## Partitions with full equivalence Schur support are monotone ribbons with full Schur support

O. Azenhas, R. Mamede<br>(based on arXiv:1812.04705)

CMUC, University of Coimbra

Seminar of Representation Theory and Related Areas 7th Workshop
15 December 2018, Universidade de Lisboa

## Specht and skew Specht modules, and general diagrams

- As $\lambda$ ranges over all partitions of $n$, the Specht modules (over $\mathbb{C}$ ) of $\lambda, S^{\lambda}$, are the irreducible representations of $\mathfrak{S}_{n}$. The Frobenius characteristic map

$$
\operatorname{ch}\left(S^{\lambda}\right)=s_{\lambda} .
$$

- Given the skew shape $A$, one can define the skew Spetch module $S^{A}$ which has a decomposition into irreducibles given by the LR rule

$$
\begin{gathered}
S^{A} \cong \bigoplus_{\nu \in\left[r(A), c(A)^{\prime}\right]}\left(S^{\nu}\right)^{\oplus c_{A}^{\nu}}=S^{r(A)} \oplus \cdots \oplus\left(S^{\nu}\right)^{\oplus c_{A}^{\nu}} \oplus \cdots \oplus S^{c(A)^{\prime}} \\
\\
\operatorname{ch}\left(S^{A}\right)=s_{A}=1 s_{r(A)}+\cdots+c_{A}^{\nu} s_{\nu}+\cdots+1 s_{c(A)^{\prime}}
\end{gathered}
$$

## General diagrams

- A diagram $D$ is an arbitrary finite collection of unit lattice boxes in the plane

- The construction of $S^{\lambda}, \lambda$ a partition, allows a construction of the Specht module $S^{D}$ for any diagram $D . S^{D}$ may be decomposed into irreducible representations

$$
S^{D} \cong \bigoplus_{\nu \in[,]}\left(S^{\nu}\right)^{\oplus C_{D}^{\nu}}
$$

where $c_{D}^{\nu}$ is the number of times $S^{\nu}$ appears in the decomposition of $S^{D}$.

- This allows to define the Schur function associated to $D$

$$
s_{D}:=\operatorname{ch}\left(S^{D}\right)=\sum_{\nu} c_{D}^{\nu} s_{\nu} .
$$

It is not known a combinatorial description of the coefficients $c_{D}^{\nu}$ for $D$ in general

## Is the $D$-support contained in an interval w.r.t. dominance order?

Computational evidence for diagrams $D$ with at most 8 boxes in Ricky Liu PhD thesis (2010)

```
\[
s_{D}=s_{411}+2 s_{321}+s_{222}
\]
\[
s_{D}=s_{33}+2 s_{321}+s_{222}
\]
\[
s_{43}+2 s_{421}+s_{4111}+2 s_{331}+s_{322}+s_{3211}
\]
```


## Our problem: overview

- Connected ribbon shapes with rows of length at least two.

- Problem Given the partition $\alpha$,
- when do we have

$$
\operatorname{supp}\left[S^{R_{\alpha}}\right]=\operatorname{supp}\left[S^{R_{\beta}}\right] \Leftrightarrow \operatorname{supp}\left[s_{R_{\alpha}}\right]=\operatorname{supp}\left[s_{R_{\beta}}\right]
$$

for any rearrangement $\beta$ of $\alpha$ ?

- when does $R_{\alpha}$ have full Schur support?
- Partial answer:
- Gaetz-Hardt-Sridhar necessary condition (2017). $R_{\alpha}$ has full equivalence class $\Rightarrow$ some inequalities on $\alpha$ are satisfied.
- (A., Mamede) These inequalities characterize partitions $\alpha$ so that $R_{\alpha}$ has full Schur support. $R_{\alpha}$ has full equivalence class $\Rightarrow R_{\alpha}$ has full Schur support.
- Conjecture: (A., Mamede, 2018)
$R_{\alpha}$ has full equivalence class $\Leftrightarrow R_{\alpha}$ has full Schur support.


