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Abstract. In arXiv:1808.06095 we have introduced the Knuth class of the word recording a sequence of
locations for repeated internal insertion operations in the Sagan-Stanley skew RSK correspondence, with no

prescribed external insertion of new cells, to be a preserver for the P -tableau. As a consequence the Benkart-

Sottile-Stroomer switching involution on ballot tableau pairs allows a realization as a recursive internal
insertion procedure. This amounts to explain the various presentations of Littlewood-Richardson (LR)

commuters and their coincidence predicted by Pak and Vallejo with contributions by Danilov and Koshevoi.

In particular, the aforesaid presentation provides internal insertion as an alternative to Schützenberger-
Lusztig involution (or evacuation) to constructing the Gelfand-Tsetlin pair in the Henriques-Kamnitzer gln-

crystal commuter. In addition, the coincidence of LR commuters solves the Lecouvey-Lenart conjecture,
recently further developed by Kumar-Torres, on bijections between the Kwon and Sundaram branching

models.
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1. Introduction

We give a recursive presentation of the Benkart-Sottile-Stroomer (BSS) switching map [BSS96] on ballot
tableau (also known as Littlewood-Richardson tableau) pairs based on the Sagan-Stanley internal row
insertion procedure on skew-tableaux [SS90] (see also [RSSW01], and [IMS23] for recent developments). Our
key tool is to observe that the Knuth class of an internal insertion order word of locations in a skew-tableau
preserves the P -tableau in the Sagan-Stanley skew Robinson-Schensted-Knuth (RSK) correspondence with
no prescribed external insertion of new cells. Our aim is to provide a clarification of, and, thereby, fulfill the
original question raised by Pak and Vallejo in [PV10], with further contributions by Danilov and Koshevoi
[DK05, DK08], on the coincidence and the involutive nature of all Littlewood-Richardson (LR) commuters.
Danilov and Koshevoi [DK08] have proven the coincidence of the BSS switching commuter, referred to as
ρ1 in [PV10], with the Henriques-Kamnitzer crystal commuter in type A and hive commuter, here denoted
ComHK respectively Comh

HK , [HK06a, HK06b].
LR commuters are combinatorial constructions that express in a bijective manner the symmetry of the

gln-tensor products. It means to specify combinatorial objects exhibiting the symmetry of the tensorands
Vµ and Vν in Vµ ⊗ Vν ≃ Vν ⊗ Vµ, by counting the multiplicity cλµ,ν = cλν,µ of the irreducible gln-module Vλ

in the decomposition into irreducibles of the tensor product Vµ ⊗ Vν . An alternative interpretation of these
numbers is that they are the structure constants of the cohomology ring of a Grassmannian in the basis of
Schubert classes. More generally, beyond Cartan type A, maps exhibiting the isomorphism of the tensor
product of g-crystals A⊗B and B ⊗A are called commuters.

Here, we focus on the LR commuter or fundamental symmetry map referred to as ρ3 in [PV10, Section
6.1] which corresponds to the commutativity bijections originally on ballot tableaux [Aze99, Aze08], and
later detailed on ballot tableaux and hives in [AKT16, TKA18], and referred as ρ(n) respectively σ(n).
More precisely, our ρ3 commuter, thanks to the the BSS switching ρ1 presentation on ballot tableau pairs
as a recursive Sagan-Stanley internal row insertion, coincides with the Henriques-Kamnitzer gln-crystal
commuter [HK06a, HK06b] by providing the associated Gelfand-Tsetlin pair.

Henriques and Kamnitzer [HK06a], following an idea of A. Berenstein, show that the map a⊗b 7→ ξ(ξ(b)⊗
ξ(a)), with ξ the Lusztig-Schützenberger involution, does give a crystal isomorphism from B(µ)⊗ B(ν) to
B(ν) ⊗ B(µ) and thereby a crystal commuter. In other words, denoting by LR(λ/µ, ν) the set of ballot
tableaux of shape λ/µ and content µ, to conclude that a commuter ρ coincides with the Henriques-Kamnitzer
gln-crystal commuter [HK06b, HK06a], it is enough, from considerations on highest and lowest weights in
a crystal, to show that the commuter ρ : LR(λ/µ, ν) −→ LR(λ/ν, µ) is such that for T ∈ LR(λ/µ, ν) with
left and right Gelfand-Tsetlin (GT) pair (Gµ, Gν), ρ(T ) has left and right Gelfand-Tsetlin (GT) pattern
pair given by (ξ(Gν), ξ(Gµ)). The commuter ρ3 does so but replaces the Schützenberger involution with
Sagan-Stanley internal row insertion or its reverse internal insertion. At this point it must be noted that
any of those two Gelfand-Tsetlin patterns together with a triple of boundary partitions completely specify
an LR tableau and the corresponding LR hive [Buc00, AKT16, KRV21].

The coincidence of Littlewood-Richardson (LR) commuters is instrumental on a Lecouvey-Lenart con-
jecture [LL20], recently further developed by Kumar-Torres [KT25a, KT25b], on bijections between the
Kwon [Kwo18] and Sundaram [Sun86] branching models. As mentioned by Kumar-Torres in [KT25a],
the only difference between their bijection and the bijection conjectured by Lecouvey-Lenart is the Little-
wood–Richardson commuter used. While Lecouvey-Lenart use Henriques–Kamnitzer gln-crystal commuter
[HK06b, HK06a], Kummar-Torres use the one by Kushwaha–Raghavan–Viswanath [KRV21] on flagged
hives studied in [KRV21, KRKV24]. The Lecouvey-Lenart conjecture is then positively answered thanks
to the coincidence of LR commuters. We also note that a major fact in the settling of this conjecture
is that Kumar-Torres bijection restricts to tableaux satisfying the Sundaram condition and those whose
evacuation satisfy the Kwon condition by considering and recognizing that they can be embedded in the
Kushwaha–Raghavan–Viswanath [KRV21] bijection on flagged hives. In other words, denoting by −LRλ

µ,ν

the set of left companions of LR(λ/µ, ν), the Kumar-Torres bijection shows that the left companion of a
Sundaram LR tableau is a tableau in −LRλ

µ,ν satisfying the Kwon condition. See Section 5.4.
Other realisations for the Benkart-Sottile-Stroomer (BSS) switching commuter on ballot tableau pairs

(that is, a tableau pair (Y, T ), written Y ∪ T , with Y the Yamanouchi tableau of shape µ and T a ballot



SAGAN-STANLEY SKEW RSK AND BALLOT SWITCHING 3

tableau of shape λ/µ with µ ⊆ λ), denoted ρ1 in [PV10], are based on compositions of Schützenberger
involutions [vL98, Section 3], [PV10], or on tableau sliding, as in the Thomas-Yong infusion involution
[TY08, TY09, TY16]. The latter is realised in [TY08] via Fomin’s jeu de taquin growths [Sta98, Chapter
7, Appendix 1]. Beyond type A, Lenart [Len08] realises the Henriques-Kamnitzer g-crystal commuter
[HK06a, HK06b] via van Leeuwen’s jeu taquin [vL98] generalising the Fomin’s growth diagram presentation
of jeu de taquin on Young tableaux for a broader set of root systems beyond the type A. For further details
on coincidence of various LR commuters, ρ1, ρ2, ρ

′
2 = ρ−12 in [PV10], the Henriques–Kamnitzer gln–crystal

commuter [HK06a, HK06b] and hive commuter [HK06b], as well the commutativity bijection of Danilov and
Koshevoi [DK05, DK08] on arrays, the Knutson-Tao-Woodward puzzles [KTW04] and the mosaic model
[Pur08], we refer the reader to [AKT16, Section 12], [TKA18, Introduction] and [ACM25].

1.1. Sagan-Stanley internal insertion and our results. On skew tableaux there are two types of
insertion [SS90]: external and internal both of which are based on the usual Schensted insertion operation.
However the corresponding procedures on a skew tableau T are different. The former proceeds very similarly
to the usual Schensted insertion. The later has two main steps, firstly one chooses an inner corner of T (see
Section 3 for the definition) and bumps its entry, and, secondly, one inserts the bumped entry externally, in
the row immediately below, in the usual manner. Eventually the bumping route lands at the end of some
row of T where the last bumped entry settles and thus added at the end of that row of T . The internal
row insertion operation, denoted ϕi if the row coordinate of the vacated inner corner is i (see Definition
3), is two-fold, adds one box, the vacant box, to the inner shape which in turn expands the outer shape in
one box, the last bumped entry, but, contrary to the external insertion, without contributing with a new
element to the multiset of entries of T .

The internal insertion procedure on a skew-tableau is an iteration of the internal row insertion operation
and thus requires a priori in each iterative step an inner corner of that skew tableau. Such information is
encoded by a second skew-tableau, sharing the inner border with the first, in the Sagan-Stanley skew-RSK
correspondence [SS90]. On its turn the instructions that it provides can be translated into a companion
word, Definition 1, listing the row coordinates of the entries, in the standard order, of the second skew-
tableau. This word is the internal row insertion order word of the first tableau. The internal insertion
procedure is not independent of the order of the chosen inner corners. However the Knuth class of the
companion word of the second skew-tableau provides a set of internal insertion order words preserving the
P -tableau in the Sagan-Stanley skew RSK correspondence, when the matrix prescribing external insertion
of new cells is empty [SS90, RSSW01], as shown in Theorem 1.

Knuth relations on the companion word of the second skew tableau is a partial contribution to the
question under what conditions is the P -tableau preserved in the skew RSK (see question (3) of [SS90,
Section 9]). The internal insertion procedure in general is not independent of a particular sequence of
chosen inner corners. Recently Imamura-Mucciconi-Sasamoto [IMS23] observed the same property for the
invariance of P -tableau under Knuth relations on the companion word of the second skew tableau. Although
Knuth relations do not capture completely the invariance of the P -tableau in the Sagan-Stanley skew RSK
correspondence, (see Example 12), they are enough for the purpose of our paper. A nice observation
[RSSW01] is that the rectification of a skew-tableau of inner shape, say µ, can either be calculated by using
jeu de taquin or the internal insertion procedure by choosing, in the Sagan-Stanley internal skew procedure,
an arbitrary second skew-tableau of inner shape µ, and outer shape an appropriate rectangle. That is,
the rectification does not depend on the order of jeu de taquin moves nor on the internal insertion order
words provided by the mentioned rectangular skew tableaux. In fact, it turns out that companion words of
rectangle tableaux are anti-Yamanouchi words, therefore, Knuth equivalent when of the same content.

Two words π and π′ are Knuth equivalent if and only if their P -tableaux under RSK correspondence
are equal P (π) = P (π′) [Sta98]. Theorem 1 (Theorem 5) below is a natural generalization of this property
for the skew RSK rephrased in Theorem 4 for the internal insertion location words in the Sagan-Stanley
internal insertion correspondence.

The companion word R(U) of a skew tableau U defines an internal row insertion operator ϕR(U) for any
skew tableau T with the same inner shape as U . See Definition 1 respectively Definition 3 and its extensions
(36), (37). If U is a skew tableau, with inner shape µ = (µ1, . . . , µn), on the alphabet [n], the companion
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word of U factorizes into n maximal row words (possibly with some empty factors) R(U) = Rn · · ·R1

where Ri is the row word defined by the row coordinates of the i-cells in U for i = 1, . . . , n, and the internal
insertion operator ϕR(U) factorizes accordingly ϕR(U) = ϕRn

◦ · · · ◦ ϕR1
. We extend the action of ϕR(U) on

T to the pair Y ∪ T with Y = Yµ the Yamanouchi tableau of shape µ, and denote it ϕ̄R(U), by filling the

vacated cell of T under the action of ϕi with i: ϕ̄i(Y ∪ T ) = Y(µ1,...,µi+1,µi+1,...,µn) ∪ ϕi(T ). We refer the
reader to Sections 2 and 3 for an explanation of undefined terms.

Let Y T (λ/µ) be the set of all semistandard tableaux (SSYT) of shape λ/µ.

Theorem 1. [Theorem 5, Sagan-Stanley row internal insertion operators and Knuth relations]. Let T ∈
Y T (α/µ), U,U ′ ∈ Y T (β/µ) and P (T,U) respectively P (T,U ′) the corresponding P -tableaux in the Sagan-
Stanley internal insertion correspondence. Then

(a) U and its standardization stdU have the same companion word, R(U) = R(stdU).
(b) P (T,U) = ϕR(U)(T ).
(c) P (T,U) = P (T, stdU) and internal row insertion commutes with standardization std(P (T,U)) =

P (stdT,U) = P (stdT, stdU).
(d) P (T,U) = P (T,U ′) = ϕR(U)(T ) = ϕR(U ′)(T ) whenever R(U) ≡ R(U ′) are Knuth equivalent.

Finally, Knuth equivalence of internal row insertion order words in Theorem 1, (d), means (see Proposition
3) that the composition of internal row insertion operators satisfy Knuth relations. The Knuth relations
satisfied by the Sagan-Stanley internal row insertion operators are the key fact in Theorem 2 (Theorem
9) to show that Benkart-Sottile-Stroomer switching map [BSS96] on ballot tableau pairs, denoted ρ1, can
be rephrased in the language of Sagan-Stanley internal row insertion operations or, equivalently, reverse
internal insertion operations as next theorem states.

Let n ≥ 1 and as usual put [n] = {1, . . . , n}. The set LR(n) denotes the set of all ballot semistandard
tableau pairs Yµ ∪ T , say µ = (µ1, . . . , µn), and T a ballot tableau of skew shape λ/µ, for some µ ⊆ λ =

(λ1, . . . , λn). The switching map on LR(n) is denoted by ρ
(n)
1 . For 1 ≤ i ≤ n, let (Yµ ∪ T )[i] := Y(µ1,...,µi) ∪

T [i] ∈ LR(i) be the restriction of Yµ ∪ T to the first i rows with T [i] of shape (λ1, . . . , λi)/(µ1, . . . , µi). (See
Section 2.4 and Definition 5 for precise definitions.)

Theorem 2. [Main Theorem 9 ] Let n ≥ 1 and Yµ ∪ T ∈ LR(n) with T a ballot tableau of shape λ/µ and

weight ν. For 1 ≤ i ≤ n, let (Yµ ∪ T )[i] ∈ LR(i) with T [i] of weight ν(i). Consider the ith row word of T [i]

where Vi is the row subword restricted to the entries in [i−1], and ν̂i = λi−µi−|Vi| is the number of entries

equal to i. Put (Yµ ∪ T )[0] = Yν0 ∪H(0) := ∅, ν0 := 0, ϕ̄∅ = id and ρ
(0)
1 (∅) := ∅. Then, for i = 1, . . . , n, it

holds

ρ
(i)
1 [(Yµ ∪ T )[i]] = (χ̄µi

i ◦ ϕ̄Vi
◦ ω̄ν̂i

i ) ◦ ρ(i−1)[(Yµ ∪ T )[i−1]] (1)

= χ̄µi

i ◦ ω̄
ν̂i
i ◦ ϕ̄Vi

(Yν(i−1) ∪H(i−1)) = Yν(i) ∪H(i) ∈ LR(i), (2)

where ω̄ν̂i
i adds the ith row word iν̂i to Yν(i−1) , χ̄

µi

i adds the row word iµi at the end of the ith row of

ϕ̄Vi
◦ ω̄ν̂i

i (Yν(i−1) ∪ H(i−1)) and H(i) ≡ Y(µ1,...,µi). In particular, all bumping routes of ϕ̄Vi
are pairwise

disjoint and terminate in the ith row.

This theorem is illustrated in Section 5.3. We observe that the recursive internal insertion presentation

of switching ρ
(n)
1 , supplied with add operators ω̄i and χ̄i, on the ballot pair Yµ ∪ T in (1), (84),

ρ
(n)
1 (Yµ ∪ T ) = (χ̄µn

n ◦ ϕ̄Vn ◦ ω̄ν̂n
n ) ◦ · · · ◦ (χ̄µ2

2 ◦ ϕ̄V2 ◦ ω̄
ν̂2
2 ) ◦ (χ̄µ1

1 ◦ ω̄
ν̂1
1 ) (∅) (3)

= Yν ∪H, H ≡ Yµ,

also produces the companion tableau Gν(T ) or the Gelfand-Tsetlin (GT) pattern of type ν and content λ−µ
of T , defined by the nested sequence of partitions ν(1) ⊆ ν(2) ⊆ · · · ⊆ ν(n) = ν such that ν(i) is the content

of the ballot tableu T [i] ∈ LR(i), for i = 1, . . . , n. Since ρ
(n)
1 is an involution, ρ

(n)
1 (Yν ∪H) = Yµ ∪ T , this

allows another presentation of the switching commuter ρ
(n)
1 via reverse internal row insertion that we call

deletion operator ρ(n) in [AKT16]. Deletion operator ρ(n) (ρ3 in [PV10]) just reverses the process as in (1),
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(84) and gives

ρ(n)(Yν ∪H) = Yµ ∪ T = ρ
(n)
1 (Yν ∪H) (4)

by producing the GT pattern Gν(T ) of type ν and content λ − µ of T . This reverse process coincides
with the deletion operations as explained for ρ(n) in [Aze99, AKT16] and translated for hives as σ(n) in
[AKT16, TKA18].

For i = 1, . . . , n,, let θ̄i := χ̄µi

i ϕ̄Vi
ω̄ν̂i
i in (1), (84). The operator defined by

ρ̄(n)(Yµ ∪ T ) := θ̄n · · · θ̄2θ̄1 (∅) = (χ̄µn
n ◦ ϕ̄Vn ◦ ω̄ν̂n

n ) · · · (χ̄µ2

2 ◦ ϕ̄V2 ◦ ω̄
ν̂2
2 ) ◦ (χ̄µ1

1 ◦ ω̄
ν̂1
1 ) (∅). (5)

is the translations of the operator σ̄(n) = (σ(n))−1 on hives [AKT16, TKA18] to ballot tableaux. That is,
ρ̄(n) = (ρ(n))−1. From Theorem 2 and (3), one has

ρ
(n)
1 (Yµ ∪ T ) = ρ̄(n)(Yµ ∪ T ) = Yν ∪H, H ≡ Yµ and shape λ/ν. (6)

Since ρ
(n)
1 is an involution, it follows

ρ
(n)
1 = ρ̄(n) = ρ(n). (7)

Now, for i = 1, . . . , n, let

δi := (θ̄i)
−1

= (ω̄ν̂i
i )−1(ϕ̄Vi

)−1(χ̄µi

i )−1

where the action of this operator is realised through deletion operations in the reverse process of (1). Note,
from Theorem 2, all bumping routes of ϕ̄Vi

are pairwise disjoint and terminate in the ith row, hence (ϕ̄Vi
)−1

is a reverse internal insertion operation and starts in row i. Since, ρ̄(n) is reversible by reverse row internal
insertion, it defines ρ(n) via the GT pattern Gν that it produces.

We write

ρ(n)(Yν ∪H) = Yµ ∪ T

in the sense that ρ(n) is defined by the production of the GT pattern of type ν of T given by the sequence
of inner shapes in

Yν ∪H, δn(Yν ∪H), δn−1δn(Yν ∪H), . . . , δ2 · · · δn−1δn(Yν ∪H), δ1δ2 · · · δn−1δn(Yν ∪H) = ∅.
Hence

ρ(n)(Yν ∪H) = ρ
(n)
1 (Yν ∪H)

We also write

ρ(n)(Yµ ∪ T ) = Yν ∪H

in the sense that ρ(n) is defined by the production of the GT pattern of type µ of H given by the sequence
of inner shapes in

Yµ ∪ T, δn(Yµ ∪ T ), . . . , δ2 · · · δn−1δn(Yµ ∪ T ), δ1δ2 · · · δn−1δn(Yµ ∪ T ) = ∅.
Then

ρ
(n)
1 (Yµ ∪ T ) = ρ̄(n)(Yµ ∪ T ) = ρ(n)(Yµ ∪ T ) = Yν ∪H.

Thereby ρ(n) and ρ̄(n) just provide another method to compute switching on ballot tableau pairs as
well as the GT pattern pair in the Henriques–Kamnitzer crystal ComHK and hive Comh

HK commuters
[HK06a, HK06b]. From the bijection, denoted φ, between hives and ballot tableaux [Buc00, AKT16,
TKA18, KRV21, KT25a], one has the following corollary. (We warn the reader that a hive allows several
representations, namely, vertex representation, as in [KT99], [Buc00] (and [KRV21] with a flag condition),
edge representation as introduced by [RKT06], and gradient representation as in [AKT16].)

Corollary 1. The following commuters on ballot tableaux or hives coincide and are involutions

ρ1 = ρ2 = ρ′2 = ρ = ρ̄ = ρ3 = ComHK (8)

σ = σ̄ = Comh
HK (9)

φσ = ComHK . (10)
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1.2. Lecouvey-Lenart and Kumar-Torres bijections between Sundaram and Kwon branching
models coincide. Let LR(λ/µ, ν) be te set of ballot (or LR) tableaux of shape λ/µ and content ν. Given
T ∈ LR(λ/µ, ν), we may associate a pair (Gµ(T ), Gν(T )) of semistandard tableaux (or GT), called the
left and right companions of T , of shape µ and content the reverse of λ − ν, respectively of shape ν and
content λ−µ. The right companion map c [KT25a] induces a bijection between the set LR(λ/µ, ν) of ballot
tableaux of skew shape λ/µ and content ν and the set LRλ

µ,ν of µ-dominant semi-standard Young tableaux

Gν of shape ν and content λ − µ. The left companion map c− map injects each T ∈ LR(λ/µ, ν) to its
left companion tableau Gµ(T ) of shape µ and content reverse λ − ν. The left companion tableau Gµ of
T ∈ LR(λ/µ, ν) can be characterized by the ν-dominance of its contre-tableau, that is, the contre-tableau of
Gµ, with shape µ and weight λ− ν, is ν-dominant. The set −LRλ

µ,ν denotes the set of semi-standard Young
tableaux of shape µ and content the reverse λ− ν whose contre-tableau is ν-dominant. The rectification of
those contre-tableaux Gµ are exactly ξ(Gµ) that are still ν-dominant because rectification Knuth equivalence
(rectification) preserves ν-dominance. Therefore ξ(−LRλ

µ,ν) = LRλ
ν,µ.

