SKEW RSK AND THE SWITCHING ON BALLOT TABLEAU PAIRS

OLGA AZENHAS

ABSTRACT. In arXiv:1808.06095 we have introduced the Knuth class of the word recording a sequence of
locations for repeated internal insertion operations in the Sagan-Stanley skew RSK correspondence, with no
prescribed external insertion of new cells, to be a preserver for the P-tableau. As a consequence the Benkart-
Sottile-Stroomer switching involution on ballot tableau pairs allows a realization as a recursive internal

Lr) insertion procedure. This amounts to explain the various presentations of Littlewood-Richardson (LR)
N commuters and their coincidence predicted by Pak and Vallejo with contributions by Danilov and Koshevoi.
o In particular, the aforesaid presentation provides internal insertion as an alternative to Schiitzenberger-
N Lusztig involution (or evacuation) to constructing the Gelfand-Tsetlin pair in the Henriques-Kamnitzer gl,,-
> crystal commuter. In addition, the coincidence of LR commuters solves the Lecouvey-Lenart conjecture,
o recently further developed by Kumar-Torres, on bijections between the Kwon and Sundaram branching
Z models.
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1. INTRODUCTION

We give a recursive presentation of the Benkart-Sottile-Stroomer (BSS) switching map [BSS96] on ballot
tableau (also known as Littlewood-Richardson tableau) pairs based on the Sagan-Stanley internal row
insertion procedure on skew-tableaux [SS90] (see also [RSSW01], and [IMS23] for recent developments). Our
key tool is to observe that the Knuth class of an internal insertion order word of locations in a skew-tableau
preserves the P-tableau in the Sagan-Stanley skew Robinson-Schensted-Knuth (RSK) correspondence with
no prescribed external insertion of new cells. Our aim is to provide a clarification of, and, thereby, fulfill the
original question raised by Pak and Vallejo in [PVI0], with further contributions by Danilov and Koshevoi
[DK05, DKOS], on the coincidence and the involutive nature of all Littlewood-Richardson (LR) commuters.
Danilov and Koshevoi [DKO8| have proven the coincidence of the BSS switching commuter, referred to as
p1 in [PVI0], with the Henriques-Kamnitzer crystal commuter in type A and hive commuter, here denoted
Compx respectively Com?, -, [HK06al [HKOGh.

LR commuters are combinatorial constructions that express in a bijective manner the symmetry of the
gl,,-tensor products. It means to specify combinatorial objects exhibiting the symmetry of the tensorands
Vioand V, in V, ® V, ¥V, ® V,,, by counting the multiplicity cf;u = cﬁj , of the irreducible gl,,-module V
in the decomposition into irreducibles of the tensor product V,, ® V,,. An alternative interpretation of these
numbers is that they are the structure constants of the cohomology ring of a Grassmannian in the basis of
Schubert classes. More generally, beyond Cartan type A, maps exhibiting the isomorphism of the tensor
product of g-crystals A ® B and B ® A are called commuters.

Here, we focus on the LR commuter or fundamental symmetry map referred to as ps in [PV10, Section
6.1] which corresponds to the commutativity bijections originally on ballot tableaux [Aze99l [Aze08], and
later detailed on ballot tableaux and hives in [AKTT6, [TKATS], and referred as p(™ respectively o(™).
More precisely, our p3 commuter, thanks to the the BSS switching p; presentation on ballot tableau pairs
as a recursive Sagan-Stanley internal row insertion, coincides with the Henriques-Kamnitzer gl -crystal
commuter [HK06al [HKO06b] by providing the associated Gelfand-Tsetlin pair.

Henriques and Kamnitzer [HK06a], following an idea of A. Berenstein, show that the map a®b — £(£(b)®
&(a)), with £ the Lusztig-Schiitzenberger involution, does give a crystal isomorphism from B(u) ® B(v) to
B(v) ® B(p) and thereby a crystal commuter. In other words, denoting by LR(\/u,v) the set of ballot
tableaux of shape A/u and content i, to conclude that a commuter p coincides with the Henriques-Kamnitzer
gl,,-crystal commuter [HKOGD, [HKOGa], it is enough, from considerations on highest and lowest weights in
a crystal, to show that the commuter p : LR(A/u,v) — LR(A/v, ) is such that for T € LR(\/u,v) with
left and right Gelfand-Tsetlin (GT) pair (G,,G.), p(T) has left and right Gelfand-Tsetlin (GT) pattern
pair given by (£(G)),&(GL)). The commuter ps does so but replaces the Schiitzenberger involution with
Sagan-Stanley internal row insertion or its reverse internal insertion. At this point it must be noted that
any of those two Gelfand-Tsetlin patterns together with a triple of boundary partitions completely specify
an LR tableau and the corresponding LR hive [Buc00, [AKTI6l [KRV21].

The coincidence of Littlewood-Richardson (LR) commuters is instrumental on a Lecouvey-Lenart con-
jecture [LL20], recently further developed by Kumar-Torres [KT25al [KT25b], on bijections between the
Kwon [Kwol8] and Sundaram [Sun86] branching models. As mentioned by Kumar-Torres in [KT25a],
the only difference between their bijection and the bijection conjectured by Lecouvey-Lenart is the Little-
wood-Richardson commuter used. While Lecouvey-Lenart use Henriques—Kamnitzer gl,,-crystal commuter
[HKO06b, [HK06a], Kummar-Torres use the one by Kushwaha—Raghavan—Viswanath [KRV2I] on flagged
hives studied in [KRV2T] [KRKV24]. The Lecouvey-Lenart conjecture is then positively answered thanks
to the coincidence of LR commuters. We also note that a major fact in the settling of this conjecture
is that Kumar-Torres bijection restricts to tableaux satisfying the Sundaram condition and those whose
evacuation satisfy the Kwon condition by considering and recognizing that they can be embedded in the
Kushwaha-Raghavan—Viswanath [KRV21] bijection on flagged hives. In other words, denoting by *LRf;’l,
the set of left companions of LR(A/u,v), the Kumar-Torres bijection shows that the left companion of a
Sundaram LR tableau is a tableau in *LRQW satisfying the Kwon condition. See Section

Other realisations for the Benkart-Sottile-Stroomer (BSS) switching commuter on ballot tableau pairs
(that is, a tableau pair (Y,T), written Y U T, with Y the Yamanouchi tableau of shape p and T a ballot
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tableau of shape A/u with p C X), denoted p; in [PV10], are based on compositions of Schiitzenberger
involutions [vL.98, Section 3], [PVI10], or on tableau sliding, as in the Thomas-Yong infusion involution
[TY08, [TY09, [TY16]. The latter is realised in [TY0S8] via Fomin’s jeu de taquin growths [Stad8, Chapter
7, Appendix 1]. Beyond type A, Lenart [Len08] realises the Henriques-Kamnitzer g-crystal commuter
[HKO064al [HKO6D] via van Leeuwen’s jeu taquin [vLI8] generalising the Fomin’s growth diagram presentation
of jeu de taquin on Young tableaux for a broader set of root systems beyond the type A. For further details
on coincidence of various LR commuters, p1, p2, ph = p3 Yin [PV10], the Henriques—Kamnitzer gl,,—crystal
commuter [HK06al [HKO6b] and hive commuter [HKOGD], as well the commutativity bijection of Danilov and
Koshevoi [DKO05, [DKO8| on arrays, the Knutson-Tao-Woodward puzzles [KTWO04] and the mosaic model
[Pur08|, we refer the reader to [AKT16l Section 12], [TKA1S8|, Introduction] and [ACM25].

1.1. Sagan-Stanley internal insertion and our results. On skew tableaux there are two types of
insertion [SS90]: external and internal both of which are based on the usual Schensted insertion operation.
However the corresponding procedures on a skew tableau T are different. The former proceeds very similarly
to the usual Schensted insertion. The later has two main steps, firstly one chooses an inner corner of T (see
Section [3| for the definition) and bumps its entry, and, secondly, one inserts the bumped entry externally, in
the row immediately below, in the usual manner. Eventually the bumping route lands at the end of some
row of T" where the last bumped entry settles and thus added at the end of that row of T. The internal
row insertion operation, denoted ¢; if the row coordinate of the vacated inner corner is ¢ (see Definition
3)), is two-fold, adds one box, the vacant box, to the inner shape which in turn expands the outer shape in
one box, the last bumped entry, but, contrary to the external insertion, without contributing with a new
element to the multiset of entries of T

The internal insertion procedure on a skew-tableau is an iteration of the internal row insertion operation
and thus requires a priori in each iterative step an inner corner of that skew tableau. Such information is
encoded by a second skew-tableau, sharing the inner border with the first, in the Sagan-Stanley skew-RSK
correspondence [SS90]. On its turn the instructions that it provides can be translated into a companion
word, Definition [1} listing the row coordinates of the entries, in the standard order, of the second skew-
tableau. This word is the internal row insertion order word of the first tableau. The internal insertion
procedure is not independent of the order of the chosen inner corners. However the Knuth class of the
companion word of the second skew-tableau provides a set of internal insertion order words preserving the
P-tableau in the Sagan-Stanley skew RSK correspondence, when the matrix prescribing external insertion
of new cells is empty [SS90, [RSSW0T], as shown in Theorem

Knuth relations on the companion word of the second skew tableau is a partial contribution to the
question under what conditions is the P-tableau preserved in the skew RSK (see question (3) of [SS90L
Section 9]). The internal insertion procedure in general is not independent of a particular sequence of
chosen inner corners. Recently Imamura-Mucciconi-Sasamoto [IMS23| observed the same property for the
invariance of P-tableau under Knuth relations on the companion word of the second skew tableau. Although
Knuth relations do not capture completely the invariance of the P-tableau in the Sagan-Stanley skew RSK
correspondence, (see Example , they are enough for the purpose of our paper. A nice observation
[RSSWO01] is that the rectification of a skew-tableau of inner shape, say p, can either be calculated by using
jeu de taquin or the internal insertion procedure by choosing, in the Sagan-Stanley internal skew procedure,
an arbitrary second skew-tableau of inner shape p, and outer shape an appropriate rectangle. That is,
the rectification does not depend on the order of jeu de taquin moves nor on the internal insertion order
words provided by the mentioned rectangular skew tableaux. In fact, it turns out that companion words of
rectangle tableaux are anti-Yamanouchi words, therefore, Knuth equivalent when of the same content.

Two words 7 and ' are Knuth equivalent if and only if their P-tableaux under RSK correspondence
are equal P(m) = P(7’) [Sta98]. Theorem (1| (Theorem [5)) below is a natural generalization of this property
for the skew RSK rephrased in Theorem [4] for the internal insertion location words in the Sagan-Stanley
internal insertion correspondence.

The companion word R(U) of a skew tableau U defines an internal row insertion operator ¢y for any
skew tableau T' with the same inner shape as U. See Definition [[]respectively Definition [3]and its extensions
, . If U is a skew tableau, with inner shape pu = (u1,..., 1), on the alphabet [n], the companion
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word of U factorizes into n maximal row words (possibly with some empty factors) R(U) = R, -+ R1
where R; is the row word defined by the row coordinates of the i-cells in U for ¢ = 1,...,n, and the internal
insertion operator ¢y factorizes accordingly ¢y = ¢r, 00 ¢r,. We extend the action of ¢y on
T to the pair Y UT with ¥ =Y, the Yamanouchi tableau of shape y, and denote it &R(U), by filling the
vacated cell of T under the action of ¢; with i1 &;(Y UT) = Y, it pisr,pm) U (T). We refer the
reader to Sections [2] and [3] for an explanation of undefined terms.

Let YT'(\/p) be the set of all semistandard tableaux (SSYT) of shape \/p.

Theorem 1. [Theorem [5| Sagan-Stanley row internal insertion operators and Knuth relations]. Let T' €
YT (a/u), U,U € YT(B/u) and P(T,U) respectively P(T,U’) the corresponding P-tableaux in the Sagan-
Stanley internal insertion correspondence. Then

(a) U and its standardization std U have the same companion word, R(U) = R(std U).

(b) P(T,U) = g (T).

(¢) P(T,U) = P(T,stdU) and internal row insertion commutes with standardization std(P(7,U)) =
P(stdT,U) = P(std T, std U).

(d) P(T,U) = P(T,U') = ¢prw)(T) = ¢prw(T) whenever R(U) = R(U’) are Knuth equivalent.

Finally, Knuth equivalence of internal row insertion order words in Theorem (d), means (see Proposition
that the composition of internal row insertion operators satisfy Knuth relations. The Knuth relations
satisfied by the Sagan-Stanley internal row insertion operators are the key fact in Theorem [2| (Theorem
[9) to show that Benkart-Sottile-Stroomer switching map [BSS96] on ballot tableau pairs, denoted p;, can
be rephrased in the language of Sagan-Stanley internal row insertion operations or, equivalently, reverse
internal insertion operations as next theorem states.

Let n > 1 and as usual put [n] = {1,...,n}. The set LR™ denotes the set of all ballot semistandard
tableau pairs Y, UT, say u = (u1,...,n), and T a ballot tableau of skew shape A/, for some @ C A =

(ALs-- ., An). The switching map on LR™ is denoted by p§”). For 1 <i<m,let (Y, UT)l:=Y,, ., U
Tl € LR be the restriction of Y, UT to the first i rows with Tl of shape (Ay, ..., \;)/(p1, -, i) (See
Section and Definition [5| for precise definitions.)

Theorem 2. [Main Theorem |§|] Let n>1and Y, UT € LR™ with T a ballot tableau of shape \/u and
weight v. For 1 <i < n, let (Y, U T)[i] € LR with Tl of weight (Y. Consider the ith row word of T
where V; is the row subword restricted to the entries in [i — 1], and 7; = A\; — u; — |V;] is the number of entries
equal to i. Put (Y, UT) =Y,0 UH©® := 0, 1° := 0, ¢y = id and pgo)((b) := (. Then, fori=1,...,n, it
holds

pﬁi)[(YM U T)m] _ (ﬁh o @vi o a}l@) ° p(i—l)[(yM U T)[i—l]] (1)
=" 0w o gy, (Yyu-n UH D) =Y,y UHD € LRW), (2)

14
where @? adds the ith row word ¥ to Y, -1y, )’(’;i adds the row word 7#¢ at the end of the ith row of
ov, 0 @ (Y,i-n UH D) and HY =Y,
disjoint and terminate in the ith row.

In particular, all bumping routes of ¢y, are pairwise

This theorem is illustrated in Section We observe that the recursive internal insertion presentation
of switching p§”), supplied with add operators @; and X;, on the ballot pair Y, UT in (1)), (34),

A (Y, UT) = (i 0 dy, o@lr) o0 (Xs? 0 vy 0 wh?) o (X4 o @}*) (0) (3)
—Y,UH, H=Y,,

also produces the companion tableau G, (T) or the Gelfand-Tsetlin (GT) pattern of type v and content A —
of T, defined by the nested sequence of partitions v C (2 C ... C (™ =y such that vV is the content
of the ballot tableu 71 € LR for i =1,...,n. Since pgn) is an involution, pgn)(YV UH) =Y,UT, this
allows another presentation of the switching commuter pgn) via reverse internal row insertion that we call
deletion operator p™ in [AKTT6]. Deletion operator p(™ (ps in [PVI0]) just reverses the process as in (),
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(184) and gives
P(Y, UH) =Y, UT = p{" (Y, UH) (4)
by producing the GT pattern G, (T) of type v and content A — p of 7. This reverse process coincides
with the deletion operations as explained for p(™ in [Aze99, [AKT16] and translated for hives as ¢(™ in
[AKT16, TKA1S]. ) o
Fori=1,...,n, let 0, := \!"¢v,@;" in , . The operator defined by
P (Y UT) = 00201 (0) = (X 0 by, 0 @)) -+~ (¥4” 0 dv 0 @5?) © (1" 0 &) (9). (5)

is the translations of the operator (™ = (¢(™)~! on hives [AKT16l [TKAIS] to ballot tableaux. That is,
™ = (p™)~1. From Theorem and (3), one has

(Y, uT) = p"™ (Y, UT) =Y, UH, H =Y, and shape \/v. (6)
(n)

Since p; ’ is an involution, it follows
=0 =p. (7)
Now, for i =1,...,n, let
S -1 BNl T Ny —
8= (6:) = (@) (ov) T ()T
where the action of this operator is realised through deletion operations in the reverse process of ._Note,
from Theorem |2} all bumping routes of ¢y, are pairwise disjoint and terminate in the ith row, hence (¢y,) ™!
is a reverse internal insertion operation and starts in row 4. Since, ("™ is reversible by reverse row internal
insertion, it defines p(™ via the GT pattern G, that it produces.
We write
p"(Y, UH) =Y, UT
in the sense that p(™) is defined by the production of the GT pattern of type v of T' given by the sequence
of inner shapes in

Y, UH, 5n(Yy U H), 5n_15n(Yy U H), R Oy -+ 5n_15n(Yy U H), 0109 - -+ 5n-15n(Yy U H) = 0.
Hence
P (Y, U H) = p{™ (Y, U H)
We also write
P, UT) =Y, UH
in the sense that p(™ is defined by the production of the GT pattern of type p of H given by the sequence
of inner shapes in
Y# uT, §n(YH U T), ceiy O e (57,4,1(5”(}/” U T), 0109+ -+ 5n71§n(yp, U T) =0.
Then
P (Y, UT) = 5™ (Y, UT) = p™ (Y, UT) =Y, UH.

Thereby p(™ and p(™ just provide another method to compute switching on ballot tableau pairs as

well as the GT pattern pair in the Henriques—Kamnitzer crystal Compgg and hive Com'}”( commuters

[HKO6al, HK06b]. From the bijection, denoted ¢, between hives and ballot tableaux [Buc00, [AKTT6,
[TKA1S, [KRV21l [KT25a], one has the following corollary. (We warn the reader that a hive allows several

representations, namely, vertex representation, as in [KT99], (and [KRV21] with a flag condition),
edge representation as introduced by [RKTO06], and gradient representation as in [AKT16].)

