is obtained from &'
lowering exactly one box, for /=1,...,r. |

CorRoLLARY 7 Let T be an LR tableau with the first k + u boxes
of the first row of cja labelled by 1,....k,x+ 1,...,x + u, where
x>k>0. Let v=x~k>1 and r = min{u.v}. Let T' be the tableau
obtained from T changing the labels x + 1,...,x + u of the first row of
clarok+ 1,k+2,... k+ u, respectively, then there exist a sequence
of LR tableaux (Tl);:o of tvpe (a,b',c), 1=0,...,r, with T" =T,
T" =T, such that b° = b>=b" = = b" = b, where b’ is obtained from
b1 lowering exactly one box, for [ =1,...,7.

Proof Tt is a particular case of the previous theorem with
r = min{u,v}. Therefore, if r=u=v, then x+tu—r==~k+
r=k+u=k+v=x if r=v<uy, then x+tu—-r=k+tu>k+
r=k+v=x; if r=u<v, then x+tu—-r=x=k+v>
k+u=k+r |

CorROLLARY 8 Let T be an LR tableau of type (a,b,c). Let k be the
length of the first row of cja. If T' is the tableau obtained from T
changing the labels of the first row of c/a to 1,2,... .k, respectively
(reading from left to right) then T' is an LR tableau of type (a,b', )
where b>b'.

Proof By successive applications (from left to right) of the previous
corollary we attain the result. [ |

Example8 In Example 7, 2, if we apply Lemma 2 to 7/, with | = 1
and j = 3, we obtain 7" of type (a, b = (6,5,5,3,3),¢), with the first
row labelled by 1,2, 3,4, 5.

We remark that if we apply repeatedly the operation described in
Lemma 2, that is, the procedure of Corollary 8 to each row of the
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skew-diagram c/a of 7, from top to bottom, we will reach the minimal
LR tableau of type (a4, w, ¢). Reversing these operations we obtain 7
from the minimal LR tableau of type (a,w,c).

In what follows we shall present an algorithm to construct system-
atically all the elements of LR(a,c). Along the process all the LR
tableaux of shape c¢/a are also exhibited. This algorithm consists in
changing successively the labels of each row of the minimal LR tableau
from the last to the first row of ¢/a. These changing of labels in each row
of a tableau of shape c/a are described in the two following lemmas.

For this we need an additional definition.

DeriNiTION 9 Given ¢/a, we define the length of the i-th step of ¢/a,
written s;(c/a), (counting from top to bottom) as being the number of
boxes in row i of ¢/a having no common sides with any of the boxes of
the i+ 1-th row.

LemMAa 3 Let T be an LR tableau with maximal sequence of strings
(Spys---1Sh,), m>2. Let m>j>i>1. Suppose the string Sy, has at
least one box in the first row of c/a and the strings Sp_, ..., Sp, .5 Sb;s
with g = j—i>1, which have no boxes in the first row of c/a are such
thatb; ., = - =b;_ .1 = b; < b;_1. Moreover, the box immediately to
the right of the box labelled by b; € Sy, is labelled by z. Then

1. If z > b; + 1, it follows:

(a) si(c""'/a) = 0. (The labels b; € Sy, and b;_, € Sy, , are in the same
column, for some 1 <r<g). There is no LR tableau of shape cja
obtained from T changing the label b, in the first row of c/ato b+ 1.

(b) s1(c/a) > 0. (The labels bj € Sy, and bj, € Sp,_, are not in the
same column, for all 1 <r<g). There is an LR tableau of type
(a, b, ¢), with b= (by,...,b;+1,...,b; =1, bjs1,...,by) = b,

N———

g
obtained from T changing the label b; in the first row of cja to
b; + 1. Moreover, b covers b iff either g = 1 or b; = b;.

2, If z=b; + 1, there is no LR tableau of shape c/a obtained from T
changing the label b; in the first row of ¢/a to b; + 1.