Corollary 2. The Henriques-Kamnitzer symmetry LRλ
µ,ν

∼−→ LRλ
ν,µ can be defined by

Gν
c−1

→ T
c−→ Gµ(T )→ ξ(Gµ(T )), (11)

where ξ is the Lusztig-Schützenberger involution. That is, G is the left companion of T ∈ LR(λ/µ, ν) if
and only if ξ(G) is the right companion of ρ1(T ) = ρ(n)(T ). Moreover, ξ(Gµ) can be calculated by the
reverse Sagan-Stanley internal insertion: it is the GT pattern of shape µ and content λ − ν produced by
the sequence of inner shapes in

Yµ ∪ T, δn(Yµ ∪ T ), . . . , δ2 · · · δn−1δn(Yµ ∪ T ), δ1δ2 · · · δn−1δn(Yµ ∪ T ) = ∅. (12)

The commuter (11) concerning ballot tableaux can be translated for hives because LRλ
µ,ν andHive(µ, ν, λ)

are in bijection thanks to [Buc00]. (We refrain from defining here hives and refer the reader to [Buc00,
KRV21, KT25a].) It follows then that from a hive h ∈ Hive(ν, µ, λ) we can injectively obtain simultaneously
a ν-dominant tableau Pµ of shape µ and weight λ− ν, that is, Pµ ∈ LRλ

ν,µ and a µ-dominant contretableau

Pν of shape ν and weight λ− µ, that is, Pν ∈ −LRλ
ν,µ and ξ(Pν) ∈ LRλ

µ,ν .
Fom the coincidence of LR commuters and the work of Kumar-Torres [KT25a], [KT25b] on flagged

hives by Kushwaha–Raghavan–Viswanath [KRV21, KRKV24], the Lecouvey-Lenart conjecture [LL20] on
bijections between the Kwon [Kwo18] and Sundaram [Sun86] branching models is settled. We refer the
reader to Section 5.4 for notation and relevant definitions. The Lenart-Lecouvey conjecture says that
the bijection defined by the Hendriques-Kamnitzer LR commuter between LRλ

µ,ν and LRλ
ν,µ restricts to a

bijection between LRS(λ/µ, ν), the set of LR tableaux in LR(λ/µ, ν) satisfying the Sundaram property,
and LRKλ

ν,µ, the set of tableaux in LRλ
ν,µ such that their Schützenberger evacuation evac2n (or Lusztig-

Schützenberger involution ξ) within the crystal B(µ, 2n), satisfy the Kwon property. This amounts to say
that the left companions of LRS(λ/µ, ν) are Kwon tableaux. Kumar-Torres [KT25a, KT25b] show then that
the flagged hive by Kushwaha–Raghavan–Viswanath when restricted to a Sundaram LR tableau exhibits
its GT pattern pair.

Let LRS(λ, µ) :=
⋃
LRS(λ/µ, ν), and LRK(λ, µ) :=

⋃
LRKλ

ν,µ where in both cases the union is taken
over all even partitions ν, that is, ν2i−1 = ν2i, i ≥ 1.

Theorem 3. [KT25a, KT25b] The bijection of Kushwaha–Raghavan–Viswanath [KRV21] between LRλ
µ,ν

and LRλ
ν,µ restricts to a bijection between LRS(λ/µ, ν) and LRKλ

ν,µ.

Corollary 3 (Corollary 6). The Kumar-Torres bijection

LR(λ/µ, ν)
∼−→ LRλ

µ,ν
U−→ LRλ

ν,µ

where U is the Kushwaha–Raghavan–Viswanath symmetry, and the Lecouvey-Lenart bijection

LR(λ/µ, ν)
∼−→ LRλ

µ,ν
U ′

−→ LRλ
ν,µ
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where U ′ is the LR commuter defined by Henriques–Kamnitzer, coincide. Thereby both restrict to a bijection
between LRS(λ/µ, ν) and LRKλ

ν,µ and to

LRS(λ, µ)
∼−→ LRK(λ, µ).

The Littlewood-Richardson commuter based on internal (or reversal) row insertion operations was first
introduced in [Aze99] and called ρ3 in [PV10]. The involutive nature of this commuter for tableaux and
hives was completely detailed in [AKT16, TKA18] without making recourse of the BSS switching involution.
Its coincidence with tableau switching was foreseen in [Aze08] which we fulfill here.

1.3. Organization of the paper. The paper is organized in seven sections. In Sections 2 and 3, we fix
the basic notation to work with, introduce our main definitions and recall the skew RSK internal insertion
correspondence. In particular, in Section 2.3 we recall the companion pair of a ballot tableau and its
importance on characterizing LR commuters. In Section 4 we provide a preserver for the P -tableau. Theorem
1 is proved in Section 4.3 as a consequence of several lemmata. In Section 5 the recursive presentation of
tableau switching on ballot tableau pairs in terms of the Sagan-Stanley internal row insertion is worked out;
the Lecouvey-Lenart conjecture is settled as a consequence of the coincidence of LR commuters and the
major contribution by Kumar-Torres bijection. In Section 6 the recursion on ballot tableau pairs is shown
in Theorem 13. Theorem 2 (Main Theorem 9) is proved in Section 7.

This paper is an extension of the arXiv preprint [Aze18], also announced in [TKA18], with further results
and applications.
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2. Preliminary definitions

2.1. Basics on Young tableaux. As usual [n] denotes the set of positive integers {1, . . . , n}, n ≥ 1, and,
if 1 ≤ d ≤ n, [d, n] denotes the set {d, . . . , n}. A partition (or a normal shape) µ is a non negative integer
vector in weakly decreasing order, (µ1 ≥ · · · ≥ µn ≥ 0). It is identified with the Young diagram of shape
µ, in the English convention, that is, n left justified rows of boxes with µi boxes in the ith row, for each i,
numbering the rows and the columns in matrix style. The box or cell of the Young diagram in row i and
column j will be denoted (i, j) with 1 ≤ j ≤ µi. Partitions are usually denoted by lowercase Greek letters.
We write |µ| := µ1 + · · · + µn for the number that µ partitions, and the number of positive parts in this
summand is the length ℓ(µ) ≤ n of µ. The unique partition of length 0 is the null partition (0), identified
with ∅, the unique empty Young diagram. A corner of a Young diagram is a cell such that its removal still
leaves a Young diagram.

For Young diagrams µ ⊆ λ, the skew partition (or skew shape) λ/µ is the set-theoretic difference λ\µ. A
semistandard Young tableau (SSYT) T of shape λ/µ is a filling of the boxes of λ/µ over a finite subset [n]
of the positive integers, such that the labels of each row weakly increase from left to right and the labels of
each column strictly increase from top to bottom. The skew tableau T comprises an inner border, defined
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by the unfilled inner shape µ, a filled skew shape λ/µ, and an outer border, defined by the outer shape λ.
The labels of T are often referred to elements or entries of T . We denote by {T} the multiset of entries of
T counting the number of repetitions of each entry. If µ = ∅, T is of partition (normal) shape. The unique
empty skew tableau µ/µ := ∅µ, is the Young diagram of shape µ.

The (row) reading word of T is the word w(T ) on the alphabet [n], read left to right across rows of T
taken in turns from bottom to top. When needed, we also consider the Kashiwara reading word of T , also
called north-western column reading word of T , that is, the word read from right to left across columns
from top to bottom. The content or weight of T is the content of its reading word w(T ), that is, the vector
γ = (γ1, . . . , γn) where γi records the number of i’s in T , for all i in the given alphabet. The length |w(T )| of
w(T ) is the number of letters which appear in w(T ). Equivalently, |λ|−|µ| = |w(T )| = |γ| := γ1+· · ·+γs+· · · .
As usual, given the words u and v over an alphabet, uv denotes their concatenation. A word is said to be a
row word if its letters weakly increase from right to left. The set of all SSYT’s of shape λ/µ is denoted by
Y T (λ/µ). If we want to emphasize that the labels of the entries range on the set {1, . . . , n} then we also
write Y T (λ/µ, n). For an illustration see (15).

Noting that T ∈ Y T (λ/µ, n) is also realized by a sequence of nested partitions µ ⊆ λ(1) ⊆ · · · ⊆ λ(n) = λ
where λ(m)/µ defines the filling of the boxes of T on the alphabet [m], for 1 ≤ m ≤ n, the restriction of T
to the alphabet [m], T|[m] ∈ Y T (λ(m)/µ, n), is the subtableau of T of content (γ1, . . . , γm), precisely realized

by the subsequence µ ⊆ λ(1) ⊆ · · · ⊆ λ(m).
A tableau in Y T (λ/µ) with |γ| boxes is said to be standard if the entries are the numbers from 1 to

|γ|, each occurring once. The standard order of the boxes on a semistandard Young tableau is given by
the numerical ordering of the labels with priority, in the case of equality, given by rule southwest=smaller,
northeast=larger.

Given U ∈ Y T (λ/µ) of weight γ, the standardisation of U is the standard tableau std U obtained by the
standard order of the boxes of U . This means to renumber the entries of U in numerical order from 1 to
|γ|, and, in case of equal entries, regard those to the left as smaller than those to the right. The tableau U
is easily recovered from std U and its weight γ. For an illustration see Example 5.

2.2. Basic calculus on Young tableaux. Recall the Schensted row insertion (here also called external
Schensted row insertion) takes a SSYT T of partition shape, and an element m in the T -alphabet, and
constructs a new tableau, denoted T •m. For a word w = w1 · · ·ws on the T -alphabet, we recursively define
the new tableau T • w = (· · · ((T • w1) • w2) • · · · ) • ws [Ful97]. Recall the elementary Knuth transformations
on words over a totally ordered alphabet and its compatibility with row Schensted insertion [Ful97, Sta98].
For letters x, y, z in a totally ordered alphabet, an elementary Knuth transformation is governed by the
rules below. As usual we write ≡ for Knuth equivalence between words,

yzx ≡ yxz, if yz • x = y z • x =
x z
y = y • x z = y • xz , equivalently, x < y ≤ z, (13)

and

xzy ≡ zxy if xz • y = x z • y =
x y
z

= z • x y = z • xy, equivalently, x ≤ y < z. (14)

Two words w and w′ are said to be Knuth equivalent, w ≡ w′, if they can be transformed into each other
by a sequence of elementary Knuth transformations. Two skew-tableaux T and U are Knuth equivalent
T ≡ U if and only if w(T ) ≡ w(U). Equivalently, T and U have the same rectification, that is, the insertion
tableaux P (w(T )) = P (w(U)) obtained by row Schensted insertion of the words w(T ) respectively w(U)
[Ful97, Sta98].

Remark 1. The row reading and column reading words of T are Knuth equivalent. The Kashiwara reading
word and the reverse row reading word of T are Knuth equivalent. The P -tableau of the Schensted row
insertion of a word w = w1w2 · · ·ws equals the P -tableau of the Schensted column insertion of the reverse
word of w, ws · · ·w2w1. That is, P (w) = w1 •w2 • · · · •ws = ws ← · · · ← w2 ← w1 where ← means Schensted
column insertion. For instance, in (13), yz • x = x ← z ← y = y • xz = z ← x ← y. (Similarly for (13).)
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Thereby, the P -tableau of the reading word of T , and the P -tableau of the Kashiwara reading word in the
Schensted column insertion is the same.

If nothing in contrary is said we always consider Schensted row insertion.
Either for the Schensted row insertion or Schensted column insertion version of RSK, we have the following

result: two words π and π′ are Knuth equivalent if and only if their P -tableaux under RSK correspondence
are equal P (π) = P (π′) [Ful97, Sta98]. In the usual RSK, Knuth relations completely characterize the
words having the same P -tableau.

2.3. Ballot tableaux and companion pairs. We follow closely the references [AKT16, TKA18, ACM25]
and we refer to them for additional details. A SSYT tableau is said to be ballot or Littlewood-Richardson(LR)
tableau if the content of each suffix of its reading word, that is, the content of the subword read backwards
from the end to any letter, is a partition. Such a word is also called Yamanouchi, ballot or reverse lattice
word. The ballot tableau of shape µ is also called Yamanouchi tableau, Yµ. In other words, it is the unique
tableau of shape and content µ, that is, the entries of row i consist of i’s. Denote by LR(λ/µ, ν), where
µ, ν ⊆ λ are partitions, the subset of Y T (λ/µ) consisting of ballot tableaux of shape λ/µ and content ν.
That is T ∈ LR(λ/µ, ν) if and only if T ≡ Yν .

Example 1. For instance, in (15), H and T are SSYT’s of shape (4, 3, 2)/(2, 1, 0), and Y(3,2,1) is the
Yamanouchi tableau of shape (3, 2, 1). The reading words of H, T and Y are 121312, 231211 and 322111
respectively. The two last words are Yamanouchi but not the first. Therefore T and Y are ballot but H is
not,

H =
1 2

1 3
1 2

T =
1 1

1 2
2 3

Y(3,2,1) =
1 1 1
2 2
3

T ≡ Y(3,2,1). (15)

A key tableau of shape π is the tableau Yα of shape π whose content α is a permutation of its shape π
or the columns are nested as sets. In particular, when α is the reverse of π, rev π, we say that Yrev π is the
anti-Yamanouchi tableau of shape π. For instance, for n = 4 and µ = (2, 1, 0, 0) respectively ν = (3, 2, 1, 0),
one has the anti-Yamanouchi tableaux of shapes µ respectively ν where the weight is the reverse of the
shape

Y(0,0,1,2) =
3 4
4

= evac4Y(2,1,0,0), Y(0,1,2,3) =
2 3 4
3 4
4

= evac4Y(3,2,1,0). (16)

Let B(π, n) be the crystal of tableaux of shape π on the alphabet [n], and ξ = evacn the Schützenberger-
Lusztig involution (or Schützenberger evacuation) on that crystal. The highest weight element of B(π, n)
is Yπ and the lowest element is ξ(Yπ) = Yrev π.

A SSYT tableau T is said to be anti-ballot or an opposite Littlewood-Richardson(LR) tableau if its reading
word w(T ) is anti-Yamanouchi, which means the content of each prefix, that is, the content of the subword
read left to right from the beginning to any letter is a reverse partition. A tableau T ∈ Y T (λ/µ, n) of
content revν is said to be anti-ballot if T ≡ evacn(Yν) = Yrev ν . Denote by opLR(λ/µ, revν), where µ, ν ⊆ λ
are partitions, the subset of Y T (λ/µ, n) consisting of tableaux T of shape λ/µ and content revν such that
T ≡ evacn(Yν) = Yrevν .

Example 2. Let n = 4 and T ∈ LR(λ/µ, ν) as in the previous example. Recalling that reversal [BSS96,
ACM25] is the version of Schützenberger evacuation for skew-tableaux, one has that reversal of T is in
opLR(λ/µ, revν) with reading word 443324 equals to

2 4
3 3

4 4
≡ Y(0,1,2,3). (17)

Given n ≥ 1 and a ballot tableau T ∈ LR(λ/µ, ν) with ℓ(λ) ≤ n, one associates a pair of companion
tableaux or Gelfand-Tsetlin patterns (GT) (Gµ(T ), Gν(T )), left companion respectively right companion
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uniquely determined by T . (We identify a Gelfand-Tsetlin pattern of base (or type) κ with its natural
tableau presentation of shape κ.)

Remark 2. In fact T ∈ LR(λ/µ, ν) is completely specified either by its left or right companion tableau.
In addition, they are linearly bijectively related, see [PV10, ACM25].

The left companion Gµ(T ) of shape µ and content rev(λ−ν) is obtained from T by recording the sequence

of partitions µ(n−r+1) giving the shapes occupied by the entries including the empty entries identified with
0 < r in rows r, r + 1, . . . , n of T , for r = 1, 2, . . . , n. We get then the nested sequence of partitions
µ(1) ⊆ µ(2) ⊆ · · · ⊆ µ(n) = µ defining Gµ(T ).

The right companion Gν(T ) of shape ν and content λ−µ is obtained from T by recording the sequence of
partitions νr giving the shapes occupied by the positive entries ≤ r in rows 1, 2, . . . , r of T , for r = 1, 2, . . . , n.
We get then the nested sequence of partitions ν(1) ⊆ ν(2) ⊆ · · · ⊆ ν(n) = ν defining Gν(T ). Equivalently,
the row r of Gν(T ) records the row coordinates of the r-cells of T for r = 1, . . . , n [AKT16].

Example 3. Let n = 6, λ = (6, 5, 5, 4, 3, 0), ν = (4, 4, 3, 2, 0, 0), µ = (4, 3, 2, 1, 0, 0) and T ∈ LR(λ/µ, ν) as
below. We illustrate T with its GT pattern pair (Gµ(T ), Gν(T )) ∈ B(µ, 6)⊗B(ν, 6)

T =

1 1
1 2

1 2 3
2 3 4

2 3 4

, Gµ(T ) =

2 2 2 4
3 3 5
4 6
6

,

4 3 2 1 0 0

4 3 1 0 0

4 2 1 0

3 2 0

3 0

0

GT pattern of type µ and weight rev(λ− ν) = (0, 3, 2, 2, 1, 2) defined by the nested sequence of partitions

µ = µ(6) = (4, 3, 2, 1, 0, 0) ⊇ µ(5) = (4, 3, 1, 0, 0) ⊇ µ(4) = (4, 2, 1, 0) ⊇

⊇ µ(3) = (3, 2, 0) ⊇ µ(2) = (3, 0) ⊇ µ(1) = (0) (18)

and

Gν(T ) =

1 1 2 3
2 3 4 5
3 4 5
4 5

(19)

The Kashiwara reading word (right to left across columns top to bottom) of

Gµ(T )⊗ Yrevν = Gµ(T )⊗ Y(0,0,2,3,4,4) ≡ Yrevλ (20)

Gµ(T )⊗ Y(002344) ≡ 4252362346⊗ 5645634563456 (21)

≡ Gµ(T )← 5← 6← 4← 5← 6← 3← 4← 5← 6← 3← 4← 5← 6 (22)

=

2 2 2 3 4 6
3 3 3 4 5
4 4 4 5 6
5 5 5 6
6 6 6

= Yrevλ (23)

Remark 3. Gµ ⊗ Yrevν ≡ Yrevλ is equivalent Yν ⊗ C(Gµ) ≡ Yλ where C(Gµ) is the contre-tableau of Gµ.
Note the word of the contre-tableau is the dual word of w(G(µ)), that is, if w = w1w2 · · ·ws is a word in
the alphabet [m] then the dual is (m − ws) · · · (m − w2)(m − w1). Equivalently, w(C(Gµ)) is ν-dominant,
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and w(Yν)w(C(Gµ)) is a Yamanouchi word of weight λ (for details see [Ful97, Section 5.1, Appendix A.1]
and [Buc00, Appendix]),

Yν ⊗ C(Gµ) ≡ Yλ. (24)

Therefore, since ξ(Gµ) is the rectification of C(Gµ), ξ(Gµ) ≡ C(Gµ) is ν-dominant,

Yν ← C(Gµ) = Y(443200) ←
1

1 3
2 4 4

3 5 5 5

= Yλ.

The Kashiwara reading word (right to left along columns top to bottom) of Yµ⊗Gν(T ) is the Yamanouchi
word of weight λ whose column insertion gives Yλ:

Yµ ⊗Gν(T ) ≡ 1121231234⊗ 3524513451234 ≡ (25)

Y(4,3,2,1,0,0) ← 3← 5← 2← 4← 5← 1← 3← 4← 5← 1← 2← 3← 4 (26)

= Yλ (27)

Remark 4. In the row reading word option the corresponding versions are Yrevν •Gµ(T ) ≡ Yrevλ respectively
Gν(T ) • Yµ ≡ Yλ [Ful97, Section 5.2, Exercise 3].

We now collect a few facts that characterize the set of GT-patterns of shape µ and weight rev(λ − ν)
respectively the set of GT-patterns of shape ν and weight λ−µ each of which specifying the set LR(λ/ν, µ).

We need some notation. We denote the set of those GT-patterns by −LRλ
µ,ν respectively LRλ

µ,ν . Recall
that

B(µ)⊗B(ν) ∼=
⊕

B(λ)c
λ
µ,ν , (28)

where the sum is taken for all partitions λ ⊇ µ, ν, and cλµ,ν = #L(λ/µ, ν).

The set LRλ
µ,ν (−LRλ

µ,ν) of semistandard tableaux Gν (Gµ) of shape ν (µ) and content λ−µ (rev(λ−ν))
are those in the crystal B(ν) (B(µ)) such that Yµ ⊗Gν (Gµ ⊗ Yrevν) is the highest (lowest) weight element
of weight λ (revλ) in a connected component of B(µ)⊗B(ν) isomorphic to B(λ).

Therefore, Gν ∈ LRλ
µ,ν if and only if it satisfies the left µ-dominance (the Kashiwara readi the word of

Gν concatenated on the left with the canonical Yamanouchi word of weight µ (the Kashiwara reading word
of Yµ) is ≡ Yλ.

On the other hand, Gµ ∈ −LRλ
µ,ν if and only if it satisfies the right revν-dominance, that is, the word

of Gµ concatenated on the right with the canonical anti-Yamanouchi word of weight revν ( the Kashiwara
reading word of Yrevν) is ≡ Yrevλ. Equivalently, from (24), Yν ⊗ C(Gµ) ≡ Yλ, it amounts to say that
ξ(Gµ) ∈ LRλ

ν,µ.

We know from [HK06b] that LRλ
µ,ν ,

−LRλ
µ,ν and LR(λ/ν, µ) are in bijection. In fact, from [HK06b],

T ∈ LR(λ/ν, µ) has companion pair (Gµ, Gν) if and only if Yµ ⊗Gν ≡ Yλ and Gµ ⊗ Yrevν ≡ Yrevλ are the
highest and lowest weight elements of a same connected component of B(µ)⊗B(ν) isomorphic to B(λ).

We know from [PV10, HK06b] that LRλ
µ,ν ,

−LRλ
µ,ν and LR(λ/ν, µ) are in bijection. In fact, from [HK06b],

the pair (Gµ, Gν) ∈ LRλ
µ,ν × −LRλ

µ,ν is the companion pair of T ∈ LR(λ/µ, ν) if and only if Yµ ⊗Gν ≡ Yλ

and Gµ⊗Yrevν ≡ Yrevλ are the highest respectively lowest weight elements of a same connected component
of B(µ)⊗B(ν) isomorphic to B(λ) where T ∈ LR(λ/µ, ν) is the recording tableau in the column insertion
[Nak93, Kwo18] of Gµ ← Yrevν and Yµ ← Gν . In other words, each copy of B(λ) is uniquely parameterized
by a T ∈ LR(λ/µ, ν). From [Kwo18] we then have an RSK version of (28)

B(µ, n)⊗B(ν, n) ∼=
⊕
λ

T∈LR(λ/µ,ν)

B(λ, n)× {T}, (29)

where λ is taken over all partitions of n such that µ, ν ⊆ λ.
Furthermore, from Henriques-Kamnitzer commuter [HK06b], (Gµ, Gν) is the companion pair of some

T ∈ LR(λ/µ, ν) if and only if (ξ(Gν), ξ(Gµ)) is the companion pair of some H ∈ LR(λ/ν, µ). Note that the
Henriques-Kamnitzer commuter subsumes Remark 3.
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We then have the right companion bijection c

c : LR(λ/µ, ν) −→ LRλ
µ,ν , T 7→ Gν(T ) (30)

and the left companion bijection c−

c− : LR(λ/µ, ν) −→ −LRλ
µ,ν T 7→ Gµ(T ). (31)

The Henriques-Kamnitzer commuter [HK06b] ComHK can be written as

ComHK = ξ ◦ c− ◦ c−1

or in its left version

Com−HK = ξ ◦ c ◦ c−−1

ComHK : LRλ
µ,ν

c−1

−→ LR(λ/µ, ν)
c−−→ −LRλ

µ,ν
ξ−→ LRλ

ν,µ, Gν 7→ T 7→ Gµ 7→ ξ(Gµ), (32)

or

Com−HK : −LRλ
µ,ν

c−
−1

−→ LR(λ/µ, ν)
c−→ LRλ

µ,ν
ξ−→ −LRλ

ν,µ, Gµ 7→ T 7→ Gν 7→ ξ(Gν). (33)

Example 4. For n = 6 this is an illustration of the inverse of map c− applied to Gµ(T ) to get T :

Gµ(T ) =

2 2 2 4
3 3 5
4 6
6

, ,
2 2 2 4
3 3 5
4

1
1

,
2 2 2 4
3 3
4

1
1 2

2
2

,

2 2 2
3 3

1
1 2

2 3
2 3

, 2 2 2
1

1 2
2 3

2 3 4

= T̃ ,

1 1
1 2

1 2 3
2 3 4

2 3 4

= T (34)

where ν̂ = (2, 1, 1, 1, 0) = λ − shape(T̃ ) = λ − (4, 4, 4, 3, 3), and T is obtained from T̃ by adding ν̂i, i’s, to

row i of T̃ , for i = 1, . . . , ℓ(λ).

