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Plan

I. Set up: Demazure and Demazure atom crystals/Schubert varieties
@ Il. Non-symmetric Cauchy identities/ LPP (last passage percolation model)
@ Ill. Computation of key maps under virtualization

@ V. lllustration B — C
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|. Set up
@ Let G be a simply-connected semisimple algebraic group over C, and fix
T C BC G, T amaximal torus and B a Borel subgroup of G. Let B~ be the
corresponding opposite Borel subgroup, that is, it is the unique Borel subgroup of G
with the property BNB™ =T.

@ Let g be the Lie algebra of G, b (b™) the Borel (opposite Borel) subalgebra, W the
Weyl group (endowed with the strong Bruhat order) and / an index set for the
vertices of the Dynkin diagram of g.

@ Example: G = SL,11(C) = {A € GLn11(C) : det(A) = 1}

T the subgroup of diagonal matrices.

B the subgroup of upper triangular matrices.

B~ the subgroup of lower triangular matrices.

B~ = PuyBPy,, wo the longest element of W = &,,.

g = slp11(C) special linear Lie algebra. Dynkin diagram A,.

wiki/Dynkin-diagram
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Demazure and opposite Demazure modules

@ Let the Lie algebra g be endowed with the usual Cartan data given by the weight
lattice P, Pt C P the set of dominant integral weights, {c; : i € I} C P the simple
roots, {hi =« : i € I} C PY = Hom(P,Z) the simple co-roots, fundamental
weights {w;, i € I}, and canonical pairing (-,-) : P¥ x P — Z with Cartan matrix
C = ({a, a}))ijer and Weyl group W.

@ For A € P let V()\) be the irreducible highest weight G-module over C with
highest weight ), and b, its highest weight vector.

@ The W-orbit of A under the action of W is the set of extremal vectors or keys in
V(A)
O(\) = {wby :=buy : w € W'} C V(\).
@ The Demazure module and opposite Demazure module.

For w e W, wby € O()), we define the B-submodule V,,(A) C V()), resp. the
B~ -submodule V*()) C V()\)

Vu(\) =UB).V\)wr V(A = UO7).V(A\)ua.

U(b) is the enveloping algebra of the Borel subalgebra b of g.
V(A)wa is the one dimensional weight space of V() with extremal weight wA.
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Demazure modules and Schubert varieties
@ Demazure modules Vi, () were originally described as the space of global sections
of a line bundle Ly on a Schubert variety X, C G/B = {gB : g € G} the full flag
variety, w € W,
G/B= | | BwB/B= | | B"wB/B,
weW weWw
Xo=| | X, X" =] | X" = woXupw C G/B.
v<w v>w
This description exhibits via the Borel-Weil theorem the natural correspondence
between Schubert varieties and Demazure modules:

HO(XW7 L/\) =~ VW(A)*’ HO(XW7 L)\) =~ VW()\)*a we Ww.

@ Forany w',w e W, w' < w if and only if X,,, C X» C Xu, = G/B; the canonical
restriction map:
» H°(X.,Lx) — H°(X,/, L)) is surjective, and
> induces an inclusion {bx} = Ve(A) = Vi (X)) = V(X)) = Vi (X) = V(A).
@ Similarly for oppgsite Schubert varieties, w’ < w if and only if
G/B=X°DX" D X"
> HO(X"V/7 Ly) — H°(X", L,) is surjective, and
> induces an inclusion V(A) = V¢()\) « VW,()\) = V(X)) = V(X)) ={byyr}-

5/1



Demazure modules and Schubert varieties

@ Demazure modules Vi, () were originally described as the space of global sections
of a line bundle Ly on a Schubert variety X, C G/B = {gB : g € G} the full flag
variety, w € W,

G/B= | | BwB/B= | | B"wB/B,
weW weWw
Xo=| | X, X" =] | X" = woXupw C G/B.
v<w v>w
This description exhibits via the Borel-Weil theorem the natural correspondence
between Schubert varieties and Demazure modules:

HO(XW7 L/\) =~ VW(A)*’ HO(XW7 L)\) =~ VW()\)*a we Ww.