Proof Attending to Properties 1 and the definition of an LR tableau,
it is an easy exercise to check these conditions. It is clear that we may
change the label b; to b; + 1 iff we are in case 1-(b). (Recall the
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conventions made at the begining of this section and note that z is the
label of a box belonging to a string Sp,_, with g <i).

Finally, observe that if Sy, has one box in the first row of c/a then
bj+1 < b |

7

The following is a generalization of the previous lemma.

ProrosITION 1| Let T be an LR tableau with maximal sequence of
strings (Sp,, ..., Sh,), m>2. Let m>j > i>1. Suppose the string S,
has at least one box in the first row of c¢/a and the box to the right of the
label b; € Sy, belonging to Sp,_, is labelled with z. Moreover, suppose the
strings Sp, 5. Sh, Sb,» with h = j— q > 1, have no boxes in the first
row of c/a. Then

—h+1?

1. If, for some g€{1l,... h}, b < bj_g_1, withg#h,orb, + 1<z it
follows:

(a) si(¢/"#'/a) = 0. (The labels b; € S, and b;_, € S_, are in the
same column, for some 1 <r <g). There is no LR tableau of shape
¢/a obtained from T changing the label b; in the first row of c/a to
by_g+1.

(b) si(c’"¢7"/a) > 0. (The labels b; € Sy, and b;_, € Sy, are not in
the same column, for all 1 <r<g). There is an LR tableau of type
(a, b, ¢), withb = (b1,...,biog + 1,...,b;— 1, bs1, ..., by) = b,

N’

g
obtained from T changing the label b; in the first row of c/a to
by_g + 1. Moreover, b covers b iff either g = 1 or b;_, = b;.

2. Ifz=b;_,+ 1, forallge{l,... h}, there is no LR tableau of shape
c/a obtained from T changing the label b; in the first row of c/a to
big+ 1, forallge{l,... h}.

Proof We obtain the previous lemma with 7/ equals the minimum
ge{l,...,h} for which b;_, < b;_,_;.

Attending to Properties 1 and the definition of an LR tableau, it is
an easy exercise to check these conditions. If S, has no boxes in the
first row of ¢/a, then b, < z. So, if b;_g_ > b;_, for some 1 < g< 4,
then z > b,>b;_, | > b;_,, and, therefore, z > b;_, + 1, for some
1 <g < h. As a consequence, in case 1 we have b;_, + 1 < z, for some
g€{l,...,h}. It is now clear that we may change the label &; to
bi_g + 1, with g€ {1,..., A}, iff we are in case 1-(b).
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Finally, observe that if Sy, has one box in the first row of ¢/a then
b1 < by n

In the previous proposition, let g, < g> € {1,..., h} such that b, ,, <
bi—gi—1 < bj_g, < bjg,—1. Suppose g; and g; satisfy 1-(b). Let 7'y be the
LR tableau obtained from 7 changing the label b; € S, to b,_,, + 1,
and 7, the LR tableau obtained from 7 changing the label b; € Sy, to
bj—g, + 1. Then T, may be obtained from 7, changing the label
b/—gl +1to b/ g T L.

The next example is an illustration of Lemma 3 and Proposition 1.

Example 9
1. Withi=2,j=4,z=4,g=2and g =2,

1][2]4]5]
7= L1213 b= (5.3,3,2).
1]2]3

1123

z=bhy+ 1=>b,+1=4 Thereis no LR tableau obtained from 7
changing the label 2 € S, to 4.

2. Withi=3,j=4,z=4,g=1,2and g = 2,
1[2]4]5]
7= 1|2 b=1(5,3,2,2).
1]2]3
1)2]3

z="by+ 1>b3+ 1. There is no LR tableau obtained from 7T
changing the label 2 € S, to 4 but we may change 2 € Sy, to 3.
3. Withi=3,j=4z=6,g=1,2and g =2,

1]2]6]7]
T= 1124 b= (7,4,2,2).
1121315

112134

z=6>bhy+ 1, by > by and s,(c/a) = 0, s1(c*/a) > 0. There is no
LR tableau obtained from 7 changing the label 2 € Sp, to 5, but we
may change the label 2 € S, to 3.
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4. Withi=3,j=5z=007, byg=b3< by, g=2,3and g =2,

11213
112136
T= 1120351 ,6=1(6,4,3,3.3).
112134
1121314

We may change the label 3 € S, to 4 or 5. We obtain LR tableaux
T: and 7, of type (a,b'=(6,4,4,3,2), ¢) and (a, b'=
(6,5,3.,3,2), ¢) respectively. T, may be obtained from 7, changing
4 to 5.