2.4. The companion word of a skew-tableau.

Definition 1. Let U ∈ Y T (λ/µ, n) of weight γ. The companion word of U is defined to be the word
R(U) = R(std U) := u|γ| · · ·u2u1 listing the row indices of the entries of std U , from the bigger to the
smaller. Equivalently, to construct u|γ| · · ·u2u1, for p = 1, . . . , |γ|, put up = i, if the number p is in the ith
row of std U . The companion word of T factorizes into n maximal row words (possibly with some empty
factors) R(U) = Rn · · ·R1 where Ri is the row word defined by the row coordinates of the i-cells in T for
i = 1, . . . , n.

Example 5. Let

U =
1 3

2 4
1 2 3

∈ Y T (λ/(3, 2, 0), 4), V =
4 6

5 7
4 5 6

∈ Y T (λ/(3, 2, 0), 6),

std U = std V =
2 6

4 7
1 3 5

∈ Y T (λ/(3, 2, 0), 7).

The corresponding companion words are

R(U) = R(V ) = R(stdU) = R(stdV ) = 2 13 23 13
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R(U) = R4R3R2R1 = 213 23 13

R(V ) = R7R6R5R4R3R2R1 = 213 23 13 ∅ ∅ ∅
R(stdU) = R(stdV ) = R7R6R5R4R3R2R1 = 21 3 2 3 1 3

Proposition 1. Let U ∈ Y T (β/µ) and R(U) its companion word. If µ = ∅ then R(U) is a Yamanouchi

word ≡ Yβ . If µ ̸= ∅ and β has rectangle shape thenR(U) is a anti-Yamanouchi word of content (β
ℓ(β)
1 )−µ =

(β1 − µ1, β1 − µ2, . . . , β1 − µℓ(β)) and thus ≡ Y
(β

ℓ(β)
1 )−µ.

Proof. If µ = ∅ it is a consequence of the definitions of companion word and Yamanouchi word [Ful97]. If
µ ̸= ∅ and β has rectangle shape, it is enough to observe that the word R(U) is a reverse Yamanouchi word
of content (β1−µ1, β1−µ2, . . . , β1−µℓ(β)), that is, in each prefix of R(U) the number of (i+1)’s is at least
equal to the number of i’s, for all i. □

Example 6. The companion words of Y(1,3,4) respectively U

1 2 2 3
2 3 3
3

= Y(1,3,4), R(Y134) = 1223 112 1, U =
1 1 2 3
2 3 3
4

R(U) = 3 122 12 11

are Yamanouchi words of weight (4, 3, 1).

Remark 5. If T is a ballot tableau of weight ν, R(T ) is the word of the companion tableau or Gelfand-
Tsetlin pattern Gν of T . Let U ∈ Y T (4, 3, 2)/(2, 1) be a ballot tableau of weight ν = (3, 2, 1)

U =
1 1

1 2
2 3

The companion word of U is R(U) = 3 23 112 = R3R2R1 ≡ Gν which is precisely the reading word of the

companion tableau Gν =
1 1 2
2 3
3

of the ballot tableau U .

Let T be a ballot tableau of weight ν = (4, 4, 3, 2)

T =

1 1
1 2

1 2 3
2 3 4

2 3 4

(35)

R(T ) = ∅ 45 345 2345 1123 = R5R4R3R2R1 ≡ Gν =

1 1 2 3
2 3 4 5
3 4 5
4 5

Example 7. Companion words of rectangle shapes are anti-Yamanouchi words

U =
1

1 3 4
3 3 4 5

stdU =
2

1 5 7
3 4 6 8

R(U) = R(stdU) = 32323312 ≡
1

2 2 2
3 3 3 3

≡ 34231 ≡
1 2 2 3
2 3 3
3

= Y(43−(4,3,1))

If µ ⊆ λ ⊆ γ are partitions, we say that the shape of γ/λ extends the shape of λ/µ which in turn extends
the shape µ. In general, when we say that the SSYT V extends the SSYT U it is meant that the shape of
V extends the shape of U and we write U ∪ V for the object formed by gluing U and V together.

If S and T are SSYT’s of shapes µ and λ/µ, S ∪ T is said to be of shape λ. If Z is another SSYT of
shape γ/λ, T ∪ Z has shape λ/µ and we write S ∪ T ∪ Z := (S ∪ T ) ∪ Z = S ∪ (T ∪ Z). The tableaux S,
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T and Z are filled in any finite ordered alphabet consisting of positive integers. Sometimes it is convenient
to look at S ∪ T as a SSYT of shape λ by adding a constant to all entries of T , for instance, the biggest
entry of S. In view of these definitions if U is a tableau we say the subtableaux U1 and U2 decompose U if
U = U1 ∪ U2 and U2 extends U1. When S and T are both ballot tableaux with S of normal shape, we say
that we have a ballot tableau pair of normal shape. In this case S is the Yamanouchi tableau Yµ.

Definition 2. Let LR(n) denote the set of all ballot semistandard tableau pairs of partition shape where
the length of the shape is ≤ n.

3. Sagan-Stanley skew RSK and internal row insertion operators

3.1. Internal insertion words of a skew tableau and their Knuth classes. Let T ∈ Y T (λ/µ) with
ℓ(λ) = n. An inner corner of T is a cell (i, j) such that when added to the Young diagram of µ still results
in a valid Young diagram. For instance, (1, 4), (2, 3), (4, 2) and (5, 1) are inner corners of T but (6, 1) and

(3, 3) are not, T =
1

3

with ℓ(λ) = 5.

Definition 3. [SS90] Let T ∈ Y T (λ/µ) with ℓ(λ) = n and 1 ≤ i ≤ n + 1. The Sagan-Stanley internal
(row) insertion operator ϕi is an operation over T defined whenever (i, µi + 1) is an inner corner of T . We
have to distinguish two cases.

• The cell (i, µi + 1) is an empty cell which means that (i − 1, µi + 1) ̸∈ λ/µ. Then ϕi just adjoins
the blank cell (i, µi + 1) to the Young diagram of µ, in row i of T .

• The cell (i, µi +1) ∈ λ/µ. Then ϕi vacates the cell (i, µi +1) of T , bumps its entry and inserts the
bumped element, using the usual Schensted row insertion rules, into row i+ 1 of T . The insertion
then continues in a normal fashion, ending with an element settling at the end of some row ≤ n+1.

ϕ4ϕ1
1

3

= ϕ4
1

3

=
1

3

With an internal row insertion operation ϕi on T , no new entry is added to the tableau T . Instead the
skew-shape changes by adding one blank box at the end of row i of the inner shape µ, and, if it is the
case, one filled box is added to the outer shape λ. The new tableau ϕiT has shape (λ + et)/(µ + ei) with
i ≤ t ≤ n+ 1, and is Knuth equivalent to T . In particular, if T is a ballot tableau, then ϕiT is also ballot.
Whenever the internal row insertion operator ϕi is defined on T , it can be easily extended to the tableau
pair Y ∪ T with Y = Yµ, by putting

ϕ̄i(Y ∪ T ) :=

{
Y(µ1,...,µi+1,...,µn) ∪ ϕi(T ), if 1 ≤ i ≤ n,

Y(µ1,...,µn,1) ∪ ϕn+1(T ), if i = n+ 1 and µn > 0.
(36)

ϕ̄4ϕ1

1 1 1
2 2 1
3 3
3

=

1 1 1 1
2 2 1
3 3
3
3

If Y ∪ T ∈ LR(n), ϕ̄i(Y ∪ T ) ∈ LR(n+1).

Definition 4. Given T ∈ Y T (α/µ), an internal insertion order word for T is the companion word R(U)
of any skew tableau U sharing the inner border with T , that is, U ∈ Y T (β/µ) with µ ⊆ β. We say
U ∈ Y T (β/µ) with µ ⊆ β is an internal insertion order tableau for T .
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Given an internal insertion order word u|γ|u|γ|−1 · · ·u2u1 of T ∈ Y T (α/µ) of content γ, one defines the
corresponding internal insertion operator

ϕu|γ|u|γ|−1···u2u1
:= ϕu|γ| ◦ ϕu|γ|−1

◦ · · · ◦ ϕu2
◦ ϕu1

. (37)

This is well defined because ϕu|γ|u|γ|−1···u2u1
T = ϕR(U)T for some U ∈ Y T (β/µ). Then P (T,U) := ϕR(U)T ∈

Y T (λ/β).
The bijection below is a special case of the Sagan-Stanley skew-RSK correspondence, Theorem 6.11 in

[SS90], when the matrix word π = ∅, and is denoted by SS. In this situation the skew-insertion procedure
is reduced to the internal (Schensted) row insertion procedure. This correspondence, calculates a bijection
between pairs of tableaux (T,U) sharing the inner border and pairs of tableaux (P,Q) sharing the outer
border that preserves the Knuth equivalence class, T ≡ P and U ≡ Q. Also the outer border of T equals
the inner border of Q, and the outer border of of U equals the inner border of P . (See also [RSSW01] for
more details and properties.)

Theorem 4. [SS90, Theorem 6.1, Theorem 6.11], [RSSW01] (Sagan-Stanley internal row insertion corre-
spondence.) Fix partitions µ ⊆ α, β. There is a bijection,

Y T (α/µ)× Y T (β/µ) −→
⋃
λ

|λ|=|α|+|β|−|µ|

Y T (λ/β)× Y T (λ/α)

(T,U)
SS−→ (P,Q), (38)

where P ≡ T and Q ≡ U . The P -tableau, P (T,U) := P is given by ϕR(U)T . The Q-tableau Q(T,U) := Q
is the recording tableau.

Corollary 4. Fix partitions µ ⊆ α, β and the above setting

(1) If β is a rectangle shape with ℓ(β) ≥ ℓ(µ). Then P = ∅β ∪ rect(T ) where rect(T ) is the rectification
of T .

(2) If α = µ and U ∈ Y T (β/µ), P (∅µ, U) = ∅β equals to the Young diagram of shape β and Q(∅µ, U) =
U .

(3) If µ = ∅, P (T,U) = T and R(U) is a Yamanouchi word of weight β.

Let U in the alphabet [m]. Set T (0) = T and U (0) = ∅λ. For j = 1, . . . ,m, let r
(j)
1 ≥ · · · ≥ r

(j)
kj

be the

row coordinates of all j-cells in the standard order of U and define T (j) = ϕR
r
(j)
1

◦ · · · ◦ϕR
r
(j)
kj

(T (j−1)). Then

define U (j) adding to U (j−1) j-cells so that the external shape of U (j) matches that of T (j). Finally set
P = T (m) and Q = U (m). See Example 8 below.

The following exhibits a symmetry of the skew RSK map of tableaux proven in [SS90] not immediate
from the definition, and the compatibility with standardization. Schensted insertion commutes with stan-
dardisation. In addition the effect of each operator ϕui

on the shape of T will be the same as the effect on
the shape of stdT

Proposition 2. (a) [SS90, Theorem 3.3] If SS(P,Q) = (P ′, Q′), then SS(Q,P ) = (Q′, P ′). That is, like
P ′ and P , also the recording tableau Q′ is obtained from Q following a number of internal insertions.

(b) std ◦ SS(P,Q) = SS ◦ std(P,Q).

Unlike for the classical RSK correspondence, a detailed description of properties of Sagan and Stanley’s
algorithm has proven to be more challenging to obtain. A recent attempt was undertaken by Imammura-
Mucciconi-Sasamoto [IMS23] by iterating the skew RSK correspondence, that is, the space of ordered pairs
(P,Q) of tableaux of skew shape, which are built on repeated internal insertions in P whose locations are
determined by Q

Given a tableau T ∈ Y T (α/µ), we would like to characterize the tableaux U,U ′ ∈ Y T (β/µ) such that
P (T,U) = P (T,U ′) in (38). The theorem below shows that Knuth equivalence on the companion words
R(U) and R(U ′) provides sufficient conditions for the equality. Given a skew tableau T , similarly to the
ordinary RSK, Knuth equivalent internal insertion order words of T means a certain Knuth commutation
of the corresponding internal insertion operators which gives rise to the same tableau P . Our theorem
partially answers our aim and the second part of question (3) of Section 9, in [SS90].
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Theorem 5. (Theorem 1 ) (Sagan-Stanley row internal insertion operators and Knuth relations.) Let
T ∈ Y T (α/µ), U,U ′ ∈ Y T (β/µ) and P (T,U) respectively P (T,U ′) the corresponding P -tableaux in the
Sagan-Stanley internal insertion correspondence. Then

(a) U and its standardization stdU have the same companion word, R(U) = R(stdU).
(b) P (T,U) = ϕR(U)(T ).
(c) P (T,U) = P (T, stdU) and internal row insertion commutes with standardization std(P (T,U)) =

P (stdT,U) = P (stdT, stdU).
(d) P (T,U) = P (T,U ′) = ϕR(U)(T ) = ϕR(U ′)(T ) whenever R(U) ≡ R(U ′) are Knuth equivalent.

The proof will be delayed until Section 4.3 and will follow from two lemmata, Lemma 6, Lemma 5 and
Proposition 3.

Example 8. Let µ = (1), α = (3, 2, 0) and β = (4, 2, 1). Below U , stdU , and U ′, std(U ′) are internal

insertion order tableaux of T =
1 3

2 3
. The corresponding internal insertion order words are Knuth

equivalent, R(U) = 312211 = R(stdU) ≡ R(U ′) = R(stdU ′) = 132211,

U =
1 1 2

2 2
3

stdU =
1 2 5

3 4
6

U ′ =
1 1 3

2 2
3

stdU ′ =
1 2 6

3 4
5

.

Knuth equivalence of internal insertion order words, R(U) ≡ R(U ′), implies that the corresponding internal
insertion operators ϕR(U) and ϕR(U ′) commute according to the Knuth relations, that is, ϕR(U) = ϕR(U ′).

P (T,U) = ϕ3ϕ122ϕ11T = ϕ13ϕ22ϕ11T = P (T,U ′) =
3

3
1
2

.

Q(T,U) =

2
1

1 2
2
3

Q(T,U ′) =

3
1

1 2
2
3

. (39)

R(U) ≡ R(U ′) and R(Q(T,U)) = 513423 ≡ R(Q(T,U ′)) = 153423.

Example 9. For the T and U above one has n = 3, α = (3, 2, 0), β = (4, 2, 1), λ = (4, 3, 2, 1, 1), (P,Q) ∈
Y T ((4, 3, 2, 1, 1)/(4, 2, 1))× Y T ((4, 3, 2, 1, 1)/(3, 2, 0))

Y T (α/(1), 3)× Y T (β/(1), 3) −→
⋃
λ

|λ|=11

Y T (λ/β, 3)× Y T (λ/α, 3)

(T,U)
SS−→ (P,Q). (40)
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T (0) =
1 3

2 3
U (0) = ∅α =

ϕR1
=ϕ11−→ T (1) = 1 3 3

2
U (1) = 1

1

ϕR2
=ϕ122−→ T (2) =

3
1 3
2

U (2) =

2
1

1 2
2

ϕR3
=ϕ3−→ P = T (3) =

3
3

1
2

Q = U (3) =

2
1

1 2
2
3

SS(T,U) = (P,Q)

The inverse Sagan-Stanley internal insertion correspondence SS−1, α = (3, 2, 0), β = (4, 2, 1):

Y T (λ/β, 3)× Y T (λ/α, 3) −→
⋃
λ

|λ|=11

Y T (α/(1), 3)× Y T (β/(1), 3)

(P,Q)
SS−1

−→ (T,U). (41)

The inverse Sagan-Stanley internal (row) insertion operator, ϕ−1i , or Sagan-Stanley deletion operator,
is denoted ∆i. The reverse companion word of Q, revR(Q) := revR1revR2revR3 = 32 431 5 defines the
deletion operator

∆revR(Q) = ∆revR1revR2revR3
(42)

= ∆revR1
◦∆revR2

◦∆revR3
(43)

P (0) =
3

3
1
2

Q(0) = ∅β =
∆R3

=∆5−→ P (1) =
3

1 3
2

Q(1) =
3

∆R2
=∆431−→ P (2) = 1 3 3

2
Q(2) =

2
2 2
3

∆R1
=∆32−→ P (3) =

1 3
2 3

= T Q(3) =
1 1 2

2 2
3

= U

SS−1(P,Q) = (T,U)

4. A preserver for the P -tableau in the skew RSK correspondence

The Schensted row insertion takes a SSYT T of partition shape, and an element m in the T -alphabet,
and constructs a new tableau, denoted T •m [Ful97]. For skew tableaux there are two types of row insertion:
external and internal both of which based on Schensted insertion but with different procedures namely, in
the former, the element in the T -alphabet to be inserted is added to the multiset {T}, and, in the latter, is
picked in {T}[SS90, Section 2].
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4.1. External row insertion on skew tableaux. Sagan-Stanley row external insertion [SS90, Section 2]
on skew-tableaux is similar to Schensted’s original procedure. We start with a SSYT T of shape λ/µ and
an element m in the T -alphabet to be added to T . To start, m replaces the smallest entry in the first row of
T strictly larger than m; in the case where m is bigger or equal than all entries in the first row, it is placed
at that row’s right end. If an entry was displaced from the first row then it is inserted into the second using
the same rules as above. This process continues until some element comes to rest at the end of a row. The
only need for caution in the skew case is when something is to be inserted into row i which is empty and
this can only happen at the beginning or at the end of an insertion. It happens, when µi = λi and in this
case we put the element m in cell (i, λi + 1). We obtain a new skew-tableau denoted T.m with the same
inner shape µ and {T •m} = {T} ∪ {m}.

If T is a skew-tableau and u is a word over the T -alphabet, T.u denotes the skew tableau with the same
inner shape as T obtained by the Sagan-Stanley row external insertion of u in T . That is, if u = u1 · · ·un,
T • u = (((T • u1) • · · · ) • un). When T is of straight shape T • u coincides with the usual Schensted
insertion [Ful97]. More generally, if U , V and W are tableaux of straight shape, U.V means U • w(V ), and
(U • V ) •W = U • (V •W ).

We may look at Sagan-Stanley external insertion on a skew-tableau T of shape λ/µ as an insertion on a
straight tableau Yµ∪T of shape λ, where ℓ(µ) is added to each entry of T , that is, T is filled in the alphabet
{ℓ(µ) + 1, ℓ(µ) + 2, . . . }. If u is a word over the alphabet {ℓ(µ) + 1, ℓ(µ) + 2, . . . }, then

Yµ ∪ (T • u) = (Yµ ∪ T ) • u. (44)

The following is a lemma on commutation and cancellation in the plactic monoid of Lascoux and
Schẗzenberger

Lemma 1. Let u and u′ be two words in a same ordered alphabet A = [n].

(a) [LS90, Proposition 2.3] Let B ⊆ A be an interval and let u|B and let u′|B be the restrictions of u

and u′ to B. Then one has

u ≡ u′ ⇒ u|B ≡ u′|B . (45)

(b) [RSSW01, Lemma 7.5] Let w, v be any words in the alphabet [k] and C = k · · · 21 be a column.
Then

(i) C • w ≡ w.C.
(ii) C • w ≡ C • v if and only if w ≡ v.

(c) If ux ≡ u′x with x = a1 · · · ak a row word in A such that the smallest letter a1 in x is bigger or
equal than all letters in the words u or u′ then

(i) ux ≡ u′x ≡ Tx is a tableau for some tableau T with entries in A less or equal than a1 such
that u ≡ u′ ≡ T .

Lemma 2. (External insertion on skew-tableaux.) Let T be a skew-tableau and u and v two words over
the T -alphabet. Then

(a) w(T.u) ≡ w(T )u, and
(b) T • u = T • v whenever u ≡ v.

Proof. (a) If T has straight shape then w(T • u) ≡ w(T )u. In general, if T has shape λ/µ, using (44), one
has w[Yµ ∪ (T • u)] = w[(Yµ ∪ T ) • u] ≡ w(Yµ ∪ T )u. From (45), it follows w(T • u) ≡ w(T )u.

(b) Again using (44), as a consequence of the usual Schensted insertion on straight shapes, one has
Yµ ∪ (T • v) = (Yµ ∪ T ) • v = (Yµ ∪ T ) • u = Yµ ∪ (T • u) whenever u ≡ v over the T -alphabet. Thus
Yµ ∪ (T • v) = Yµ ∪ (T.u) whenever u ≡ v over the T -alphabet implies T • u = T • v whenever u ≡ v over the
T -alphabet. □

The reverse direction of Lemma 2, (b), that is, the cancelation law, is trivially true when T is just a
Young diagram. Otherwise, unless additional conditions are satisfied as in Lemma 1, it is false in general.
For instance, one has yxz ≡ yzx for x < y ≤ z and xz ̸≡ zx with x < z.

Indeed external insertion preserves Knuth equivalence: if T and Z are tableaux with the same inner
shape, and T ≡ Z and u and v are Knuth equivalent words, then from Lemma 2, T • u ≡ Z • v. In case T
and Z are of the same straight shape then we have T = Z and T • u = T • v.
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4.2. Internal row insertion and internal bumping routes.

Definition 5. If T ∈ Y T (λ/µ), with ℓ(λ) ≤ n, T [i] ∈ Y T ((λ1, . . . , λi)/(µ1, . . . , µi)) denotes the tableau
consisting of the first i rows of T , for i = 0, 1, . . . , n, that is, the restriction of the tableau T to the first i
rows. We put T [0] = ∅ and T [n] = T .

Definition 6. Given the skew tableau T ∈ Y T (λ/µ) and 0 ≤ i ≤ n where ℓ(λ) ≤ n, we say that T is factor-
ized across the row i when we write T = T ′ ∗ T [i], 0 ≤ i ≤ n, with T ′ of shape (λi+1, . . . , λn)/(µi+1, . . . , µn)
is the restriction of T to the last n− i rows.

In particular, let T be a SSYT of straight shape factored across the ith row, T = T ′ ∗ T [i], with T ′ the
tableau obtained by suppressing T [i] from T . Note that T = T ′ ∗ T [i] = T ′.T [i].