## Ribbon shapes

- A partition or straight shape $\nu$

$$
\nu=(6532)=\rrbracket \quad|\nu|=6+5+3+2=16, \quad \ell(\nu)=4
$$

- A skew-shape $\nu / \mu, \mu \subseteq \nu$

- Connected ribbons with row lengths at least 2 are encoded by compositions $\alpha$ with parts at least 2


12 compositions in the orbit of the $\alpha^{+}=(5532)$

## Schur interval of a ribbon shape

- $R_{\alpha}: \alpha^{+}=(5532),|\alpha|=5+5+3+2=15, \ell(\alpha)=4$

- The Schur interval of the connected ribbons in the orbit of the partition $\alpha^{+}$is the interval, in the dominance lattice of partitions of $|\alpha|$,

$$
\left[\alpha^{+} ; \hat{\alpha}=(|\alpha|-\ell(\alpha)+1, \ell(\alpha)-1)\right]=\left\{\nu: \alpha^{+} \preceq \nu \preceq \hat{\alpha}\right\} .
$$

- $\alpha^{+}=(5532), \ell(\alpha)-1=3$

$$
\begin{gathered}
(7611) \in[(5532),(15-3,3)]=\{\nu:(5532) \preceq \nu \preceq(12,3)\} \\
\# \preceq \square \preceq \square \preceq \square
\end{gathered}
$$

## Ribbon tableaux

- A semistandard tableau of straight shape (partition) $\nu$ is a filling $T$ of the $\nu$ with positive integers,

$$
T=\begin{array}{|l|ll}
\hline 1 & 1 & 3 \\
\hline & 3 & 4 \\
\hline 4 & 4
\end{array} \mapsto x^{T}=x_{1}^{2} x_{2}^{0} x_{3}^{3} x_{4}^{3} \text { monomial weight of } T
$$

weight $(2,0,3,3),|\nu|=8$.

- A ribbon semistandard tableau is a semistandard filling $R$ of a ribbon shape $R_{\alpha}$

$x_{1}^{6} x_{2}^{5} x_{3}^{2} x_{4}^{2}$
$\alpha=(3525)$


$$
\begin{gathered}
x_{1}^{6} x_{2}^{4} x_{3}^{3} x_{4}^{2} \\
\alpha^{+}=(5532)
\end{gathered}
$$

## Ribbon Schur functions

- Given a partition $\nu$ the Schur function $s_{\nu}$ in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is the generating function of all semi standard tableaux $T$ of shape $\nu$

$$
s_{\nu}=\sum_{T} x^{T}
$$

The Schur functions $s_{\nu}$ for all $\nu$, form a linear basis of the ring $\Lambda$ of (homogeneous) symmetric functions in the components of $x$.

- Given the composition $\alpha$, the ribbon-Schur function $s_{R_{\alpha}}$ in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is the generating function of all ribbons tableaux $R$ of shape $R_{\alpha}$,

$$
s_{R_{\alpha}}=\sum_{R} x^{R}
$$

- $s_{R_{\alpha}}$ is a symmetric function

$$
s_{R_{\alpha}}=\sum_{\nu \in\left[\alpha^{+},(|\alpha|-\ell(\alpha)+1, \ell(\alpha)-1)\right]} c_{R_{\alpha}}^{\nu} s_{\nu}, \quad c_{R_{\alpha}}^{\nu} \in \mathbb{Z}_{\geq 0}
$$

$c_{R_{\alpha}}^{\nu}$ are called Littlewood-Richardson coefficients.

## LR coefficients as numbers that count

- Given a ribbon $R_{\alpha}$ and $\nu$ a partition of $|\alpha|$,
- $c_{R_{\alpha}}^{\nu}=$ \#ribbon LR tableaux of shape $R_{\alpha}$
- ribbon semistandard tableaux of shape $R_{\alpha}$ and weight $\nu$ with;
- the word Yamanouchi condition.
- $\alpha=(3,5,2,5), \nu=(6522)$

|  |  |  |  |  |  |  |  | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

111221113344222


111222113344221

## LR coefficients as numbers that count

- Given a ribbon $R_{\alpha}$ and $\nu$ a partition of $|\alpha|$,
- $c_{R_{\alpha}}^{\nu}=$ \#ribbon LR tableaux of shape $R_{\alpha}$
- ribbon semistandard tableaux of shape $R_{\alpha}$ and weight $\nu$ with;
- the word Yamanouchi condition.
- $\alpha=(3,5,2,5), \nu=(6522)$