@ Forany w',w e W, w' < w if and only if X,,, C X» C Xu, = G/B; the canonical
restriction map:
» H°(X.,Lx) — H°(X,/, L)) is surjective, and
> induces an inclusion {bx} = Ve(A) = Vi (X)) = V(X)) = Vi (X) = V(A).
@ Similarly for oppgsite Schubert varieties, w’ < w if and only if
G/B=X°DX" D X"
> HO(X"V/7 Ly) — H°(X", L,) is surjective, and

> induces an inclusion V(A) = V¢()\) « VW,()\) = V(X)) = V(X)) ={byyr}-

@ Richardson variety w’ < w if and only if X = X, N X" # 0.
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Crystals and Demazure crystals

@ The crystal graph B(A) of V() is a finite directed graph with vertices given by the
crystal basis of V() and edges corresponding to deformations of the Chevalley
operators of the representation.

@ It was shown by Littelmann and Kashiwara that any Demazure module V,, () has
an associated Demazure crystal B,,()\) that arises as an induced subgraph of B(\).

Similarly, an opposite Demazure module V" () has an associated opposite
Demazure crystal B"()) in the sense that V" = wo Vigw(A) (X" = woXugw),

BY(A\) = €Buwow(A), & the Lusztig-Schiitzenberger involution.

@ Forw <weWw,
{ba} = Be(A) € By () € Bu(A) € Buy(A) = B(N)

B(X\) = B5(\) 2 B (\) 2 B” D B"(\) = {bu}.
» Richardson crystal
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Key maps
@ Question: For a given vertex b € B(\) it is natural to inquire what is
(1) the smallest Demazure crystal B, () containing b.

(2) the smallest opposite Demazure crystal B,,/(\) containing b.
@ For a fixed b € B()\), the answer to each of these questions is resp. given by the
(1) right key map: K* : b € B(\) = by € O(A) C B())
(2) left key map: K~ : b € B(A\) — b, € O(X) C B(N)
with w > w’ in W, called the right key respectively left key of b,
Ko = Ko = id.
@ Demazure atoms respectively opposite Demazure atoms are the K™ map fibers
respectively K~ map fibers

By(\) i ={x€B(\): K'(x) = bur}

Bu=| | B.(N) ={x€BO): K" (x) < bu}
BY(\): = :( € B(\): K™ (x) = bur}

B = | | B"(\) ={x € B(\): K™ (x) > bur}

v

v

w

BY(\) = Bugw(X) (XY = woXugw)
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. Non-symmetric Cauchy kernel identities and LPP (last passage percolation model)

@ Cauchy kernel identity /Bicrystals and RSK correspondence

Vi Mma(Zso) 2 | B(A, m) x B(A, n)

AEPrmin(m,n)
Ar— (P(A), Q(A)).

°
1
II T > X WHPA)  wH@(A) > s(x)s ()
1<i<m Xii AEMm,n AEPmin(m, n)
1<j<n

B(A, m) tableau crystal on the alphabet [m] with highest weight element the key
tableau K(A), A € Prin(m,n)-

Bicrystal structure on My o(Z>0) via 1071, reverse column Schensted insertion.

Danilov-Koshevoy 04, van Leeuwen 06, Choi-Kwon 18.
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Restriction of RSK to Young shape matrices
@ Stair RSK

E

HY

The restriction of the RSK correspondence ¢ to M3 ,, n X n lower triangular
matrices, gives a one-to-one correspondence

M7, LN L B x B, Lascoux 2000, Fu-Lascoux 09, A.-Emami 15, Choi-Kwon 18
HELL,

A= (P,Q), KHQ<K™ (P)=K(r)

B,, Demazure crystal consisting of all tableaux Q with right key KH(Q) < K(p).
B" opposite Demazure atom crystal consisting of all tableaux P with left key K~ (P) = K(u).

I 2 = > #ml)

1— Xy
. j
1<j<i<n WEZE,
LHS rewritten in the bases of Demazure and Demazure atom polynomials:

R (x1, .oy Xn) = Rugu(Xas - - -, x1) opposite Demazure atom character of B" and k. (y) Demazure

character of B,.
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Truncated stair RSK

n>q>p>1, A(p,q)=

A(p, 1:1 =)
Y MMPD 2L || Bl xBgs

P
MEZZO

A~ (P,Q), K™ (P)=K(n), K (Q<K(@).