Let T ∈ Y T (λ/µ) with ℓ(λ) = n, assume 1 < 2 < · · · < n < 1 < 2 < · · · < n and fill in the inner shape
∅µ with the coloured alphabet 1 < 2 < · · · < n so that we get the Yamanouchi tableau Yµ. Let us factor
Yµ ∪ T across the ith row. Then one has,

Yµ ∪ T = (Y ′ ∪ T ′) ∗ (Yµ ∪ T )[i] = (Y ′ ∪ T ′) ∗ (Y(µ1,...,µi) ∪ T [i]) = (Y ′ ∪ T ′) • (Y(µ1,...,µi) ∪ T [i]) (46)

where Y ′ and T ′ denote the restriction of Yµ and T to the last n− i rows of Yµ and T respectively. Thereby,
in the sense of (46), we may write

T = T ′ ∗ T [i] = T ′ • T [i].

Assume that (i, µi + 1) is an inner corner of T [i] with entry x. It then follows that the action of the
internal row insertion operator ϕi on T (3) may be read as an operation which bumps the entry x in the
cell (i, µi + 1) of T [i] and then inserts externally the bumped element x in the subtableau T ′. That is, ϕi

on T [i] bumps the entry x and left justifies it in the (i+ 1)th row. Then

ϕi(T
[i]) = x ∗ T [i]

− (47)

ϕ̄i(Y(µ1,...,µi) ∪ T [i]) = x ∗ (Y(µ1,...,µi+1) ∪ T
[i]
− ), (48)

where T
[i]
− is T [i] with the entry x bumped out from the cell (i, µi + 1). It means that T

[i]
− ∈

Y T ((λ1, . . . , λi)/(µ1, . . . , µi + 1)), that is, T [i] with the left most entry of the ith row suppressed and
the corresponding blank cell added to the ith row of the inner shape of T [i]. Henceforth, from (46), (47)
and (48),

ϕi(T ) = ϕi[T
′ ∗ T [i]] = T ′.ϕi(T

[i]) = T ′ • [x ∗ T [i]
− ] = (T ′ • x) ∗ T [i]

− , (49)

ϕ̄i(Yµ ∪ T ) = ϕ̄i[(Y
′ ∪ T ′) ∗ (Y(µ1,...,µi) ∪ T [i])] = (Y ′ ∪ T ′) • ϕ̄i(Y(µ1,...,µi) ∪ T [i])

= (Y ′ ∪ T ′) • [x ∗ (Y(µ1,...,µi+1) ∪ T
[i]
− )]

= [(Y ′ ∪ T ′) • x] ∗ (Y(µ1,...,µi+1) ∪ T
[i]
− )

= (Y ′ ∪ T ′) • x ∗ (Y(µ1,...,µi+1) ∪ T
[i]
− ). (50)

If µi = λi and (i, λi + 1) is a blank inner corner then x = ∅ and ϕiT
[i] = ∅ ∗ T [i]

− = T
[i]
− , with T

[i]
− ∈

Y T ((λ1, . . . , λi + 1)/(µ1, . . . , µi + 1)) a. Also ϕiT = T ′ ∗ T [i]
− .

As an aside, observe that w(ϕiT
[i]) = w(x ∗ T [i]

− ) = xw(T
[i]
− ) = w(T [i]), and obviously ϕiT

[i] ≡ T [i].
Therefore, using Lemma 2,

w(ϕiT ) = w(T ′ • x ∗ T [i]
− ) = w(T ′ • x)w(T

[i]
− ) ≡ w(T ′)xw(T

[i]
− ) = w(T ′)w(ϕiT

[i])

= w(T ′)w(T [i]) = w(T ′ ∗ T [i]) = w(T ). (51)

Remark 6. Let Y(µ1,...,µn+1) ∪ T ∈ LR(n+1) be a ballot tableau pair and 1 ≤ m ≤ n. Consider the
factorisation through row m,

Y(µ1,...,µn+1) ∪ T = [Y(µm+1,...,µn+1) ∪ T̂ ] ∗ [Y(µ1,...,µm) ∪ T [m]] ∈ LR(n+1).
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Then T [m] is a ballot tableau on the alphabet [m], and T̂ ∈ Y T ((λm+1, . . . , λn+1)/(µm+1, . . . , µn+1)) con-
sisting of the last n+1−m rows of T is such that the word restricted to the alphabet [m+1, n+1] satisfies
the Yamanouchi condition.

Example 10. An illustration of (49) and (50) is given below:

ϕ̄3

1 1 1 1 1 1
2 2 1 2 2
3 2 3 3
4 3 4 4
5 5

=
4 3 4 4
5 5

• ϕ̄3

1 1 1 1 1 1
2 2 1 2 2
3 2 3 3

=
4 3 4 4
5 5

•

1 1 1 1 1 1
2 2 1 2 2
3 3○ 3 3
2○

=
4 3 4 4
5 5

• 2○ ∗
1 1 1 1 1 1
2 2 1 2 2
3 3○ 3 3

=
4 2○ 4 4
3 5
5

∗
1 1 1 1 1 1
2 2 1 2 2
3 3○ 3 3

=
4 2○ 4 4
3 5
5

•

1 1 1 1 1 1
2 2 1 2 2
3 3○ 3 3

=
4 2○ 4 4
3 5
5

• 3 3○ 3 3 •
1 1 1 1 1 1
2 2 1 2 2

=

3 3 3 3
4 2 4 4
3 5
5

•
1 1 1 1 1 1
2 2 1 2 2

=

1 1 1 1 1 1
2 2 1 2 2
3 3 3 3
4 2 4 4
3 5
5

.

An internal row insertion operator ϕ̄i (ϕi) on Y ∪ T (T ) determines a collection Ri of boxes, which are
those where an element is bumped from a row, together with the box where the last bumped element lands
and settles [Ful97]. Let us call to Ri the ϕ̄i-bumping route of Y ∪ T . In particular, retain that whenever
ϕ̄i acts on Y ∪ T and the ϕ̄i-bumping route terminates in some row k > i, this means that the kth row of
ϕ̄i(Y ∪ T ) equals the kth row of Y ∪ T with the last bumped entry in {T} added at the end. If ℓ(λ) ≤ n,
the ϕi-bumping path (route) terminates in some row ≤ n+ 1.

For instance, below Y ∪T , Y ∪H ∈ LR(5), and ϕ̄3 acting on Y ∪T bumps 2 and fills the vacant cell with
3, then the bumped 2 is inserted in the 4th row and bumps 3, 3 bumps 5 which lands in the 6th row, and
5 is added to the 6th row. In (53), R3 consists of the black boxes and the bumped numbers are 2, 3 and 5,
highlighted with circles, the entries of the three last boxes of R3. The ϕ̄1-bumping routes R1 in Y ∪ T and
Y ∪H are similarly displayed below in (53):

Y ∪ T =

1 1 1 1 1 1
2 2 1 2 2
3 2 3 3
1 3 4 4
5 5

ϕ̄3(Y ∪ T ) =

1 1 1 1 1 1
2 2 1 2 2
3 3○ 3 3
1 2○ 4 4
3○ 5
5○

ϕ̄1(Y ∪ T ) =

1 1 1 1 1○ 1
2 2 1 1○ 2
3 2 2○ 3
1 3 3○ 4
4○ 5
5○

(52)

Y ∪H =

1 1 1 1 1 1
2 2 1 2 2
3 2 3 3
1 3
4 4

ϕ̄1(Y ∪H) =

1 1 1 1 1○ 1
2 2 1 1○ 2
3 2 2○ 3
1 3 3○
4 4

.
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The ϕ̄3-bumping routes R3, ϕ̄1-bumping route R1 of Y ∪ T , and ϕ̄1-bumping route of Y ∪H

1 1 1 1 1 1
2 2 1 2 2
3 ■ 3 3
1 ■ 4 4
■ 5
■

1 1 1 1 ■ 1
2 2 1 ■ 2
3 2 ■ 3
1 3 ■ 4
■ 5
■

1 1 1 1 ■ 1
2 2 1 ■ 2
3 2 ■ 3
1 3 ■
4 4

. (53)

One often says a is a ϕ̄i-bumped element of the skew-tableau T to mean an entry a of T that is bumped
under the action of ϕ̄i on T . Thanks to (49), one has as a consequence of the Row External Bumping
Lemma in Section 1.1 of [Ful97]. This Lemma is instrumental in the proof of the Main Theorem and clearly
shows that the internal insertion operators do not obey a naive commutation but instead a Knuth relation
commutation as we shall see in the next section.

Lemma 3. ([Ful97] Row internal bumping routes) Consider 1 ≤ i ≤ j ≤ n. Let Rj and R′i be the pair of
bumping routes of ϕ̄j on Y ∪T and ϕ̄i on ϕ̄j(Y ∪T ) respectively; and let Ri and R′j be the pair of bumping

routes of ϕ̄i on Y ∪ T and ϕ̄j on ϕ̄i(Y ∪ T ) respectively. Let B and B′ be the corresponding pair of new
boxes. Then it holds

(a) Rj is strictly left of R′i and B is strictly left of and weakly below B′:

B B′ or B′

B
.

(b) R′j is weakly left of Ri and B′ is weakly left of and strictly below B:

B
B′ or B

B′ . (54)

In particular, R′j goes always strictly below the bottom box B of Ri by ϕ̄j-bumping the element in B,
this necessarily happens in the case of the left hand side of (54), or by passing strictly to the left of B.
Henceforth, if x is ϕ̄i-bumped and y is ϕ̄j-bumped from the same row then y < x. Moreover, if B was
created in the (n + 1)th row then one has B

B′ and the last ϕ̄i-bumped element resting in B is ϕ̄j-bumped

out to be settled in B′ and is strictly bigger than the element ϕ̄j-inserted in B.

Example 11. An illustration of the internal insertion bumping routes lemma:

Y ∪ T =

1 1 1 1 1
2 2 2 2
3 3 2 3
4 1 3 4
1 4 5
2

ϕ̄3ϕ̄1(Y ∪ T ) = ϕ̄3

1 1 1 ■ 1
2 2 2 1○
3 3 2 2○
4 1 3 3○
1 4 4○
2 5○

=

1 1 1 ■ 1
2 2 2 1○
3 3 ■ 2○
4 1 2○ 3○
1 3○ 4○
2 4○
5○

(55)

ϕ̄1ϕ̄3(Y ∪ T ) = ϕ̄1

1 1 1 1 1
2 2 2 2
3 3 ■ 3
4 1 2○ 4
1 3○ 5
2 4○

=

1 1 1 ■ 1
2 2 2 1○
3 3 ■ 2○
4 1 2○ 3○
1 3○ 4○
2 4○ 5○

, (56)

ϕ̄1ϕ̄3(Y ∪ T ) ̸= ϕ̄3ϕ̄1(Y ∪ T ).

4.3. Proof of Theorem 1: Internal row insertion operators satisfy Knuth relations. In this
section, for a fixed T , a sufficient condition on U for the coincidence of P (T,U) in the Sagan-Stanley
internal row insertion bijection in Theorem 4 is provided. The sufficient condition does not involve the
tableau U directly but rather its companion word. The companion word of U , Definition 1, encodes the
inner corners for the action of the sequence of internal insertion operators acting on T . Before giving the
proof of Theorem 1 (Theorem 5) we start with some warmup results.
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When the shape β of U is a rectangle of height ≥ ℓ(µ) and width ≥ α1, then the part of P occupying
the rows > ℓ(β) is a rectification of T . Then the internal insertion procedure is independent of a particular
sequence of inner corners in T chosen [RSSW01]. We may therefore have P (T,U) = P (T,U ′) with U ̸=
U ′and as we have seen this happens for example when the shape β of U and U ′ is a rectangle of height
≥ ℓ(µ) and width ≥ µ1. We have the following characterization which only takes into account the shape of
U and is independent of T .

Lemma 4. Let T ∈ Y T (α/µ) and U ∈ Y T (β/µ) where β is of rectangle shape. Then R(U) ≡ ℓ(β)
β1−µℓ(β)

· · · 2β1−µ2 1β1−µ1 , is a reverse Yamanouchi word of content (β
ℓ(β)
1 )− µ = (β1 − µ1, β1 − µ2, . . . , β1 − µℓ(β)),

and, therefore, P (T,U) = P (T,U ′) is the skew tableau with inner shape the rectangle diagram ∅β where
below it is the rectification of the subtableau of T consisting of the first β1 columns, and to the right of it
is the subtableau of T consisting of the last max{α1 − β1, 0} columns of T ..

Knuth equivalence on R(U) and R(U ′) provide only sufficient conditions for the equality of P (T,U) =
P (T,U ′). In fact, we may have P (T,U) = P (T,U ′) and R(U) ̸≡ R(U)′. The example below illustrates this
fact.

Example 12. (1) Companion words of U and U ′:

U =
1 1

2 2
stdU =

1 2
3 4

U ′ =
1 2

1 2
stdU ′ =

2 4
1 3

R(U) = 2211 = R(stdU), R(U ′) = R(stdU ′) = 1212.

(b) R(U) and R(U ′) are internal insertion order words of T =
1 3

2 3
, and

ϕ2211T =
3

1 3
2

= ϕ1212T

but R(U) ̸≡ R(U ′). However, this property does not hold for every given T having R(U) and
R(U ′) as insertion words which shows that necessary and sufficient conditions for the equality
P (T,U) = P (T,U ′) also depend on T .

For T =
1 2 3

3 3
, one has

ϕ2211T =

3

1 2
3 3

̸= ϕ1212T =

3
2

1 3
3

(2) Companion words of V and V ′ below are internal insertion order words of

T ′ =
1

2
3

, V =
2

1
3

≡ V ′ =
2

3
1

, R(V ) = 312 ̸≡ R(V ′) = 213,

ϕ312T
′ =

1

2
3

̸= ϕ213T
′ = 1

2
3
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(3) W1 =
1

1 2
,W2 =

1
2 2

, R(W1) = 212 ≡ R(W2) = 221, 221 ≡ 212 but 2211 ̸≡ 1212

ϕR(W2)T = ϕ221T =

3

1 3
2

= ϕ212T = ϕR(W1)T

but as we have seen above ϕ2211T = ϕ1212T. On the other hand, if T =
1 3

2 3
, U =

1
2

and V =
3

1
, ϕ2ϕ1T =

3
3

1
2

̸= ϕ1ϕ2T =
3

1
2 3

. However with U ′ =
2

1
3

and

V ′ =
3

1
2

, R(U ′) = 312 ≡ R(V ′) = 132, one has ϕ312T = ϕ132T =

3
1
3

2

.

The following lemmata and proposition show that Sagan-Stanley internal row insertion operators satisfy
Knuth relations. Let T be a SSYT of shape λ/µ with ℓ(λ) = n. When we write ϕu(T ), for some word u,
it is assumed that there exists U ∈ Y T (β/µ) such that R(U) = u, that is, u is an internal insertion order
word for T .

Observe that if m is the largest entry of U ∈ Y T (β/µ) with γ its content, and 1 ≤ d ≤ m, we may
decompose U = U|[d] ∪ U|[d+1,m] and stdU = (stdU)|[q] ∪ (stdU)|[q+1,|γ|] with q = γ1 + · · · + γd, and
R(U) = R(U|[d+1,m])R(U|[d]). On the other hand, if for some V ∈ Y T (γ/ϵ), R(stdV ) = u3u2u1 = ijk
and 1 ≤ i ≤ k < j (respectively R(stdV ) = u3u2u1 = kji and 1 ≤ i < k ≤ j) then γ is not a row nor
a column and it is easily checked that there exists V ′ ∈ Y T (γ/ϵ) such that R(stdV ′) = jik (respectively
R(stdV ′) = kij). Without loss of generality, we may consider i < k = i+1 < j = i+2 or i = k < j = i+1,

V =
2

1
3

or Ṽ =
1 3
2

and V ′ =
3

1
2

or Ṽ ′ =
1 2
3

, R(V ) = jik ≡ R(V ′) = ijk, R(Ṽ ) = iji ≡

R(Ṽ ′) = jii; and i < k = i+ 1 < j = i+ 2, V =
1
3

2
, V ′ =

2
3

1
, R(V ) = kji ≡ R(V ′) = kij.

Reciprocally if R(stdU) = wz then U = Z ∪W with R(stdW ) = w and R(stdZ) = z. Let R(stdU) =
u2jiku1 with 1 ≤ i ≤ k < j and u1, u2 words. Decompose stdU = U1 ∪ V ∪ U2 such that R(U1) = u1,
R(V ) = ijk and R(U2) = u2. Then U ′ := U1 ∪ V ′ ∪ U2 has R(U ′) = u2jiku1. Therefore if u is an internal
insertion order word of T and u′ ≡ u then u′ is also an internal insertion order word of T . Lemmata and
proposition below show that the plactic class of an internal insertion order word of T gives rise to the same
P -tableau of T in the Sagan-Stanley Theorem 4.

Lemma 5. Let T ∈ Y T (λ/µ) with ℓ(λ) = n. Let n− 1 ≤ ℓ(µ) ≤ n. Then

ϕ̄iϕ̄nϕ̄kT = ϕ̄nϕiϕ̄kT, 1 ≤ i ≤ k < n. (57)

In addition, if ℓ(µ) = n,

ϕ̄iϕ̄n+1ϕ̄kT = ϕ̄n+1ϕ̄iϕ̄kT, 1 ≤ i ≤ k < n+ 1. (58)

Proof. Recall that we are assuming that (k, µk + 1) is an inner corner of T .
We start with identity (57). Let T = U ∗ V be the factorization of T across the kth row, 1 ≤ i ≤ k < n.

Let ϕkV = α ∗ V ′ where |α| = 0, 1 such that α is the empty word if and only if µk = λk and in this case V ′

is obtained from V by adding an empty box at the end of row k, otherwise the call (k, µk + 1) is vacated
from the entry α which migrates to the cell (k + 1, 1). Let ϕiV

′ = β ∗ V ′′. Since i ≤ k, by Lemma 3, (a),
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if |α| = 0 then |β| = 0 and ϕi(V
′) = V ′′, and if |α| = 1, then either |β| = 0 or α ≤ β. Then, using the

factorization (49), one has to analyse the cases
I. |α| = 0. One has ϕ̄kV = V ′ and ϕ̄iV

′ = V ′′, and it follows

ϕ̄iϕ̄nϕk(U ∗ V ) = ϕ̄iϕ̄n(U ∗ V ′) = ϕ̄nU ∗ ϕ̄iV
′ = ϕ̄nU ∗ V ′′ = ϕ̄nϕ̄i(U ∗ V ′)

= ϕ̄nϕ̄iϕ̄k(U ∗ V ).

II. |α| = 1.
(a) If |β| = 0, one has ϕkV = α ∗ V ′ and ϕiV

′ = V ′′, and

ϕ̄iϕnϕ̄k(U ∗ V ) = ϕ̄i(ϕ̄n(U • α) ∗ V ′) = ϕ̄n(U.α) ∗ V ′′ = ϕnϕ̄i(U • α) ∗ V ′

= ϕnϕiϕk(U ∗ V ).

(b) If |β| = 1, one has ϕ̄kV = α ∗ V ′ and ϕ̄iV
′ = β ∗ V ′′, with α ≤ β, that is, ϕiϕkV = αβ ∗ V ′′, α ≤ β,

and

ϕ̄iϕ̄nϕk(U ∗ V ) = ϕ̄iϕ̄n(U.ϕ̄kV ) = ϕ̄iϕ̄n[(U.α) ∗ V ′]
= ϕ̄n(U • α).ϕ̄iV

′ = [ϕ̄n(U • α) • β] ∗ V ′′

= [ϕ̄n(U • αβ)] ∗ V ′′, α ≤ β; Lemma 3, (a), external bumping version,

= ϕ̄n(U • αβ ∗ V ′′) = ϕ̄n(U • ϕ̄iϕ̄kV ) = ϕ̄nϕ̄i(U.ϕ̄kV ) = ϕ̄nϕ̄iϕ̄k(U ∗ V ).

It is similarly checked that (58) holds. □

Lemma 6. Let T ∈ Y T (λ/µ) with ℓ(λ) = n. Let n− 1 ≤ ℓ(µ) ≤ n. Then

ϕ̄kϕ̄iϕ̄nT = ϕ̄kϕ̄nϕ̄iT, 1 ≤ i < k ≤ n. (59)

In addition if ℓ(µ) = n,

ϕ̄kϕiϕ̄n+1T = ϕ̄kϕ̄n+1ϕ̄iT, 1 ≤ i < k ≤ n+ 1. (60)

Proof. We first consider (59) with 1 ≤ i < k < n. Let T = U ∗W ∗ V be the factorization of T across the
(k − 1)th and (n − 1)th rows. Since ℓ(λ) = n and n − 1 ≤ ℓ(µ) ≤ n, let U = ∅µn .u with u = u1 . . . ur,
r = λn − µn, be the nth row of T with |u| ≥ 0 and µ = (µ1 . . . , µn), µn ≥ 0, and λ = (λ1, . . . , λn), λn > 0.
Using the factorization (49), one has

ϕ̄kϕ̄iϕ̄n(U ∗W ∗ V ) = ϕ̄kϕi[(ϕ̄nU) ∗W ∗ V )

= ϕ̄k[ϕ̄nU • ϕ̄i(W ∗ V )], i < n,

= ϕ̄k[(ϕnU • β) ∗W ′ ∗ V ′], ϕi(W ∗ V ) = β ∗W ′ ∗ V ′, |β| ≥ 0,

= (ϕnU • β) • ϕkW
′ ∗ V ′ (61)

and

ϕ̄kϕ̄nϕ̄i(U ∗W ∗ V ) = ϕ̄kϕn[U • ϕi(W ∗ V )] = ϕkϕn(U • β ∗W ′ ∗ V ′)
= ϕ̄n(U • β) • ϕ̄kW

′ ∗ V ′. (62)

We want to show that (61) and (62) are equal, that is, ϕ̄n(U.β) = ϕ̄nU.β. We have two main cases, either
the ϕi-bumping route reaches the nth row or not.

I. The ϕi-bumping route does not reach the n-th row, that is, |β| = 0. Then ϕ̄n(U • β) = ϕ̄nU = ϕnU.β,
and (61) = (62) = ϕ̄nU • ϕ̄kW

′ ∗ V ′.
II. The ϕi-bumping route reaches the n-th row. That is |β| = 1, and β is the ϕi-bumped element from

the (n− 1)th row to the nth row. Since i < k, by Lemma 3, (b), ϕkW
′ = @ ∗W ′′ with β > @. Then

(61) = (ϕ̄n • β) • ϕ̄kW
′ ∗ V ′ = (ϕ̄nU • β •@) ∗W ′′ ∗ V ′,

(62) = ϕ̄n(U • β) • ϕ̄kW
′ ∗ V ′ = ϕ̄n(U • β) •@ ∗W ′′ ∗ V ′.
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Next we consider the following cases according to the length of of u in the nth row U of T .
(a) |u| = 0. One has U = ∅µn

, ϕ̄n(U • β) = ϕ̄n(∅µn
.β) = β ∗ ∅µn+1. Then, since β > @, it follows

ϕ̄nU • β •@ = ∅µn+1 • β •@ = β ∗ ∅µn+1@,

ϕn(U • β) •@ = ϕn(∅µn
β) •@ = β ∗ ∅µn+1@, and

(61) = (62) = β ∗ ∅µn+1@ ∗W ′′ ∗ V ′. (63)

(b) |u| = 1. One has U = ∅µn
u1, ϕ̄nU.β = u1 ∗ ∅µn+1β and

ϕ̄n(U • β) = ϕ̄n(∅µn
u1 • β) =

{
ϕ̄n(∅µn

u1β), u1 ≤ β,

ϕn(∅µnu1 ∗ β), u1 > β.