111221113344222


111222113344221

- The companion tableau of shape $\nu$ and content $\alpha$ of each of the two ribbon LR tableaux of shape $R_{\alpha}$ and weight $\nu$

| 1 | 1 | 1 | 2 | 2 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 2 | 4 | 4 | 4 |  |
| 3 | 3 |  |  |  |  |
| 4 | 4 |  |  |  |  |


| 1 | 1 | 1 | 2 | 2 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 2 | 2 | 4 | 4 |  |
| 3 | 3 |  |  |  |  |
| 4 | 4 |  |  |  |  |

## Companions of ribbon LR tableaux and descent sets

- How to detect the companion tableau of a ribbon LR tableau? The descent set does it!


## Companions of ribbon LR tableaux and descent sets

- How to detect the companion tableau of a ribbon LR tableau?

The descent set does it!

- $\alpha=(3,5,2,5), \nu=(6522)$

- The companion tableau of a ribbon LR tableau of shape $R_{\alpha}$ and weight $\nu$ is a SSYT of shape $\nu$ and weight $\alpha$ and descent set $S(\alpha)=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \ldots, \alpha_{1}+\cdots+\alpha_{\ell(\alpha)-1}\right\}$.

| 1 | 1 | 1 | 2 | 2 | 2 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 4 | 4 | 4 |  |  |  |  |  |  |
| 3 | 3 |  |  |  |  |  |  |  |  |  |
| $y$ | 4 |  |  |  |  | 1 1 | 1 | 2 | 2 | 4 |
| 2 | 2 | 2 | 4 | 4 |  |  |  |  |  |  |
| 3 | 3 |  |  |  |  |  |  |  |  |  |
| 4 | 4 |  |  |  |  |  |  |  |  |  |


| 1 | 2 | 3 | 6 | 7 | 8 | 1 |  | 2 | 3 | 7 |  | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 5 | 13 | 14 | 15 |  | 4 |  | 5 | 6 | 13 | 14 |  |
| 9 | 10 |  |  |  |  | 9 |  | 10 |  |  |  |  |
|  | 112 |  |  |  |  |  | 1 |  |  |  |  |  |

descent set $\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}=\{3,8,10\}$

## LR coefficients as structure coefficients

- Let $\alpha$ be any composition and $R_{\alpha}$ the corresponding connected ribbon shape. Then

$$
s_{R_{\alpha}}=\sum_{\nu \in\left[\alpha^{+}, \hat{\alpha}=(|\alpha|-\ell(\alpha)+1, \ell(\alpha)-1)\right]} c_{R_{\alpha}}^{\nu} s_{\nu}
$$

where

$$
\begin{gathered}
c_{R_{\alpha}}^{\nu}=\# \text { SYT of shape } \nu \text { and descent set, } \quad c_{R_{\alpha}}^{\alpha^{+}}=c_{R_{\alpha}}^{\hat{\alpha}}=1 . \\
\qquad S(\alpha)=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \ldots, \alpha_{1}+\cdots+\alpha_{\ell(\alpha)-1}\right\} .
\end{gathered}
$$

## LR coefficients and crystals: multiplicity numbers

- $B_{\mu}$ and $B_{\nu}$ crystals of type $A$ with highest weights $\mu$ and $\nu$.

$$
\begin{gathered}
B_{\mu} \otimes B_{\nu} \cong \bigoplus_{\lambda} B_{\lambda}^{c_{\lambda / \mu}^{\nu}}, \\
c_{\lambda / \mu}^{\nu}=\text { \#highest weight elements of weight } \lambda \\
\text { in } B_{\mu} \otimes B_{\nu}
\end{gathered}
$$

- How to detect the highest weight elements of weight $\lambda$ in $B_{\mu} \otimes B_{\nu}$ ?
Each crystal connected component in $B_{\mu} \otimes B_{\nu}$ has highest weight element

$$
Y_{\mu} \otimes T_{\nu}
$$

of weight $\lambda$, where $T_{\nu}$ is the companion tableau of the LR tableau $T$ of shape $\lambda / \mu$ and weight $\nu$.