LemMMma 4 Let T be an LR tableau with maximal sequence of strings
(Sps.-..Sh,), m>2. Suppose the string Sy, m > 1> 1, has u boxes in
the first row of c¢ja labelled by x + 1,...,x +u=b;, with x>0,
respectively, where by =b;_ = -+ = b;_g1 < bi_g, With g>1. More-
over, the box immediately to the left of the box labelled by x +1 € S,
belongs to the string Sy,, and the box immediately to the right of the box
labelled by b; € Sy, is labelled by z. Then,

1. If z > b; + 1, it follows:

(a) sl(c"‘l/a) = u. (The labels b; € Sy, and b, € Sy, are in the same
column, for some i <r < j.) There is ho LR tableau obtained from
T changing the labels b, x + 1,...,b; in the first row of cla to
x+1,...,b6;+ 1.

(b) sy(c""Y/a) > u. (The labels by € Sy, and b, € Sy, are not in the
same column, for all i <r < j.) There is an LR tableau of type
(a,b,c), with b=(by,....bi g, bi+ 1, b ;bj—1,..., by),

e’

g
obtained from T changing the labels b;, x + 1,...,b; in the first
row of clato x + 1,...,b; + 1. Moreover, b covers b iff j=1i+ 1
and g = 1.

2. If z = b; + 1, there is no LR tableau obtained from T changing the
labels by, x + 1,...,b; in the first row of cla to x + 1,...,b; + 1.

Proof It is an easy exercise to check these conditions. By Properties
1, clearly h;<x and if s1(¢""Ya) > u the label of the box immediately
below the box b; (recall the conventions made at the begining of this
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section) is > x> b, therefore, we may change the labels b, x +
1,...,b;in the first row of ¢/ato x + 1,...,b; + 1. Finally, note that, if
g > 1 thestrings Sy, ,,...,Ss,_,,, have no boxes in the first row of ¢/a.

-
The next example is an illustration of Lemma 4,

Example 10

1. Withi=3,/=15,b; > by = b3, si(c*/a) = 2 = u and z = o0y,

112]3]4]5]6]
1[2]314]7
1/2[3]4]5]s6 b =(7,6,6,4,4).
1/2[3]4]6
1]2]3]4]5

We cannot change the label 4 € Sy, to 5.
2. With i=2, j=3, co=by> by =by, u=1, s1(c'/a) =2 > 1 and

2= X011,

112]3 6|7
1]2]314]5]6]7
1[2]3]4]5 ,b=(7,7,6,5,4).
1]2]3]4]s5]6
1/2]3]4

We may change the label 6 of S,, and the label 7 of S;, to 7 and 8
respectively.

The next example is an illustration of Lemmas 3 and 4.

Example 11
! 1]2]3]4]5] 1[2]4]57s6] 1[3]4][5]6]
1l2]3 1]2]3 112]3
1]2 12 12
b=(53,2) b=(6,2,2) b=(6,3,1)
1]4]5]6][7] 3[4]5]6]7]
1]2]3 1(2(3
12 1]2
b=(7,21) b= (7,3).