Henceforth

ϕnU.β.@ = (u1 ∗ ∅µn+1β).@ =

{
u1β ∗ ∅µn+1@, u1 ≤ β,
β
u1
∗ ∅µn+1@, u1 > β,

ϕ̄n(U.β).@ =

{
ϕn(∅µn

u1β) •@ = u1 ∗ ∅µn+1β •@ = u1β ∗ ∅µn+1@, u1 ≤ β,

ϕn(u1 ∗ ∅µn+1β)@ = β
u1
∗ ∅µn+1@, u1 > β.

Thus (61) = (62) are equal to u1β ∗ ∅µn+1@ ∗W ′′ ∗ V ′, if u1 ≤ β, or β
u1
∗ ∅µn+1@ ∗W ′′ ∗ V ′, otherwise.

(c) |u| ≥ 2. One has U = ∅µn
u1 · · ·ur, with r ≥ 2, and ϕnU = u1 ∗ ∅µn+1u2 · · ·ur.

Either ur ≤ β or ur > β.
(i) ur ≤ β.
Since β > @, let x := min{z ∈ {u2, . . . , ur, β} : z > @} and (u2 . . . urβ).@ =: x ∗ u′. Note x ≥ u2 ≥ u1.

Henceforth

ϕ̄n(U.β).@ = ϕn(∅µn
u1 · · ·urβ).@ = u1 ∗ (∅µn+1u2 · · ·urβ).@ = u1x ∗ ∅µn+1u

′,

and

ϕnU • β •@ = u1 ∗ (∅µn+1u2 · · ·ur) • β.@ = u1 ∗ (∅µn+1u2 · · ·urβ).@ = u1x ∗ ∅µn+1u
′.

Therefore, (61) = (62) = u1x ∗ ∅µn+1u
′ ∗W ′′ ∗ V ′.

(ii) It remains to study when ur > β.
(ii.1) u1 > β. One has @ < β < u1 ≤ u2 ≤ · · · ≤ ur,

ϕ̄n(U.β) •@ = ϕ̄n(u1 ∗ ∅µnβu2 · · ·ur).@ = β
u1
∗ (∅µn+1u2 · · ·ur).@

= β u2
u1

∗ ∅µn+1@u3 · · ·ur,

and

ϕ̄nU • β.@ = (u1 ∗ ∅µn+1u2 · · ·ur) • β •@ = u1u2 ∗ (∅µn+1βu3 · · ·ur).@

= β u2
u1

∗ ∅µn+1@u3 · · ·ur.

Thus, (61) = (62) = β u2
u1

∗ ∅µn+1@u3 · · ·ur ∗W ′′ ∗ V ′, where u1u2β ≡ u1βu2 ≡ β u2
u1

, with β < u1 ≤ u2.
(ii.2) ur ≥ · · · ≥ ui > β ≥ ui−1 ≥ · · · ≥ u1, for some i ∈ {2, . . . , r}. One has

U.β = ∅µn
u1 · · ·ui−1ui · · ·ur.β = ui ∗ ∅µn

u1 · · ·ui−1βui+1 · · ·ur.

Let

x := min{z ∈ {u2, . . . , ui−1, β} : z > @}
and (u2 · · ·ui−1βui+1 · · ·ur).@ =: x ∗ u′. Note that ur ≥ · · · ≥ ui+1 ≥ ui > β ≥ x ≥ u2 ≥ u1. Henceforth

ϕ̄n(U.β).@ = ϕ̄n(ui ∗ ∅µn
u1 · · ·ui−1βui+1 · · ·ur).@ = u1

ui
∗ (∅µn+1u2 · · ·ui−1βui+1 · · ·ur).@

= u1 x
ui
∗ ∅µn+1u

′,
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and

ϕ̄nU.β.@ = (u1 ∗ ∅µn+1u2 · · ·ur).β.@ = u1ui ∗ (∅µn+1u2 · · ·ui−1βui+1 · · ·ur).@

= u1ui.x ∗ ∅µn+1u
′, ui > x

= u1 x
ui
∗ ∅µn+1u

′.

Again, (61) = (62) = u1 x
ui
∗ ∅µn+1u

′ ∗W ′′ ∗ V ′ and uiu1x ≡ u1uix ≡ u1 x
ui

, with u1 ≤ x < ui.

We now study for 1 ≤ i < k = n, which is similarly checked.

ϕ̄nϕiϕn(U ∗ V ) = ϕn(ϕ̄nU.ϕiV ), ϕ̄iV = β ∗ V ′, ℓ(β) = 0, 1

= ϕn(ϕnU • β) ∗ V ′), (64)

ϕ̄nϕnϕi(U ∗ V ) = ϕ̄nϕn(U ∗ ϕiV ) = ϕnϕn[(U • β) ∗ V ′]. (65)

I. ℓ(β) = 0.

(64) = ϕn(ϕnU) ∗ V ′ = ϕ2
nU ∗ V ′ = (65).

II. ℓ(β) = 1.
(a) ℓ(u) = 0. One has U = ∅µn

⇒ ϕnU = ∅µn+1 ⇒ ϕn(U.β) = β ∗ ∅µn+1. Therefore

(64) = ϕ̄n(ϕ̄nU • β) ∗ V ′ = ϕ̄n(β ∗ ∅µn+1) ∗ V ′ = β ∗ ∅µn+2 ∗ V ′.
and

(65) = ϕ̄nϕn(U.β) ∗ V ′ = ϕ̄2
n(yβ) ∗ V ′ = ϕ̄n(β ∗ ∅µn+1) ∗ V ′ = β ∗ ∅µn+2 ∗ V ′.

(b) ℓ(u) = 1.
One has U = ∅µn

u1, ϕnU = u1 ∗ ∅µn+1 and ϕn(U.β) = ϕn(∅µn
u1.β). Then

(64) = ϕnϕn(U.β) ∗ V ′ = ϕ2
n(∅µn

β) ∗ V ′

= ϕn(β ∗ ∅µn+1) ∗ V ′ =

{
u1β ∗ ∅µn+2 ∗ V ′, u1 ≤ β,
β
u1
∗ V ′, u1 > β,

(65) = ϕ̄nϕ̄n(U • β) ∗ V ′ = ϕ̄2
n(yu1 • β) ∗ V ′ =

{
ϕ̄2
n(∅µn

u1β) ∗ V ′, u1 ≤ β,

ϕ̄2
n(u1 ∗ yβ) ∗ V ′ u1 > β,

=

{
ϕ̄n(u1 ∗ ∅µn+1β) ∗ V ′, u1 ≤ β,

ϕ̄n(
β
u1

u1 ∗ ∅µn+1) ∗ V ′, u1 > β,

=

{
u1β ∗ ∅µn+2 ∗ V ′′, u1 ≤ β,
β
u1
∗ ∅µn+2 ∗ V ′, u1 > β.

(c) ℓ(u) ≥ 2.
Let U = yu1 · · ·ur, r ≥ 2.
(i) ur ≤ β

ϕ̄n(ϕnU • β) = ϕ̄n(u1 ∗ ∅µn+1u2 · · ·urβ) = u1u2 ∗ ∅µn+1u3 · · ·urβ.

ϕ̄nϕ̄n(U • β) = ϕ̄n(u1 ∗ ∅µn+1u2 · · ·urβ) = u1u2 ∗ ∅µn+1u3 · · ·urβ.

(ii) u1 > β

ϕn(ϕnU.β) = ϕn(u1 ∗ ∅µn+1u2 · · ·ur.β) = ϕn(u1u2 ∗ ∅µn+1βu3 · · ·ur)

= β u2
u1

∗ ∅µn+2u3 · · ·ur ∗ V ′.

ϕ̄nϕn(U • β) ∗ V ′ = ϕnϕn(u1 ∗ yβu2 · · ·ur) ∗ V ′ = ϕn(
β
u1
∗ ∅µn+1u2u3 · · ·ur) ∗ V ′

= β u2
u1

∗ ∅µn+2u3 · · ·ur ∗ V ′.
(iii) ur ≥ · · · ≥ ui > β ≥ ui−1 ≥ · · · ≥ u1, for some i ∈ {2, . . . , r}.



SAGAN-STANLEY SKEW RSK AND BALLOT SWITCHING 27

One has U.β = ∅µnu1 · · ·ui−1ui · · ·ur • β = ui ∗ yu1 · · ·ui−1βui+1 · · ·ur.

(64) = ϕ̄n[(u1 ∗ yu2 · · ·ur) • β] ∗ V ′ = ϕ̄n(u1ui ∗ ∅µn+1u2 · · ·ui−1βui+1 · · ·ur) ∗ V ′

= u1 u2
ui

∗ ∅µn+2u3 · · ·ui−1βui+1 · · ·ur ∗ V ′

(65) = ϕ̄nϕ̄n(U.β) ∗ V ′ = ϕ̄2
n[(ui ∗ yu1 · · ·ui−1βui+1 · · ·ur)] ∗ V ′

= ϕ̄n(
u1
ui
∗ ∅µn+1u2 · · ·ui−1βui+1 · · ·ur) ∗ V ′

= u1 u2
ui

∗ ∅µn+2u3 · · ·ui−1βui+1 · · ·ur ∗ V ′.

It is similarly checked that (60) holds. □

Remark 7. Let F be the tableau restricted to the rows strictly below the nth row of ϕ̄kϕ̄iϕ̄nT = ϕ̄kϕ̄nϕ̄iT ,for
1 ≤ i < k ≤ n. If w and w′ are the words consisting of the elements of T successively bumped out from the
n-th row under the action of ϕ̄kϕ̄iϕ̄n and ϕ̄kϕ̄nϕ̄i, for 1 ≤ i < k ≤ n, on T respectively, then w ≡ w′ ≡ F .
This easily follows from the fact that F is the external insertion of the elements of T successively bumped
out of the n-th row. This also applies to the action of ϕ̄iϕ̄nϕ̄k and ϕ̄nϕ̄iϕ̄k, for 1 ≤ i ≤ k < n, on T .

Remark 8. Thanks to (3) and (36), lemmata 5 and 6 are generalized to Yµ ∪ T .

Example 13. Illustration of Lemma 5, and of previous observations with n = 3,

ϕ̄3ϕ̄1ϕ̄2T = ϕ̄3ϕ̄1ϕ̄2

1 1 1 1 1 1
2 2 1 2 2
3 2 3 3

= ϕ̄3ϕ̄1

1 1 1 1 1 1
2 2 2 2 2
3 1 3 3
2

= ϕ̄3

1 1 1 1 1 1
2 2 2 1 2
3 1 2 3
2 3

=

1 1 1 1 1 1
2 2 2 1 2
3 3 2 3
1 3
2

w = 231 ≡ 1 3
2

ϕ̄1ϕ̄3ϕ̄2T = ϕ̄1ϕ̄3ϕ̄2

1 1 1 1 1 1
2 2 1 2 2
3 2 3 3

= ϕ̄1ϕ̄3

1 1 1 1 1 1
2 2 2 2 2
3 1 3 3
2

= ϕ̄1

1 1 1 1 1 1
2 2 2 2 2
3 3 3 3
1
2

=

1 1 1 1 1 1
2 2 2 1 2
3 3 2 3
1 3
2

= ϕ̄3ϕ̄1ϕ̄2T, w = 231 ≡ w′ = 213 ≡ 1 3
2

.

Proposition 3. ( Knuth relations of internal row insertion operators.) Let Y ∪ T be a tableau pair with
Y = Yµ, T a SSYT of shape λ/µ and ℓ(λ) = n. Suppose that kij with 1 ≤ i < k ≤ j ≤ n+ 1, or ijk with
1 ≤ i ≤ k < j ≤ n+ 1, are internal insertion order words of T . Then, it holds

ϕ̄kϕ̄iϕ̄j(Y ∪ T ) = ϕ̄kϕ̄j ϕ̄i(Y ∪ T ), 1 ≤ i < k ≤ j ≤ n+ 1, (66)

ϕ̄iϕ̄j ϕ̄k(Y ∪ T ) = ϕ̄j ϕ̄iϕ̄k(Y ∪ T ), 1 ≤ i ≤ k < j ≤ n+ 1. (67)

More generally, if u ≡ u′ are internal insertion order words of T , then

ϕ̄u(Y ∪ T ) = ϕ̄u′(Y ∪ T ). (68)

Proof. Let 1 < j ≤ n and Yµ ∪ T = (Y ′ ∪ T ′) ∗ (Y(µ1,...,µj) ∪ T [j]) with Y ′ ∪ T ′ the restriction of Y ∪ T to
the last n− j rows of Y ∪ T . Lemmas 5 and 6 guarantee that

ϕ̄kϕ̄iϕ̄j(Y(µ1,...,µj) ∪ T [j]) = ϕ̄kϕ̄j ϕ̄i(Y(µ1,...,µj) ∪ T [j]).
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Let F be the restriction of ϕ̄kϕ̄iϕ̄j(Y(µ1,...,µj) ∪ T [j]) = ϕ̄kϕ̄j ϕ̄i(Y(µ1,...,µj) ∪ T [j]) to the rows strictly below

row j. Recalling Remark 7, the action of ϕ̄kϕ̄iϕ̄j and ϕ̄kϕ̄j ϕ̄i on Y ∪ T inserts words w and w′ respectively,
which are Knuth equivalent to F , into Y ′ ∪ T ′,

ϕ̄kϕ̄iϕ̄j(Y ∪ T ) = [(Y ′ ∪ T ′).w] ∗ ϕ̄kϕ̄iϕ̄j(Y(µ1,...,µj) ∪ T [j]),

and

ϕ̄iϕ̄j ϕ̄k(Y ∪ T ) = [(Y ′ ∪ T ′).w′] ∗ ϕ̄kϕ̄j ϕ̄i(Y(µ1,...,µj) ∪ T [j]).

It follows from Lemma 2, (b), that (Y ′ ∪ T ′).w = (Y ′ ∪ T ′).w′ = (Y ′ ∪ T ′).F , and thus (66) holds,

ϕ̄kϕ̄iϕ̄j(Y ∪ T ) = [(Y ′ ∪ T ′).F ] ∗ ϕ̄kϕ̄iϕ̄j(Y(µ1,...,µj) ∪ T [j])

= [(Y ′ ∪ T ′).F ] ∗ ϕ̄kϕ̄iϕ̄j(Y(µ1,...,µj) ∪ T [j]) = ϕ̄iϕ̄j ϕ̄k(Y ∪ T ). (69)

Equality (67) follows similarly. Equality (68) follows from (66) and (67) and the definition of Knuth
equivalent words. □

Example 14. Illustration of this proposition using (55) in Example 11
(a) Consider Y ∪ T as in (55) and 213 ≡ 231,

ϕ̄2ϕ̄1ϕ̄3((55)) = ϕ̄2ϕ̄3ϕ̄1((55)) =

1 1 1 ■ 1
2 2 2 ■
3 3 ■ 1○
4 1 2○ 2○
1 3○ 3○
2 4○ 4○
5○

(b) 312 ≡ 132,

ϕ̄3ϕ̄1ϕ̄2

1 1 1 1 1 1
2 2 1 2 2
3 2 3 3
1 3 4 4
5 5

=
1 3 4 4
5 5

• ϕ̄3ϕ̄1ϕ̄2

1 1 1 1 1 1
2 2 1 2 2
3 2 3 3

=
1 3 4 4
5 5

• ϕ̄3ϕ̄1

1 1 1 1 1 1
2 2 2 2 2
3 1 3 3
2

=
1 3 4 4
5 5

• ϕ̄3

1 1 1 1 1 1
2 2 2 1 2
3 1 2 3
2 3

=
1 3 4 4
5 5

• 2 3 • ϕ̄3

1 1 1 1 1 1
2 2 2 1 2
3 1 2 3

=
1 3 4 4
5 5

• ϕ̄1ϕ̄3ϕ̄2

1 1 1 1 1 1
2 2 1 2 2
3 2 3 3

=
1 3 4 4
5 5

•

1 1 1 1 1 1
2 2 2 1 2
3 3 2 3
1 3
2

=
1 3 4 4
5 5

•
1 3
2

•

1 1 1 1 1 1
2 2 2 1 2
3 3 2 3

=

1 1 3 4
2 4
3 5
5

•

1 1 1 1 1 1
2 2 2 1 2
3 3 2 3

=

1 1 1 1 1 1
2 2 2 1 2
3 3 2 3
1 1 3 4
2 4
3 5
5

.
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5. Switching on ballot tableau pairs as a recursive Sagan-Stanley internal row insertion

5.1. Littewood-Richardson rules and commutation symmetry. Let n be a fixed positive integer and
let x = (x1, x2, . . . , xn) be a sequence of indeterminates. Then, for each partition λ of length ≤ n, there
exists a Schur function sλ(x) which is a homogeneous symmetric polynomial in the xk of total degree |λ|.
The product of two Schur functions is explicitly given by the Littlewood-Richardson rule which amounts to
finding how many SSYT’s satisfy certain conditions.

Theorem 6. [LR34, Tho78, Sch77] The Littlewood-Richardson (LR) rule. The coefficients appearing in
the expansion of a product of Schur polynomials sµ and sν

sµ(x) sν(x) =
∑
λ

cλµν sλ(x) (70)

are given by cλµν = #{ballot SSYT of shape λ/µ and content ν}. The coefficients cλµν are known as Littlewood–
Richardson (LR) coefficients, and the ballot SSYT’s are also known as Littlewood-Richardson tableaux.

The Schubert structure coefficients of the product in H∗(G(d, n)), the cohomology of the Grassmannian
G(d, n), (as a Z-module), are also given by the LR rule. The connection with H∗(G(d, n)), the cohomology
of the Grassmannian G(d, n) is due to L. Lesieur, [Les47].

σµσν =
∑

λ⊆d×(n−d)

cλµ νσλ. (71)

The Schur structure coefficients (70) are not only Schubert structure coefficients (71). They are also multi-
plicities in tensor products of GLn(C)- representations and in induction products of Sn-representations.

The rectification of a SSYT T is the unique SSYT of normal shape whose reading word is Knuth equivalent
to that of T . Using the notion of rectification of a SSYT, the LR rule may also be formulated in the language
of M.-P. Schützenberger’s jeu de taquin [Sta98]. The SSYT’s U and V are said to be jeu de taquin equivalent
if one can be obtained from another by a sequence of jeu de taquin slides [Sta98, Ful97]. Recall that each
stage of jeu de taquin slide converts the reading word of a semistandard Young tableau into a Knuth
equivalent one, and jeu de taquin commutes with standardisation.

Theorem 7. Littlewood-Richardson rule’s jeu de taquin version ([Sta98], Appendix 1.) Fix a standard
tableau S of shape ν. Then

cλµν = #{ SYT of shape λ/µ whose rectification is S}.

(The special choice of S = stdYν relates this version with the LR tableau version above.)

The rectification of a SSYT T does not depend on the order of jeu de taquin slides. We can then consider
Yµ to be the inner shape of a SSYT of shape λ/µ and content ν and then look at Yµ as a set of instructions
to tell where jeu de taquin contracting slides start to rectify T . (Standardise Yµ and T . The jeu de taquin
slides start with the biggest entry of stdYµ, seen as a hole. The ”hole” will slide until it reaches the outer
boundary [Sta98]. Then proceed similarly with jeu de taquin slides into the remaining entries of stdYµ, in
decreasing numerical order. When stdT is rectified to some S the elements of stdYµ are the entries of the
skew shape λ/ν and encode the order in which the boxes were vacated in the jeu de taquin sliding process.)
Such tableau sliding process correspond to a particular presentation of the tableau switching procedure
[BSS96] on tableau pairs of partition shape. (When S = stdYν one has the tableau sliding presentation for
ballot tableau pairs of normal shape.)

Tableau switching process is outlined in the next subsection. Let ρ1 be the involution map that the
tableau switching procedure calculates on tableau pairs. We call it the switching involution. The tableau
sliding presentation of ρ1 is called infusion by Thomas and Yong in [TY09, TY16], and it can be translated
to the language of Fomin’s jeu de taquin growths (see Fomin’s Appendix 1 in [Sta98]) which shows that
infusion is an involution. This approach is realised by Thomas and Yong in [TY08] to exhibit an involution
for the commutation of LR coefficients.

5.2. The tableau switching map. Switching [BSS96] is an operation that takes a pair of tableaux U ∪V
and moves them through each other giving another such pair V ′ ∪ U ′ of the same shape, in a way that
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preserves Knuth equivalence, V ≡ V ′ and U ≡ U ′, and the shape of their union. Loosely speaking, the
switching algorithm may be realised as a mixture of Schützenberger’s jeu de taquin and its reverse process
in the sense that it calculates an involutive map on pairs of tableaux and if U ∪ V has normal shape then
V ′ is the rectification of V and U is the rectification of U ′. The switching map on U ∪ V is processed
through local moves to interchanging two vertically or horizontally adjacent letters u and v from U and V
respectively. The intermediate objects have to be defined when the switching procedure moves U and V
through each other. A perforated tableau U of shape λ is a filling of some of the boxes in λ with integers
satisfying some restrictions: whenever x and x′ are entries of U where x′ is to the north-west of x, then

if not in the same column,
x′

x
, x′ x ⇒ x ≥ x′, and (72)

if in the same column
x′

x
⇒ x > x′. (73)

We may switch an integer with the neighbour empty box ■ to the south, east, north or west, in a
perforated tableau, so that the result is still a perforated tableau:

contracts U ■
x →s

x
■ ■ x→

s
x ■

expands U ■
x →s

x
■ ■ x→

s
x ■

A perforated tableau pair U∪V of shape λ is the superimposing of two perforated tableaux U and V of shape
λ, so that together they completely fill λ. If u and v are vertically or horizontally adjacent letters from U
and V respectively, then an interchanging of u with v is a switch, written u ↔

s
v, provided it produces a

new perforated tableau pair,
u
v ↔

s

v
u u v↔

s
v u .

We collect the following elementary perforated tableau pairs with the corresponding elementary moves.
For the sake of clarity, the entries of U are drawn in red:

u v ↔
s

v u, u ↔
s

v

v u

u v ↔
s

v u , a > v, u a ↔
s

v a , a ≥ v.

a a v u

.

The above switches recover the jeu de taquin and reverse jeu de taquin switches when the u-entry is seen
as an empty entry. An example of a sequence of switches

1 1 1 1 1 1
2 2 2 2 2
3 1 2 3

↔
s

1 1 1 1 1 1
2 2 2 2 2
1 2 3 3

↔
s

1 1 1 1 1 1
1 2 2 2 2
2 2 3 3

↔
s

1 1 1 1 1 1
1 2 2 2 2
2 2 3 3

.