## Schur support and Schur support equality

- The Schur support [ $R_{\alpha}$ ] of the ribbon shape $R_{\alpha}$ is a subset of the Schur interval of $\alpha^{+}$,

$$
\begin{gathered}
{\left[R_{\alpha}\right]:=\left\{\nu: c_{R_{\alpha}}^{\nu}>0\right\} \subseteq\left[\alpha^{+}, \hat{\alpha}=(|\alpha|-\ell(\alpha)+1, \ell(\alpha)-1)\right] .} \\
\alpha^{+}, \hat{\alpha}=(|\alpha|-\ell(\alpha)+1, \ell(\alpha)-1) \in\left[R_{\alpha}\right]
\end{gathered}
$$

The ribbon $R_{\alpha}$ is said to have full Schur support when the support coincides with the Schur interval.

- Let $\alpha$ and $\beta$ be compositions, rearrangements of each other. The ribbons $R_{\alpha}$ and $R_{\beta}$ are said to be Schur support equivalent if their supports coincide, $\left[R_{\alpha}\right]=\left[R_{\beta}\right]$.

The ribbon $R_{\alpha^{+}}$is said to have support full equivalence class if $\left[R_{\alpha^{+}}\right]=\left[R_{\alpha}\right]$, for any rearrangement $\alpha$ of the entries of $\alpha^{+}$.

## Schur support equality and symmetries of LR coefficients

- LR coefficients satisfy a number of symmetries:

$$
c_{\lambda / \mu}^{\nu}=c_{\lambda / \nu}^{\mu}, c_{\lambda / \mu}^{\nu}=c_{(\lambda / \mu)^{\circ}}^{\nu}, c_{\lambda / \mu}^{\nu}=c_{\lambda^{\prime} / \mu^{\prime}}^{\nu^{\prime}},
$$

$(\lambda / \mu)^{\circ}$ is the $\pi$-rotation of $\lambda / \mu$, and

- $[\lambda / \mu]=\left[(\lambda / \mu)^{\circ}\right]$ and $\left[(\lambda / \mu)^{\prime}\right]=[\lambda / \mu]^{\prime}$ and

$$
s_{\lambda / \mu}=s_{(\lambda / \mu)^{\circ}} \text { and } s_{\lambda^{\prime} / \mu^{\prime}}=\sum_{\nu \in\left[\mathrm{r}(\lambda / \mu), \mathrm{c}(\lambda / \mu)^{\prime}\right]} c_{\lambda / \mu}^{\nu} s_{\nu^{\prime}} .
$$

- The full support of one of the shapes $\lambda / \mu,(\lambda / \mu)^{\prime}$ or $(\lambda / \mu)^{\circ}$ implies the full support of any of the others
(2322)

(2232)

- How monotone ribbons with full support and ribbons with full equivalence class are related?


## Obstructions for the full Schur support

- Given $\alpha$ a composition, the overlapping partition $p=\left(p_{1}, \ldots, p_{\ell(\alpha)-1}, 0\right)$ of the connected ribbon $\alpha$

$p=(3,1,0,0)$

(2) $\square$

$$
p=(3,2,1,0)
$$

- Schur support of $R_{\alpha^{+}}$does not decrease with rearrangements of the row lengths of $\alpha^{+}$?
- combinatorial interpretation of dominance order on partitions:
$\lambda \preceq \nu \Leftrightarrow$ Young diagram of $\nu$ is obtained by lifting
at least one box in the Young diagram of $\lambda$

$$
\lambda \preceq \nu \Rightarrow \nu_{i} \leq \sum_{q=i}^{\ell(\lambda)} \lambda_{q}=\lambda_{i}+\sum_{q=i+1}^{\ell(\lambda)} \lambda_{q}, 1 \leq i \leq \ell(\lambda)
$$