1 _
H — Z R (Xn—pa1y - oy Xn)6a (Y1, - - -5 V)

1 — Xiyj
enpa) - ez

@ i € Z%,. A-Emami 14, A.-Gobet-Lecouvey 22.
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Last passage percolation in a Young diagram

For A = [aj;] € M 5, the last passage percolation (time) associated to A:

perc(A) = maxA{Z entries along a path 7 in A with steps <—, | starting in (1, n) and ending in (n, 1)}
T in

= maximal row lenght of P (or Q) (¢(A) = (P, Q)).

The random matrix W = {W;; : 1 < i,j < n} of independent random variables w;;, with
values in Z>, called weights, where each follows a geometric distribution of parameter
ujvj
P(w;j = k) = (1 — u;v;)(u;v;)" for any k € Zso.
Then
Pov=A)= J[ @Q-uwvy) J[ (uw)™.

1<i<nl<j<n 1<i<n1l<j<n
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Schur and Demazure measures

The law of the random variable G = perc(W):
@ Schur measure

Mon,  P(G=k= ][]

1<i<nl<j<n

@ Demazure measures

>

MED PG =K = ] (1-uv)

1<j<i<n

» W e MNP,

P(G = k) =

I[I @-uy >

(i./)ENp,q) (B1s-ees MP)EZPZO\max(M):k

(1— wv))

Z SA(U)S)\(V).

AEPn| A1=kK

> " (u)k (V).

HEZ"ZO\maX(M):k

YYYY ul)(un,..4,un_p+1)liﬁ(v1,.4.,vq).
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Cauchy identity for a general Young shape
@ Augmented stair shape: Lascoux 2000, A.-Gobet-Lecouvey 2023

|
H n
| E[E| ]|

The law of the random variable G = perc(W):
We My, P(G=k)=

I a—uv).

(iJ)EN

) Do (h W) F (. ypag) (oo tin—ms )P (0, SE) ¥y p) (-2 Vim)-
(K15 em) EZ™ | max(p)=k

@ Y a general Young shape: Feigen-Khoroshkin-Makedonskyi, 2024.

H 1—xy, Z Fhps(@)(X)Ea(y)-

l -
(i.))ey d is A-admissible
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IIl. Target: Compute key maps under virtualization

@ We introduce a Cartan type and crystal model-independent technique for
computing both the key maps and the Schiitzenberger—Lusztig involution
(evacuation) via virtualization of crystals.

@ Virtualization is a method introduced by Kashiwara that embeds a highest weight
crystal inside another of (potentially) different Lie type, provided the associated
Dynkin diagrams are related via so-called diagram folding.

@ The image of such an embedding equipped with an induced crystal structure is
termed a virtual crystal.

wiki/Dynkin-diagram
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Crystals

@ A (normal) g-crystal is a nonempty finite set B with a weight map wt : B — P,
string operators i, p; : B — Z, and crystal operators e;, f; : B — B {0} where
0 ¢ B is an auxiliary symbol, subject to the following conditions for all i € I and
b,b' € B:
> pi(b) — =i(b) = (Y, wi(b)),
» wt(ei(b)) = wt(b) + «; if ei(b) € B,
» wt(fi(b)) = wt(b) — «; if fi(b) € B,
» b’ = ei(b) if and only if b= f;(b'),
» &:(b) = max{k > 0|ef(b) € B},
> pi(b) = max{k > 0|f*(b) € B}.
@ Let £ and F be the monoids generated by {ei}ic; and {fi}ic/, respectively. For

A € Pt B()) is the crystal graph associated to the highest weight g-module V()
with highest weight vector by, wt(by) = A, and

F{br} = B(A) = E{buoxr}
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Virtualization

@ For any Dynkin diagram D, denote by Pp the corresponding integral weight lattice
and by w? the corresponding fundamental weights.