Theorem 8. [BSS96, Theorem 2.3] The Switching Procedure on tableau pairs, calculates switching the
unique map on tableau pairs with the following properties

(1) Start with a tableau pair U ∪ V ;
(2) Switch integers from U with integers from V until it is no longer possible to do so. This produces a

new tableau pair S ∪H.

U ∪ V ←→
s

S ∪H,

where U ≡ H and V ≡ S. (If U ∪ V has normal shape, U is the rectification of H and S the rectification of
V ). If subtableaux decompose U , V can switch with U in stages. Similarly if V decomposes, U can switch
with V in stages. Switching is an involution on tableau pairs denoted by ρ1.

Definition 7. We also write ρ
(n)
1 when the switching ρ1 is acting on tableau pairs with shape length ≤ n.

Corollary 5. The map ρ
(n)
1 is an involution in LR(n), for all n ≥ 1. Moreover cλµ,ν = cλν,µ.
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For example, for n = 3, µ = (4, 4, 1) and ν = (3, 2, 1),

Y(4,4,1) ∪ V =
1 1 1 1 1 1
2 2 2 2 2
3 1 2 3

↔
s

1 1 1 1 1 1
2 2 2 2 2
1 2 3 3

↔
s

1 1 1 1 1 1
1 2 2 2 2
2 2 3 3

↔
s
Y(3,2,1) ∪H =

1 1 1 1 1 1
2 2 1 2 2
3 2 2 3

= ρ
(3)
1 (Y(4,4,1) ∪ V ) ∈ LR(3).

5.3. Henriques-Kamnitzer gln-crystal commuter and Sagan-Stanley internal row insertion. For
definitions, in this section, we refer the reader to [AKT16, Section 12], [ACM25, Section 3.4] and [KT25a].
One way to conclude that a ballot tableau pair commuter ρ coincides with the Henriques-Kamnitzer gln–
crystal commuter ComHK [HK06b, HK06a] is to show that ρ(Yµ ∪ T ) = Yν ∪H with H ≡ Yµ and T ≡ Yν

satisfy the following: the corresponding left and right Gelfand-Tsetlin (GT) pattern pairs (Gµ(T ), Gν(T ))
respectively (Gν(H), Gµ(H)) are related through the Schützenberger involution ξ, Gµ(H) = ξ(Gµ(T )) and
Gν(H) = ξ(Gν(T )). We shall show that our commuter (ρ3 in [PV10]) based on the Sagan-Stanley internal
insertion will produce such GT patterns in Theorem 2 thanks to the coincidence of the commuter ρ1 with
ComHK . We will work on an illustration as a motivation for Theorem 2.

Given Y ∪ T ∈ LR(n) with Y = Yµ and T a ballot tableau of shape λ/µ and weight ν, we define

for i = 1, . . . , n, the partition ν(i) to be the content of the ballot tableau T [i], and the partition ν̂ =
(ν̂1, . . . , ν̂n−1, ν̂n = νn) ⊆ ν where ν̂i is the number of i’s in row i of T , for i = 1, . . . , n.

The Sagan-Stanley internal row insertion correspondence (38) applied to the pair (∅ν̂ , U) and U ∈
Y T (ν/ν̂) with ν̂ ⊆ ν, produces P equals to ∅ν the Young diagram of shape ν. Let Gν be the Gelfand-
Tsetlin (GT) pattern of type ν or the companion tableau of T . Note Gν is defined by the nested sequence
ν(1) ⊆ ν(2) ⊆ · · · ⊆ ν(n) = ν. We use the skew GT pattern Gν/ν̂ , as internal insertion order tableau, and the
parts of µ to be added properly, to construct an LR commuter as we explain next. The skew GT pattern
Gν/ν̂ is the skew tableau of shape ν/ν̂ obtained by vacating the cells in the Young diagram of shape ν̂ in
the GT pattern Gν . See Example 15

The internal insertion order wordR(Gν/ν̂) = Vn · · ·V3V2V1 is decomposed into row words Vi, i = 1, · · · , n.
The row word Vi is precisely the ith row word of T restricted to the alphabet [i− 1], and |Vi| = λi−µi− ν̂i,
for i = 1, . . . , n. Thus V1 is the empty word, ϕV1

= 1, ϕR(Gν/ν̂) = ϕVn
· · ·ϕV3

ϕV2
and

ϕ̄R(Gν/ν̂)(∅ν̂) = ϕ̄Vn
· · · ϕ̄V3

ϕ̄V2
(∅ν̂) = ∅ν ,

the Young diagram of shape ν. For i = 1, . . . , n, one needs the operator χ̄i, to be iterated µi times, written
χ̄µi

i = χ̄i ◦ · · · ◦ χ̄i︸ ︷︷ ︸
µi

, over ϕ̄Vi
(χ̄

µi−1

i−1 ϕ̄Vi−1
) · · · (χ̄µ2

2 ϕ̄V2
)χ̄µ1

1 (∅ν̂), to recursively adding in each iteration one i

at the end of ith row. Given Yµ ∪ T ∈ LR(n) this procedure encodes Yµ ∪ T in the form (∅ν̂ , Gν/ν̂ , µ) and

gives the µ-augmented internal insertion operator an involution in LR(n)

ϕ̄µ
R(Gν/ν̂)

(∅ν̂) = (χ̄µn
n ϕ̄Vn

) · · · (χ̄µ3

3 ϕ̄V3
)(χ̄µ2

2 ϕ̄V2
)χ̄µ1

1 (∅ν̂) = ∅ν ∪H ∈ LR(n), (74)

where H is a ballot tableau of shape λ/ν and content µ.
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Example 15. Let λ = (6, 5, 5, 4, 3), ν = (4, 4, 3, 2, 0), ν̂ = (2, 1, 1, 1, 0) and µ = (4, 3, 2, 1, 0)

Yµ ∪ T =

1 1 1 1 1 1
2 2 2 1 2
3 3 1 2 3
4 2 3 4
2 3 4

Gν(T ) =

1 1 2 3
2 3 4 5
3 4 5
4 5

Gν/ν̂(T ) =

2 3
3 4 5
4 5
5

stdGν/ν̂ =

1 3
2 5 8
4 7
6

(75)

Yµ =

1 1 1 1
2 2 2
3 3
4

R(Gν/ν̂) = R5R4R3R2 ∅ = 234 23 12 1 = V5V4V3V2.

Then for n = 5,

ϕ̄R(Gν/ν̂)(∅ν̂) = ϕ̄R5R4R3R2 ∅(∅ν̂) = ϕ̄234ϕ̄23ϕ̄12ϕ̄1(∅ν̂) = ∅ν .

The µ-augmentation of ϕ̄R(Gν/ν̂):

ϕ̄µ
R(Gν/ν̂)

(∅ν̂) = χ̄µ5

5 ϕ̄R5
χ̄µ4

4 ϕ̄R4
χ̄µ3

3 ϕ̄R3
χ̄µ2

2 ϕ̄R2
χ̄µ1

1 ϕ̄∅(∅ν̂)

= ϕ̄234χ̄4ϕ̄23χ̄
2
3ϕ̄12χ̄

3
2ϕ̄1χ̄

4
1(∅ν̂)

= ∅ν ∪H

gives

∅ν̂ = →
χ̄4
1

1 1 1 1

→
χ̄3
2ϕ̄1

1 1 1
1 2 2 2 →

χ̄2
3ϕ̄1ϕ̄2

1 1
1 2 2

1 2 3 3

→
χ̄4ϕ̄2ϕ̄3

1 1
2 2

1 3 3
1 2 4

→
ϕ̄2ϕ̄3ϕ̄4

1 1
2

2 3
1 3

1 2 4

= ∅ν ∪H. (76)

where H is a ballot tableau of content µ and shape λ/ν. This augmented operator creates the skew GT
pattern Gν/ν̂ defined by the sequence of inner shapes read in (76) onwards and displayed in (77).

The inverse of the µ-augmented operator is the µ-deletion operator

∆µ(∅ν ∪H) = (χ̄µ1

1 )−1∆λ2−ν2−µ̂2

2 (χ̄µ2

2 )−1∆λ3−ν3−µ̂3

3 (χµ3

3 )−1∆λ4−ν4−µ̂4

4 (χ̄µ4

4 )−1∆λ5−ν5−µ̂5

5 (∅ν ∪H)

which reads (76) backwards and thereby creates Gν/ν̂ the nested sequence of inner shapes

ν = (4, 4, 3, 2, 0) = ν̂(5) ⊇ (4, 3, 2, 1, 0) = ν̂(4) ⊇ (4, 2, 1, 1, 0) = ν̂(3) ⊇ (3, 1, 1, 1, 0) = ν̂(2) ⊇ (2, 1, 1, 1, 0) = ν̂
(77)

Example 16. Let λ = (6, 5, 5, 4, 3), ν = (4, 4, 3, 2, 0), µ̂ = (2, 1, 1, 0, 0) and µ = (4, 3, 2, 1)

Yν ∪H =

1 1 1 1 1 1
2 2 2 2 2
3 3 3 2 3
4 4 1 3
1 2 4

Gµ(H) =

1 1 4 5
2 3 5
3 4
5

Gµ/µ̂(H) =

4 5
3 5
4

5

(78)

Yν =

1 1 1 1
2 2 2 2
3 3 3
4 4

R(Gµ/µ̂) = R5R4R3∅ ∅ = 124 13 2∅∅.
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Then ϕ̄R(Gµ/µ̂)(∅µ̂) = ϕ̄124ϕ̄13ϕ̄2(∅µ̂) = ∅µ, and ϕ̄ν
R(Gµ/µ̂)

(∅µ̂) = ϕ̄124χ̄
2
4ϕ̄13χ̄

3
3ϕ̄2χ̄

4
2χ̄

4
1(∅µ̂) = ∅µ ∪ T are

displayed below

∅µ̂ = →
χ̄4
1

1 1 1 1
→
χ̄4
2

1 1 1 1
2 2 2 2 →

χ̄3
3ϕ̄2

1 1 1 1
2 2 2

2 3 3 3

→
χ̄2
4ϕ̄1ϕ̄3

1 1 1
1 2 2
2 3 3

2 3 4 4

→
ϕ̄1ϕ̄2ϕ̄4

1 1
1 2

1 2 3
2 3 4

2 3 4

= ∅µ ∪ T. (79)

The deletion operator is obtained from (79) backwards while recording the inner shapes to define Gµ/µ̂

the skew companion tableau of H

µ = (4, 3, 2, 1, 0) ⊇ µ̂(4) = (3, 2, 2, 0, 0) ⊇ µ̂(3) = (2, 2, 1, 0, 0) ⊇ µ̂(2) = (2, 1, 1, 0, 0) ⊇ µ̂ = (2, 1, 1, 0, 0).

∆ν(∅µ ∪ T ) = (χ̄ν1
1 )−1∆λ2−µ2−ν̂2

2 (χ̄ν2
2 )−1∆λ3−µ3−ν̂3

3 (χν3
3 )−1∆λ4−µ4−ν̂4

4 (χ̄ν4
4 )−1∆λ5−µ5−ν̂5

5 (∅µ ∪ T ) = ∅ν ∪H

H ≡ Yµ

Remark 9. [Buc00, PV10, HK06b, AKT16, TKA18, ACM25] Recall evacGµ(T ) = Gµ(H) where evac = ξ
denotes the Schützenberger evacuation

evacGµ(T ) = evac

1 1 1 3
2 2 4
3 5
5

= Gµ(H) =

1 1 4 5
2 3 5
3 4
5

To avoid the skew GT patterns Gν/ν̂ and Gµ/µ̂ in the previous examples, and since Gν = Yν̂ ∪ Gν/ν̂

and similarly Gµ = Yµ̂ ∪ Gµ/µ̂, we get supplied with another adding operator ω̄i regarding the partitions
ν̂ = (ν̂1, . . . , ν̂n) or µ̂ = (µ̂1, . . . , µ̂n) as follows.

Put (Y ∪ T )[0] := ∅. For i = 0, 1, . . . , n, let (Yµ ∪ T )[i] = Y(µ1,...,µi) ∪ T [i] ∈ LR(i) where T [i] has content

ν(i), and row i consists of Vi, the row subword restricted to the entries in [i − 1], followed with ν̂i i’s. For
each i = 1, . . . , n, we now consider the operator ω̄i, to be iterated ν̂i times, to contributing, in each iteration
over

Yν(i−1) ∪H(i−1) = (χ̄
µi−1

i−1 ϕ̄Vi−1
ω̄
ν̂i−1

i−1 ) · · · (χ̄µ2

2 ϕ̄V2
ων̂2
2 )(χ̄µ1

1 ω̄ν̂1
1 )(∅),

H(i−1) ≡ Y(µ1,...,µi−1), skew shape (λ1, . . . , λi−1)/ν
(i−1) , H(0) = ∅,

with one i to the ith row of the inner shape Yν(i−1) . This allows to give the following recursive presentation

of the switching map ρ
(n)
1 on ballot tableau pairs in LR(n), for n ≥ 1,

ρ
(n)
1 (Yµ ∪ T ) = (χ̄µn

n ϕ̄Vn ω̄
ν̂n
n ) · · · (χ̄µ3

3 ϕ̄V3
ω̄ν̂3
3 )(χ̄µ2

2 ϕ̄V2
ω̄ν̂2
2 )(χ̄µ1

1 ω̄ν̂1
1 )(∅) (80)

= (χ̄µn
n ϕ̄Vnω

ν̂n
n )ρ(n−1)[(Yµ ∪ T )[n−1]] (81)

= Yν ∪H, with H ≡ Yµ. (82)

The Yamanouchi tableau Yν̂ is constructed recursively by means of ν̂i iterations of the operator ωi, for
i = 1, . . . , n. In particular, if V is the empty word and µ is the zero partition, then ν̂ = ν and Yν =
ω̄νn
n · · · ω̄

ν2
2 ω̄ν1

1 (∅). Observe that ω̄i commutes with ϕ̄Vi
.

Example 17. Let us resume to Example 15 where ν = (4, 4, 3, 2, 0), ν̂ = (2, 1, 1, 1, 0) and µ = (4, 3, 2, 1).
We illustrate

ρ
(5)
1 (Yµ ∪ T ) = ϕ̄2ϕ̄3ϕ̄4χ̄

µ4

4 ϕ̄2ϕ̄3ω̄4χ̄
µ3

3 ϕ̄1ϕ̄2ω̄3χ̄
µ2

2 ϕ̄1ω̄2χ̄
µ1

1 ω̄2
1(∅).
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Recall s denotes the switching operator.

(Y ∪ T )(0) = ∅

(Y ∪ T )[1] = 1 1 1 1 1 1

(Y ∪ T )[2] = 1 1 1 1 1 1
2 2 2 1 2

(Y ∪ T )[3] =
1 1 1 1 1 1
2 2 2 1 2
3 3 1 2 3

(Y ∪ T )[4] =

1 1 1 1 1 1
2 2 2 1 2
3 3 1 2 3
4 2 3 4

(Y ∪ T )[5] = Y ∪ T.

We check ρ
(i)
1 (Yµ ∪ T )[i] = (χ̄µi

i ϕ̄Vi
ω̄ν̂i
i )ρ(i−1)[(Yµ ∪ T )[i−1]], for i = 1, . . . , 5.

(Y ∪ T )[1] = 1 1 1 1 1 1 →
s

1 1 1 1 1 1

= ρ
(1)
1 [(Y ∪ T )[1]]

= Yν̂1
∪H(1), H(1) ≡ Y(µ1)

(Y ∪ T )[0] = Y0 ∪H(0) = ∅−→
ω2

1

1 1 −→
χ
µ1
1

1 1 1 1 1 1

= χµ1

1 ων̂1
1 (Y ∪ T )[0]

= ρ
(1)
1 [(Y ∪ T )[1]]

= Yν̂1
∪H(1), H(1) ≡ Y(µ1)

(Y ∪ T )[2] = 1 1 1 1 1 1
2 2 2 1 2

→
s

1 1 1 1 1 1
1 2 2 2 2

→
s

1 1 1 1 1 1
1 2 2 2 2

→
s

1 1 1 1 1 1
2 1 2 2 2

= ρ
(2)
1 [(Y ∪ T )[2]]

= Yν(2) ∪H(2), H(2) ≡ Y(µ1,µ2)

ρ
(1)
1 [(Y ∪ T )[1]] = 1 1 1 1 1 1 →

ω2

1 1 1 1 1 1
2

→̄
ϕ1

1 1 1 1 1 1
2 1

→
χ
µ2
2

1 1 1 1 1 1
2 1 2 2 2

= χ̄µ2

2 ϕ̄1ω̄2ρ
(1)
1 [(Y ∪ T )[1]]

= ρ
(2)
1 [(Y ∪ T )[2]]

(Y ∪ T )[3] =
1 1 1 1 1 1
2 2 2 1 2
3 3 1 2 3

→
s

1 1 1 1 1 1
2 1 2 2 2
1 2 3 3 3

→
s

1 1 1 1 1 1
1 1 2 2 2
2 3 2 3 3

→
s

1 1 1 1 1 1
2 2 1 2 2
3 1 2 3 3

= ρ
(3)
1 [(Y ∪ T )[3]]

= Yν(3) ∪H(3) H(3) ≡ Y(µ1,µ2,µ3)
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ρ
(2)
1 [(Y ∪ T )[2]]→

ω3

1 1 1 1 1 1
2 1 2 2 2
3

→̄
ϕ2

1 1 1 1 1 1
2 2 2 2 2
3 1

→̄
ϕ1

1 1 1 1 1 1
2 2 1 2 2
3 1 2

→
χ
µ3
3

1 1 1 1 1 1
2 2 1 2 2
3 1 2 3 3

= χ̄µ3

3 ϕ̄1ϕ̄2ω̄3ρ
(2)
1 (Y ∪ T )[2] = χ̄µ3

3 ϕ̄1ϕ̄2ω̄3χ̄
µ2

2 ϕ̄1ω̄2ρ
(1)
1 [(Y ∪ T )[1]]

= ρ
(3)
1 [(Y ∪ T )[3]]

(Y ∪ T )[4] =

1 1 1 1 1 1
2 2 2 1 2
3 3 1 2 3
4 2 3 4

→
s

1 1 1 1 1 1
2 1 2 2 2
1 2 3 3 3
2 3 4 4

→
s

1 1 1 1 1 1
1 1 2 2 2
2 2 3 3 3
2 3 4 4

→
s

1 1 1 1 1 1
2 2 2 2 2
1 1 3 3 3
2 3 4 4

→
s

1 1 1 1 1 1
2 2 2 2 2
3 1 3 3 3
1 2 4 4

→
s

1 1 1 1 1 1
2 2 2 2 2
3 3 1 3 3
4 1 2 4

= ρ
(4)
1 [(Y ∪ T )[4]]

= Yν(4) ∪H(4) H(4) ≡ Y(µ1,µ2,µ3,µ4)

ρ
(3)
1 [(Y ∪ T )[3]]→

ω4

1 1 1 1 1 1
2 2 1 2 2
3 1 2 3 3
4

→̄
ϕ3

1 1 1 1 1 1
2 2 1 2 2
3 3 2 3 3
4 1

→̄
ϕ2

1 1 1 1 1 1
2 2 2 2 2
3 3 1 3 3
4 1 2

→
χ
µ4
4

1 1 1 1 1 1
2 2 2 2 2
3 3 1 3 3
4 1 2 4

= χµ4

4 ϕ̄2ϕ̄3ω̄4ρ
(3)
1 [(Y ∪ T )[3]] = χ̄µ4

4 ϕ̄2ϕ̄3ω̄4χ̄
µ3

3 ϕ̄1ϕ̄2ω̄3ρ
(2)
1 (Y ∪ T )[2]

= ρ
(4)
1 [(Y ∪ T )[4]]

[Yµ ∪ T ][5] =

1 1 1 1 1 1
2 2 2 1 2
3 3 1 2 3
4 2 3 4
2 3 4

→
s

1 1 1 1 1 1
2 2 2 1 2
3 3 1 2 3
2 2 3 4
4 3 4

→
s

1 1 1 1 1 1
2 2 2 1 2
3 3 1 2 3
2 2 3 4
3 4 4

→
s

1 1 1 1 1 1
2 2 2 1 2
1 2 2 3 3
2 3 4 3
3 4 4

→
s

1 1 1 1 1 1
2 2 1 2 2
1 2 2 3 3
2 3 4 3
3 4 4

→
s

1 1 1 1 1 1
2 1 2 2 2
1 2 2 3 3
2 3 4 3
3 4 4

→
s

1 1 1 1 1 1
2 1 2 2 2
1 2 3 2 3
2 3 4 3
3 4 4

→
s

1 1 1 1 1 1
1 1 2 2 2
2 2 3 2 3
3 3 4 3
4 2 4

→
s

1 1 1 1 1 1
2 2 2 2 2
3 3 3 2 3
4 4 1 3
1 2 4

= ρ
(5)
1 [(Y ∪ T )[5]]

= Yν ∪H H ≡ Yµ

ρ
(4)
1 [(Y ∪ T )[4]]→̄

ϕ4

1 1 1 1 1 1
2 2 2 2 2
3 3 1 3 3
4 4 2 4
1

→̄
ϕ3

1 1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 1 4
1 2

→̄
ϕ2

1 1 1 1 1 1
2 2 2 2 2
3 3 3 2 3
4 4 1 3
1 2 4

= ϕ̄2ϕ̄3ϕ̄4ρ
(4)
1 [(Y ∪ T )[4]]

= ρ
(5)
1 [Y ∪ T ]

= Yν ∪H H ≡ Yµ.
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Observe that ν̂1 = ν(1) = (2) ⊆ ν(2) = (3, 1) ⊆ ν(3) = (4, 2, 1) ⊆ ν(4) = (4, 3, 2, 1) ⊆ ν(5) = (4, 4, 3, 2, 0)
defines Gν(T ).

The switching map on ballot tableau pairs of normal shape can now be translated to the language of
internal row insertion operations.

Theorem 9. (Theorem 2) (Main Theorem) Let n ≥ 1 and Y ∪ T ∈ LR(n) with Y = Yµ and T a ballot

tableau of shape λ/µ and weight ν. For 1 ≤ i ≤ n, let (Yµ ∪ T )[i] = Y(µ1,...,µi) ∪ T [i] ∈ LR(i) with T [i] of

weight ν(i). Consider the ith row word of T [i] where Vi is the row subword restricted to the entries in [i−1],
and ν̂i = λi − µi − |Vi| is the number of entries equal to i. Put (Yµ ∪ T )[0] = Yν0 ∪ H(0) := ∅, ν0 := 0,

ϕ̄∅ = id and ρ
(0)
1 (∅) := ∅. Then, for i = 1, . . . , n, it holds

ρ
(i)
1 [(Yµ ∪ T )[i]] = (χ̄µi

i ◦ ϕ̄Vi ◦ ω̄
ν̂i
i ) ◦ ρ(i−1)[(Yµ ∪ T )[i−1]] (83)

= χ̄µi

i ◦ ω̄
ν̂i
i ◦ ϕ̄Vi(Yν(i−1) ∪H(i−1)) = Yν(i) ∪H(i) ∈ LR(i), (84)

where ω̄ν̂i
i adds the ith row word iν̂i to Yν(i−1) , χ̄

µi

i adds the row word iµi at the end of the ith row of

ϕ̄Vi
◦ ω̄ν̂i

i (Yν(i−1) ∪ H(i−1)) and H(i) ≡ Y(µ1,...,µi). In particular, all bumping routes of ϕ̄Vi
are pairwise

disjoint and terminate in the ith row.