## Positivity of monotone ribbon LR coefficients

- Theorem. (A., Mamede) Given $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell(\alpha)}\right)$ a partition with parts $\geq 2$, let $\nu$ be a partition of $|\alpha|$, and $p=\left(p_{1}, \ldots, p_{\ell(\alpha)-1}, 0\right)$, with $p_{i}=\ell(\alpha)-i$, for $i=1, \ldots, \ell(\alpha)$. Then

$$
c_{R_{\alpha}}^{\nu}>0 \Leftrightarrow\left\{\begin{array}{l}
\nu \in\left[\alpha,\left(|\alpha|-p_{1}, p_{1}\right)\right] \Leftrightarrow \alpha \preceq \nu \preceq\left(|\alpha|-p_{1}, p_{1}\right), \\
\nu_{i} \leq \sum_{q=i}^{\ell(\alpha)} \alpha_{q}-p_{i}=\alpha_{i}+\sum_{q=i+1}^{\ell(\alpha)} \alpha_{q}-p_{i}, \text { for } 1 \leq i \leq \ell(p) .
\end{array}\right.
$$

- Example $\alpha=(5532), \quad\left[R_{\alpha}\right] \subseteq[(5532),(15-3,3)]$



## Classification of full Schur support monotone ribbons

- Definition Let $\alpha$ be a partition with parts $\geq 2$ with overlapping partition $p$. For each $i \in\{1, \ldots, \ell(p)-1\}$, put

$$
\varrho_{i}:=\sum_{q=i+1}^{\ell(\alpha)} \alpha_{q}-p_{i+1}+1>0 .
$$

- Theorem. (A., Mamede) Let $\alpha$ be a partition with parts $\geq 2$, and overlapping partition $p$. $R_{\alpha}=\left[\alpha,\left(|\alpha|-p_{1}, p_{1}\right)\right]$ if and only if

$$
\ell(\alpha)=2 \text { or } \ell(\alpha) \geq 3 \text { and } \sum_{\substack{1 \leq j \leq i \\ \alpha_{j}<\varrho_{i}}}^{i}\left(\varrho_{i}-\alpha_{j}\right) \geq p_{i+1}, \quad 1 \leq i \leq \ell(p)-1
$$

A weaker but simpler version: $\alpha$ has full support $\Rightarrow$

$$
\alpha_{i}<\varrho_{i} \Leftrightarrow \alpha_{i} \leq \sum_{q=i+1}^{\ell(\alpha)} \alpha_{q}-p_{i+1}, \quad 1 \leq i \leq \ell(p)-1 .
$$

- $R_{(5532)}$ has not full support: $\alpha_{2}=5>\varrho_{2}=\alpha_{3}+\alpha_{4}-1=3+2-1$


## Necessary condition for full equivalence support

- Theorem: Gaetz-Hardt-Sridhar necessary condition (2017). Let $\alpha$ be a partition with parts $\geq 2$ and $R_{\alpha}$ a connected ribbon. If $R_{\alpha}$ has full equivalence class then

$$
N_{j}:=\max \left\{k: \sum_{\substack{1 \leq i \leq j \\ \alpha_{i}<k}}\left(k-\alpha_{i}\right) \leq \ell(\alpha)-j-2\right\}<\varrho_{j}, 1 \leq j \leq \ell(\alpha)-2 .
$$

- Lemma(A., Mamede, 2018) For all $j \in\{1, \ldots, \ell(\alpha)-2\}$,

$$
\begin{aligned}
& N_{j}:=\max \left\{k: \sum_{\substack{1 \leq i \leq j \\
\alpha_{i}<k}}\left(k-\alpha_{i}\right) \leq \ell(\alpha)-j-2\right\}<\varrho_{j} \Leftrightarrow \\
& \Leftrightarrow \sum_{\substack{1 \leq i \leq j \\
\alpha_{i}<\varrho_{j}}}\left(\varrho_{j}-\alpha_{i}\right) \geq \ell(\alpha)-j-1 .
\end{aligned}
$$

- Theorem . (A., Mamede, 2018) Let $\alpha$ be a partition with parts $\geq 2$ and $R_{\alpha}$ a connected ribbon. If $R_{\alpha}$ has full equivalence class then $R_{\alpha}$ has full Schur support. When $\ell(\alpha) \leq 4, R_{\alpha}$ has full equivalence class if and only if $R_{\alpha}$ has full Schur support.