LR {(a,c0)CI(5,3,2),(7,3)]. (5,4,1), (5,5), (6,4) ¢ LR(a,c).
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2.
1]2]3] 1]2]5] 1]3]5]
1]2 1]2 1]2
1]2]3]4 1[2]3]4 1[2]3]4
5= (4,3,2) b= (522) b= (5,3,1)
1]3[4] 1{5]6]
1]2 1]2
112]3]4 1]2]3]4
b=(4,4,1) b= (6,2,1).
(4,3,2)<(4,4,1)<(5,3,1)<(6,2,1)
4,3,2)<(5,2,2)<(5,3,1)
LR(a,c) =[(4,3,2),(6,2,1)].
3.
1[2]3]4]5] 1]2]3]4]6] 1]2]3]6]7]
12]3 1]2]3 1]2]3
1{2]3]4]5 112[3]4]5 112]3]4[5
5=(5,5,3) b= (64,3 5 =17,3,3).
LR(a,c) =1[(5,5,3),(7,3,3)).
4.
1]2]3[4 1]2]4]5] 1]4]5]6]
1]2]3 1]2]3 1]2]3
1]2]3 1]2]3 1]2]3
b=(4,3,3) b'=(5,3,2) b =1(6,3,1)

b' does not cover b and b” does not cover b'. LR(a,c)C[(4,3,3),
6,3, 1)]. 4,4,2), (5,4,1), (6,2,2)¢ LR(a,c).

We say that an LR tableau 7 of shape c/a contains an LR tableau
7 of shape ¢/a if 7 is precisely the LR tableau defined by the last
1(¢/a) rows of T.

Next theorem shows that the reverse of the operation described in
Lemma 2 is given by Lemma 3 or Lemma 4.
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THEOREM 13 Let F be an LR tableau of shape cja in the conditions
of Lemma 2 and F' the LR tableau of type (a,b,c) obtained from
F by changing the labels x+1,... . x+u€sS, to b;+ 1,
x+1,...,x+u—1. Then F is obtained from F by applying the
operation described in Lemma 3, 1-(b), if u=1, and the operation
described in Lemma 4, 1-(b), if u > 1.

Proof  Since the string S, has u boxes in the first row of ¢/a labeled by
x+1,...,x + u, the label of the box immediately under the label
x+1&8, i1s »>x+ 1 and, on the other hand, by Properties 1,
bi+1 < x. Therefore, the label immediately under the label x + 1 € S},
belongs to a string S,, with 4 < 1.

Let (Sp,..., Sy, Sy ) be the maximal sequence of strings of F
(pOSSibly Sb;n_] = @)

Ist Case. u = 1.

S with 5] = x, has no boxes in the first row of ¢/a and the tableau
F'is in the conditions of Lemma 3.1, (b), with s,(¢" '/ a) > 0. Then F is
obtained from F’ by applying the operation described in Lemma 3.1,
(b), that is, changing the label b; + 1 in the first row of ¢/a to x + 1.

2nd Case. u > 1.

Sb;, with ) = x4+ u — 1 > x + 1, has at least one box in the first row
of ¢/a. Naming u — 1 by “new u”°, the tableau F' is in the conditions of
Lemma 4.1, (b) with s,(¢'"!/a) > “new «”". Then F is obtained from F’
by applying the operation described in Lemma 4.1 (b), that is,
changing the labels b, + 1, x + I,...,x tu—ltox+ 1,...,x +uin
the first row of ¢/a.

THEOREM 14 Let T be an LR tableau of shape ¢/a and T the LR
tableau of shape ca obtained from T by adjoining to the top of ¢/a one
row labeled by consecutive integers 1,2,... k. Then T is an LR tableau
of type (a,b,c) containing T iff T is obtained from T by applying
successively the operations described in Lemma 3 and 4. In this case,
b= bhU (k).

Proof The “if”” part is a consequence of Lemma 3 and 4. It remains
to prove the “only if” part. If 7 is an LR tableau of shape c¢/a
containing 7 then, from Corollary 8, T is obtained from 7 by
successive applications of Lemma 2. Reversing these operations we
obtain 7 from 7. From the previous theorem, these reversing opera-
tions are described in Lemma 3 and 4. »
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Taking into account Theorem 14 we may now present an algorithm
to construct all the elements of LR(a, ¢). This algorithm starts with the
minimal LR tableau. Since the operations in which this algorithm is
based on are reversible it is clear that we may also construct an
algorithm starting with the maximal LR tableau.