5.4. Lecouvey-Lenart and Kumar-Torres bijections between Kwon and Sundaram branching
models. For detailed definitions pertaining this section we refer to [LL20, KRV21, Kwo18, KT25a]. A
fundamental fact of Kumar-Torres bijection is that it restricts to tableaux satisfying the Sundaram con-
dition and those whose evacuation satisfy the Kwon condition by considering and recognizing that they
can be embedded in the Kushwaha–Raghavan–Viswanath [KRV21] bijection on flagged hives. To settle the
Lecouvey-Lenart conjecture [LL20], it remains to know the coincidence of LR commuters. Note that in our
notation the role of λ and ν are swapped in [KT25a].

We fix a positive integer n, and assume, unless otherwise stated, that ℓ(λ) ≤ 2n − 1 and ℓ(µ) ≤ n. Let
m = 2n. A Littlewood–Richardson tableau of shape λ/µ and weight ν satisfies the Sundaram property if
for each i = 0, . . . , ℓ(ν)/2, the entry 2i + 1 appears in row n + i or above in the Young diagram of λ. The
set of T ∈ LR(λ/µ, ν) satisfying the Sundaram property is denoted by LRS(λ/µ, ν) and called the set of
Sundaram LR tableaux.

Denote by LRSλ
µ,ν the subset of LRλ

µ,ν consisting of the right companions of LRS(λ/µ, ν). Then those

tableaux consist of the tableaux in LRλ
µ,ν satisfying the flag property that the entries in the kth row are

bounded above by n + ⌊k/2⌋, for k = 1, . . . , 2n, [KT25a, Proposition 4.7]. We call them Sundaram right
companions. Denote by −LRSλ

µ,ν the subset of −LRλ
µ,ν consisting of the left companions of LRS(λ/µ, ν).

A semistandard tableau of shape µ and ℓ(µ) ≤ n is said to satisfy the Kwon property if the entries in row
i are at least 2i− 1, for i = 1, . . . , n. Denote by LRKλ

ν,µ the subset of LRλ
ν,µ consisting of tableaux G such

that their Schützenberger evacuation ξ = evac2n within the crystal B(µ, 2n), ξ(G) = evac2n(G), satisfy the
Kwon property.

The Sundaram branching rule (see [KT25a] and [Sun86] for the definition) states the following.

Theorem 10. [Sun86] The branching coefficient cλµ equals the cardinality of the set

LRS(λ, µ) :=
⋃

LRS(λ/µ, ν),

where the union is taken over all even partitions ν, that is, ν2i−1 = ν2i, i ≥ 1.

The Kwon’s branching rule as reformulated by Lecouvey– Lenart [LL20, Lemma 6.11] says the following.

Theorem 11. [Kwo18, LL20] The branching coefficient cλµ equals the cardinality of the set

LRK(λ, µ) :=
⋃

LRKλ
ν,µ

where the union is taken over all even partitions ν, that is, ν2i−1 = ν2i, i ≥ 1.

Theorem 12 (Kumar-Torres Theorem 3.6 [KT25a]). The composition

LR(λ/µ, ν)
∼−→ LRλ

µ,ν
U−→ LRλ

ν,µ
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restricts to a bijection

LRS(λ/µ, ν)
∼−→ LRKλ

ν,µ (85)

where U : LRλ
µ,ν

U−→ LRλ
ν,µ is the LR commuter by Kushwaha–Raghavan–Viswanath[KRV21]. (See [KT25a]

for definitions). Therefore, the above composition induces a bijection between LRS(λ, µ) and LRK(λ, µ).

From [AKT16, Section 12] we know the LR commuter U coincides with the Henriques-Kamnitzer gln-
crystal commuter because it produces the same GT pattern pair. The Kumar-Torres bijection together with
the coincidence of LR commuters gives the corollary:

Corollary 6. The Kumar-Torres bijection

LR(λ/µ, ν)
∼−→ LRλ

µ,ν
U−→ LRλ

ν,µ

and the Lecouvey-Lenart bijection

LR(λ/µ, ν)
∼−→ LRλ

µ,ν
U ′

−→ LRλ
ν,µ

where U ′ is the LR commuter defined by Henriques–Kamnitzer, coincide. Thereby both restrict to a bijection

LRS(λ, µ)
∼−→ LRK(λ, µ).

Corollary 7. The Henriques-Kamnitzer commuter (32) or (33) restrict to LRS tableaux and gives

LRSλ
µ,ν

∼−→ LRS(λ/µ, ν)
∼−→ −LRSλ

µ,ν
ξ−→ LRKλ

ν,µ, Gν 7→ T 7→ Gµ 7→ ξ(Gµ), (86)

Therefore, −LRSλ
µ,ν = ξ(LRKλ

ν,µ) which are precisely those tableaux satisfying the Kwon condition in
−LRλ

µ,ν .

Example 18. Motivated by the question raised by the authors in [KT25a, Remark 3.7], we now illustrate
the Lecouvey-Lenart and Kumar-Torres bijections with our LR commuter based on the Sagan-Stanley
internal insertion. We consider [KT25a, Example 4.11] where n = 3, m = 6, ℓ(λ) = 4, ℓ(ν) = 4, ℓ(µ) = 3,
and µ = (2, 1, 1, 0, 0, 0), ν = (4, 4, 2, 1, 0, 0) ⊆ λ = (5, 4, 3, 3, 0, 0):

Yµ ∪ T =

1 1 1 1 1
2 1 2 2
3 2 3
2 3 4

, T ∈ LRS(λ/µ, ν) ⊆ LR(λ/µ, ν). (87)

The right and left companions of the Sundaram LR tableau T are respectively

Gν(T ) =

1 1 1 2
2 2 3 4
3 4
4

∈ LRSλ
µ,ν , Gµ(T ) =

3 3
4
6

∈ −LRSλ
µ,ν ⊆ −LRλ

µ,ν (88)

where Gµ(T ) of weight rev(λ− ν) = (0, 0, 2, 1, 0, 1)) is defined by the nested sequence

(2, 1, 1, 0, 0, 0) ⊇ (21000) ⊇ (2100) ⊇ (200) ⊇ (00) ⊇ (00).

We may check that Gµ(T ) satisfy the Kwon condition: the entries in row i are at least 2i− 1, for i = 1, 2, 3:
entries in row 1 are 3 ≥ 1, entries in row 2 are 4 ≥ 3, entries in row 3 are 6 ≥ 6− 1.

evac6 Gµ(T ) =
1 4
3
4

∈ LRKλ
ν,µ ⊆ LRλ

ν,µ ⊆ B(µ, 6), weight λ− ν = (1, 0, 1, 2, 0, 0) (89)

The Henriques-Kamnitzer LR commuter, the LR commuter by Kushwaha–Raghavan–Viswanath and our
commuter all of them send (Gµ(T ), Gν(T )) to (evac6 Gν(T ), evac6 Gµ(T )):
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Yµ ∪ T =

1 1 1 1 1
2 1 2 2
3 2 3
2 3 4

→
1 1 1 1 1
2 1 2 2
3 2 3
2 3

→
1 1 1 1 1
2 2 2 2
3 3 3
2

→
1 1 1 1 1
2 2 2 2
2 3 3

(90)

→
1 1 1 1 1
2 2 2 2
2

→ 1 1 1 1 1
2 2 2 2

→ 1 1 1 1 1 → 1 → ∅ (91)

One then has the GT pattern of type µ defined by the red nested sequence of partitions

(1) ⊆ (1) ⊆ (1, 1) ⊆ (2, 1, 1),

that gives the tableau evac6 Gµ(T ) as in the bijection by Kumar-Torres based on the LR commuter by
Kushwaha–Raghavan–Viswanath,

evac6 Gµ(T ) =
1 4
3
4

c−1

−→ Yν ∪H =

1 1 1 1 1
2 2 2 2
3 3 2
4 1 3

Gν(H) =

3 3 3 5
4 4 6 6
5 5
6

= evac6(Gν(T )) Gµ(H) = evac6 Gµ(T ) ∈ LRKλ
µ,ν

6. Recursion of switching on ballot tableau pairs

Switching can be performed in stages whenever a decomposition of Y or T in the tableau pair Y ∪ T is
considered. This property allows to exhibit a recursion of the switching map on ballot tableau pairs Yµ ∪ T
by reducing the size of the partition µ. Due to the switching condition (73), switches in a tableau pair
Y ∪ T where Y or T is a ballot tableau are such that the entries i in the ith row of a ballot tableau can not
be switched upwards. Thereby switching T with the rows of Yµ in stages incurs that the length of the word
in the nth row of T restricted to the alphabet [n − 1] eventually reduces. Because an entry i in row i of
Yµ either switches horizontally with an entry of T or vertically with an entry of T below row i and further
moves of that i will never occur with entries of T above row i. Recall Remark 6.

Lemma 7. Let 2 ≤ l ≤ n and T ∈ Y T ((λl, . . . , λn+1)/(µl)), µl > 0, of weight (α1, . . . , αl−1, νl, . . . , νn+1),
with (νl, . . . , νn+1) a partition. For some β ⊆ (λl, . . . , λn+1), assume the decomposition Y(µl) ∪ T = Y(µl) ∪
A ∪ B where A = T|[l−1] ∈ Y T (β/(µl)) has weight (α1, . . . , αl−1), and B = T|[l,n+1] is a ballot tableau of
shape (λl, . . . , λn+1)/β and weight (νl, . . . , νn+1). Then if F (n + 1)νn+1 is the (n − l + 2)th row of T with
F a word in [n], one has

ρ
(n−l+2)
1 (Y(µl) ∪ T ) = S ∪Q,

such that S = S1 ∪ S2 ≡ T , with S1 = S|[l−1] ≡ A and S2 = S|[l,n+1] ≡ B ≡ Y(νl,...,νn+1), and Q ≡ Y(µl).

Moreover, if F̂ (n + 1)νn+1 is the (n − l + 2)th row of S and D is the (n − l + 2)th row of Q then F̂ is a

subword of F and |F̂ |+ |D| = |F |.

Proof. Let S be the rectification of T . The rectification can proceed in stages by switching Y(µl) with A
and B in stages. Observe that since T restricted to the alphabet [l, n + 1] is the ballot tableau B of skew
shape (λl, . . . , λn+1)/β and weight (νl, . . . , νn+1), the νn+1 entries n+1 in the last row of T stay there until

the end of the rectification of T . Therefore ρ
(n−l+2)
1 (Y(µl) ∪ T ) = S ∪Q, such that S = S1 ∪ S2 ≡ T , with

S1 = S|[l−1] ≡ A and S2 = S|[l,n+1] ≡ B ≡ Y(νl,...,νn+1), and Q ≡ Y(µl). In particular, the last row of S has
νn+1 entries n+ 1.

If F = ∅ then Y(µl) ∪ T = Y(µl) ∪ [(n+ 1)νn+1 ∗ T [n−l+1)]] = Y(µl) ∪ [A∪
(
(n+ 1)νn+1 ∗B[n−l+1)]

)
]. Hence

ρ
(n−l+2)
1 (Y(µl)∪T ) = [S1∪

(
(n+1)νn+1 ∗S[n−l+1]

2

)
]∪(∅∗Q[n−l+1]) with S1 ≡ A, S2 = (n+1)νn+1 ∗S[n−l+1]

2 ≡
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Y(νl,...,νn+1) and S = S1 ∪ S2 ≡ T . Thus

ρ
(n−l+2)
1 (Y(µl) ∪ T ) = (n+ 1)νn+1 ∗ ρ(n−l+1)

1 (Y(µl) ∪ T [n−l+1])
= ((n+ 1)νn+1 ∗ S[n−l+1]) ∪ (∅ ∗Q[n−l+1]),

where S = ((n + 1)νn+1 ∗ S[n−l+1]) ≡ T and Q = ∅ ∗Q[n−l+1] ≡ Y(µl). The last rows, F̂ of S, and D of Q
are both the empty word.

Let F ̸= ∅ and Y(µl) = lµl . Either an entry l of Y(µl) reaches in the switching process the row next to the

last or not. In the later case D = ∅ and F̂ = F . In the former case, there exists a perforated tableau pair
where the row next to the last has one entry of Y(µl). Then the two last rows are either of the form:

(a)

· · · l a · · · nν̂n

· · · b · · · (n+ 1)νn+1
, with 1 ≤ a, b ≤ n and ν̂n ≤ νn,

and the next switches either are

· · · l a · · · nν̂n

· · · b · · · (n+ 1)νn+1
→
s

· · · b a · · · nν̂n

· · · l · · · (n+ 1)νn+1
→
s

→
s

· · · b a · · · nν̂n

· · · (n+ 1)νn+l l
, if b ≤ a ≤ n,

or

· · · l a · · · nν̂n

· · · b · · · (n+ 1)νn+1
→
s

· · · a l · · · nν̂n

· · · b · · · (n+ 1)νn+1
, if a < b ≤ n;

or (b)

· · · l · · · n n · · ·n
· · · n+ 1 · · · n+ 1 · · · n+ 1

→
horizontal switch s

· · · nν̂n l
· · · (n+ 1)νn+1

.

In any case, S = [F̂ (n + 1)νn+1 ] ∗ S[n−l+1] with F̂ a subword of F , and Q = D ∗ Q[n−l+1] ≡ Y(µl) such

that D = l|D| and |F̂ |+ |D| = |F |. □

Example 19. Below one illustrates the previous lemma.

(1) l = 3 < n = 4, µ3 = 3, T ∈ Y T ((7, 6, 4)/(3)) of content (2, 1; 5, 3, 3) such that T|{1,2} ∈
Y T ((4, 2)/(3)) has content (α1 = 2, α2 = 1) and T|{3,4,5} a ballot tableau of skew-shape (7, 6, 4)/(4, 2)
content ν = (ν3 = 5, ν4 = 3, ν5 = 3) and F = 3.

Y(3) ∪ T =
3 3 3 1 3 3 3
1 2 3 4 4 4
3 5 5 5

→
s

3 3 1 3 3 3 3
1 2 3 4 4 4
3 5 5 5

→
s

3 1 3 3 3 3 3
1 2 3 4 4 4
3 5 5 5

→
s

3 1 3 3 3 3 3
1 2 3 4 4 4
3 5 5 5

→
s

3 1 3 3 3 3 3
1 2 4 4 4 3
3 5 5 5

→
s

1 1 3 3 3 3 3
3 2 4 4 4 3
3 5 5 5

→
s

1 1 3 3 3 3 3
2 4 4 4 3 3
3 5 5 5

= S ∪Q, S ≡ T, Q = ∅ ∗Q[2] ≡ Y(3), D = ∅, F = F̂ , F̂5ν5 = F 5ν5 = 353.

(2) l = 3 < n = 4, µ3 = 3, H ∈ Y T ((7, 6, 4)/(3)) of content (2, 1; 5, 4, 2) such that H|{1,2} ∈
Y T ((4, 2)/(3)) has content (α1 = 2, α2 = 1) andH|{3,4,5} a ballot tableau of skew-shape (7, 6, 4)/(4, 2)
content ν = (ν3 = 5, ν4 = 4, ν5 = 2) and F = 34.

Y(3) ∪H =
3 3 3 1 3 3 3
1 2 3 4 4 4
3 4 5 5

→
s

3 3 1 3 3 3 3
1 2 3 4 4 4
3 4 5 5

→
s

3 1 3 3 3 3 3
1 2 3 4 4 4
3 4 5 5
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→
s

3 1 3 3 3 3 3
1 2 3 4 4 4
3 4 5 5

→
s

3 1 3 3 3 3 3
1 2 4 4 4 3
3 4 5 5

→
s

1 1 3 3 3 3 3
3 2 4 4 4 3
3 4 5 5

→
s

1 1 3 3 3 3 3
2 3 4 4 4 3
3 4 5 5

→
s

1 1 3 3 3 3 3
2 4 4 4 4 3
3 3 5 5

→
s

1 1 3 3 3 3 3
2 4 4 4 4 3
3 5 5 3

= S ∪Q, S ≡ H, Q = 3 ∗Q[2], D = 3, F = 34, F̂ = 3

with F̂5ν5 = 352 a subword of F5ν5 = 34 52.

Lemma 8. Let n ≥ 1 and Yµ ∪ T ∈ LR(n+1), with µ = (µ1, . . . , µn, 0) a non zero partition and T ≡ Yν .
Suppose λn+1 = νn+1 ≥ 0, that is, the (n+ 1)th row of T is the word (n+ 1)νn+1 . Then

ρ
(n+1)
1 (Yµ ∪ T ) = (n+ 1)νn+1 ∗ ρ(n)1 (Yµ ∪ T [n]) = Yν ∪Q,

where Q = ∅ ∗Q[n] ≡ Yµ.

Proof. One has Y ∪ T = (n + 1)νn+1 ∗ (Y ∪ T [n]) a ballot tableau pair. Hence the switching procedure

on Y ∪ T only comprises the entries of T [n], all ≤ n, and the entries of Yµ. Thus ρ
(n+1)
1 (Yµ ∪ T ) =

(n+ 1)νn+1 ∗ ρ(n)1 (Yµ ∪ T [n]) = Yν ∪Q and the (n+ 1)th row of Q is empty. □

Let n ≥ 1 and Yµ∪T ∈ LR(n+1), with µ = (µ1, . . . , µn, 0) a non zero partition, and T ≡ Yν . Next theorem
uses switching into stages. For some 1 ≤ d ≤ n with µd > 0, we decompose Yµ = Y(µ1,...,µd−1) ∪ Y(µd,...,µn),
and thereby decomposing Yµ ∪ T = Y(µ1,...,µd−1) ∪ Y(µd,...,µn) ∪ T . Then switch T with Y(µd,...,µn) to get
Y(µ1,...,µd−1) ∪ S ∪Q, with S ≡ T and Q ≡ Y(µd,...,µn) consisting of the entries of Yµ moved out to the skew
shape of T . The choice of d is made with the purpose to reduce the length of the (n+ 1)th row word F of
T , restricted to the alphabet [n]. We have the guarantee that this happens with d = 1 but at this point,
when T is rectified, F is empty. (Note that when d = 1 we have the full switch of Y with Yµ which gives
S ∪Q, with S = Yν ≡ T , therefore the (n + 1)th row of S is empty, and Q ≡ Y(µ1,...,µn).) The choice of d
is made when for the first time an entry d of Yµ reaches the (n + 1)th row. When this happens and T is
full switched with Y(µd,...,µn), we stop the switching. At this stage the (n+1)th row D of Q comprises only

entries equal to d and the word F is reduced to a subword F̂ of length |F | − |D| with |D| > 0.

Theorem 13. Let n ≥ 1 and Yµ∪T ∈ LR(n+1), with µ = (µ1, . . . , µn, 0) a non zero partition, and T ≡ Yν .
Suppose λn+1 − νn+1 ≥ 1, that is, the (n + 1)th-row of T is the word F (n + 1)νn+1 with F a non empty
word in the alphabet [n]. Then, there exists 1 ≤ d ≤ n, with µd > 0, such that

Yµ ∪ T →
s
Y(µ1,...,µd−1) ∪ S ∪Q = [F̂ (n+ 1)νn+1 ∗ (Y(µ1,...,µd−1) ∪ S[n])] ∪ [D ∗Q[n]] (92)

where S ≡ Yν and Q = D ∗Q[n] ≡ Y(µd,...,µn) is over the alphabet [d, n], with Q[d−1] = ∅, and D = d|D|. In

addition, the (n+ 1)th row F̂ (n+ 1)νn+1 of S is such that F̂ is a strict subword of F whose length satisfies

|D|+ |F̂ | = |F | > |F̂ | ≥ 0. Also,

ρ
(n+1)
1 (Yµ ∪ T ) =

{
Yν ∪Q, with |D| = λn+1 − νn+1, if d = 1,

ρ
(n+1)
1 [Y(µ1,...,µd−1) ∪ S] ∪Q, if d > 1.

(93)

Proof. We handle the proof by induction on the length l := ℓ(µ) ≥ 1. Let n ≥ l and v := λn+1 − νn+1 =
|F | > 0 the number of entries ≤ n in the (n+ 1)th row of T .