@ Let X and Y be two Dynkin diagrams and let aut be an automorphism of Y such

that distinct nodes of Y in the same aut-orbit are not connected by an edge.

@ There is an embedding 1) : X < Y if there exists a bijection W : X — Y /aut,
which preserves the edges, inducing a map Px — Py given by the assignment

X y
Wi =i g wj

jev(i)

X %
Qi =i § Qj

with ; given as in the Table:

jev(i)

X Y i

Cn Ao 7i:171§i<n77n:2
B, Dyt 7,-:2,1§i<n,’7n:1
Fo B m=r=2m3=nu=1
G2 D4 ’)/121,’}/223

B, Cn vi=2,1<i<n~y=1
C, B, yi=L1<i<ny,=2
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We have a natural embedding of the Weyl groups WX into WY, identifying WX with
the set of elements W in WY that are fixed under the Dynkin symmetry:

WX 2 WX = (Micyng i€ 1) c Wy =(5|jel”),

via the group isomorphism s; — Mjcy(iy 3.
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Virtualization

@ Suppose X and Y are Dynkin diagrams with an embedding ¢ : X < Y. Let
(B; &, ﬁ,@,,sj)JE,v be a normal gy-crystal. A virtual gx-crystal is a subset V C B
such that V has a normal gx-crystal structure where for any i € I* the crystal
operators are given by:

vV._ 7Y v £Yi
et = ][ &" fo= 17"
jew(i) j€w(i)

and for any choice of j € 9(i), the string operators defined as:
R o -1a
ei= & wii=7 G

@ If a gx-crystal B is isomorphic to a virtual gx-crystal V C B, we call the associated
isomorphism Ty, : B — V the virtualization map.

Properties:
@ Virtualizations are closed under map composition and tensor products.

@ Any virtualization maps the highest weight vector of B to the highest weight vector
in V, which coincides with that of 5 and therefore is unique (up to choice of
embedding realization).
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Example: virtualization C; < A3

3
1 J
2
1,3
[4] 2
2

=

E
-
7
BN
d

= e
g

Figure: Left: G, standard crystal B(wy2). Middle: virtual crystal V, ' = £ o £,
Y = £2 0 £2. Right: V C B(w(® + w}?).
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Dilation

@ [Kashiwara 96] For any positive integer m, the m-dilation map
Dy : B(A) < B(m2) is the unique embedding such that

> Di(£ib) = £7Din(b), Din(erb) = e"Din(b),

> #i(Dm(b)) = mpi(b), &i(Dm(b)) = me;(b),
> wt(Dm(b)) = mwt(b).

@ The canonical realization of the m-dilation map D, is the embedding
Om = Gm oDy, where G : B(mA) — F{b™} is the unique crystal isomorphism
mapping bmx — bY™,

Om = Gm oD : B(A) = F{bE™} € B(A)®™.

@ [Kashiwara 96] Given any Dynkin diagram X and positive integer m, let W : X — X
be the automorphism determined by the assignment

wi = mwj Qj — mo;
for each w; € P and Py, the associated virtualization. Then, for any A € P*, we

have that Py (B(\)) = ©m(B(X)). In particular, m-dilation is a virtualization
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The left and right key pair and Lakshmibai-Seshadri paths

@ Kashiwara has shown that when m is large enough we have a decomposition
Om(b) = bur ® b’ @ b,y for any b € B(\) with by, byra, w > w' € W,
extremals and b’ € B(\)®™ 2.

@ The extremal pair (bwx, by ) is independent of the choice of any such m, hence
the following is well-defined.

Definition
For a given b € B(\) the right key (resp. left key) of b is the extremal vector
KT(b) := bux (resp. K= (b) := byry).

The pair of keys bwx, b, define the initial (resp. final) direction of the corresponding
LS path in the isomorphic crystal of Lakshmibai-Seshadri paths.

KT (&(b)) = €K (b)

22/1



How much does one have to iterate the tensor product?

The following provides a tight bound for the values of m and thus refines Kashiwara
decomposition.