Algorithm 4 Let a C ¢ and suppose c/a has n rows. For i=10,1,...,
n—1, let (c/a)"™" be the skew-diagram defined by the n,...,n—i-th
rows of c¢/a.

1. Let T'% be the minimal LR tableau of type (a,w,c).
Let T" be the LR tableau of shape (c/a)™.

2. Do i==0 and go to 3.

3. To each each LR tableau T € T ", adjoin to the top of the skew-
diagram of T the (n —i— 1)-th row of the skew-diagram ofT{O} such
that the LR tableau obtained is of shape (c/a)" "', Apply the
operations described in Lemma 3 and 4 to construct all LR tableaux
of shape (c/a)"""Y containing T ¢ T" 1. Denote by 7= the
set of all LR tableaux of shape (c/a)t'"™" 1,

Go to 4.

4. Add the remaining rows of TO 40 each LR tableau € TV, we
obtain LR tableaux of shape cja. Denote this set by Tl
If i=n—2, stop. Otherwise, do i=1i+ 1 and go to 3. »

(We write 719 both for the minimal tableau of type (a,w;c) and for
the set defined by this tableau. A similar convention is made with T,

This algorithm produces a sequence of sets of LR tableaux of shape
cla

710} C 7 C...C T{n=1}

such that, fori = 0,...,n— 2, the first n — i — 2 rows of T and 7H+Y
are the first 7 — i — 2 rows of 71}, The set 71!} is obtained from 71"
by applying to the n—i—1-th row of each tableau of 7 {1 the
admissible operations described in Lemmas 3 and 4.

If 77\ T is of type (a,,¢) then there exist always
T e T of type (a, b, ¢) with b’ b, such that 7" is obtained from 7 by
applying to the n — i+ 1-th row the operations defined in Lemmas 3
and 4. However, if 77 € 7V 717 is of type (a0, ¢) and 7 € T is
of type {(a,b,c) with b’ = b, we cannot say, in general, that 7 " is
obtained from 7 using the operations defined in Lemmas 3 and 4.
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We remark that the maximal LR tableau of type (a, n, ¢) is contained
in 71 = 71,

DeriNITION 10 Given partitions v = (vy,...,v,) and y =y, ..., ¥n),
we write c/a=1v,,+y if a=v" and c¢=(v])+y In this case,
W = (v; + Yp—i+1)1<i<n Dy decreasing order and n = (v; + y)i<icn

LeMMA S

(@) If c/a is equal to (v, +y)" and '[d is equal to ([v + (xX")],, + ¥)".
Then, b€ LR(a,c) iff bu(n*)e LR(d, ).

(b) If c/a is equal to v,, + y and c'|d’ is equal to [v + (x")],, + y. Then,
beLR(a,c) iff b + (x")€ LR(d, ¢).

Proof Since b¢ LR(a,c) iff b€ LR(a", ¢*) it is sufficient to prove (a).

First observe that ¢//a’ is obtained from c/a by adding x boxes under
the last box of each column of ¢/a. So every LR tableau of shape ¢'/d’
is obtained from an LR tableau of shape c/a by adding x boxes
labelled by j under the last box of the j-th column of c/a, for
i=1,...,n

Therefore, (Sy,,-..,Ss,) is the maximal sequence of strings of an
LR tableau of shape c/a iff (Hy,...,Hx, Sp,,...,Ss,) is the maximal
sequence of strings of an LR tableau of shape ¢'/d’, where Hy, ..., H,
are the first x components of the H-sequence of //a’. Hence,
be LR(a,c) iff bU®’)e LR(d, ). Equivalently, b* € LR(a",c") iff
b+ (XM Ee LR, ™). |

LEMMA 6 Let T be a tableau of shape é/a with only one string S; .
Then all LR tableaux of type (a, b, ¢) containing T by adjoining one row
of length k to the top of ¢/a are such that the b’ s form a connected chain
in Pyp. Moreover, if

1. k< b, and si{c/a) = r, we have the chain bO:(Bl,k)<
(by+1,k=1) << (b +r k—r)=".