Corollary 1. The following commuters on ballot tableaux or hives coincide and are involutions

p1=p2=py=p=p=py=Compk (8)
ag
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1.2. Lecouvey-Lenart and Kumar-Torres bijections between Sundaram and Kwon branching
models coincide. Let LR(A/u,v) be te set of ballot (or LR) tableaux of shape A\/u and content v. Given
T € LR(\/p,v), we may associate a pair (G,(T),G,(T)) of semistandard tableaux (or GT), called the
left and right companions of T, of shape u and content the reverse of A — v, respectively of shape v and
content A — p. The right companion map ¢ [KT25a] induces a bijection between the set LR(A/u, v) of ballot
tableaux of skew shape \/p and content v and the set LRI);W of p-dominant semi-standard Young tableaux
G, of shape v and content A — p. The left companion map ¢~ map injects each T € LR(\/u,v) to its
left companion tableau G, (T") of shape p and content reverse A — v. The left companion tableau G, of
T € LR(\/u,v) can be characterized by the v-dominance of its contre-tableau, that is, the contre-tableau of
G, with shape p and weight A — v, is v-dominant. The set _LRf;W denotes the set of semi-standard Young
tableaux of shape p and content the reverse A — v whose contre-tableau is v-dominant. The rectification of
those contre-tableaux G, are exactly {(G),) that are still v-dominant because rectification Knuth equivalence
(rectification) preserves v-dominance. Therefore {(" LRy, ) = LR} .

Corollary 2. The Henriques-Kamnitzer symmetry LRf;’V — LRf)’ ., can be defined by

Gy D TS Gu(T) = E(G(T)), (11)

where ¢ is the Lusztig-Schiitzenberger involution. That is, G is the left companion of T' € LR(\/u,v) if
and only if ¢(G) is the right companion of p;(T) = p™(T). Moreover, £(G),) can be calculated by the
reverse Sagan-Stanley internal insertion: it is the GT pattern of shape g and content A — v produced by
the sequence of inner shapes in

Y, UT, 6,(Y, UT), ..., 82+ 6n_162(Y, UT), 6165+ 6,_16,(Y,, UT) = 0. (12)

The commuter concerning ballot tableaux can be translated for hives because LR;, , and Hive(u,v, \)
are in bijection thanks to [Buc00]. (We refrain from defining here hives and refer the reader to [Buc00,
KRV21l [KT25a).) It follows then that from a hive h € Hive(v, u, A) we can injectively obtain simultaneously
a v-dominant tableau P, of shape ;1 and weight A — v, that is, P, € LR; , and a p-dominant contretableau
P, of shape v and weight A\ — p, that is, P, € _LR,iM and £(P,) € LRf;’V.

Fom the coincidence of LR commuters and the work of Kumar-Torres [KT25a], [KT25b] on flagged
hives by Kushwaha-Raghavan—Viswanath [KRV2I [KRKV24], the Lecouvey-Lenart conjecture [LL20] on
bijections between the Kwon [Kwol8| and Sundaram [Sun86] branching models is settled. We refer the
reader to Section for notation and relevant definitions. The Lenart-Lecouvey conjecture says that
the bijection defined by the Hendriques-Kamnitzer LR commuter between LR;}W and LRI)," , Testricts to a
bijection between LRS(A/u,v), the set of LR tableaux in LR(A/u,v) satisfying the Sundaram property,
and LRK 3‘ ., the set of tableaux in LRf," , such that their Schiitzenberger evacuation evacy, (or Lusztig-
Schiitzenberger involution &) within the crystal B(u,2n), satisfy the Kwon property. This amounts to say
that the left companions of LRS(A/u, v) are Kwon tableaux. Kumar-Torres [KT25al [KT25b] show then that
the flagged hive by Kushwaha—Raghavan—Viswanath when restricted to a Sundaram LR tableau exhibits
its GT pattern pair.

Let LRS(A\, 1) :=|JLRS(\/p,v), and LRK(\, ) := ULRKQM where in both cases the union is taken
over all even partitions v, that is, vo; 1 = v9;, 1 > 1.

Theorem 3. [KT25a, KT25b] The bijection of Kushwaha-Raghavan-Viswanath [KRV21] between LR, ,
and LR} , restricts to a bijection between LRS(\/p,v) and LRK}) ,.

Corollary 3 (Corollary @ The Kumar-Torres bijection
LR(\u,v) =5 LR}, -5 LR},
where U is the Kushwaha-Raghavan—Viswanath symmetry, and the Lecouvey-Lenart bijection

LR(\p,v) = LR), %5 LR,
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where U’ is the LR commuter defined by Henriques—-Kamnitzer, coincide. Thereby both restrict to a bijection
between LRS(\/u,v) and LRKg"N and to

LRS(\, u) — LRK(\, p).

The Littlewood-Richardson commuter based on internal (or reversal) row insertion operations was first
introduced in [Aze99] and called p3 in [PVI0]. The involutive nature of this commuter for tableaux and
hives was completely detailed in [AKT16, [TKA18] without making recourse of the BSS switching involution.
Its coincidence with tableau switching was foreseen in [Aze08] which we fulfill here.

1.3. Organization of the paper. The paper is organized in seven sections. In Sections [2| and [3] we fix
the basic notation to work with, introduce our main definitions and recall the skew RSK internal insertion
correspondence. In particular, in Section we recall the companion pair of a ballot tableau and its
importance on characterizing LR commuters. In Section[dwe provide a preserver for the P-tableau. Theorem
is proved in Section as a consequence of several lemmata. In Section [5| the recursive presentation of
tableau switching on ballot tableau pairs in terms of the Sagan-Stanley internal row insertion is worked out;
the Lecouvey-Lenart conjecture is settled as a consequence of the coincidence of LR commuters and the
major contribution by Kumar-Torres bijection. In Section [6] the recursion on ballot tableau pairs is shown
in Theorem Theorem [2[ (Main Theorem E[) is proved in Section

This paper is an extension of the arXiv preprint [Azel8], also announced in [TKA1LS], with further results
and applications.
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2. PRELIMINARY DEFINITIONS

2.1. Basics on Young tableaux. As usual [n] denotes the set of positive integers {1,...,n}, n > 1, and,
if 1 <d < n, [d,n] denotes the set {d,...,n}. A partition (or a normal shape) u is a non negative integer
vector in weakly decreasing order, (u1 > -+ > p, > 0). It is identified with the Young diagram of shape
1, in the English convention, that is, n left justified rows of boxes with p; boxes in the ith row, for each 7,
numbering the rows and the columns in matrix style. The box or cell of the Young diagram in row i and
column j will be denoted (i,5) with 1 < j < u;. Partitions are usually denoted by lowercase Greek letters.
We write |p| := p1 + -+ + py, for the number that p partitions, and the number of positive parts in this
summand is the length ¢(u) < n of p. The unique partition of length 0 is the null partition (0), identified
with (), the unique empty Young diagram. A corner of a Young diagram is a cell such that its removal still
leaves a Young diagram.

For Young diagrams p C A, the skew partition (or skew shape) \/u is the set-theoretic difference A\ . A
semistandard Young tableau (SSYT) T of shape A/p is a filling of the boxes of A\/p over a finite subset [n]
of the positive integers, such that the labels of each row weakly increase from left to right and the labels of
each column strictly increase from top to bottom. The skew tableau T' comprises an inner border, defined
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by the unfilled inner shape u, a filled skew shape \/u, and an outer border, defined by the outer shape .
The labels of T are often referred to elements or entries of T. We denote by {T'} the multiset of entries of
T counting the number of repetitions of each entry. If 4 = @, T is of partition (normal) shape. The unique
empty skew tableau p1/p := 0, is the Young diagram of shape p.

The (row) reading word of T is the word w(T) on the alphabet [n], read left to right across rows of T
taken in turns from bottom to top. When needed, we also consider the Kashiwara reading word of T, also
called north-western column reading word of 7', that is, the word read from right to left across columns
from top to bottom. The content or weight of T' is the content of its reading word w(T), that is, the vector
v = (7,.-.,7n) where «; records the number of i’s in T, for all 7 in the given alphabet. The length |w(T)| of
w(T') is the number of letters which appear in w(T'). Equivalently, |A|—|u| = |w(T)| = || := y1+- - +7ys+- - -
As usual, given the words u and v over an alphabet, uv denotes their concatenation. A word is said to be a
row word if its letters weakly increase from right to left. The set of all SSYT’s of shape A/u is denoted by
YT (M ). If we want to emphasize that the labels of the entries range on the set {1,...,n} then we also
write YT (A/p,n). For an illustration see ([15)).

Noting that T € YT'(\/p, n) is also realized by a sequence of nested partitions g C A1) C ... C A(®) = )
where A\(™) /i1 defines the filling of the boxes of T' on the alphabet [m], for 1 < m < n, the restriction of T
to the alphabet [m)], T\ € YT(A™ /p,n), is the subtableau of T' of content (71, ..., %,), precisely realized
by the subsequence p C X1 C ... C A(™),

A tableau in YT'(A/p) with |y| boxes is said to be standard if the entries are the numbers from 1 to
|v|, each occurring once. The standard order of the boxes on a semistandard Young tableau is given by
the numerical ordering of the labels with priority, in the case of equality, given by rule southwest=smaller,
northeast=larger.

Given U € YT (A/p) of weight ~, the standardisation of U is the standard tableau std U obtained by the
standard order of the boxes of U. This means to renumber the entries of U in numerical order from 1 to
|v|, and, in case of equal entries, regard those to the left as smaller than those to the right. The tableau U
is easily recovered from std U and its weight . For an illustration see Example

2.2. Basic calculus on Young tableaux. Recall the Schensted row insertion (here also called external
Schensted row insertion) takes a SSYT T of partition shape, and an element m in the T-alphabet, and
constructs a new tableau, denoted T +m. For a word w = w; - - - wg on the T-alphabet, we recursively define
the new tableau T ew = (- (T +wy) *wz) + - -+ ) » w, [Ful97]. Recall the elementary Knuth transformations
on words over a totally ordered alphabet and its compatibility with row Schensted insertion [Ful97, [Sta98§].
For letters z,y, z in a totally ordered alphabet, an elementary Knuth transformation is governed by the
rules below. As usual we write = for Knuth equivalence between words,

yzr = yaz, if yzex = . = 3yc 2] = . =y-.xz , equivalently, r <y <z, (13)

and

zzy = zay if xzey = . Z: vl _ . = z »xy, equivalently, z < y < z. (14)

Two words w and w’ are said to be Knuth equivalent, w = w’, if they can be transformed into each other
by a sequence of elementary Knuth transformations. Two skew-tableaux 7" and U are Knuth equivalent
T =U if and only if w(T) = w(U). Equivalently, T' and U have the same rectification, that is, the insertion
tableaux P(w(T)) = P(w(U)) obtained by row Schensted insertion of the words w(T') respectively w(U)
[Ful97, [Sta9s].

Remark 1. The row reading and column reading words of 7" are Knuth equivalent. The Kashiwara reading
word and the reverse row reading word of T" are Knuth equivalent. The P-tableau of the Schensted row
insertion of a word w = wyws - - - ws equals the P-tableau of the Schensted column insertion of the reverse
word of w, wg - - -wowy. That is, P(w) = wyswge«- - +ws = Wy < -+ 4 Wy < w1 where < means Schensted
column insertion. For instance, in (13), yz+xz =z < 2+ y =y+xz = 2z < x < y. (Similarly for )
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Thereby, the P-tableau of the reading word of T', and the P-tableau of the Kashiwara reading word in the
Schensted column insertion is the same.

If nothing in contrary is said we always consider Schensted row insertion.

Either for the Schensted row insertion or Schensted column insertion version of RSK, we have the following
result: two words m and 7’ are Knuth equivalent if and only if their P-tableaux under RSK correspondence
are equal P(m) = P(n’) [Ful97, [Sta98]. In the usual RSK, Knuth relations completely characterize the
words having the same P-tableau.

2.3. Ballot tableaux and companion pairs. We follow closely the references [AKT16], [TKA18, [ACM25]
and we refer to them for additional details. A SSYT tableau is said to be ballot or Littlewood-Richardson(LR)
tableau if the content of each suffix of its reading word, that is, the content of the subword read backwards
from the end to any letter, is a partition. Such a word is also called Yamanouchi, ballot or reverse lattice
word. The ballot tableau of shape p is also called Yamanouchi tableau, Y,. In other words, it is the unique
tableau of shape and content p, that is, the entries of row 4 consist of i’s. Denote by LR(\/u,v), where
w, v C A are partitions, the subset of YT'(A/p) consisting of ballot tableaux of shape A/u and content v.
That is T' € LR(A/p,v) if and only if T =Y.

Example 1. For instance, in , H and T are SSYT’s of shape (4,3,2)/(2,1,0), and Y(32,1) is the
Yamanouchi tableau of shape (3,2,1). The reading words of H, T and Y are 121312, 231211 and 322111
respectively. The two last words are Yamanouchi but not the first. Therefore T" and Y are ballot but H is
not,

1]2] 1[1] 1[1]1]
H = 1(3 T = 1|2 Yv(37271) =12|2 T= Yv(37271). (15)
12 2[3

A key tableau of shape 7 is the tableau Y, of shape m whose content « is a permutation of its shape 7
or the columns are nested as sets. In particular, when « is the reverse of 7, rev w, we say that Y., is the
anti- Yamanouchi tableau of shape 7. For instance, for n = 4 and p = (2, 1,0, 0) respectively v = (3,2,1,0),
one has the anti-Yamanouchi tableaux of shapes p respectively v where the weight is the reverse of the
shape

w

4]

3[4
Y012 = ‘:e"a@lY(z,l,o,O)v Y0123 =

= evacsY(3.2,1,0)- (16)

NEE
=~

Let B(mw,n) be the crystal of tableaux of shape 7 on the alphabet [n], and £ = evac,, the Schiitzenberger-
Lusztig involution (or Schiitzenberger evacuation) on that crystal. The highest weight element of B(m,n)
is Y, and the lowest element is £(Yr) = YViey x-

A SSYT tableau T is said to be anti-ballot or an opposite Littlewood-Richardson(LR) tableau if its reading
word w(T') is anti-Yamanouchi, which means the content of each prefix, that is, the content of the subword
read left to right from the beginning to any letter is a reverse partition. A tableau T' € YT'(A/u,n) of
content revy is said to be anti-ballot if T' = evac, (Y,) = Yiey . Denote by opLR(A/p, revy), where p, v C A
are partitions, the subset of YT'(A/u,n) consisting of tableaux T of shape A/ and content revy such that
T = evac, (V) = Yievw.

Example 2. Let n =4 and T € LR(\/u,v) as in the previous example. Recalling that reversal [BSS96|
ACM25] is the version of Schiitzenberger evacuation for skew-tableaux, one has that reversal of T is in
opLR(A\/p, revr) with reading word 443324 equals to

2[4]
3 = Y(0,1,2,3)- (17)

3
414

Given n > 1 and a ballot tableau T' € LR(A/p,v) with £(A) < n, one associates a pair of companion
tableauz or Gelfand-Tsetlin patterns (GT) (G.(T),G.(T)), left companion respectively right companion
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uniquely determined by 7. (We identify a Gelfand-Tsetlin pattern of base (or type) x with its natural
tableau presentation of shape k.)

Remark 2. In fact T € LR(\/u,v) is completely specified either by its left or right companion tableau.
In addition, they are linearly bijectively related, see [PV10, [ACM25].

The left companion G,,(T') of shape p and content rev(A—v) is obtained from 7" by recording the sequence
of partitions ;(*~"t1) giving the shapes occupied by the entries including the empty entries identified with
0 <rinrows r,r+1,....,n of T, for r = 1,2,...,n. We get then the nested sequence of partitions
pH € p® C-on Cpl =y defining G,,(T).

The right companion G, (T) of shape v and content A — i is obtained from T by recording the sequence of
partitions v" giving the shapes occupied by the positive entries < rinrows 1,2, ..., rof T, forr =1,2,... ,n.
We get then the nested sequence of partitions v(!) C (2 C ... C v(™ = v defining G, (T). Equivalently,
the row r of G, (T') records the row coordinates of the r-cells of T for r = 1,...,n [AKTI16].

Example 3. Let n =6, A = (6,5,5,4,3,0), v = (4,4,3,2,0,0), u = (4,3,2,1,0,0) and T € LR(\/p,v) as
below. We illustrate T' with its GT pattern pair (G,(T),G.(T)) € B(,6) ® B(v,6)

0
T 3 0
2[2][2]4]
T = AF G.(T) = 3315 o2 0
- 1]2]3 ? P«()_46 ’
213]4 G 4 2 1 0
213]4 2]

4 3 2 1 0 0
GT pattern of type u and weight rev(A — v) = (0,3,2,2,1,2) defined by the nested sequence of partitions

p=p=(4,3,2,1,0,0) 2 pu® = (4,3,1,0,0) 2 u* = (4,2,1,0) 2
2 pt? = (3,2,0) 2 u® = (3,0) 2 p) = (0) (18)

and

G(T) =

(19)

= N[
Y|

The Kashiwara reading word (right to left across columns top to bottom) of

G,u(T) & Kevu = Gu (T) ® }/7(0,0,2,3,4,4) = Yvrev)\ (20)
Gu(T) ® Y(po2344) = 4252362346 ® 5645634563456 (21)
=GT) 5645634563456 (22)
2[2]2[3]4]6]
313[3[4]|5
5|5(5]6
616(6

Remark 3. G, ® Yievy = Yreun is equivalent Y, ® C(G,) = Yy where C(G),) is the contre-tableau of G .
Note the word of the contre-tableau is the dual word of w(G()), that is, if w = wiwsy - w;s is a word in
the alphabet [m] then the dual is (m — ws) - - - (m — w2)(m — w1). Equivalently, w(C(G,)) is v-dominant,
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and w(Y,)w(C(G,)) is a Yamanouchi word of weight A (for details see [Ful97, Section 5.1, Appendix A.1]
and [Buc00, Appendix]),

Y, ® C(G,) = Yx. (24)
Therefore, since £(G,,) is the rectification of C(G,,), £(G,) = C(G,) is v-dominant,
1
113
Y, < C(Gu) = Yaaza00) STalal = ¥
315]5]5

The Kashiwara reading word (right to left along columns top to bottom) of ¥, ® G, (T') is the Yamanouchi
word of weight A whose column insertion gives Yj:

Y, ® G, (T) = 1121231234 ® 3524513451234 = (25)
Y4,321,00 ¢3¢ 02+ 451345+ 1234 (26)
=Y, (27)

Remark 4. In the row reading word option the corresponding versions are Yy.c,,*G (1) = Yrcoa respectively
G,(T)-Y, =Y, [Fuld7, Section 5.2, Exercise 3].