Theorem (A.-Gonzalez-Huang-Torres 24)

Let m € N. For all b € B()\), there exist b’ € B(A\)®™~? and fixed w > w' € W* such
that

Om(b) = bua®b'®b,,/x if and only if m > £ = max{length(p) | p is an i-string for i € I}
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FIGURE 1. The By-crystal B(\) = KNF()) for A = wi” + wi?. ;
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Left and right keys with ¢ = 3 for the B,-crystal B(culB2 + w252)

1
P

1
2
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Demazure crystals and keys under virtualization

@ For any virtualization map Py, : B(\) — V C B(¥(\)) and any positive integer m,
OnTy = TE O,

(T)
BA) —————— V C B(¥(N\)
emi O J
F{bZ™} C B(A)@’m@f{b@m)} C B(y(N)

Theorem (A.-Gonzalez-Huang-Torres 24)

Given a gx-crystal B and Dynkin diagram embedding ¢ : X — Y with virtualization map
T:B— YV CB, with B a gy-crystal, the following holds:

Q T(¢5(B)) = £5(T(B)),
O T(K*(b)) = K*(T(b)).

Thus, virtualization embeds Demazure crystals and atoms correspondingly, so that for
any w € WX we have

Bu(N) < By ((N)) and Bu(N) < By (B(N)).
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Virtualization B < C and jeu de taquin in type B

Let g = s02n+1 with fundamental weights w}g" given by

B _ {(1’,0"-") i#n

! %(1") i=n.

@ The alphabets for Lie types B, and C,:
Bri={l<:-<n=<0<n--<1}
Co={l<--<n<n=<--<1}.

Blwr") :

OYE2 -2 men S - 255

B(w;”
where wt (E) =€, wt () = —¢ forall1 <i<n, and wt (@) = 0 (for type

B, only).
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The splitting of a KN tableau in type B

The crystal KNZ(\) of Kashiwara—Nakashima tableaux in type B, with A = (yuo|p).
@ Example
Let n =3 and A = w™ 4+ W + 30w = (13]3,2,1) with spin part W = (1%).
T € KN§(1%(3,2,1)
wt(T) = 3(1,-1,1) 4+ (0,0,1) + (0,0,0) + (0,0, —1) = 1(1,-1,1).
split(T) € KNS (ws? 4 2(3,2,1)) Kashiwara—Nakashima tableau in type Cs

T[] 2] 0] 3]t h Ty = split(To) - split(Ts) = | L1 L[2]2]3[3]3]
330 3[3]3]3]2
2|2 21211

wt(split(T)) = 2(1,-1,1) + (-1,1,1) + (0,1,1) + (0, —-1,—1) + 2(0,0, —1)
=(1,-1,1).
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Theorem (A.-Gonzalez-Huang-Torres 24)

Let €|T € KNE()\) be a Kashiwara—Nakashima tableau of type B, with A = (uo|f).
Then

Q@ TEC SKNE KNS (wf), € — PE(¢) = split(¢) or un-shade of €.
@ TEC(¢|T) = split(€] T) = split(€)|split( T) € KNS (wS|2u) the splitting of €|T.

The virtualization procedure on the non-spin part of an orthogonal tableau, is induced by
the map defined by

i PEC(N) = i, T PEC(N) = 77,0 » PE(0) =dnforall 1 <i<n

on words [J. Pappe-S. Pfannerer-A. Schilling-M. C. Simone, 2024] followed by
symplectic insertion.

Frem
w(iT)=x1® - ®xm € B(wlB)‘X”" —_— ‘Y’Bc(xl) R ® ‘Y’Bc(xm) € B(2wf)®m

B,,—insertionl CninsertionJ

T=1[0<x1 ¢  + xm] € KNE(1) o SPI(T)={0 TP () o TP (e | KN (20)
r
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Corollary

Let T' be a orthogonal skew tableau potentially with a leftmost spin column. Then
PEC o rectp(T') = rectc oPEC(T’) which means

rectg(T') = BIDT(T') = P o rectc oVP(T') Lecouvey, 2002

where VPE(T') = split(T"), and rectg(T’) might be obtained by the B,-spin insertion
scheme.
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+wP2)) embedded into KNS (w§ + 207).

(wy?

B
2

FIGURE 3. The virtual crystal P(KN:
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