2, k> 51 and si(c/a) = ry + ry with 51 +ry =k, we have the chain
BO=(k, b)) < (k+1,by—1) < < (k+r, by —r)=0b".

Proof 1t follows from Algorithm 4 and Theorems 13 and 14, |

THEOREM 15  If ¢/a has exactly two rows then LR(a, c) = [w,n] and is
a connected chain.



ADMISSIBLE INTERVAL 95

Proof We are in the conditions of the previous lemma with k and by
equal to the length of the first and second row of ¢/a respectively. So,
w=25" and n=5" or . [w,n] is precisely the connected chain
=1 k)= (b+1,k=1)<---=<(by+r k—r)=b or b'=(k b)<
(k+1,b;—=1) << (k+r, by —r)=b". |

COROLLARY Y Let c/a or (c/a)” be equal to v,, + y, where either
v=(v,x") and y= (k0" or v= (v}, x) and y=(k',0), with
r +1=n. Then LR(a,c) = [w,n].

Proof Tt is a consequence of the previous theorem and Lemma 5.
Observe that, in the first case, w = (v1,x + k)U(x" ') by decreasing
order and n = (v; + k,X") and, in the second case, w = ((v; + kY1)
U(x + k, ;) by decreasing order and n = ((v; + k), x). |

THEOREM 16

(a) LR(a,c) = {w=mn} iff c/a or (c/a)” is a partition.

(b) LR(a,c) = {w,n}, w#n iff ¢c/a or (c/a)” is equal to v,, + y, where
either v = (v], x*), y = (1,0 Horv= (o], (v = 1)"), vy = (k, 0"
orv="" v 1), y=K,0"")orv= (""", x), y = (1",0""),
withvy > x>0,k>0,r,s >0, r +5=n.

Proof

(a) Without using Theorem 3, this result also follows from
Algorithm 4.

(b) Observe that LR(a, ¢) = LR(cy,. (M*) Uay,). On the other hand,
from (a) and Algorithm 4, we conclude that fori=0,1,...,n-2,
#TM = =47 Vand # T 1 = g 701 4 1iff (¢/a)tn 1
has the form indicated substituting » by i + 2. |

In the following we give some examples of the set LR(a,c).

Example 12
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112 112
215 315
12 4 1(2(34
1{2(31]4 112134
] 1]
(5,4,2,2,1) (5,4,3,2)
2,
243
213
1 314 (44,33
1 3|4
L1
3.
112 1 2
2|5 11215 2
1121314 1121314 1121314
1121314 1121314 112134
N L] L]
(5,4,2,2,1) (5,5,2,1,1) (5,5,2,2)
1|3 2
215 2
21314 1]2 4
21314 112134
1 1
(5,4,3,1,1) (5,4,3,2)
4.
112 114 1
315 21315 213
12 4 11234 112134
10234 112(3]4 112(34
1 1 1]

(5,4,3,2) (5.4.4,1) (5,5,3,1)
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(5,5,3,1)
(5,4,4,1) (5,5,2,2)
(5,4,3,2) (5,5,2,1,1)

(4,4,4,2) (514a 31 1’ 1)
(5,3,3,3) (5,4,2,2,1)
(4,4,3,3) (4,4,4,1,1) (53,3,2,1)

4,4,3,2,1)

The underlined partitions are the elements of LR(a, ¢).

Example 13

97

P ]
N
L=

(6,2, 1) (5, 4)
(5,3, 1)

(5,2,2) (44,1

)

The underlined partitions are the elements of LR(a, ¢).
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APPENDIX

After this paper was written the author was informed by A. Kovacéc
that in [6] and references therein other explicit bijections betwen LR
sequences of conjugate shape and weight can be found based on
properties of Schensted insertion or using a jeu de taguin approach.
Thanks are given to A. Kovacéc for his indication.