We now collect a few facts that characterize the set of GT-patterns of shape p and weight rev(A — v)
respectively the set of GT-patterns of shape v and weight A — 1 each of which specifying the set LR(A/v, p).
We need some notation. We denote the set of those GT-patterns by _LRﬁ) respectively LRfL,}. Recall
that

v

B(n) @ B(v) = @ B\, (28)

where the sum is taken for all partitions A D u, v, and C;/\W =#L(\ p,v).

The set LR,L)I\.,V (’LRQ’U) of semistandard tableaux G, (G},) of shape v (1) and content A — i (rev(A —v))
are those in the crystal B(v) (B(u)) such that Y, ® G, (G, ® Yievy) is the highest (lowest) weight element
of weight A (rev\) in a connected component of B(u) ® B(v) isomorphic to B(\).

Therefore, G, € LR} , if and only if it satisfies the left y-dominance (the Kashiwara readi the word of

p,v
G, concatenated on the left with the canonical Yamanouchi word of weight p (the Kashiwara reading word
of Y,) is =Y.

On the other hand, G, € ’LR;},D if and only if it satisfies the right revr-dominance, that is, the word

of G, concatenated on the right with the canonical anti-Yamanouchi word of weight revy ( the Kashiwara
reading word of Yievy) is = Yieva. Equivalently, from 7 Y, ® C(G,) = Y,, it amounts to say that
&Gy € LR;H.

We know from [HKOGD] that LR}, ,, LR, , and LR(\/v, ) are in bijection. In fact, from [HKOGH],
T € LR(M\/v, 1) has companion pair (G,,G,) if and only if Y, ® G, = Yy and G, ® Yrepy = Yreon are the
highest and lowest weight elements of a same connected component of B(u) ® B(v) isomorphic to B(\).
We know from [PV10, [HKOGD] that LR;)),,/’ _LR3,V and LR(A/v, p) are in bijection. In fact, from [HKOGD],
the pair (G,,G)) € LR;)V X _LR/’)’V is the companion pair of T' € LR(A\/p,v) if and only if Y, ® G, =Y,
and G, ® Yievy = Yreun are the highest respectively lowest weight elements of a same connected component
of B(u) ® B(v) isomorphic to B(\) where T' € LR(\/u,v) is the recording tableau in the column insertion
[Nak93| [KwolS§] of G, <= Yyeyy and Y, < G,,. In other words, each copy of B(\) is uniquely parameterized

by aT € LR(A/p,v). From [Kwol8] we then have an RSK version of
B(pn)®Bv,n)= P Bn) x{T} (29)

A
TELR(A/ )

where A is taken over all partitions of n such that pu,v C A.

Furthermore, from Henriques-Kamnitzer commuter [HK06b], (G,,G,) is the companion pair of some
T € LR(\/p,v) if and only if (£(G.), {(G,,)) is the companion pair of some H € LR(\/v, ). Note that the
Henriques-Kamnitzer commuter subsumes Remark
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We then have the right companion bijection ¢

¢: LR(\/p,v) — LR}

(8%

T G,(T) (30)
and the left companion bijection ¢~
¢ LR\ p,v) — “LR) , T — G (T). (31)
The Henriques-Kamnitzer commuter [HK06b] Compk can be written as
Compg =&oc oc™t

or in its left version

_ _—1
Comy =&ococ

,1 .
Comu : LR),, “— LR(\/u,v) <= "LR), =+ LR}, G, = T = G, — £(G,.), (32)
or
——1
Compy : “LR), “— LR\ u,v) <+ LR), =5 "LR) ., G T = G, = £(G,). (33)
Example 4. For n = 6 this is an illustration of the inverse of map ¢~ applied to G, (T) to get T
3324‘ | EEpEE : 2[2[2[4] 1
Gu(T) = ; . [3]3]5 , 303 2],
4[6 1
) 4] 4] 2
— — — 2]
1[1]
1 i 12
332‘ 12, [2[2]2] 12| =T, 12[3] =T (34)
203 203 2[3[4
203 2[3[4 2[3[4

where U = (2,1,1,1,0) = A — shape(T) =A—(4,4,4,3,3), and T is obtained from T by adding 7, i’s, to
row ¢ of T, for i = 1,...,£(N).

2.4. The companion word of a skew-tableau.

Definition 1. Let U € YT (\/u,n) of weight . The companion word of U is defined to be the word
R(U) = R(std U) := ujy - - - uguy listing the row indices of the entries of std U, from the bigger to the
smaller. Equivalently, to construct uj, - --uguy, for p =1,...,|v|, put u, = i, if the number p is in the ith
row of std U. The companion word of T factorizes into n maximal row words (possibly with some empty
factors) R(U) = R, - -- Ry where R; is the row word defined by the row coordinates of the i-cells in T' for
1=1,...,n.

Example 5. Let

1[3] 4]6]
U= 2|4]  €YT(A/(3,2,0),4), V= 5|7]  €YT(A/(3,2,0),6),
1[2]3 4[5[6
2[6]
std U = std V = A7) €YT()\(3,2,0),7).
1[3]5

The corresponding companion words are

R(U) = R(V) = R(stdU) = R(stdV) = 2132313
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R(U) =RaRsR2R1 = 2132313
R(V) =R7R¢RsR4R3R2R1 = 2132313000
R(stdU) = R(stdV) = R7R¢RsRaRsR2R1 =2132313
Proposition 1. Let U € YT(3/u) and R(U) its companion word. If 4 = @ then R(U) is a Yamanouchi
word = Y. If i # () and f8 has rectangle shape then R(U) is a anti-Yamanouchi word of content (ﬂf(ﬂ))fp =
(Br = 1, By = iz, -+ Br — o)) and thus =Y gem) -

Proof. If = () it is a consequence of the definitions of companion word and Yamanouchi word [Ful97]. If
i # 0 and S has rectangle shape, it is enough to observe that the word R(U) is a reverse Yamanouchi word
of content (81 — pi1, 81 — 2, ..., B1 — pue(p)), that is, in each prefix of R(U) the number of (i +1)’s is at least
equal to the number of i’s, for all . O

Example 6. The companion words of Y, 3 4) respectively U

1[2]2]3]
213[3]  =Yugsa, R(Yisa)=12231121, U=
3

1]2]3]

R(U) = 31221211

l»-lkl\DH
w
w

are Yamanouchi words of weight (4,3, 1).

Remark 5. If T is a ballot tableau of weight v, R(T) is the word of the companion tableau or Gelfand-
Tsetlin pattern G, of T. Let U € YT'(4,3,2)/(2,1) be a ballot tableau of weight v = (3,2,1)

1[1]
U= 112
213
The companion word of U is R(U) = 323112 = R3RoR1 = G, which is precisely the reading word of the
1[1]2]
companion tableau G, = |23 of the ballot tableau U.
3
Let T be a ballot tableau of weight v = (4,4, 3,2)
1[1]
1[2
T = 112]3 (35)
2134
2134
1111213
_ 21314|5
R(T) = 04534523451123 = RsR4R3R2R1 =G, = 31405
4|5
Example 7. Companion words of rectangle shapes are anti-Yamanouchi words
1 2
U= 113(4| stdU = 115|7
3131415 314168
1 ‘ 1[2[2]3]
R(U) = R(stdU) = 32323312 = | [2]2]2] =3'2°1 = [2[3]3] =Yus_(a31)
313[13[3 3

If 4 C X C + are partitions, we say that the shape of v/ extends the shape of A/u which in turn extends
the shape p. In general, when we say that the SSYT V extends the SSYT U it is meant that the shape of
V extends the shape of U and we write U UV for the object formed by gluing U and V together.

If S and T are SSYT’s of shapes p and \/u, SUT is said to be of shape A. If Z is another SSYT of
shape v/A, T'U Z has shape A\/u and we write SUT U Z := (SUT)UZ = SU (T U Z). The tableaux S,
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T and Z are filled in any finite ordered alphabet consisting of positive integers. Sometimes it is convenient
to look at SUT as a SSYT of shape A by adding a constant to all entries of T, for instance, the biggest
entry of S. In view of these definitions if U is a tableau we say the subtableaux U; and U, decompose U if
U =U; UU; and Us extends U;. When S and T are both ballot tableaux with S of normal shape, we say
that we have a ballot tableau pair of normal shape. In this case S is the Yamanouchi tableau Y,.

Definition 2. Let LR denote the set of all ballot semistandard tableau pairs of partition shape where
the length of the shape is < n.

3. SAGAN-STANLEY SKEW RSK AND INTERNAL ROW INSERTION OPERATORS

3.1. Internal insertion words of a skew tableau and their Knuth classes. Let T' € YT'(\/u) with
(X)) = n. An inner corner of T is a cell (i, j) such that when added to the Young diagram of y still results
in a valid Young diagram. For instance, (1,4), (2,3), (4,2) and (5, 1) are inner corners of T but (6,1) and

1
(3,3) are not, T' = with £(\) = 5.

3

Definition 3. [SS90] Let T € YT'(A\/u) with £(A) = n and 1 < i < n+ 1. The Sagan-Stanley internal
(row) insertion operator ¢; is an operation over T' defined whenever (i, u; + 1) is an inner corner of 7. We
have to distinguish two cases.
e The cell (4, u; + 1) is an empty cell which means that (i — 1, u; + 1) € A\/p. Then ¢; just adjoins
the blank cell (i, u; + 1) to the Young diagram of u, in row ¢ of T.
e The cell (i,p; +1) € A/u. Then ¢, vacates the cell (i, u; + 1) of T, bumps its entry and inserts the
bumped element, using the usual Schensted row insertion rules, into row i 4+ 1 of 7. The insertion
then continues in a normal fashion, ending with an element settling at the end of some row < n+ 1.

| |
a1 = ¢4 =

3] 3] 3]

With an internal row insertion operation ¢; on T, no new entry is added to the tableau T. Instead the
skew-shape changes by adding one blank box at the end of row ¢ of the inner shape u, and, if it is the
case, one filled box is added to the outer shape A. The new tableau ¢;T" has shape (A + e;)/(u + €;) with
1 <t<n+1, and is Knuth equivalent to T. In particular, if T is a ballot tableau, then ¢;T is also ballot.
Whenever the internal row insertion operator ¢; is defined on T, it can be easily extended to the tableau
pair Y UT with Y =Y),, by putting

_ Y, v Ui(T), if 1 <i<n,
(bz(Y UT) — (15 pi 150 pn) (rb( ) 1. >N (36)
Yiur,pn) YUbni1(T), ifi =n+1and p, > 0.
T 1[1]1]1]
B STo 11 21211
Par = 133
313
3 3]
— 3]

IfYUT e LR™, ¢;(Y UT) € LROFD,

Definition 4. Given T € YT («/p), an internal insertion order word for T is the companion word R(U)
of any skew tableau U sharing the inner border with T, that is, U € YT(8/u) with p C 8. We say
U eYT(B/u) with p C 8 is an internal insertion order tableau for 7.
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Given an internal insertion order word u| u|y—1 -+~ uguy of T' € YT (/1) of content +y, one defines the
corresponding internal insertion operator

Qﬁuwuw,lmugul = QSuM © Q/)uw,l ©:--0 ¢u2 o ¢u1~ (37)
This is well defined because ¢y u, _, - usus T = ¢r(u)T for some U € YT'(B/p). Then P(T,U) := ¢pru)T €
YTO\/B).

The bijection below is a special case of the Sagan-Stanley skew-RSK correspondence, Theorem 6.11 in
[SS90], when the matrix word m = ), and is denoted by SS. In this situation the skew-insertion procedure
is reduced to the internal (Schensted) row insertion procedure. This correspondence, calculates a bijection
between pairs of tableaux (T,U) sharing the inner border and pairs of tableaux (P, Q) sharing the outer
border that preserves the Knuth equivalence class, T'= P and U = . Also the outer border of T equals
the inner border of @, and the outer border of of U equals the inner border of P. (See also [RSSWO0I] for
more details and properties.)

Theorem 4. [SS90, Theorem 6.1, Theorem 6.11], [RSSWO01] (Sagan-Stanley internal row insertion corre-
spondence.) Fix partitions pu C «, 8. There is a bijection,

YT(a/u) x YT(B/p) — U  YTO/B) x YT(Ma)
Mlz\alilﬂ\—lul
vy 5 (P.Q), (38)

where P =T and Q = U. The P-tableau, P(T,U) := P is given by ¢ @)T. The Q-tableau Q(T,U) := Q
is the recording tableau.
Corollary 4. Fix partitions u C «, § and the above setting
(1) If B is a rectangle shape with £(8) > £(u). Then P = g Urect(T') where rect(7T) is the rectification
of T
(2) Ta=pand U e YT(B/u), P(0,,U) = 0s equals to the Young diagram of shape 8 and Q(0,,U) =
U.
(3) It u=0, P(T,U) =T and R(U) is a Yamanouchi word of weight .

Let U in the alphabet [m]. Set T®) = T and U = . For j = 1,...,m, let r%j) > > 7",(6{,) be the
row coordinates of all j-cells in the standard order of U and define TU) = ¢ 3 O TTOPR (TVU=Y). Then
1 L

J
define UY) adding to UU=1 j-cells so that the external shape of U) matches that of 7). Finally set
P =T and Q = U™). See Example [8 below.

The following exhibits a symmetry of the skew RSK map of tableaux proven in [SS90] not immediate
from the definition, and the compatibility with standardization. Schensted insertion commutes with stan-
dardisation. In addition the effect of each operator ¢,, on the shape of 7" will be the same as the effect on
the shape of stdT

Proposition 2. (a) [SS90, Theorem 3.3] If SS(P, Q) = (P',Q’), then SS(Q, P) = (Q’, P'). That is, like

P’ and P, also the recording tableau ' is obtained from @ following a number of internal insertions.
(b) std o SS(P, Q) = SS ostd(P, Q).

Unlike for the classical RSK correspondence, a detailed description of properties of Sagan and Stanley’s
algorithm has proven to be more challenging to obtain. A recent attempt was undertaken by Imammura-
Mucciconi-Sasamoto [IMS23] by iterating the skew RSK correspondence, that is, the space of ordered pairs
(P,Q) of tableaux of skew shape, which are built on repeated internal insertions in P whose locations are
determined by Q

Given a tableau T' € YT («/p), we would like to characterize the tableaux U, U’ € YT(8/u) such that
P(T,U) = P(T,U’) in (38). The theorem below shows that Knuth equivalence on the companion words
R(U) and R(U’) provides sufficient conditions for the equality. Given a skew tableau T, similarly to the
ordinary RSK, Knuth equivalent internal insertion order words of T' means a certain Knuth commutation
of the corresponding internal insertion operators which gives rise to the same tableau P. Our theorem
partially answers our aim and the second part of question (3) of Section 9, in [SS90].
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Theorem 5. (Theorem [I| ) (Sagan-Stanley row internal insertion operators and Knuth relations.) Let
T e YT(a/p), U, U € YT(B/p) and P(T,U) respectively P(T,U’) the corresponding P-tableaux in the
Sagan-Stanley internal insertion correspondence. Then

(a) U and its standardization std U have the same companion word, R(U) = R(std U).

(b) P(T,U) = ¢prn(T).

(¢) P(T,U) = P(T,stdU) and internal row insertion commutes with standardization std(P(T,U)) =
P(stdT,U) = P(std T,std U).

(d) P(T,U) = P(T,U’) = ¢pr)(T) = ¢ (T) whenever R(U) = R(U’) are Knuth equivalent.

The proof will be delayed until Section [.3] and will follow from two lemmata, Lemma [6 Lemma [5] and
Proposition [3]
Example 8. Let p = (1), a = (3,2,0) and 8 = (4,2,1). Below U, stdU, and U’, std(U’) are internal
insertion order tableaux of T = 5 Zl’) 3] . The corresponding internal insertion order words are Knuth
equivalent, R(U) = 312211 = R(stdU) = R(U’) = R(stdU’) = 132211,

1[1]2] 1]2]5] 1][1]3] 1][2]6]
U= |2]2 stdU = |34 U =122 stdU’' = (3|4

Knuth equivalence of internal insertion order words, R(U) = R(U’), implies that the corresponding internal
insertion operators ¢x () and ¢y commute according to the Knuth relations, that is, ¢r) = drw)-

P(Tv U) = ¢301220011T = d13¢020011 1T = P(T, Ul) = 3

2]~

[t
—_

Q(T7 U) 2 Q(T7 U/) =

1 1
12] 2]
3] 3]

R(U) = R(U’) and R(Q(T,U)) = 513423 = R(Q(T, U")) = 153423.