For l = 1, Y(µ1) ∪ T ∈ LR(n+1) with µ1 > 0, and, therefore, the (n + 1)th row of T is of the form
nv(n+1)νn+1 with 1 ≤ v := λn+1 − νn+1 ≤ µ1. Rectify T with jeu de taquin slides looking at the entries of
Y(µ1) as holes. Then

Yµ1 ∪ T →
s
Yν ∪Q,

where Q = D∗Q[n] ≡ Yµ1 . Since the shape of Y(µ1)∪T is preserved in the switching procedure, |D| = |F | = v

and D = 1v. In the case l = 1, (92) and (93) hold with d = 1, and F̂ = ∅.
Let l > 1, and assume the statement true for 1, . . . , l − 1. Then n + 1 ≥ l + 1 ≥ 3, and consider the

factorisation
Y(µ1,...,µl) ∪ T = [Y(µl) ∪ T̂ ] ∗ [Y(µ1,...,µl−1) ∪ T [l−1]] ∈ LR(n+1),
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where T [l−1] is a ballot tableau on the alphabet [l − 1], and T̂ ∈ Y T ((λl, . . . , λn+1)/(µl)) consists of the
last n− l+ 2 rows of T whose word restricted to the alphabet [l, n+ 1] satisfies the Yamanouchi condition.
Then, by Lemma 7, the switching procedure gives

Y(µl) ∪ T̂ →
s
S ∪Q, (94)

with S ≡ T̂ (the rectification of T̂ ) in the alphabet {1, . . . , n + 1}, and Q = D ∗ Q[n−l+1] ≡ Y(µl) in the

alphabet {l}. If |D| > 0 the last row of S is the word F̂ (n+1)νn+1 with F̂ a subword of F . Observing that

T = T̂ ∗ T [l−1] ≡ S ∗ T [l−1] is a ballot tableau, we have in addition

Y(µ1,...,µl) ∪ T →
s
[Y(µ1,...,µl−1) ∪ (S ∗ T [l−1]))] ∪ (Q ∗ ∅l−1),

where Y(µ1,...,µl−1)∪(S∗T [l−1]) is a ballot tableau pair. If |D| > 0, (92) and (93) holds with d = l. Otherwise,
|D| = 0 and henceforth the (n+ 1)th row of S (94) is the (n+ 1)th row of T with length λn+1. Thereby

Y(µ1,...,µl) ∪ T →
s
[Y(µ1,...,µl−1) ∪ (S ∗ T [l−1])] ∪ (∅ ∗Q[n−l+1] ∗ ∅l−1),

where Y(µ1,...,µl−1) ∪ (S ∗ T [l−1]) ∈ LR(n+1) is in the case l − 1, and, by inductive hypothesis, we get (92)
and (93) with 1 ≤ d ≤ l − 1. □

Example 20. (I). ℓ(µ) = 1. n = 4, µ1 = 7, v = 3, d = 1,

1 1 1| 1 1 1 1 1 1 1 1 1 1
1 1 1| 1 1 2 2 2 2
2 2 2| 2 3 3 3
3 3 3| 4 4 4
4 4 4| 5 5

→
s

1 1 1| 1 1 1 1 1 1 1 1 1 1
1 1 1| 1 1 2 2 2 2
2 2 2| 2 3 3 3
3 3 3| 4 4 4
4 4 4| 5 5

→
s

1 1 1| 1 1 1 1 1 1 1 1 1 1
1 1 1| 1 2 2 2 2 1
2 2 2| 2 3 3 3
3 3 3| 4 4 4
4 4 4| 5 5

→
s

1 1 1| 1 1 1 1 1 1 1 1 1 1
1 1 1| 2 2 2 2 2 1
2 2 2| 1 3 3 3
3 3 3| 4 4 4
4 4 4| 5 5

→
s

1 1 1| 1 1 1 1 1 1 1 1 1 1
1 1 1| 2 2 2 2 2 1
2 2 2| 3 3 3 1
3 3 3| 4 4 4
4 4 4| 5 5

→
s

1 1 1| 1 1 1 1 1 1 1 1 1 1
2 2 2| 2 2 2 2 2 1
3 3 3| 3 3 3 1
4 4 4| 4 4 4
1 1 1| 5 5

→
s

1 1 1| 1 1 1 1 1 1 1 1 1 1
2 2 2| 2 2 2 2 2 1
3 3 3| 3 3 3 1
4 4 4| 4 4 4
5 5 1 1 1

,

F = 43, D = 13 and Q = 13 ∗ ∅ ∗ 1 ∗ 1 ∗ 12 of skew shape λ/(11, 8, 6, 6, 2).
(II). l(µ) = 2, n = 3, v = 4, d = 2

1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 1 1 2 2 2
1 2 2 2 2 3
3 3 3 3

→
s

1 1 1 1 1 1 1 1 1 1 1
2 1 1 2 2 2 2 2 2
1 2 2 2 2 3
3 3 3 3

→
s

1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 2 2 2 2 2
2 2 2 2 2 3
3 3 3 3

→
s

1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 2 2 2 2 2
2 2 2 2 2 3
3 3 3 3

→
s

1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 2 2 2 2 2
2 2 3 3 3 2
3 3 2 2

,

F = 34, ν4 = 0, F̂ = 32, D = 22 and Q = 22 ∗ 1 ∗ 1 ∗ ∅ of skew shape λ/(11, 8, 5, 2).
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We first recall the following property. The major result of the next statement is that the reading word

F̂ (n+1)νn+1GCnν̂n (96) of the two last rows of Y(µ1,...,µd−1)∪S, and the concatenation of the (n+1)th row

F (n+1)νn+1 (97) of Yµ ∪ T with the nth row ĜCnν̂n (97) of Y(µ1,...,µd−1) ∪R, that is, F (n+1)νn+1GCnν̂n ,

are related through Knuth transformations. Since GC is a row word on the alphabet [n− 1], Ĝ a subword

of G and F is a word in the alphabet [n] and F̂ a subword of F , from Lemma 1, (a), (45), it means that

F̂GCnν̂n ≡ FĜCnν̂n and from Lemma 1, (c), F̂GC ≡ FĜC or F̂G ≡ FĜ.

Corollary 8. Let n ≥ 1, Yµ ∪ T ∈ LR(n+1) and assume the assumptions of previous theorem on Yµ ∪ T .
Consider the equality (92), for some 1 ≤ d ≤ n and µd > 0, where we detach the two last rows of S and Q,

Yµ ∪ T = F (n+ 1)νn+1 ∗ (Y ∪ T )[n] →
s
[Y(µ1,...,µd−1) ∪ S] ∪Q (95)

= [F̂ (n+ 1)νn+1 ∗GCnν̂n ∗ (Y(µ1,...,µd−1) ∪ S[n−1])] ∪ [D ∗X ∗Q[n−1]], (96)

with Y(µ1,...,µd−1)∪S[n] = GCnν̂n ∗(Y(µ1,...,µd−1)∪S[n−1]), Q[n] = X ∗Q[n−1] such that X is a row word on the

alphabet [d, n], andGC, a row word on the alphabet [n−1], with the factorG satisfying |G| = |F | = |F̂ |+|D|.
Then

(Yµ ∪ T )[n] →
s

[Y(µ1,...,µd−1) ∪R] ∪ P, (97)

where P = DX ∗Q[n−1] ≡ Q, and R ≡ T [n] is such that Y(µ1,...,µd−1) ∪R = ĜCnν̂n ∗ (Y(µ1,...,µd−1) ∪S[n−1]),

with Ĝ a row subword of G so that |Ĝ| = |F̂ |, (|Ĝ|+ |D| = |F | = |G|) and F̂G ≡ FĜ are Knuth equivalent.
Also

ρ
(n)
1 [(Yµ ∪ T )[n]] = ρ

(n)
1 (Y(µ1,...,µd−1) ∪R) ∪ (DX ∗Q[n−1])

= ρ
(n)
1 [ĜCnν̂n ∗ (Y(µ1,...,µd−1) ∪ S[n−1])] ∪ (DX ∗Q[n−1]). (98)

Proof. Switching back in the two last rows of Y(µ1, . . . , µd−1)∪S ∪Q, (96), and factoring G = AB into two

row words A and B, with |A| = |F̂ | and |B| = |D|, one has

[F̂ (n+ 1)νn+1 ∪D] ∗ [GCnν̂n ∪X] =

A B C ne ··· nh X

F̂ n+1|D| ··· n+1e D

s←→ (99)

G1 F2 G3 F4 ··· Gk−1 Fk C ne ··· nh X

F1 D2 F3 D4
... Fk−1 Dk n+1|C| ··· n+1|D|

s←→ (100)

G1 D2 G3 D4 ··· Gk−1 Dk C ne ··· nh X

F1 F2 F3 F4
... Fk−1 Fk n+1|C| ··· n+1|D|

(101)

where D = D2D4 · · ·Dk, F = F1F2 · · ·Fk, F̂ = F1F3 · · ·Fk−1 and Ĝ := G1G3 · · ·Gk−1 a row subword

of G = AB = G1F2G3 · · ·Gk−1Fk, with |Ĝ| + |D| = |G| = |F | = |F̂ | + |D|. The subword of F with F̂

suppressed, F \ F̂ , and Ĝ are complementary row subwords of G.
In every step of the jeu de taquin sliding or reverse jeu de taquin sliding process the reading word is

transformed into a Knuth equivalent one [Ful97, Sta98]. Looking at the red letters as holes, the row reading
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words F̂ABC = F̂GC of (99) (or (100)), and FĜC of (101), restricted to the alphabet [n] (in black), are
Knuth equivalent.

F̂GC ≡ FĜC ⇔ F̂G ≡ FĜ.

The last row of (101) is F (n+ 1)νn+1 . Let Y ′ := Y(µ1,...,µd−1). It then follows from (95),

(Yµ ∪ T )[n] →
s

G1 D2 G3 D4 ··· Dk C n ··· n X ∗ [Y ′ ∪ S[n−1] ∪Q[n−1])]

→
s

Ĝ C n ··· n D X ∗ [Y ′ ∪ S[n−1] ∪Q[n−1]]

= Y ′ ∪R ∪ P = [ĜCnν̂n ∪DX] ∗ [Y ′ ∪ S[n−1] ∪Q[n−1]], (102)

where Y ′ ∪R = ĜCnν̂n ∗ (Y ′ ∪ S[n−1]), and P is Q[n] with D attached to the left of its nth row X. □

7. Proof of the Main Theorem

Let u = uv · · ·u1 be an internal inserting order word of a tableau T . By ϕ̄u-bumping routes on Y ∪T , we
mean the collection of ϕ̄ui-bumping routes on ϕ̄ui−1···u1(Y ∪ T ) for i = 1, . . . , v.

Lemma 9. Let u = uv · · ·u2u1 be a row word to be an internal insertion order word of T . Then
(a) the plactic class of u is reduced to the sole u.
(b) the ϕ̄u-bumping routes on T are pairwise disjoint.
(c) if the ϕ̄ui

-bumping route lands in row 1 ≤ k ≤ n + 1, the ϕ̄ui+1
-bumping route lands strictly to the

right in a row ≤ k, for i = 1, . . . , n− 1.

Proof. (a) The plactic class of a row tableau has a sole element. (b) and (c) follow from Lemma 3 (a). □

If T ∈ Y T (λ/µ) is a ballot tableau and ℓ(λ) ≤ n, and 1 ≤ k ≤ λn − µn, then T←
k

denotes the ballot

tableau in Y T ((λ1, . . . , λn−1, λn − k)/µ) obtained from T first by suppressing, in the nth row, the first k
filled boxes and then pushing the remaining λn − µn − k boxes k steps to the left.

n = 3, µ = (6, 4, 1), λ = (11, 9, 6), λ3 − µ3 = 6, k = 3 < 6,

Yµ ∪ T =
1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 1 1 2 2 2
2 1 2 2 2 2 3

Yµ ∪ T←
3
=

1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 1 1 2 2 2
2 2 2 3

(103)

We are now ready to prove the main result.

Proof of Theorem 2.
We may reduce the statement to the case µ = (µ1, . . . , µn−1, µn = 0). Let µ̂ := µ − (µn

n). Performing
horizontal switches in Y ∪ T = Y(µn

n)
∪ Yµ̂ ∪ T →

s
Yµ̂ ∪ T ∪Z, where Z is the unique ballot tableau of shape

λ/(λ− (µn
n)) and content (µn

n). Thus

ρ
(n)
1 (Y ∪ T ) = ρ

(n)
1 (Yµ̂ ∪ T ) ∪ Z = χ̄µn

n [ρ
(n)
1 (Yµ̂ ∪ T ) ∪ (∅ ∗ Z [n−1])]. (104)

Similarly, (Y ∪T )[n−1] →
s
(Yµ̂∪T )[n−1]∪Z [n−1]. Hence, ρ

(n−1)
1 [(Y ∪T )[n−1]] = ρ

(n−1)
1 [(Yµ̂∪T )[n−1]]∪Z [n−1].

Assuming that (84) has been proved in the case of µn = 0, and using (104), we then may write

ρ
(n)
1 (Y ∪ T ) = ρ

(n)
1 (Yµ̂ ∪ T ) ∪ Z = χ̄µn

n [ρ
(n)
1 (Yµ̂ ∪ T ) ∪ (∅ ∗ Z [n−1])]

= χ̄µn
n {ϕ̄Vn

ω̄νn
n ρ

(n−1)
1 [(Yµ̂ ∪ T )[n−1]] ∪ Z [n−1]}

= χ̄µn
n ϕ̄Vn

ω̄νn
n

(
ρ
(n−1)
1 [(Yµ̂ ∪ T )[n−1]] ∪ Z [n−1]

)
(105)

= χ̄µn
n ϕ̄Vn

ω̄νn
n ρ

(n−1)
1 [(Y ∪ T )[n−1]].



44 OLGA AZENHAS

Observe (105) just says that the bumping routes of ϕ̄Vn , all of them landing in the nth row, will not change

when ρ
(n−1)
1 [(Yµ̂ ∪ T )[n−1]] ∈ LR(n−1) is extended with the tableau Z [n−1]. Each route of ϕV follows the

available path in ρ
(n)
1 [(Ȳ ∪ T )[n−1]] and remains there until landing in the nth row.

Let µn = 0. We now show, by induction on n ≥ 1 and |Vn| ≥ 0, that

ρ
(n)
1 (Y ∪ T ) = ϕ̄Vn ω̄

ν̂nρ
(n−1)
1 [(Y ∪ T )[n−1]] = ω̄ν̂n ϕ̄Vn

ρ
(n−1)
1 [(Y ∪ T )[n−1]], (106)

where Y = Y (µ1, . . . , µn−1, 0) and Vn is the word of the nth row of T restricted to the alphabet [n− 1]. In
addition, all bumping routes of ϕ̄Vn

terminate in the nth row.

If n = 1 then |V1| = 0, µ1 = 0, T = Y(ν1), ν̂1 = ν1, and ρ
(1)
1 (∅ ∪ Y(ν1)) = Y(ν1) ∪ ∅. Then ρ

(1)
1 (∅ ∪ Y(ν1)) =

Y(ν1) ∪∅ is obtained from ∅ by adding the row 1ν1 . Thus ρ
(1)
1 (∅∪Y(ν1)) = ω̄ν1

1 ∅ = ω̄ν1
1 ρ

(0)
1 [(∅∪Y(ν1))

[0]], with

ϕ̄V1
= id.

Suppose that (106) holds for n ≥ 1, and let us prove for n + 1. Assume Y ∪ T with n + 1 rows where
Y = Y (µ1, . . . , µn, 0).

Let v := |Vn+1| ≥ 0 and let F := Vn+1 be the (n + 1)th row word of T restricted to the alphabet
[n]. Since µn+1 = 0, then F (n + 1)νn+1 is the (n + 1)th row of Y ∪ T and detaching the (n + 1)th row,
Y ∪ T = F (n+ 1)νn+1 ∗ (Y ∪ T )[n]. We want to show that

ρ
(n+1)
1 (Y ∪ T ) = ω̄

νn+1

n+1 ϕ̄F ρ
(n)
1 [(Y ∪ T )[n])]. (107)

If v = 0, Y ∪ T = (n+ 1)νn+1 ∗ (Y ∪ T )[n]. Therefore, by Lemma 8

ρ
(n+1)
1 (Y ∪ T ) = (n+ 1)νn+1 ∗ ρ(n)1 [(Y ∪ T )[n]] = ω̄

νn+1

n+1 ρ
(n)
1 [(Y ∪ T )[n]],

with ϕ̄F the identity.
If v ≥ 1, the (n+ 1)th row of Y ∪ T is the word F (n+ 1)νn+1 with F a no empty word on the alphabet

[n]. We shall now use induction on v.

Step 1.We pass from the ballot pair Y ∪ T to a ballot pair Y ′ ∪ S with (n+ 1)th row word F̂ (n+ 1)νn+1

so that F̂ is a strict subword of F .
From Theorem 13, there exists Y ′ := Y (µ1, . . . , µd−1), for some 1 ≤ d ≤ n, with µd > 0, such that

Y ∪ T = F (n+ 1)νn+1 ∗ (Y ∪ T )[n] →
s
Y ′ ∪ S ∪Q

= [F̂ (n+ 1)νn+1 ∪D] ∗ [(Y ′ ∪ S)[n] ∪Q[n]], (108)

where S = F̂ (n+ 1)νn+1 ∗ S(n) ≡ T , F̂ is a strict subword of F , and Q = D ∗Q[n] ≡ Y (µd, . . . , µn) is over

the alphabet {d, . . . , n} and has the (n+ 1)th row D = d|D| such that |D| = |F | − |F̂ | > 0. Therefore

ρ
(n+1)
1 (Y ∪ T ) = ρ

(n+1)
1 (Y ′ ∪ S) ∪Q. (109)

Since F̂ is the (n + 1)th row of Y ′ ∪ S, restricted to the entries ≤ n, and 0 ≤ |F̂ | < v, by induction on v,
we may write

ρ
(n+1)
1 (Y ′ ∪ S) = ω̄

νn+1

n+1 ϕ̄F̂ ρ
(n)
1 [(Y ′ ∪ S)[n]], (110)

where all ϕ̄F̂ -bumping routes terminate in the (n+ 1)th row.
To reach (107), one has, so far, from (109) and (110),

ρ
(n+1)
1 (Y ∪ T ) = ω̄

νn+1

n+1 ϕ̄F̂ ρ
(n)
1 [(Y ′ ∪ S)[n]] ∪ (D ∗Q[n]), (111)

with F̂ a strict subword of F such that |F̂ |+ |D| = |F |.
Step 2. One has to relate the nth row of (Y ′ ∪ S)[n] with the nth row of (Y ′ ∪ T )[n].
This requires Corollary 8 and, in particular, the analysis of the reading words in (99), (100) and (101).

Step 2.1. We first analyse ρ
(n)
1 [(Y ′ ∪ S)[n]] of (111).

From Corollary 8 one has Y ′ ∪ S[n] = GCnν̂n ∗ (Y ′ ∪ S[n−1]) with G and C row words in the alphabet

[n− 1], such that |G| = |F̂ |+ |D| = v = |F |. In addition Y ′ ∪ (S[n])←
v
= Cnν̂n ∗ (Y ′ ∪ S[n−1]) ∈ LR(n) with
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C a row word in the alphabet [n− 1]. By induction on n, one has

ρ
(n)
1 (Y ′ ∪ (S[n])←

v
) = ϕ̄Cω

ν̂n
n ρ

(n−1)
1 (Y ′ ∪ S[n−1]),

and

ρ
(n)
1 (Y ′ ∪ S[n]) = ρ

(n)
1 [GCnν̂n ∗ (Y ′ ∪ S[n−1])]

= ϕ̄Gϕ̄C ω̄
ν̂n
n ρ

(n−1)
1 (Y ′ ∪ S[n−1])

= ϕ̄Gρ
(n)
1 (Y ′ ∪ (S[n])←

v
), (112)

where all ϕ̄G-bumping routes (also ϕ̄C-bumping routes) will end up in the nth row.

Step 2.2. We now analyse ρ
(n)
1 (Y ∪ T [n]).

From Corollary 8, one has

Y ∪ T [n] →
s
Y ′ ∪R ∪ P = [ĜCnν̂n ∪DX] ∗ [Y ′ ∪ S[n−1] ∪Q[n−1]],

where Y ′ ∪ R = ĜCnν̂n ∗ (Y ′ ∪ S[n−1]) with Ĝ a subword of G, and P = DX ∗ Q[n−1] such that

|Ĝ| = |F | − |D| = v − |D| and F̂G ≡ FĜ Knuth equivalent.
Observe that

Y ′ ∪ (S[n])←
v
= Y ′ ∪R ←−

v−|D|
= Cnν̂n ∗ (Y ′ ∪ S[n−1]). (113)

Again by induction on n, and using the identity (113), one has

ρ
(n)
1 (Y ′ ∪R ←−

v−|D|
) = ϕ̄C ω̄

ν̃n
n ρ

(n−1)
1 (Y ′ ∪ S[n−1])

ρ
(n)
1 (Y ′ ∪R) = ρ

(n−1)
1 [ĜCnνn ∗ (Y ′ ∪ S[n−1])]

= ϕ̄Ĝϕ̄C ω̄
ν̂n
n ρ

(n−1)
1 (Y ′ ∪ S[n−1])

= ϕ̄Ĝρ
(n)
1 (Y ′ ∪R ←−

v−|D|
), (114)

where all ϕ̄Ĝ-bumping routes will end up in the nth row. Therefore from Corollary 8, (98), and (114),

ρ
(n)
1 (Y ∪ T [n]) = ρ

(n)
1 (Y ′ ∪R) ∪ P = ϕ̄Ĝρ

(n)
1 (Y ′ ∪R ←−

v−|D|
) ∪ P

= ϕ̄Ĝρ
(n)
1 (Y ′ ∪R ←−

v−|D|
) ∪ (DX ∗Q[n−1]). (115)

We are now in conditions to go back to (111).
Step 4. Going back to (111).

ρ
(n+1)
1 (Y ∪ T ) = ω̄

νn+1

n+1 ϕ̄F̂ ρ
(n)
1 (Y ′ ∪ S[n]) ∪ (D ∗Q[n]), using (111),

= ω̄
νn+1

n+1 ϕ̄F̂ [ϕ̄Gρ
(n)
1 (Y ′ ∪ (S[n])←

v
)] ∪ (D ∗Q[n]), using (112),

=
(
ω̄
νn+1

n+1 ϕ̄F̂ ϕ̄Gρ
(n)
1 (Y ′ ∪R ←−

v−|D|
)
)
∪ (D ∗Q[n]), using (113), (116)

with all ϕ̄G-bumping routes ending up in the nth row, and the ϕ̄F̂ -bumping routes in the (n+1)th row. The

cardinality of the ϕ̄G-bumping routes is v = v − |D|+ |D| = |Ĝ|+ |D| = |F̂ |+ |D|.
Key Step 5. Knuth relations of internal insertion operators.

From Proposition 3, since F̂G ≡ FĜ, one has

ϕ̄F̂Gρ
(n)
1 (Y ′ ∪R ←−

v−|D|
) = ϕ̄FĜρ

(n)
1 (Y ′ ∪R ←−

v−|D|
). (117)
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Another key fact and a simple observation is that the number v of bumping routes landing in the nth
row and the number v−|D| of bumping routes landing in the (n+1)th row is the same for ϕ̄F ϕ̄Ĝ and ϕ̄F̂ ϕ̄G

when acting on ρ
(n)
1 (Y ′ ∪R ←−

v−|D|
). Thereby,

(116) = ω̄
νn+1

n+1 ϕ̄F ϕ̄Ĝρ
(n)
1 (Y ′ ∪R ←−

v−ℓ(D)
) ∪ (D ∗Q[n]), using (117), (118)

= ω̄
νn+1

n+1 ϕ̄F ρ
(n)
1 (Y ′ ∪R) ∪ (D ∗X ∗Q[n−1]), using (114). (119)

From (118) to (119), |Ĝ| = v−|D| bumping routes are executed by ϕ̄Ĝ and land in row n. This implies that

in the action of ϕ̄F over ρ
(n)
1 (Y ′ ∪R), |D| of the v = |F | pairwise disjoint bumping routes will still land and

settle in the nth the row, which means when settling to adding |D| new entries at the end of the nth row of

ρ
(n)
1 (Y ′ ∪R), while v − |D| of them will land in the (n+ 1)th row. Recall that since F is a row word, from

Lemma 3, (a), the v bumping routes are pairwise disjoint and, more importantly, the |D| bumping routes
settling in the nth row are necessarily the last to be executed. This means that if we attach D at the end of

the nth row ρ
(n)
1 (Y ′ ∪ R), the rightmost |D| bumping routes of ϕ̄F when landing to the nth row will meet

the entire row D and bumps it out to the (n+1)th row. Thus recalling that P = DX ∗Q[n−1] and identity
(115),

(119) = ω̄
νn+1

n+1 ϕ̄F [ρ
(n)
1 (Y ′ ∪R) ∪ (DX ∗Q[n−1])] (120)

= ω̄
νn+1

n+1 ϕ̄F [ρ
(n)
1 (Y ′ ∪R) ∪ P ], (121)

= ϕ̄F ω̄
νn+1

n+1 ρ
(n)
1 (Y ∪ T [n]), using (115). (122)

We have shown ρ
(n+1)
1 (Y ∪ T ) = (122), that is, identity (107),

ρ
(n+1)
1 (Y ∪ T ) = ω̄

νn+1

n+1 ϕ̄F ρ
(n)
1 [(Y ∪ T )[n]]. □
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