Example 9. For the T and U above one has n = 3, a = (3,2,0), 8 = (4,2,1), A = (4,3,2,1,1), (P, Q) €
YT((4,3,2,1,1)/(4,2,1)) x YT((4,3,2,1,1)/(3,2,0))

YT(a/(1),3) x YT(8/(1),3) — |J YT(V/B.3) x YT()/a,3)
A
[A|=11

(T,U) (P,Q). (40)
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o _ [ 18] o _y — |
T 513 U Do
P 0 Z [1]3[3] U0 = 1
2] 1]
| 2]
PRy =P122 19y _ 3 2) _ 1
— T =nr v 1]2
2] 2]
| 2]
PR3 =03 3 1
B p=1® =3 Q=U0%=[12
1] 12]
2] 3]

SS(T,U) = (P,Q)

The inverse Sagan-Stanley internal insertion correspondence SS~1, o = (3,2,0), 8 = (4,2,1):

YT(A/B,3) xYT(\a,3) — U YT(a/(1),3) x YT(5/(1),3)

|,\|i11
PQ = (T,U). (41)

The inverse Sagan-Stanley internal (row) insertion operator, gbi_l, or Sagan-Stanley deletion operator,
is denoted A;. The reverse companion word of Q, revR(Q) := revRirevRaorevRs = 324315 defines the
deletion operator

ArevR(Q) = ArelerevRy‘eng (42)
- Arele o Areng o Areng (43)
| |
3 [ s, i N
PO — 3 QO = 05 = B0 p(l) = QW =
0 u ik 3]
l L=
2 1112
SraTSe p) — [113[3] Q®@ = [2]2 2 TS pe = 3l Qw- 3 2l _
2] 3] 3]

SS™Y(P,Q) = (T,U)

4. A PRESERVER FOR THE P-TABLEAU IN THE SKEW RSK CORRESPONDENCE

The Schensted row insertion takes a SSYT T of partition shape, and an element m in the T-alphabet,
and constructs a new tableau, denoted T'+m [Ful97]. For skew tableaux there are two types of row insertion:
external and internal both of which based on Schensted insertion but with different procedures namely, in
the former, the element in the T-alphabet to be inserted is added to the multiset {T'}, and, in the latter, is
picked in {T'}[SS90} Section 2].
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4.1. External row insertion on skew tableaux. Sagan-Stanley row external insertion [SS90, Section 2]
on skew-tableaux is similar to Schensted’s original procedure. We start with a SSYT T of shape \/p and
an element m in the T-alphabet to be added to T'. To start, m replaces the smallest entry in the first row of
T strictly larger than m; in the case where m is bigger or equal than all entries in the first row, it is placed
at that row’s right end. If an entry was displaced from the first row then it is inserted into the second using
the same rules as above. This process continues until some element comes to rest at the end of a row. The
only need for caution in the skew case is when something is to be inserted into row ¢ which is empty and
this can only happen at the beginning or at the end of an insertion. It happens, when p; = A; and in this
case we put the element m in cell (i, \; + 1). We obtain a new skew-tableau denoted T.m with the same
inner shape p and {T'-m} = {T} U {m}.

If T is a skew-tableau and wu is a word over the T-alphabet, T.u denotes the skew tableau with the same
inner shape as 1" obtained by the Sagan-Stanley row external insertion of win T'. That is, if u = uy - - - uy,
Teu= (((T"u1)+---)+uy). When T is of straight shape T « v coincides with the usual Schensted
insertion [Ful97]. More generally, if U, V and W are tableaux of straight shape, U.V means U - w(V'), and
UV) W=U-+(V-W).

We may look at Sagan-Stanley external insertion on a skew-tableau T' of shape A/u as an insertion on a
straight tableau Y,, UT of shape A, where ¢(u1) is added to each entry of T, that is, T is filled in the alphabet
{0(p) +1,6(n) +2,...}. If uis a word over the alphabet {¢(u) + 1,4(n) +2,...}, then

Y, U(T+u) = (Y, UT)u. (44)
The following is a lemma on commutation and cancellation in the plactic monoid of Lascoux and
Schtzenberger
Lemma 1. Let u and «’ be two words in a same ordered alphabet A = [n].
(a) [LS90, Proposition 2.3] Let B C A be an interval and let u|p and let ujy be the restrictions of u
and v’ to B. Then one has

u=1u' = up = up. (45)
(b) [RSSWOI, Lemma 7.5] Let w, v be any words in the alphabet [k] and C' = k---21 be a column.
Then
(i) Cow=wC.

(ii) C+w = C+v if and only if w = v.
(¢) If ur = vz with x = a1 ---ax a row word in A such that the smallest letter a; in x is bigger or
equal than all letters in the words « or «’ then
(i) ux = v’z = Tz is a tableau for some tableau T with entries in A less or equal than a; such
that u=u =T.
Lemma 2. (External insertion on skew-tableaux.) Let T' be a skew-tableau and u and v two words over
the T-alphabet. Then
(a) w(T.w) = w(T)u, and
(b) T+u =T +v whenever u = v.

Proof. (a) If T has straight shape then w(T"+u) = w(T)u. In general, if T has shape A/yu, using ([44]), one
has w[Y, U (T +u)] = w[(Y, UT) +u] = w(Y,, UT)u. From ({@5), it follows w(T +u) = w(T)u.

(b) Again using , as a consequence of the usual Schensted insertion on straight shapes, one has
YUTv) =%, uUuTl)v=(Y,UT)u=Y,U(T-+u) whenever v = v over the T-alphabet. Thus
Y, U(T+v) =Y, U(Tu) whenever u = v over the T-alphabet implies 7'+« = T+ v whenever u = v over the
T-alphabet. O

The reverse direction of Lemma [2} (b), that is, the cancelation law, is trivially true when T is just a
Young diagram. Otherwise, unless additional conditions are satisfied as in Lemma [1} it is false in general.
For instance, one has yxz = yzx for © < y < z and zz # zx with = < z.

Indeed external insertion preserves Knuth equivalence: if T" and Z are tableaux with the same inner
shape, and T'= Z and u and v are Knuth equivalent words, then from Lemmal2 T+u = Z+v. In case T
and Z are of the same straight shape then we have T'=Z and T »u =T +v.
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4.2. Internal row insertion and internal bumping routes.

Definition 5. If T € YT(\/u), with £(\) < n, T € YT((A\1,...,\)/ (s, -, i) denotes the tableau
consisting of the first ¢ rows of T, for ¢ = 0,1,...,n, that is, the restriction of the tableau T to the first ¢
rows. We put 7% = () and 7"l =T
Definition 6. Given the skew tableau T' € YT'(A/p) and 0 < i < n where £(\) < n, we say that T is factor-
ized across the row i when we write T =T’ + Tl"), 0 < i < n, with T” of shape (Aig1,. -, An)/(fis1s -+ fin)
is the restriction of T' to the last n — i rows.

In particular, let T be a SSYT of straight shape factored across the ith row, T = T" * TU, with T” the
tableau obtained by suppressing Tl from 7. Note that T = T s Tl = 77Tl

Let T € YT(A\/p) with £(A) =n, assume 1 <2< --- <n<1<2<---<nand fill in the inner shape
(,, with the coloured alphabet 1 < 2 < --- < n so that we get the Yamanouchi tableau Y),. Let us factor
Y, UT across the ith row. Then one has,

Y, UT =Y'UT)* (Y, UD) =Y UT) % Yy iy YT = Y UT) (Vi) UTH) (46)

.....

where Y and T” denote the restriction of Y, and T to the last n—1i rows of Y}, and T respectively. Thereby,
in the sense of , we may write

T=T xTH =7 .70

Assume that (i, p; + 1) is an inner corner of TU with entry z. Tt then follows that the action of the
internal row insertion operator ¢; on T' may be read as an operation which bumps the entry x in the
cell (i,p; + 1) of Tl and then inserts externally the bumped element z in the subtableau 7”. That is, ¢;
on T bumps the entry z and left justifies it in the (i + 1)th row. Then

p(Ty = zxTl (47)

Q_Si(yv(ul,...,m) U T[l]) = Tx* (Y—(,uh...,p,,;-‘rl) U TE])) (48)

where T is Tl with the entry x bumped out from the cell (i,u; + 1). It means that T €
YT((A,..s M)/ (g, ... i + 1)), that is, TU with the left most entry of the ith row suppressed and
the corresponding blank cell added to the ith row of the inner shape of T, Henceforth, from ,

and (48],
6i(T) = T« T =T ¢ (T =T+ [&x T = (T" - 2) « TV, (49)
Gi(Y,UT) = Gil(Y UT) % (Yy,oopuy YT = (Y UT) # 65 (Yipy,opuy UTY)
Y UT) 2% (Y iy UT)]
= [(Y'UT) ] % (Yuypsny VT
(Y UT") 2% (Yoo UT). (50)

1seees i

If 4, = X\; and (4,\; + 1) is a blank inner corner then z = () and &I = (% TE] = T[_i], with T[_i] €
YT((A,- s hi + 1)/ (s s + 1)) . Also T =T « T
As an aside, observe that w(¢;Tl) = w(z * Tg]) = mw(TLﬂ) = w(T), and obviously ¢;Tl" = Tl
Therefore, using Lemma
w(pT) = wT x+TY) =w(T - 2)w(T) = w(T)zw(T) = w(T)w(e:TH)
= w(Tw(TW) = w(T « Ty = w(T). (51)
Remark 6. Let Y, ... )UT € LR be a ballot tableau pair and 1 < m < n. Consider the

factorisation through row m,

Y(Ml»-~#n+l) ur = [Y(Mmﬂ,n-,unﬂ) U T\} * [)/(Hla*“vu’m) U T[m]] € ﬁR(nJrl)'
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Then T!™ is a ballot tableau on the alphabet [m], and T € YT((Am1s-- - Angt )/ (msts - - - fns1)) con-
sisting of the last n+ 1 —m rows of T is such that the word restricted to the alphabet [m+ 1, n + 1] satisfies
the Yamanouchi condition.

Example 10. An illustration of and is given below:

L[a]i]a]a]1]
L[a]i]a]a]1]
122111212 _ [4]3]4]4] —111111‘7434|4[ 2[2[1]2]2
03(3[2]3]3 = 515 cos|2[2]1]2]2 = 575 AORE
41344 3[2[3]3 5
5[5 =
L[a]i]a]1]1]
:§§4|4‘.*22122
33313
1@4Ta]  [L[afa]afe]a]  [a[@fal4] [Lfr]r]i]i]a]
=375 « [2]2]1]2]2] = T[375 - [2]2]1]2]2
5] 3/@)3]3 5] 33313
412 4]4]
-Gt - mo - R
5
L[a]ifa]1]a]
3[3]3]3 2[2]1]2]2
~ [4]2]4]4 tlafefafa]a] — [3[3]3]3
IREIE 2[2]1]2]2]  — [4]2]4]4
5] 35
5]

An internal row insertion operator ¢; (¢;) on Y UT (T) determines a collection R; of boxes, which are
those where an element is bumped from a row, together with the box where the last bumped element lands
and settles [Ful97]. Let us call to R; the ¢;-bumping route of Y UT. In particular, retain that whenever
é; acts on Y U T and the ¢;-bumping route terminates in some row k > i, this means that the kth row of
¢;(Y UT) equals the kth row of Y U T with the last bumped entry in {T'} added at the end. If £()\) < n,
the ¢;-bumping path (route) terminates in some row < n + 1.

For instance, below Y UT, Y UH € LR®), and ¢3 acting on Y UT bumps 2 and fills the vacant cell with
3, then the bumped 2 is inserted in the 4th row and bumps 3, 3 bumps 5 which lands in the 6th row, and
5 is added to the 6th row. In , R3 consists of the black boxes and the bumped numbers are 2, 3 and 5,
highlighted with circles, the entries of the three last boxes of Rs. The ¢;-bumping routes R; in Y U T and
Y U H are similarly displayed below in :

L[I1]a]a]1] T[] 1[D1]
%%%%%11 2[2[1]2]2 22102
- 3[3)3[3 . 2
YuT = [312]3]3 ¢3(YUT) = 1(@%44 (Y UT) = 3382 (52)
1]3]4]4
3
5]5 Ok OB
L[] ]a]1] L[] 1]@1]
2|2[1]2]2 B 2[2[1[@D]2
YUH= [3]2]3]3 »n(YUH)=[3]2]2)]3
1[3 1[3|3
414 414
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The ¢3-bumping routes Rs, ¢1-bumping route Ry of Y UT, and ¢;-bumping route of Y U H

L[ fafa] [afafafa]m]1]

2[2]1]2]2 2[2][1]m[2 éé}:;”

3(m[3]3 3[2(m[3 ST w3 . (53)
1/m[4]4 1/3(m4 5w

(1B (B 1T

Ll Ll

One often says a is a ¢;-bumped element of the skew-tableau 7' to mean an entry a of T' that is bumped
under the action of ¢; on T. Thanks to , one has as a consequence of the Row External Bumping
Lemma in Section 1.1 of [Ful97]. This Lemma is instrumental in the proof of the Main Theorem and clearly
shows that the internal insertion operators do not obey a naive commutation but instead a Knuth relation
commutation as we shall see in the next section.

Lemma 3. ([Ful97] Row internal bumping routes) Consider 1 < i < j < n. Let R; and R; be the pair of
bumping routes of ¢; on Y UT and ¢; on ¢;(Y UT) respectively; and let R; and R;- be the pair of bumping
routes of ¢; on Y UT and ¢; on ¢;(Y UT) respectively. Let B and B’ be the corresponding pair of new
boxes. Then it holds

(a) R; is strictly left of R} and B is strictly left of and weakly below B':

B’
B

(b) R} is weakly left of R; and B’ is weakly left of and strictly below B:

B B’ oOr

Loor 5Bl (54)

In particular, R; goes always strictly below the bottom box B of R; by Q_Sj—bumping the element in B,
this necessarily happens in the case of the left hand side of , or by passing strictly to the left of B.
Henceforth, if = is ¢;-bumped and y is ¢;-bumped from the same row then y < z. Moreover, if B was
created in the (n + 1)th row then one has BB, and the last ¢;-bumped element resting in B is ¢,;-bumped
out to be settled in B’ and is strictly bigger than the element ¢;-inserted in B.

Example 11. An illustration of the internal insertion bumping routes lemma:

T Tiim[1] L] ][m]1]
212122 22121 ggz%
_ [3[3]2]3] - - _ 2 1313[2[@)
YUuT TiTata P30 (Y UT) ¢34]>3@ 1111013 (55)
13D
AE 14® ¢
2] 2[®
L[1]1]1]1] L[] ]m]1]
212]2]2 212121
P193(Y UT) = ¢y i féi = Z fé% , (56)
1135 1[3@
21 2 |AO)
103(Y UT) # ¢3¢ (Y UT).

4.3. Proof of Theorem Internal row insertion operators satisfy Knuth relations. In this
section, for a fixed T, a sufficient condition on U for the coincidence of P(T,U) in the Sagan-Stanley
internal row insertion bijection in Theorem [4] is provided. The sufficient condition does not involve the
tableau U directly but rather its companion word. The companion word of U, Definition [T} encodes the
inner corners for the action of the sequence of internal insertion operators acting on 7. Before giving the
proof of Theorem (1| (Theorem [5]) we start with some warmup results.
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When the shape 8 of U is a rectangle of height > ¢(u) and width > 4, then the part of P occupying
the rows > ¢(8) is a rectification of T'. Then the internal insertion procedure is independent of a particular
sequence of inner corners in 7' chosen [RSSWO0I]. We may therefore have P(T,U) = P(T,U’) with U #
U’and as we have seen this happens for example when the shape 8 of U and U’ is a rectangle of height
> ¢(u) and width > pq. We have the following characterization which only takes into account the shape of
U and is independent of T'.

Lemma 4. Let T € YT (o/p) and U € YT(3/1) where § is of rectangle shape. Then R(U) = 6(5)&7“’“5)

.. 2B1—p2 1Pi—m g a reverse Yamanouchi word of content (ﬁf(ﬁ)) — = (81— p1,B1 — pa2,. .., B1— pup)),
and, therefore, P(T,U) = P(T,U’) is the skew tableau with inner shape the rectangle diagram (J3 where
below it is the rectification of the subtableau of T' consisting of the first 81 columns, and to the right of it
is the subtableau of T consisting of the last max{a; — $1,0} columns of T'..

Knuth equivalence on R(U) and R(U’) provide only sufficient conditions for the equality of P(T,U) =
P(T,U’). In fact, we may have P(T,U) = P(T,U’) and R(U) # R(U)’. The example below illustrates this
fact.

Example 12. (1) Companion words of U and U’:
_ [Taf1] _ 2] - [1]2] o [ ]2]4]
U—22 sth—34 U—12 sth—13
R(U) = 2211 = R(stdU), R(U") = R(stdU") = 1212.
(b) R(U) and R(U’) are internal insertion order words of T' = 5 é 3] , and

P2211T = = ¢1212T

113
2

but R(U) # R(U’). However, this property does not hold for every given T having R(U) and
R(U’) as insertion words which shows that necessary and sufficient conditions for the equality
P(T,U) = P(T,U’) also depend on T.

_ [[1]2]3]
For T = 313

, one has

[3] 3]
# ¢12127 = T3
313 3

@2211T =

(2) Companion words of V' and V' below are internal insertion order words of
1] 2] 2]
T = 2] V= 1 =V = 3] , R(V)=312# R(V') =213,

¢312T/ - 7'é ¢)213T/ = 1

[ee]eo]
[eofe
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(3) Wi = | ; W= ; ,R(W1) = 212 = R(W) = 221, 221 = 212 but 2211 # 1212
3]
PrRWo)T = PonT = T3 = ¢p212T = prew T
12
but as we have seen above ¢9211T = ¢p12127T. On the other hand, if T = 5 é 3‘ , U= 5 1 ‘
and V = 1 , o1 T = 1 %+ P19 T = 1 . However with U" = [1] and
— = 213 3
l L=1
3] 3]
V= [1] , R(U') =312 = R(V') = 132, one has ¢sT = ¢13.T = :1))
2
— 2

The following lemmata and proposition show that Sagan-Stanley internal row insertion operators satisfy
Knuth relations. Let T be a SSYT of shape A/u with £(A\) = n. When we write ¢, (T), for some word wu,
it is assumed that there exists U € YT'(8/u) such that R(U) = u, that is, v is an internal insertion order
word for T'.

Observe that if m is the largest entry of U € YT (8/u) with « its content, and 1 < d < m, we may
decompose U = Ujjq) U Ujjgq1,m] and stdU = (stdU)|q U (stdU)jg+1,14] With ¢ = 71 + --- + 74, and
R(U) = R(U)ig41,m))R(U)jq)).- On the other hand, if for some V € YT(v/e), R(stdV) = uguous = ijk
and 1 < i < k < j (respectively R(stdV) = ugusu; = kji and 1 < i < k < j) then v is not a row nor
a column and it is easily checked that there exists V' € YT(vy/e) such that R(stdV’) = jik (respectively
R(stdV’) = kij). Without loss of generality, we may consider i <k =i+1<j=i4+2o0ri=k<j=1i+1,

2] 1]3] 3l 1]2] -
V=11 oV= 3 and V' = |[1| or V' = 3 , R(V) = jik = R(V') = ijk, R(V) = iji =
3] — 2] A
. 1 2
R(V')=jit;andi<k=i+1<j=i+2,V = 3,V = 3], R(V) = kji = R(V') = kij.
2 1

Reciprocally if R(stdU) = wz then U = Z U W with R(stdW) = w and R(stdZ) = z. Let R(stdU) =
ugjikuy with 1 < i < k < j and ug, ug words. Decompose stdU = Uy UV U Us such that R(Uy) = uq,
R(V) =ijk and R(Us) = uz. Then U’ := Uy UV’ UU; has R(U’) = usjikuy. Therefore if u is an internal
insertion order word of T and w' = u then v’ is also an internal insertion order word of T. Lemmata and
proposition below show that the plactic class of an internal insertion order word of T" gives rise to the same
P-tableau of T in the Sagan-Stanley Theorem [

Lemma 5. Let T € YT (\/p) with £(\) =n. Let n — 1 < ¢(u) < n. Then

Gion kT = i T, 1<i<k<n. (57)
In addition, if £(u) = n,

Gibni10kT = P16t T, 1<i<k<n-+1. (58)

Proof. Recall that we are assuming that (k, u, + 1) is an inner corner of T.

We start with identity . Let T'= U % V be the factorization of T across the kth row, 1 <i <k < n.
Let ¢V = ax V' where |a] = 0,1 such that « is the empty word if and only if ux = Mg and in this case V'
is obtained from V by adding an empty box at the end of row k, otherwise the call (k, up + 1) is vacated
from the entry o which migrates to the cell (k+ 1,1). Let ¢;V' = 8% V". Since i < k, by Lemma 3] (a),
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if |a| = 0 then |B] = 0 and ¢;(V') = V", and if |a| = 1, then either |f] = 0 or o« < 5. Then, using the
factorization , one has to analyse the cases
I. || = 0. One has ¢,V =V’ and ¢;V’ = V" and it follows
= dgnqgia)k(U * V)'
IL. |of = 1.
(a) If |3] = 0, one has ¢V =a*x V' and ¢;V’' = V" and
Gipndk(U V) = ¢i(dn(U+) * V') = ¢, (U.) ¥ V' = ¢, (U + ) x V'
= ndion(U x V).
(b) If |3| = 1, one has ¢,V = ax V' and ¢;V’' = B+ V" with a < j, that is, ¢;¢,V = af V", a < B,
and
$i0ndk (U + V) = ¢ion(U.0kV) = dicn[(U.c) x V']
D (U= )iV’ = [pn(U-a)- Bl x V"
= [, (U-aB)]* V", a<p; Lemma[3 (a), external bumping version,
= on(U-af V") = ¢p(U+ V) = ¢ndi(U.0xV) = ¢pnpiop(U V).
It is similarly checked that holds. O
Lemma 6. Let T € YT (\/p) with £(A) =n. Let n — 1 < ¢(u) < n. Then

J)kaﬁi&)nT = ékén@giTa 1<i<k<n. (59)
In addition if ¢(u) = n,

ki1 T = Gpdni19:T, 1<i<k<n+l1 (60)

Proof. We first consider with 1 <i<k<n. Let T =U « W %V be the factorization of T' across the
(k —1)th and (n — 1)th rows. Since {(A\) = nand n—1 < l(u) < n,let U =0, .u with u = vy ... u,,
r = A\p — fin, be the nth row of T with |u| > 0 and g = (p1 ..., ptn), tn >0, and A = (A1,..., A\n), Ap > 0.
Using the factorization , one has

Gbipn (U x W V) = ¢pi[(pnU) * W x V)

k[Pl + i (W % V)], i < n,

Pe[(@nU = B) x W' s V'], ¢i(W s V) = B+ W'+ V', [B] >0,

= (¢uU - B) - o W' 5 V' (61)

and
Ok bndi(U x W x V) = ¢ [U + 0i(W % V)] = o (U« Bx W' 5 V')
= pn(U+B) - p W' x V', (62)
We want to show that and are equal, that is, ¢, (U.3) = ¢,U.8. We have two main cases, either

the ¢;-bumping route reaches the nth row or not. B -
I. The ¢;-bumping route does not reach the n-th row, that is, |5| = 0. Then ¢, (U - 8) = ¢,U = ¢,U.3,

and = = ¢ U+ pp W' x V',
II. The ¢;-bumping route reaches the n-th row. That is |3| = 1, and § is the ¢;-bumped element from
the (n — 1)th row to the nth row. Since i < k, by Lemma [3| (b), ¢ W’ = @ * W” with 8 > @. Then

@) = (G- B) - W' 5 V' = ($U - B-@) s W" 5 V",
62 = 6 (U-B) - W'« V! = §(U+B) - Qs W 5 V',
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Next we consider the following cases according to the length of of w in the nth row U of T'.
(a) |u| =0. One has U =0,,,, (U B) = ¢n(Dp,.5) = B %0y, +1. Then, since 5 > @, it follows

G UB-@Q@ = 0, 11+8-Q@=p3%0,,1Q,
on(U-pB)-Q én(0,,8)+@=LBx0,, 1@, and
_ = B0, 1@« W %V, (63)
(b) lul = 1. One has U = 0, u1, ¢p,U.8 = uy * 0,113 and

én((z)ﬂnulﬁ% 3% S 67
qsn(wﬂnul *18)5 up > /B

(Z_Sn(U'ﬂ) = Q_Sn(@unul 'B) = {

Henceforth

uB*0,,+1Q, up < B,

o UBQ = (u1x0,,418).Q = {uﬁl * 00, 41Q, ug > B,

- On(Dp,u1B) Q@ =uy %0y, 18- Q@=u1Bx0,,41Q, uy <6,
2(U.B).Q =
?n(U-F) {¢n(ul . @mﬁlﬁ)@ = uﬁl * (Z)unJrl@a u > f.

Thus = are equal to w1 S0, 1@« W" « V' if uy <3, or fl %0, +1@Qx W %« V', otherwise.

(¢) lu| > 2. One has U =0, uy - - - up, with r > 2, and ¢, U = ug 0y, 41us - - - up.

Either u, < 8 or u, > .

(1) up < B.

Since 8 > @, let x := min{z € {ua,...,u,, S} : 2 > Q} and (uz...u,B).Q =: x xu/. Note z > ug > uy.
Henceforth

6 (UB).Q = ¢p(Dy,u1-urB).Q=uy (D, 1us - up3).Q = ugx x 0, 1110,
and
GpUB@Q@ = wupxDu,1u2-up)f.Q=wuy (0, 11u2-u8).Q=wzx0,, 1.
Therefore, = =wz* 0y, 10/ « W= V',

(#3) It remains to study when u, > S.
(#.1) up > B. Onehas @ < f < ug <ug < -+ < uy,

Gu(UB)-@ = dp(ur* 0y, Bug -+~ u,).Q = uﬁl * (0, 41u2 - up).Q

= uﬁl u2 *mun+1@u3...ur’

and

ouU-B.Q = (ug 0y, y1u2---uy)B+Q=ujus * (0, +10usz - u,).Q

= uﬁl u2 *®N7L+l@u3...ur_

Thus, = (62) = fl Y2 % 0, 41Qug -+ up x W % V', where ujusff = w1 fug = uﬁl U2 with 8 < uy < us.
(44.2) up > -+ >u; > > uj—q > -+ > uq, for some i € {2,...,7}. One has

UB =0y, ur -ttty B = % 0 ug - -1 flir - - Uy
Let
x:=min{z € {ua,...,ui—1, 5} : 2z > Q}
and (ug -+ uj—18uit1 -+ up).@ =: z xu'. Note that u, > -+ > u;41 > u; > 5 > x > ug > uy. Henceforth

on(U.B).Q = dplu; * 0y ur - wim1Buipr - ur).@ = 51 % (0, 41u2 - w1 Buigr - up).@

uy x /
Ui * wﬂn,-O-lu 5
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and
6 UBQ = (ug* 0y, 11u2 - up).0.Q = ugu; * (D, 41us -+ wi—1Buitr -+ uy).Q
= wu;x*x0,, v, >
uy T

= w; ES @u +1ul
Again, (61) = = T x0,, u « WV and uyuir = wpwgr = Y, with ug < < u;.
g ? i P+
‘We now study for 1 <14 < k = n, which is similarly checked.

‘En‘bid)n(U *V) = ¢n(<5nU-¢iV)a oV =BV, ((B)=0,1

= ¢n(¢nU ° ﬂ) * V’), (64)
L6(g) =0
= ¢n(pnU) V' = 42U V' = (63).
L. £(8)

(a) ¢(u) =0. One has U =0, = ¢oU =0,, 41 = ¢ (U.3) = B*0,,+1. Therefore
" = én(énU'ﬁ) « V' = én(ﬁ * wun+1) *« V' = 5 * ®H7L+2 x V'

= Gnbn(U.B) x V' = @2 (yB) * V' = (B * Dpt1) * V' =B 50, 42 x V'
(b) £(u) = 1.
One has U = 0, u1, ¢poU = u1 x 0, 11 and ¢, (U.B8) = ¢4 (0, u1.3). Then

= ¢ndn(U.B) * Vo= (bi(@u B) * 14
= On(BrDy,11)xV' = {

w1 Bx 0, 42% V', up < B,
B V/ uy > 3,

uy

&%(wunulﬁ) * V/a Ui S 67
G2 (ug *yB) * V' uy > B,

_ On( u1 # 0, +18) « V', up < B,
G (L ur x 0y, 41) x V', ug > B,

B {mﬁ*% 2 x V7w <,

(G8) = pnoon(U-B)x V' = & (yuy - ﬁ)*V'_{

* 02 *x V5 ug > B

(c) l(u) > 2.
Let U =yuy---up, r > 2.
(i) up < B
On(dnU » B) = G (s * Dy p1u2 - - upB) = wruo x 0y, 41us -+ ur B
an&n(U * »3) = éf;n(ul * @;Ln+1u2 ce Urﬁ) = UrU2 * (bun+1us ceup .
(’LZ) up > f3

¢n(¢nU'6) = ¢n(U1 * Q)unHU? s Urﬂ) = ¢n(u1u2 * ®Mn+1ﬁu3 s Ur)

’
= u’BluZ*Q)M +2U3"'UT*V.

Q_Sn(ﬁn(U'ﬁ)*v/ ¢n¢n(ul*y5u2 )*V/—¢n( w1 *®#n+1u2ud"'ur)*vl

!/
2oz, poug - up x V.

(4i0) up > -+ >u; > B> ujmq > - >y, for some i € {2,...,7}.



SAGAN-STANLEY SKEW RSK AND BALLOT SWITCHING 27

One has U.f =0, u1 -+ wim1ti - Up + B = w; x yuq - wi—1 Buigr -+ Uy

= ¢_5n[(u1 kYU - up) * B * V' = Q_Sn(uluz * Qpn+lu2 S U1 Py Up) ¥ %4

Ul U /
uy 2k Dy pous w1 fugpr o up ¥V

= ondn(U.B) V' = &2 [(ui * yur - - - w1 Buiyr - up)] 5 V/

=on( ! *0p,41u2- - Uim1 Biqr - up) * V'

U u !
= " %0, ousg U1 Py - up ¥ VY

It is similarly checked that holds. O

Remark 7. Let F be the tableau restricted to the rows strictly below the nth row of ¢r¢idpT = dpdndiT,for
1<i<k<n. Ifwand w' are the words consisting of the elements of T successively bumped out from the

n-th row under the action of ¢r¢ip, and ¢rd,¢;, for 1 < i < k < n, on T respectively, then w = v’ = F.
This easily follows from the fact that F' is the external insertion of the elements of T successively bumped

out of the n-th row. This also applies to the action of ¢;¢,¢r and ¢k, for 1 <i <k <n,onT.
Remark 8. Thanks to and 7 lemmata |5 and |§| are generalized to Y, UT".

Example 13. Illustration of Lemma [5] and of previous observations with n = 3,

L A nnnn __;;;%%1‘
G3p102T = ¢P3P192(2[2]1]2]2 = ¢3¢
3[1]3]3
3[2]3]3
2]
T L[a]ifa]i]1]
- [22[2]1]2 212121112 1]3]
= 933712l _ 313[2]3 w=231= 5
513 1]3 =
2]
R EREREREY L[a]ifa]a]1]
- EEannnnn __%%;;;ﬂ ~[2]2]2]2]2
P10302T = P13z (22| 1[2]2] = d1¢3 5 =¢1|3[3[3]3
( 3[1[3]3
3[2]3]3 5 (1]
— 2]
L[aJefa]i]a]
2[2]2]1]2 o T3]
= 13|3]2]|3 = ¢3P1p2T, w=231=w'=213= 5 .
1[3 e
2]

Proposition 3. ( Knuth relations of internal row insertion operators.) Let Y UT be a tableau pair with
Y =Y, T a SSYT of shape A\/u and ¢()\) = n. Suppose that kij with 1 <i¢ <k <j <n+1, or ijk with
1<i<k<j<n+1, are internal insertion order words of T". Then, it holds

orip;(YUT) = ¢pdjds(YUT), 1<i<k<j<n+]l, (66)
$id;o(YUT) = ¢;bip(YUT), 1<i<k<j<n+l. (67)

More generally, if w = u' are internal insertion order words of T', then
6, (Y UT) = ¢ (Y UT). (68)

Proof. Let 1 < j<nand Y, UT = (Y UT') % (Y, ..,y UTU) with Y U T’ the restriction of Y UT to
the last n — j rows of Y UT. Lemmas [f] and [f] guarantee that

éf;kdgiégj(yiul,...,uj) uTlly = (Z_Sk(z_’jﬁf_)i(y(m,.“,uj) u T,
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Let F' be the restriction of ¢xdi;(Y(,,,.....;) U TUl) = DrbjPi(Yipuy,...ops) U TUl) to the rows strictly below
row j. Recalling Remarklﬂ the action of ¢r;d; and ¢rg;p; on Y UT inserts words w and w’ respectively,
which are Knuth equivalent to F', into Y/ U T,

$rid; (Y UT) = (Y UT")w] % ibich; (Yipur, .y U TV,
and
Gid;o(Y UT) = [(Y UT")w'] % ¢rpjdi (Yipy,....p;) U Ty,
It follows from Lemma [ (b), that (V' UT").w = (Y’ UT").w’ = (Y'UT").F, and thus holds,
Grdid;(YUT) = [(Y' UT).F] % it Yy pyy UTV)
= [(Y'UT").F]* 0160 (Yiur,.oup) YTV = didhjdn(Y UT). (69)

Equality @ follows similarly. Equality follows from and @ and the definition of Knuth
equivalent words. O

Example 14. Illustration of this proposition using in Example
(a) Consider Y UT as in and 213 = 231,

L1 ]m]1]
2[2[2]m
- o 313[mD
$20103((BF) = ¢20301(EY)) = [4]1|2D
1S
2|3
(b) 312 = 132,
L[I]i]a]a]]
2[2]1]2]2 L[] i]a]1]
T 77 1]3[4]4] = -7 -
G3P102 [3]2[3]3 =5§|"¢3¢1¢222122
1[3]4]4 3[2]3]3
5[5
L[a]i]a]1]] L[] i]]
_ [1]3]4]4] - 2 [2]2]2]2]2] _ [1]3]4]4] - [2]2]2]1]2
~[5]5 %301 31133 NEHE SENPE
2] 2[3
O[] EEannnnn
:é§4|4‘~|2|3~¢322212 =é§4|4'¢1¢3¢222122
112]3 3[2]3]3
L[] ]i]a]
2[2[2]1]2 NN RNRE
:134=|4=|.3323 _ [1]3]4]4] | [1]3] 22212‘
519 1[3 219 L= 3[3]2]3
2]
L[] ]i]t]
2[2]2]1]2
;i3|4‘ Ll ]e]a] 313]2]3
=37 2[1 = [1]1]3]4
= 3[3]2]3 2[4
— 3]5
5]
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5. SWITCHING ON BALLOT TABLEAU PAIRS AS A RECURSIVE SAGAN-STANLEY INTERNAL ROW INSERTION

5.1. Littewood-Richardson rules and commutation symmetry. Let n be a fixed positive integer and
let @ = (z1,22,...,2,) be a sequence of indeterminates. Then, for each partition A of length < n, there
exists a Schur function sy (z) which is a homogeneous symmetric polynomial in the zj of total degree |A|.
The product of two Schur functions is explicitly given by the Littlewood-Richardson rule which amounts to
finding how many SSYT’s satisfy certain conditions.

Theorem 6. LR34 [Tho78| [Sch77] The Littlewood-Richardson (LR) rule. The coefficients appearing in
the expansion of a product of Schur polynomials s, and s,

su(@) s,(z) =Y e, sa(a) (70)

A

are given by ¢\, = #{ballot SSYT of shape A/ and content v}. The coefficients ¢}, are known as Littlewood—

y13% v
Richardson (LR) coefficients, and the ballot SSYT’s are also known as Littlewood-Richardson tableaux.
The Schubert structure coefficients of the product in H*(G(d,n)), the cohomology of the Grassmannian
G(d,n), (as a Z-module), are also given by the LR rule. The connection with H*(G(d,n)), the cohomology
of the Grassmannian G(d, n) is due to L. Lesieur, [Les47].

Ouoy, = Z cﬁ LOA- (71)
ACdx (n—d)

The Schur structure coefficients are not only Schubert structure coefficients (71)). They are also multi-
plicities in tensor products of GL,,(C)- representations and in induction products of &, -representations.

The rectification of a SSYT T is the unique SSYT of normal shape whose reading word is Knuth equivalent
to that of T. Using the notion of rectification of a SSYT, the LR rule may also be formulated in the language
of M.-P. Schiitzenberger’s jeu de taquin [Sta98]. The SSYT’s U and V are said to be jeu de taquin equivalent
if one can be obtained from another by a sequence of jeu de taquin slides [Sta98| [Ful97]. Recall that each
stage of jeu de taquin slide converts the reading word of a semistandard Young tableau into a Knuth
equivalent one, and jeu de taquin commutes with standardisation.

Theorem 7. Littlewood-Richardson rule’s jeu de taquin version ([Sta98], Appendix 1.) Fix a standard
tableau S of shape v. Then

cf;l, = #{ SYT of shape A/u whose rectification is S}.

(The special choice of S = stdY, relates this version with the LR tableau version above.)

The rectification of a SSYT T does not depend on the order of jeu de taquin slides. We can then consider
Y, to be the inner shape of a SSYT of shape A/ and content v and then look at Y), as a set of instructions
to tell where jeu de taquin contracting slides start to rectify 7. (Standardise Y,, and T'. The jeu de taquin
slides start with the biggest entry of stdY),, seen as a hole. The "hole” will slide until it reaches the outer
boundary [Sta98]. Then proceed similarly with jeu de taquin slides into the remaining entries of stdY),, in
decreasing numerical order. When std 7" is rectified to some S the elements of stdY), are the entries of the
skew shape A\/v and encode the order in which the boxes were vacated in the jeu de taquin sliding process.)
Such tableau sliding process correspond to a particular presentation of the tableau switching procedure
[BSS96] on tableau pairs of partition shape. (When S = stdY,, one has the tableau sliding presentation for
ballot tableau pairs of normal shape.)

Tableau switching process is outlined in the next subsection. Let p; be the involution map that the
tableau switching procedure calculates on tableau pairs. We call it the switching involution. The tableau
sliding presentation of p; is called infusion by Thomas and Yong in [TY09) [TY16], and it can be translated
to the language of Fomin’s jeu de taquin growths (see Fomin’s Appendix 1 in [Sta98]) which shows that
infusion is an involution. This approach is realised by Thomas and Yong in [T'Y0§| to exhibit an involution
for the commutation of LR coefficients.

5.2. The tableau switching map. Switching [BSS96| is an operation that takes a pair of tableaux UUV
and moves them through each other giving another such pair V' U U’ of the same shape, in a way that
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preserves Knuth equivalence, V = V' and U = U’, and the shape of their union. Loosely speaking, the
switching algorithm may be realised as a mixture of Schiitzenberger’s jeu de taquin and its reverse process
in the sense that it calculates an involutive map on pairs of tableaux and if U U V' has normal shape then
V' is the rectification of V and U is the rectification of U’. The switching map on U UV is processed
through local moves to interchanging two vertically or horizontally adjacent letters u and v from U and V
respectively. The intermediate objects have to be defined when the switching procedure moves U and V
through each other. A perforated tableau U of shape A is a filling of some of the boxes in A with integers
satisfying some restrictions: whenever x and x’ are entries of U where x’ is to the north-west of x, then

’

if not in the same column, * , x x = x> x/, and (72)
X

if in the same column * = x > x'. (73)
X

We may switch an integer with the neighbour empty box B to the south, east, north or west, in a
perforated tableau, so that the result is still a perforated tableau:

contracts U % — § Ex—>xHl
s s

expands U ® —§ Ex—xH
S S

A perforated tableau pair UUV of shape A is the superimposing of two perforated tableaux U and V of shape

A, so that together they completely fill A. If u and v are vertically or horizontally adjacent letters from U

and V respectively, then an interchanging of u with v is a switch, written u < v, provided it produces a
S

new perforated tableau pair,

u v

We collect the following elementary perforated tableau pairs with the corresponding elementary moves.
For the sake of clarity, the entries of U are drawn in red:

u v <& voou, u & v
S S
v u
u v v u , a>v, u a < v a , a>V.
S S
a a v u

The above switches recover the jeu de taquin and reverse jeu de taquin switches when the u-entry is seen
as an empty entry. An example of a sequence of switches

T[afaafafa]  [L[afafaa]e]  [L[afafaa]e] [aai]1
2[212]2]2] <« [2[2]2]2]2] <« [1]2]2]2]2] <« [1]2]2]2]2
3[1]2]3 ® [1]2]3]3 ® [2]2]3]3 ® [2]2]3]3

—
—_

1]

Theorem 8. [BSS96, Theorem 2.3] The Switching Procedure on tableau pairs, calculates switching the
unique map on tableau pairs with the following properties

(1) Start with a tableau pair U U V;

(2) Switch integers from U with integers from V until it is no longer possible to do so. This produces a
new tableau pair S U H.

UUuV+— SUH,

where U = H and V = S. (If U UV has normal shape, U is the rectification of H and S the rectification of
V). If subtableaux decompose U, V can switch with U in stages. Similarly if V' decomposes, U can switch
with V in stages. Switching is an involution on tableau pairs denoted by p;.

Definition 7. We also write pgn) when the switching p; is acting on tableau pairs with shape length < n.

Corollary 5. The map pgn) is an involution in ER(”), for all n > 1. Moreover cf‘w = cf,‘vﬂ.
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For example, for n =3, p = (4,4,1) and v = (3,2, 1),

T[L[L[1[1]1] T[L[L[1[1[1] T[L[L[1[1]1]
Y(47471)UV:22222 < 12]2(2(2]2 < [1]2]2]2]2
31112]3 s [1]2]3]3 s [2]2]3]3
A ,
© Vs UH = RRORERI =p” (VaanUV) € LRY.
° 312[2[3

5.3. Henriques-Kamnitzer gl -crystal commuter and Sagan-Stanley internal row insertion. For
definitions, in this section, we refer the reader to [AKTI16| Section 12], [ACM25| Section 3.4] and [KT25a].
One way to conclude that a ballot tableau pair commuter p coincides with the Henriques-Kamnitzer gl —
crystal commuter Comp . [HKO06b), [HKO064] is to show that p(Y, UT) =Y, UH with H =Y, and T =Y,
satisfy the following: the corresponding left and right Gelfand-Tsetlin (GT) pattern pairs (G, (T'), G, (T))
respectively (G, (H),G,(H)) are related through the Schiitzenberger involution §, G, (H) = £(G,(T)) and
G, (H) = &(G,(T)). We shall show that our commuter (p3 in [PVI10]) based on the Sagan-Stanley internal
insertion will produce such GT patterns in Theorem [2] thanks to the coincidence of the commuter p; with
Comp . We will work on an illustration as a motivation for Theorem 2]

Given YUT € LR™ with Y = Y, and T a ballot tableau of shape A\/p and weight v, we define
for i = 1,...,n, the partition v to be the content of the ballot tableau T, and the partition 7 =
(U1, .y Un—1,Un = V) C v where J; is the number of i’s in row i of T, for i = 1,... n.

The Sagan-Stanley internal row insertion correspondence applied to the pair (07, U) and U €
YT(v/p) with ¥ C v, produces P equals to (), the Young diagram of shape v. Let G, be the Gelfand-
Tsetlin (GT) pattern of type v or the companion tableau of T. Note G, is defined by the nested sequence
v C @ C ... Cv™ =y, We use the skew GT pattern Gy /v, as internal insertion order tableau, and the
parts of p to be added properly, to construct an LR commuter as we explain next. The skew GT pattern
G, v is the skew tableau of shape v/v obtained by vacating the cells in the Young diagram of shape v in
the GT pattern G,. See Example

The internal insertion order word R(G, 5) = V,, - - - V3V2 V) is decomposed into row words V;, i = 1,--- ,n.
The row word V; is precisely the ith row word of T restricted to the alphabet [i — 1], and |V;| = A; — s — ¥,
for i =1,...,n. Thus V; is the empty word, ¢y, =1, QSR(GV/D) = ¢y, - PV, 0y, and

PR(G,,0)(0) = bv, -~ by bv, (D) = D,

the Young diagram of shape v. For i = 1,...,n, one needs the operator y;, to be iterated u; times, written

XU = X0 0 Xi, over oy, (X by, 1) (Xh2 v, ) X1 (05), to recursively adding in each iteration one i
—_—

Hi
at the end of ith row. Given Y, UT € LR™ this procedure encodes Y, UT in the form (05,G, 5, 1) and
gives the p-augmented internal insertion operator an involution in LR™

B, oy 05) = (W By, ) - (V42 Gvs) (X2 bva ) X4 (0) = 0, U H € LR, (74)

where H is a ballot tableau of shape A/v and content pu.
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Example 15. Let A = (6,5,5,4,3), v = (4,4,3,2,0), ¥ = (2,1,1,1,0) and p = (4,3,2,1,0)

LLJL[1]1]1] 1[1]2]3 2[3 1[3
212121112 2[3[4]5 314]5 3[5[3
v,uT = [3[3[1]2]3 G,(T) = Gup(T) = stdG, /p =
3145 4[5 4]7
1421314 4l5 5 6
2[3]4
(75)
1[1]1]1]
Y, = 3 3 2 R(Gyp) = RsRaR3 Ro ) = 23423121 = V5ViVaVa.
[4]
Then for n =5,
QBR(G,,/;)(@D) = $R5R4R3 Ra @(Q)i?) = §B234(523($12(51 (sz’}) = @zw
The p-augmentation of Q_SR(GV/;)i
&%(GV/D)(@G) = X5 ORs X1 PR. X PRy X5 PR XL D0 (05)
= P34 X1P23X3012X501X1 (D7)
=0,UH
gives
[1]1]1]1] 1[1]1] 1[1]
0= - -] . 1[2]2]2 N 1[2]2
| X7 | X5é1 || X212 11213]3
1] 1[1]
72 2
- ~T=] . . 2[3] =0,UH. (76)
X423 1133 P2¢304 113
1]2]4 5T

where H is a ballot tableau of content p and shape A\/v. This augmented operator creates the skew GT
pattern G, /5 defined by the sequence of inner shapes read in onwards and displayed in .
The inverse of the p-augmented operator is the p-deletion operator

A#(@U U H) — (Xilu)flAg\a—uz—ﬁz (252)71A§\3—V3—ﬁ3 (ng)inrm—m (254)71A§5—V5—ﬁ5 (@V U H)
which reads backwards and thereby creates G, /5 the nested sequence of inner shapes
v=(4,4,3,2,00=0% 2(4,3,2,1,0) =¥ D (4,2,1,1,0) =¥ 2 (3,1,1,1,0) = o D (2,1,1,1,0) = »

(77)
Example 16. Let A = (6,5,5,4,3), v = (4,4,3,2,0), i = (2,1,1,0,0) and p = (4,3,2,1)
%;%%11‘ 1[1]4]5] 1[5
2 213[5 305
Y,UH = [3[3]3]2]3 Gu(H) = 517 Gua(H) = 7 (78)
A[4[1]3 - F
2[4 2] 2
N
Y, = P22 R(G,n) = RsRaRs00 = 12413200
v = [3]3]3 /i) = TS A TSEE '
4[4
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Then ¢r( ¢,z = P124¢1302(0z) = 0, and &%(G“/ﬁ)(@ﬂ) = ¢124X3P13X302X3X1(0z) = 0, U T are
displayed below

| [1]1]1]1] 1J1]1]1] 1[1]1]1]
=[] — 2[2]2]2 - 2[2]2
] X1 [ X5 X3 2131313
1[1]1] 1;”
- L2 23] =0,UT. (79)
X3P163 21313 P1P2pa 21314
2[3]4]4 5T5T7

The deletion operator is obtained from backwards while recording the inner shapes to define G
the skew companion tableau of H

p=(4,3,2,1,0) 2 2% = (3,2,2,0,0) 2 a® = (2,2,1,0,0) 2 ¥ = (2,1,1,0,0) D i = (2,1,1,0,0).

w/i

(@ UT) ( ) 1A)\2 H2— VQ(X2 )71A§\3*H3*l73(x3) 1A>\4 Ha— V4( ) 1A>\5 s — V5(® UT)—@,,UH

o=y,
Remark 9. [Buc00, PV10, HKO6b, [AKTTE, TKATS, [ACM25] Recall evacG,(T) = G, (H) where evac = £

denotes the Schiitzenberger evacuation

—
—

3] 5]

(A

o
I

1
3
4

evacG,(T) = evac

[cn]eo]ro]—
o
[en]ee]ro]—

To avoid the skew GT patterns G, /5 and G,/ in the previous examples, and since G, = Y; UG\ /5
and similarly G, = Yz U G, /5, we get supplied with another adding operator w; regarding the partitions
Uv=U1,...,0n) or &= (li1,...,MH,) as follows.

Put (Y UT)O := 0. For i =0,1,...,n,let (Y, UT) =Y(,, . UTH € LRY where Tl! has content
v and row 4 consists of Vj, the row subword restricted to the entries in [i — 1], followed with 7; ’s. For
each i =1,...,n, we now consider the operator iw;, to be iterated ; times, to contributing, in each iteration
over

Youn UHOD = (45 v, @711) -+ (X5 ) (07 ) (0),
HU=Y =Y, . 1) skew shape (Ar,..., \i—1)/v0=D | HO =0,
with one ¢ to the ¢th row of the inner shape Y, :-1). This allows to give the following recursive presentation

of the switching map pﬁ”) on ballot tableau pairs in ER("), forn > 1,

P (Y UT) = (R v, @) -+ (V42 dvs @5°) (X2 bva @57 ) (X @) (0) (80)
= (X b, )p "V [(Y, T (81)
=Y, UH, with H=Y,. (82)

The Yamanouchi tableau Y; is constructed recursively by means of ; iterations of the operator w;, for
i = 1,...,n. In particular, if V' is the empty word and p is the zero partition, then 7 = v and Y, =
wrn - ws?wit(P). Observe that w; commutes with ¢y, .

Example 17. Let us resume to Example [15| where v = (4,4,3,2,0), v = (2,1,1,1,0) and p = (4,3,2,1).
We illustrate

(5)(Y urT) = &25354%54525@4253&1@5253)_(52&1@2)_(?1@%(@)
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Recall s denotes the switching operator.

Yun)©® =9
(v um)® = [I[I[A[]
(2] _ [L]L[L]1][1]1]
(YuT) 2[2]1]2
L[I[1]1]1]1]
yun® = [2[2[2[1]2
3[3[1]2]3
L[I]1]1]1]1]
4] _ |2]2]2]1]2
YUT)™ = 513205
[4]2]3]4]

yYunbl=vyur.

We check p{” (Y, UT) = (% gy a7 ) pli=D[(Y,, UT)E-V], for i = 1,..., 5.

(Yunll = |1|1|1|1|1|1[—>|1|1|1|1|1|1|

=V [(v uT))
1 1) —
=Y, uHY, HWO =Y.,

(YUT)[O]:YOUH(O):@—2>|1|1|Tl>|1|1|1|1|1|1|
X1
= x{twi (Y u )l
1
=y uT)t)
:Ygl UH(I), H(l) EYv(#l)

) [Lafafafaqa] o [rfafafafaqa]  [afafafafa]a]  [afa]afi]1]1]
(YuT) 222(12] & [12021212] & (1120212021 = [2[1[2]2]2
2
=71y U]
= Yu(z) UH(Q), H(z) = Y—(Hh/w)
pD ) _ L[] ]1]1] 111|1|1|1| T[a]1]i]1]1]
(uT) EIENENEN ARGy 5 21 ok [21[2]2]2
=ﬁ%@mﬁWUﬂW
= o[V uT)P]
ClLfafafaa]  [fafafaQafe]  [efafafaafe] [a[a]a]a]a]1]
yvunB = RRllale] —[2li2l2l2] —[1[12[2]2] —[2l2]1]2]2
3[3]1]2]3] ° [1]2]3]3]3] ° [2]3]2]3]3] ° [3]i[2]3]3
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T[a]1]1]1]1]

2|12(1]2]|2

—

X3 [311]2(3]3

L[L[L[L]L]1]
2[2[1[2]2
3[1[2

—

1

L[L[L[1]1]1]

—12]2]2]2]2

2 [3]1
Dy uT)l

T[a]1]1]1]1]

—[2]1[2]2]2
w33

(Y uT)H]

(2)
1

@3)_6525’1@2/0(11) (Y uT)M)

X5 162

) @3p§

X5 162

PPNy uT)P]

T[a]1]1]1]1]
2[2]2]2]2
3[3]1]3]3
4]1]2]4

—
S

[—]
Lanll [a\ ] [an]
Ll [\ anl sy
— ||| <
— (N — ]|
— || [

0
[—]
—| |
— || oD =T
— || oD <f
— |||
—[— ||

T o
[—]
— ||
Laml [aN] Ianl sy
— ||| <
— |||
||

1o
[—]
— ||
— || <
— ||
— O |AN
— ||

I

=

—

&~

)

>

T[a[a]a]1]1]
2[2[2][2]2
3[1[3]3]3
1]2]4[4

—
S

3

3

£

3

&

3

e

>~

MMl

&)
=

~

~

O T

>~ D
N~—

s &

- A

I

T[a[a]a]i]1]

313|133

41112]4

%
xh

2

1

L[Lafa]1]1]

31311[3]|3

-
$2

L[a[a]a]i]1]

3131233

1

-
¢3

T[a[a]a]i]1]
2[2]1]2]2
3[1]2]3]3

4]

Wy

(Y uT)Bl—

(3)
1

@apy? (Y UT)P

X4 p2d3aXh? b1

(v u)B)

3
AT

Wy py

X4 d23

[—]

— [

[T

A<=

A<

— [ [
\ﬁS

[—]

— A

— || <F

— || || =F

— ||| <

ianl [aN ] [apl [a\ ] [ap]
0

[—]

— | D

— || <

— ||| <

izl [\l [apll (o ] [ap]

ianll (a1 [npl (ot ] sl
T o

[—]

— A

— ||| <H

— O~

Eanll (a1 [anll [aN] [aa]

banl KNI 3] sl (e

[V, w1l

[—]
— ||
Lanll [a\] [aN] [an]
— || — [
— A [ [FH[N
— || <
T o
[—]
— [
— [N
— Ao [
=[N [N
— o<
To
[—]
— ||
bl [A\] [aN] [ap]
Lamll [ [l sull ey
||| <H
ianll [N ol [a\ ] [ap)
To
[—]
— [
— [
O
— || <
— A [
1
[—]
Lanll [aN] [an]
banll [a\] [anl [an]
— || < | =
— ||| <
— |||
1o

=Y,

(Y uT)P)
Y UH H

214

T[a]a]a]1]1]
2[2[2[2]2
3[3[3]2]3

1

b2 [4]4]1]3

-

L[a[a]1]1]1]

2

212|2[2|2
313333

1

¢s [4]4]1]4

-

T[a]1]1]1]1]

2|12]12|2|2

(4)
1

—|13[311[3]3

¢ [44]2[4

(Y uT)H]

Iy unt)

P Y uT]

2&3@40

(BSS

=Y,

Y UH H
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Observe that 7, = v = (2) C @ = (3,1) Cv®) = (4,2,1) € v® = (4,3,2,1) C v = (4,4,3,2,0)
defines G, (7).

The switching map on ballot tableau pairs of normal shape can now be translated to the language of
internal row insertion operations.
Theorem 9. (Theorem (Main Theorem) Let n > 1 and Y UT € LR™ with Y =Y, and T a ballot
tableau of shape \/u and weight v. For 1 < i < n, let (Y, UT)l] = Y, U Tl € LR® with T of
weight (). Consider the ith row word of T where V; is the row subword restricted to the entries in [i — 1],
and 7; = \; — |V;] is the number of entries equal to i. Put (Y, UT) = Y,0 U H® =, 1° := 0,
¢y = id and p(o)(ﬂ) := (. Then, for ¢ = 1,...,n, it holds

05 U = (54 0 v, 0 @) 0 oV (03, U )] (%)
=Xy oo.; Vo by, (Yyu-n UHUD) =Y, UH® € LRY), (84)

where @ ”'1 adds the ith row word 7% to Y, -1y, )’(é“’ adds the row word 7#¢ at the end of the ith row of
by, o oJZ- (Yu(i—l) U H(i_l)) and H® = \@
disjoint and terminate in the ith row.

1,ou)- In particular, all bumping routes of qgv are pairwise

5.4. Lecouvey-Lenart and Kumar-Torres bijections between Kwon and Sundaram branching
models. For detailed definitions pertaining this section we refer to [LL20, [KRV21l, [Kwol8| [KT25a]. A
fundamental fact of Kumar-Torres bijection is that it restricts to tableaux satisfying the Sundaram con-
dition and those whose evacuation satisfy the Kwon condition by considering and recognizing that they
can be embedded in the Kushwaha—Raghavan—Viswanath [KRV21] bijection on flagged hives. To settle the
Lecouvey-Lenart conjecture [LL20], it remains to know the coincidence of LR commuters. Note that in our
notation the role of A and v are swapped in [KT25al.

We fix a positive integer n, and assume, unless otherwise stated, that ¢(\) < 2n — 1 and ¢(u) < n. Let
m = 2n. A Littlewood—Richardson tableau of shape A\/u and weight v satisfies the Sundaram property if
for each i = 0,...,£(v)/2, the entry 2¢ + 1 appears in row n + i or above in the Young diagram of A. The
set of T € LR(\/u,v) satisfying the Sundaram property is denoted by LRS(A/u,v) and called the set of
Sundaram LR tableaux.

Denote by LRS’\ the subset of LR*
tableaux consist of the tableaux in LR>‘ . satisfying the flag property that the entries in the kth row are
bounded above by n + |k/2], for k = 1 ,2n, [KT25al Proposition 4.7]. We call them Sundaram right
companions. Denote by LRS;}W the subset of *LRI);V consisting of the left companions of LRS(\/pu, v).

A semistandard tableau of shape wand £(u) < n is said to satisfy the Kwon property if the entries in row
i are at least 2i — 1, for i = 1,...,n. Denote by LRK ., the subset of LR) o, consisting of tableaux G such
that their Schiitzenberger evacuation £ = evaca, w1th1n the crystal B(u, 2n) &(G) = evaca, (G), satisty the
Kwon property.

The Sundaram branching rule (see [KT25a] and [Sun86] for the definition) states the following.

Theorem 10. [Sun86] The branching coefficient c>‘ equals the cardinality of the set

consisting of the right companions of LRS(A/p,v). Then those

WV

LRS(\,p) :=| JLRS(\/p,v)

where the union is taken over all even partitions v, that is, vo;_1 = v, @ > 1.
The Kwon’s branching rule as reformulated by Lecouvey— Lenart [LL20, Lemma 6.11] says the following.
Theorem 11. [Kwol8| [LL20] The branching coefficient c’\ equals the cardinality of the set

LRK(\p):=| JLRK},

where the union is taken over all even partitions v, that is, vo; 1 = v9;, ¢ > 1.
Theorem 12 (Kumar-Torres Theorem 3.6 [KT25a]). The composition

RO\ p,v) =5 LR), %5 LR},
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restricts to a bijection

LRS(\/p,v) = LRK}), (85)

where U : LR), , Y, LR}, is the LR commuter by Kushwaha-Raghavan-Viswanath[KRV21]. (See [KT25a]
for definitions). Therefore, the above composition induces a bijection between LRS(A, 1) and LREK (A, ).

From [AKT16, Section 12] we know the LR commuter U coincides with the Henriques-Kamnitzer gl,,-
crystal commuter because it produces the same GT pattern pair. The Kumar-Torres bijection together with
the coincidence of LR commuters gives the corollary:

Corollary 6. The Kumar-Torres bijection
LR(\u,v) =5 LR}, %5 LR},
and the Lecouvey-Lenart bijection
LR(\u,v) =5 LR}, 75 LR},
where U’ is the LR commuter defined by Henriques—Kamnitzer, coincide. Thereby both restrict to a bijection
LRS(\, ) — LRK (A, ).
Corollary 7. The Henriques-Kamnitzer commuter or restrict to LRS tableaux and gives

LRS, 5 LRS(\u,v) 5 "LRS), — LRK,, G, = T+ G, — £(G,.), (86)

v,

Therefore, _LRS;}’,, =¢ (LRK;\, u) which are precisely those tableaux satisfying the Kwon condition in
*LRf;,y.
Example 18. Motivated by the question raised by the authors in [KT25al Remark 3.7], we now illustrate
the Lecouvey-Lenart and Kumar-Torres bijections with our LR commuter based on the Sagan-Stanley
internal insertion. We consider [KT25al Example 4.11] where n = 3, m = 6, {(\) = 4, £(v) = 4, {(u) = 3,
and p=(2,1,1,0,0,0), v = (4,4,2,1,0,0) C A = (5,4,3,3,0,0):

1]1]

(\}

, T e€LRS\\ u,v) C LR\ p,v). (87)

N [—|—
SN[ N

Y, UT =

N[O —

3

The right and left companions of the Sundaram LR tableau T are respectively

3[3]
Gu(T)= [4] €7LRS,,C LR), (88)
6]

i1
G,(1) = 23 e RS,

l»hoow»—

where G, (T) of weight rev(A —v) = (0,0,2,1,0,1)) is defined by the nested sequence
(2,1,1,0,0,0) 2 (21000) 2 (2100) 2 (200) 2 (00) 2 (00).

We may check that G, (T) satisfy the Kwon condition: the entries in row ¢ are at least 2¢ — 1, for i = 1, 2, 3:
entries in row 1 are 3 > 1, entries in row 2 are 4 > 3, entries in row 3 are 6 > 6 — 1.

1[4]
evacg G,(T) = [3] € LRK), C LR, C B(u,6), weight A\ —v=(1,0,1,2,0,0) (89)
4

The Henriques-Kamnitzer LR commuter, the LR commuter by Kushwaha-Raghavan—Viswanath and our
commuter all of them send (G, (T), G, (T)) to (evacs G, (T'), evacs G, (T)):
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[[i]i]1] A[i]1]1] 1[a]1]1]1] TTITi[i]1]
_ [2]1]2]2 2[1]2]2 212122
Y,UT = So45 31203 ~ [B[33 %3552 )
234 2[3 2]
1[1[1]1]1] i1
- 2[2[2[2] = Higper — OO0 — 0 -0 (91)
12]

One then has the GT pattern of type p defined by the red nested sequence of partitions
MHe@®clc@L,

that gives the tableau evacs G,(T) as in the bijection by Kumar-Torres based on the LR commuter by
Kushwaha—Raghavan—Viswanath,

L[I]1]1]1]
4] 2[2[2]2
evace G,(T) = [3] — Y, UH = 3T3T2
4] 113
3]3[3[5
Gy (H) = FHUOO — cvaco(Gu(T))  Gu(H) = evacs G, (T) € LRK),,
6]

6. RECURSION OF SWITCHING ON BALLOT TABLEAU PAIRS

Switching can be performed in stages whenever a decomposition of Y or T in the tableau pair Y UT is
considered. This property allows to exhibit a recursion of the switching map on ballot tableau pairs Y, UT
by reducing the size of the partition u. Due to the switching condition , switches in a tableau pair
Y UT where Y or T is a ballot tableau are such that the entries ¢ in the ith row of a ballot tableau can not
be switched upwards. Thereby switching 7" with the rows of Y,, in stages incurs that the length of the word
in the nth row of T restricted to the alphabet [n — 1] eventually reduces. Because an entry i in row i of
Y,, either switches horizontally with an entry of 1" or vertically with an entry of 1" below row 7 and further
moves of that i will never occur with entries of 7" above row i. Recall Remark [Gl

Lemma 7. Let 2 <! <nand T € YT((Ai,..., An+1)/ (1)), pu > 0, of weight (aa,...,q1—1,V1, .., Vnt1),
with (v,...,Vp41) a partition. For some 8 C (A, ..., Anq1), assume the decomposition Y{,y UT = Y{,,) U
AU B where A = Tj;_1) € YT(B/(u1)) has weight (aq,...,—1), and B = T n41] is a ballot tableau of
shape (A;,..., A\nt1)/8 and weight (v, ...,vp41). Then if F(n + 1)¥»+! is the (n — [ + 2)th row of T with
F a word in [n], one has
A (Vi UT) = SUQ,

such that S = 51 U SQ = T, with Sl = S\[lfl] = A and SQ = Sl[l’nJ’,l] =B = YV(Vz,..-,Vn+1)7 and Q = }/(Hl)'
Moreover, if Fi(n + 1)"»+1 is the (n — [ 4+ 2)th row of S and D is the (n — [ 4 2)th row of Q then F is a
subword of F and |F|+ |D| = |F|.

Proof. Let S be the rectification of 7. The rectification can proceed in stages by switching Y,,) with A
and B in stages. Observe that since T restricted to the alphabet [I,n + 1] is the ballot tableau B of skew
shape (A;, ..., Ant+1)/B and weight (v, ..., Vp11), the 1,11 entries n+ 1 in the last row of T stay there until
the end of the rectification of T'. Therefore p§n7l+2)(lf(m) UT) =SUQ, such that S = Sy U Sy =T, with
S1= 8-y =Aand S2 = Sjynt11 = B=Yu,,..v,.1) and Q = Y(,,). In particular, the last row of S has
Vn41 entries n + 1.

If FF =0 then Y{,,)UT =Y,y U[(n+ 1)1 « T=HD] =y s U[AU ((n+1)"+1 x« Bln=HD)]. Hence

P (Y, UT) = [S1U (1)1 5 S5 U (0% Q=11 with Sy = A, S = (n4 1)+ xS =
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Yoi,..wns) and S =51 U Sy =T. Thus

p§n7l+2) (Y(m) UT) = (n+ 1)+ « pgnflﬂ)(YW) U T[n—l+1]>

= ((n4 1)+ S U (0 5 Q=11

where S = ((n + 1)1 % S=1+1) = T and Q = 0+ Q"+ = Y{,,,). The last rows, F of S, and D of Q
are both the empty word.

Let F # () and Y{,,) = [#. Either an entry [ of Y{,,,) reaches in the switching process the row next to the
last or not. In the later case D = () and F' = F. In the former case, there exists a perforated tableau pair
where the row next to the last has one entry of Y(,,,). Then the two last rows are either of the form:

(@) A
IZ) a (n—l—nl.)”"“ n",withlga,bgnand Up < Up,
and the next switches either are
[ a .. n[’n . b a TLI)" -
b - (n_|_1)l’n+1 P (n—I—l)”"“ s
b a Vn .
B S
or
Il a nPn e a | Un, )
< .
b - (n—i—l)l’"ﬂ :} R (n+1)yn+1 ; ifa<b<mn;
or (b)
l . n n ceem N e nf’n l
n+1--- n+1 --- n+1 horizontal switch s = ** (n + 1)V"+1 ’

In any case, S :A[ﬁ‘(n + 1)7n1] % S with B a subword of F, and Q = D x Qn=i+1 = Y{,.,) such
that D = /Pl and |F| + |D| = |F]|. O

Example 19. Below one illustrates the previous lemma.
(1l =3<n=4 pu3 =3, T € YT((7,6,4)/(3)) of content (2,1;5,3,3) such that Tj;10y €
Y'T((4,2)/(3)) has content (a; = 2, = 1) and T;3 4,5} a ballot tableau of skew-shape (7, 6,4)/(4, 2)
content v = (v3 = 5,14 = 3,v5 = 3) and F = 3.

3[3]3[1[3]3]3] 3[311[3[3]3]3] 3[1]313[3]3]3]
Yo UT = [1]2]3[4]4]4 — [1]2]3]4]|4]4 — |1(2[3]4]4]|4
315[5]5 * [3]515[5 * [3]5[5[5
3[113[3[3]3]3] 3[113[3[3]3]3] 1[1]3]3][3][3]3]
— |1(2]3]4]4]|4 — |1(2]4]4]4]3 — [3]2(4]4]|4]3
* [3]5[5[5 ® [3]5]5]5 ® [3]5]5]5
11113131313 ~ o~
— [2[4[4[4[3[3] =5UQ, S=T, Q=0+Q% =Y, D=0, F=F, F5 =F5" =35".
* 13]5]5]5
(2)1 =3 < 4, pz = 3, H € YT((7,6,4)/(3)) of content (2,1;5,4,2) such that H o €

n =
Y'T((4,2)/(3)) has content (o; = 2,2 = 1) and H(3,4,5} a ballot tableau of skew-shape (7,6,4)/(4,2)
content v = (v3 = 5,1y =4,v5 = 2) and F = 34.

3[3[3][1[3][3]3] 3[3[1[3]3][3]3] 3[1[3][3]3][3]3]
Vo UH = [1]2[3[4[4]4] — [1[2[3[4]4[4] — [1[2[3][4[4]4
3[4[5]5 s [3]4]5]5 * [3]4]5]5
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3[1[3]3]3]3]3] 3[1[3]3]3]3]3] 1[1[3]3]3[3]3] 1[1[3]3[3[3]3]
— [1[2[3]4[4]4] — [1[2[4[4[4[3] — [3[2[4[4[4[3] — [2[3[4[4[4[3
¢ [3]4]5]5 s [3]4]5]5 * [3]4]5]5 ¢ [3]4]5]5
1[1[3[3[3[3]3] 1[1]3]3]3]3]3] .
— [2[4[4[4[4[3] — [2[4[4[4[4[3] =SUQ, S=H, Q=3xQ% D=3 F=34,F=3
s [3[3][5]5 s [3]5]5]3

with F5” = 352 a subword of F5"5 = 3452,

Lemma 8. Let n > 1 and Y, UT € LR with = (u1,...,Mn,0) a non zero partition and T = Y,,.
Suppose Apt1 = Vpt+1 > 0, that is, the (n + 1)th row of T is the word (n + 1)¥»+'. Then

pgnJrl)(Yu U T) _ (’I’L + 1)V'n,+l " Pgn)(Yu U T["]) = Yl, U Qv
where Q = 0 Q[n] =Y,

Proof. One has Y UT = (n 4 1)"»+1 % (Y U T[") a ballot tableau pair. Hence the switching procedure

on Y UT only comprises the entries of T, all < n, and the entries of Y,. Thus pgnﬂ)(YM uT) =

(n+ 1)V pgn)(Yu UT") =Y, UQ and the (n + 1)th row of Q is empty. O

Let n > 1 and Y,,UT € ER(”‘H), with = (u1, ..., tn, 0) a non zero partition, and 7' = Y,,. Next theorem
uses switching into stages. For some 1 < d < n with g > 0, we decompose Y, = Y(,,,, .. 1) YU Y(ua, o pin)>
and thereby decomposing Y, UT = Y, . 1) U Y(us..pn) UT. Then switch T with Y(,, . ..) to get
Yo ey USUQ, with S =T and Q =Y, .. ., consisting of the entries of ¥, moved out to the skew
shape of T'. The choice of d is made with the purpose to reduce the length of the (n + 1)th row word F' of
T, restricted to the alphabet [n]. We have the guarantee that this happens with d = 1 but at this point,
when T is rectified, F' is empty. (Note that when d = 1 we have the full switch of Y with Y,, which gives
SuUQ, with S =Y, =T, therefore the (n + 1)th row of S is empty, and Q = Y{,, ... ,,)-) The choice of d
is made when for the first time an entry d of Y}, reaches the (n + 1)th row. When this happens and T is
full switched with Y(,,, .. .,), We stop the switching. At this stage the (n + 1)th row D of Q comprises only

entries equal to d and the word F is reduced to a subword F' of length |F| — |D| with |[D| > 0.

Theorem 13. Let n > 1and Y, UT € ,CR(""H), with = (p1, ..., 4n,0) a non zero partition, and T =Y,,.
Suppose A\p+1 — Vpa1 > 1, that is, the (n + 1)th-row of T is the word F(n + 1)"»+! with F' a non empty
word in the alphabet [n]. Then, there exists 1 < d <n, with pg > 0, such that

Y, UT = Y] yuSh U D « Q] (92)

~

f1resia—1) Y SUQ =[F(n+1)"+ % (Y(m’...,u{z_l

where S =Y, and Q = D« Q") = Y(ya,...,un) 18 over the alphabet [d, n], with QU1 =@, and D =d/P!. In
addition, the (n 4 1)th row F(n + 1)+ of § is such that F is a strict subword of F whose length satisfies
|D| + |F| = |F| > |F| > 0. Also,

YV U Q, with |D‘ = )\n+1 — VUn+1, lfd = 1,

n . (93)
pg +1)D/(M1,-..,,ud71) U S] U Q, ifd>1.

AT (v, uT) = {
Proof. We handle the proof by induction on the length [ := ¢(p) > 1. Let n >l and v := A\yy1 — Vg1 =
|F'| > 0 the number of entries < n in the (n + 1)th row of T
For I =1, Y, UT € LR with py > 0, and, therefore, the (n + 1)th row of T is of the form
n’(n—+ 1)+ with 1 <wv:= A\yy1 — Vpt1 < p1. Rectify T with jeu de taquin slides looking at the entries of
Y(,,) as holes. Then
Y, uT e Y, uQ,

where Q = DxQU" = Y., Since the shape of Y{,,,)UT is preserved in the switching procedure, |D| = |F| = v
and D =1Y. In the case [ =1, and hold with d =1, and F=0.
Let [ > 1, and assume the statement true for 1,...,0 — 1. Then n+1 > [+ 1 > 3, and consider the
factorisation R
Y(M17~--,M) urT = [Y(/u) UT] « Df(ﬂlw--al"l—l) U T[lil]] € ‘CR(ThLl),
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where TI=1 is a ballot tableau on the alphabet [l — 1], and T € YT((A; - .., Ans1)/ (1)) consists of the
last n — I + 2 rows of T whose word restricted to the alphabet [I,n + 1] satisfies the Yamanouchi condition.
Then, by Lemma [7} the switching procedure gives

Y, UT = SUQ, 94
(m1)

with § = T (the rectification of 7') in the alphabet {1,...,n 4 1}, and Q = D * Q=+ = Yy, in the
alphabet {I}. If |D| > 0 the last row of S is the word F(n+ 1)*+ with F a subword of F. Observing that
T =T« Tl = 8% Tl is a ballot tableau, we have in addition

i) UT = Yy, U (S T U(Q 0071,

.....

where Y(M,___’HFI)U(S*T[Z*”) is a ballot tableau pair. If |D| > 0, and holds with d = [. Otherwise,
|D| = 0 and henceforth the (n + 1)th row of S is the (n 4+ 1)th row of T' with length A, 41. Thereby

i) OT = Vi ooy U (S s T U (@5 QU w01,

,,,,,

where Y, o) U (S * Ty ¢ LR™Y is in the case [ — 1, and, by inductive hypothesis, we get
and (93) with 1 <d <[1—1. O

Example 20. (I). l(p)=1.n=4, uyy =7, v=3,d=1,

Tl fafafafafa]1]1] LA aafafafafa]afa]1]1]
L[1A[1]1]2]2]2]2 L[1[1[a]1]2]2]2]2
2[2]2]]2[3[3]3 — [2]2]2[[2]3]3]3
3[313][4]4[4 * [3]3][3][4]4]4
41414][5]5 4]414][5]5
L[ afafafafa]1]1] LA afafafafafafa]a]1]
L[1[1][1]2]2]2]2 1]t 2]2]2]2]2
— [2]2]2][2]3]3]3 — [2]2]2[[1]3]3]3
* [3]3]3[[4]4]4 * 13]3[3[[4]4]4
4|44][5]5 41414]|5]5
LI fafa]afafa]afa]1]1] TaA[afafafafa]afa]a]1]1]
L[1[1]]2]2]2]2]2 2[212][2]2]2]2]2
— [2]212][3]3]3]1 — [31313][3]3]3]1
* 13]3[3][4]4]4 * lal4l4][4]4]a
4[44][5]5 L[1[1][5]5
T[aA[afafaafa]afafa]1]1]
2122[[2]2]2]2]2]1
— [3[3[3[[3]3]3]1 )
414]4][4]4]4
515[1]1]1
F=43 D=1%and Q =13 % x 1 % 1 x 12 of skew shape \/(11,8,6,6,2).
(ID. l(p)=2,n=3,v=4,d=2
Tlafafafafafaa]a]a]1] Tlafafafa]afafa]a]a]1] Tlafafafa]afafa]a]a]1]
2[2]2]2]1[1]2]2]2 o, [2[1]1]2]2]2]2]2]2 o, [aif2]2f2[2]2]2
112]2]2]2]3 s [1]2]2]2]2]3 s [2]2]2]2]2]3
313]3]3 313]3]3 313[3]3
Tlafafafa]efafa]a]a]1] LA fafafaa]a]a]1]
1[1[1]2]2]2]2]2]2 1[1]1]2]2]2][2]2
T 221221203 < 22133132 ’
313[3]3 3[3]2]2
F=3%1v,=0F=32D=22and Q =2%x1x1x( of skew shape \/(11,8,5,2).
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We first recall the following property. The major result of the next statement is that the reading word
ﬁ(n—i— 1)¥»+1GCn’n of the two last rows of Y{,,, . ., ,)US, and the concatenation of the (n+ 1)th row
F(n+1)¥+ of Y, UT with the nth row GCnn of Yoy, pu_y) UR, that is, F'(n+ 1)¥n+1GCOn’n
are related through Knuth transformations. Since GC is a row word on the alphabet [n — 1], G a subword
of G and F is a word in the alphabet [n] and F' a subword of F, from Lemma [1 (a), ([@5), it means that
FGCn"» = FGCn” and from Lemma (c), FGC = FGC or FG = FG.

Corollary 8. Let n > 1, Y, UT € LR and assume the assumptions of previous theorem on Y, UT.
Consider the equality , for some 1 < d < n and pg > 0, where we detach the two last rows of S and @,

Y,UT =Fmn+1)"«YuD)r =Y, ... usluQ (95)

d—
= [F(n+ 1)+ % GOn™ % (Y, ) USITUD # X+ Q1] (96)

with Y., e ) UST = GO (Y, e US™Y), QM = X «QM =Y such that X is a row word on the

alphabet [d, n], and GC, a row word on the alphabet [n—1], with the factor G satisfying |G| = |F| = |F|+|D|.
Then

Y, un)r — Y,

S

ha—1) Y R} uUPp, (97)

where P = DX « Q"1 = @, and R = T is such that Your, gy UR = GOn'n % (Yeur,opa) U S[”_l]),

with G a row subword of G so that |G| = |F|, (|G| + |D| = |F| = |G|) and FG = FG are Knuth equivalent.
Also

(")[(Y U T)[ ]] — pgn)(}/iu1,--<7ltd—l) UR)U (DX % Q[nil])
= (GO 5 (Vi gag ) U ST U (DX 4 QIY). (98)

Proof. Switching back in the two last rows of Y(u1, ..., pa—1) USUQ, (96), and factoring G = AB into two
row words A and B, with |A| = |F| and |B| = |D|, one has

A B C n® nh X
[F(n+1)"+ U D] % [GCn™ U X] = ey (99)
ﬁ n+1‘D| n+1°¢ D
G Fy Gs Fy Gr-1 Fy, C ne nh X
<5 (100)
Iy D, 3 D, Fp1 | Di |ntalel| - |pt2l?l
G1 Doy Gs Dy Gi_1| Dy C ne o ¥
(101)
Fy Iy F; Fy Fi_4 F, | nt1lol ni1lDl

where D = DyDy--- Dy, FF = F{Fy-- Fk, F = FiF5---F,_1 and G = G1G3---GE_1 a row subword
of G = AB = G1F>G3 - - - Gp—1F},, with |G\ + |D| = |G| = |F| = |F| + |D|. The subword of F with F'
suppressed, F'\ F and G are complementary row subwords of G.

In every step of the jeu de taquin sliding or reverse jeu de taquin sliding process the reading word is
transformed into a Knuth equivalent one [Ful97, [Sta98]. Looking at the red letters as holes, the row reading
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words FABC = FGC of (or (100)), and FGC of (I01), restricted to the alphabet [n] (in black), are
Knuth equivalent.

FGC =FGC & FG = FG.
The last row of (101)) is F'(n + 1)"+1. Let Y := Y|, It then follows from (95)),

,,,,, Hd—1)"

Vuun = (GG Di] - [P €[ [ [ n [X ]+ [ USPTUQRD)

> [Elel T o]x] « b useugn)
= Y'URUP =[GCn" UDX]*[Y'usr1yQr1, (102)

where Y/ U R = GCn” % (Y’ U S["=1) and P is Qi) with D attached to the left of its nth row X. O

7. PROOF OF THE MAIN THEOREM
Let u = u, - - - u; be an internal inserting order word of a tableau T'. By Gu-bumping routes on Y UT, we
mean the collection of ¢,,,-bumping routes on ¢y, ..., Y UT) for i =1,...,v.

Lemma 9. Let u = u, - - - uouy be a row word to be an internal insertion order word of T'. Then

(a) the plactic class of u is reduced to the sole w.

(b) the qbu-bumplng routes on T are pairwise disjoint.

(¢) if the ¢,,-bumping route lands in row 1 < k < n + 1, the ¢,, +,-bumping route lands strictly to the
right in arow <k, fori=1,...,n— 1.

Proof. (a) The plactic class of a row tableau has a sole element. (b) and (¢) follow from Lemma [3| (a). O

If T € YT'(\/p) is a ballot tableau and £(A\) < n, and 1 < k < A, — piy,, then T denotes the ballot
k

tableau in YT((A\1,..., An—1,An — k)/u) obtained from T first by suppressing, in the nth row, the first &
filled boxes and then pushing the remaining \,, — p,, — k boxes k steps to the left.

n=3pu=(6,4,1),A=(11,9,6), A3 — u3 = 6,k = 3 <6,

INRRRARRRRN L[A[afafa]a]a]a]a]a]1]
Y, uT = [2]2]2]2]1][1]2]2]2 Y, uT. = [2]2]2]2]1]1]2]2]2 (103)
2[1]2[2[2]2]3 : 212]2]3

We are now ready to prove the main result.

Proof of Theorem 2
We may reduce the statement to the case pu = (p1,..., n—1, tn = 0). Let fi:= p— (u?). Performing
horizontal switches in Y UT = Y(,;n) UY, UT — Y, UT U Z, where Z is the unique ballot tableau of shape
" s

A/ (A= (u)) and content (uf). Thus
APy uT) =M (Y uT)UZ = i [0 (Y UT) U (0% 2 1) (104)
Similarly, (YUT)["_” = (VauT)"=uzin=1. Hence, POy uT) 1] = pm Y (v, uT) -t Uz,
Assuming that ) has been proved in the case of u,, = 0, and using , we then may write
(")(Y uT) = AV uT)UZ =t [p™ (Y uT) U0« 2]
= X (v Vo) u Zin
= W dva (VG U U i) (105)

= v,V ),
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Observe . [105) just says that the bumping routes of ¢y, , all of them landing in the nth row, will not change
when p(" 1)[(YA uT)ln1] € LRM™ Y is extended with the tableau Z"~1. Each route of ¢y follows the

available path in p(n)[(}_f U T)[*1] and remains there until landing in the nth row.
Let p, = 0. We now show, by induction on n > 1 and |V,,| > 0, that

P (Y UT) = gy, @™ " V(Y TP ] = 67 gy, pU TV [(Y U T, (106)

where Y =Y (1, ..., pn—1,0) and V,, is the word of the nth row of T restricted to the alphabet [n —1]. In
addition, all bumping routes of ¢y, terminate in the nth row

If n =1 then [V1| =0, 1 =0, T =Y{,,), 1 = v1, and pl (Q] UYu, = Y(Vl) U@. Then p ((Z) UY,,)) =
Y(,,) U0 is obtained from () by adding the row 1"*. Thus p ((/) UY(,)) = @'0 = wl’”p(l )[(0 UY(,, )], with

¢V1 id.

Suppose that holds for n > 1, and let us prove for n 4+ 1. Assume Y UT with n + 1 rows where
Y =Y (u1,...,pn,0).

Let v := Vg1 > 0 and let F' := V,4; be the (n + 1)th row word of T restricted to the alphabet
[n]. Since ppy1 = 0, then F(n + 1)¥»+! is the (n + 1)th row of Y UT and detaching the (n + 1)th row,
YUT = F(n+1)"+ % (Y UT)M. We want to show that

ATV UT) =@ el (Y UT)]. (107)
Ifv=0YUT = (n+1)"+ % (Y UT)M. Therefore, by Lemma
AT UT) = () oM 0T = e ey u ),

with ¢ the identity.

If v > 1, the (n + 1)th row of Y UT is the word F(n + 1)+ with F' a no empty word on the alphabet
[n]. We shall now use induction on v.

Step 1.We pass from the ballot pair Y UT to a ballot pair Y' U S with (n + 1)th row word F(n + 1)rmtr
so that F is a strict subword of F.

From Theorem there exists Y := Y (u1,. .., ta—1), for some 1 < d <n, with pg > 0, such that

YUT =F(n+1)"" «(YuD)M sy usuQ
= [F(n+1)"+ U D] [(Y' US)M UM, (108)

where S = ﬁ(n + 1)Vt 5 S =T, F is a strict subword of F, and Q = D x QI"l = Y (tdy - -y fbn) is over
the alphabet {d,...,n} and has the (n + 1)th row D = d!P! such that |D| = |F| — |F| > 0. Therefore

A uT) = p"P (Y U S U Q. (109)

Since F is the (n + 1)th row of Y/ U S, restricted to the entries < n, and 0 < |ﬁ| < v, by induction on v,
we may write

P US) = wl et (Y U S), (110)

where all qZ)F bumping routes terminate in the (n + 1)th row.

To reach -, one has, so far, from and ( -,

P Y UT) = _Zlﬁldﬁﬁp(l")[(Y' US) U (D xQM), (111)

with F' a strict subword of F such that |F| + |D| = |F|.
Step 2. One has to relate the nth row of (Y' U S)™ with the nth row of (Y’ UT)I.
This requires Corollary [8| and, in particular, the analysis of the reading words in , and .
Step 2.1. We first analyse pgn)[(Y’ U S)M] of (I11).
From Corollary [§ one has Y’ U SI" = GCn” % (Y’ U S["~1]) with G and C row words in the alphabet
[n — 1], such that |G| = |F|+ |D| = v = |F|. In addition Y’ U (S™)_ = Cn? % (Y’ U SI"=1) € LR™ with
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C a row word in the alphabet [n — 1]. By induction on n, one has

P U (ST ) = gowin pt" T (v U S,

v

and
(n [n]y Un / [n—1]
A (YU Sty = P GO (! U S
= dadearpy" V(v U S
= dapt” (V' U (ST ), (112)

where all ¢g-bumping routes (also ¢c-bumping routes) will end up in the nth row.

Step 2.2. We now analyse pgn)(Y u T,
From Corollary [§] one has

YuTlh - y'URUP = [GCn™ U DX] x YU Sl=1y Q1)

where Y/ U R = GCn™ x (Y' U SI"~1) with G a subword of G, and P = DX Q"1 such that
|G| = |F| - |D| =v — |D| and FG = FG Knuth equivalent.
Observe that

Y'u(s™). =Y'UR — = On™ % (V' U Sy, (113)

Again by induction on n, and using the identity (113)), one has

A (Y UR ) = o PV (v U sty

pgn)(Y’ UR) = pgn b [(A?Cn”” « (YU sin=1y)

— qf)é(bcwznpg”*l)(yl U S[n—l])

= ¢apV(Y'UR ), (114)
v—|D|

where all q_Sé—bumping routes will end up in the nth row. Therefore from Corollary I, , and (|114),

Py uThy = )Y UR)UP = 6zp (Y UR . J)UP

v—|D]|
= ¢ap(Y'UR . YU (DX «QI"1). (115)
v—|D]|
We are now in conditions to go back to .
Step 4. Going back to (111)).
T UT) = @ epe™ (Y U ST U (D« QM), using (TT),
= @ 6plben” (Y U (ST U (D + QM) using (D),
= (@ 5p0aA" (U R ) U0+ Q1) wing (TTD, (116

with all ¢g-bumping routes ending up in the nth row, and the ép—bumping routes in the (n—+ 1)th row. The
cardinality of the ¢g-bumping routes is v = v — |D| + |D| = |G| + |D| = |F| + |D|.

Key Step 5. Knuth relations of internal insertion operators.

From Proposition |3} since FGa= Fa, one has

Opap” (V' UR ) = dpgpl” (Y UR ) (117)
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Another key fact and a simple observation is that the number v of bumping routes landing in the nth
row and the number v — |D| of bumping routes landing in the (n+ 1)th row is the same for ¢F¢G and (;SFd)G

when acting on pg )(Y' UR . ). Thereby,

v—|D|
[[I6) = & drdari™ (Y'UR — )U(D+QM), using (I17), (118)
v—L(D)
=@ prp{V (Y UR) U (D + X « Q")) using (T14). (119)

From (118]) to , |G| = v — | D| bumping routes are executed by c/)G and land in row n. This implies that
in the action of QSF over p(n)(Y' UR), |D| of the v = |F| pairwise disjoint bumping routes will still land and
settle in the nth the row, which means when settling to adding |D| new entries at the end of the nth row of
pgn) (Y' U R), while v — | D| of them will land in the (n + 1)th row. Recall that since F is a row word, from
Lemma |3} (a), the v bumping routes are pairwise disjoint and, more importantly, the |D| bumping routes
settling in the nth row are necessarily the last to be executed. This means that if we attach D at the end of
the nth row p(") (Y" U R), the rightmost |D| bumping routes of ¢z when landing to the nth row will meet
the entire row D and bumps it out to the (n + 1)th row. Thus recalling that P = DX % Q[*~! and identity

(119),

[T9) = @, drlpt™ (Y UR) U (DX Q1)) (120)
=@y orlpl” (Y UR) U P, (121)
= ¢szmlp§”><yuﬂ"]>, using (T15). (122)
We have shown p(nH)(Y uT) = , that is, identity ,
gy T) = wm orpt (Y UT)M]. O
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