## Examples

$$
\begin{gathered}
\ell(\alpha)=3: \alpha \text { full equivalence class } \Leftrightarrow\left[R_{\alpha}\right]=[\alpha,(|\alpha|-2,2)] \\
\Leftrightarrow \alpha_{1}<\sum_{q=2}^{3} \alpha_{q} . \\
\ell(\alpha)=4: \alpha \text { full equivalence class } \Leftrightarrow\left[R_{\alpha}\right]=[\alpha,(|\alpha|-3,3)] \\
\Leftrightarrow \alpha_{1}<\sum_{q=2}^{4} \alpha_{q}-2, \alpha_{2}<\sum_{q=3}^{4} \alpha_{q} .
\end{gathered}
$$

## Towards to a coincidence between partitions with full Schur support and full equivalence Schur support

## - Theorem

Let $\alpha$ be a partition with parts $\geq 2$, and $R_{\alpha_{\pi}}$ a connected ribbon with overlapping partition $p^{\pi}$, with $\pi \in \sum_{\ell(\alpha)}$. Let $\nu \in[\alpha,(|\alpha|-\ell(\alpha)+1, \ell(\alpha)-1)]$. Then

$$
\begin{equation*}
\nu \in\left[R_{\alpha_{\pi}}\right]\left(c_{R_{\alpha_{\pi}}}^{\nu}>0\right) \Rightarrow \nu_{i} \leq \sum_{q=i}^{\ell(\alpha)} \alpha_{q}-p_{i}^{\pi}, \quad 1 \leq i \leq \ell(p) . \tag{1}
\end{equation*}
$$

- Assuming that inequalities (1) are sufficient for $\nu \in\left[R_{\alpha_{\pi}}\right]$,

$$
\begin{aligned}
& \nu \in\left[R_{\alpha}\right] \Rightarrow \nu_{i} \leq \sum_{q=i}^{\ell(\alpha)} \alpha_{q}-(\ell(\alpha)-i) \leq \sum_{q=i}^{\ell(\alpha)} \alpha_{q}-p_{i}^{\pi}, \quad 1 \leq i \leq \ell(p) \\
& \Rightarrow \nu \in\left[R_{\alpha_{\pi}}\right] .
\end{aligned}
$$

$\left[R_{\alpha}\right] \subseteq\left[R_{\alpha_{\pi}}\right]$, for any $\pi \in \sum_{\ell(\alpha)}$.
$R_{\alpha}$ has full Schur support $\Rightarrow\left[R_{\alpha_{\pi}}\right]=\left[R_{\alpha}\right]$, for any $\pi \in \sum_{\ell(\alpha)}$, and $R_{\alpha}$ has full equivalence class.

## Horn-Klyachko linear inequalities

- Let $N=\{1,2, \ldots, n\}$, then for fixed $d$, with $1 \leq d \leq n$, let $I=\left\{i_{1}>i_{2}>\cdots>i_{d}\right\} \subseteq N$.


## Horn-Klyachko linear inequalities

- Let $N=\{1,2, \ldots, n\}$, then for fixed $d$, with $1 \leq d \leq n$, let $I=\left\{i_{1}>i_{2}>\cdots>i_{d}\right\} \subseteq N$.
- Let $I, J, K \subseteq N$ with $\# I=\# J=\# K=d$ and ordered decreasingly. One defines the partitions

$$
\begin{aligned}
& \alpha(I)=I-(d, \ldots, 2,1), \\
& \beta(J)=J-(d, \ldots, 2,1), \\
& \gamma(K)=K-(d, \ldots, 2,1) .
\end{aligned}
$$

## Horn-Klyachko linear inequalities

- Let $N=\{1,2, \ldots, n\}$, then for fixed $d$, with $1 \leq d \leq n$, let $I=\left\{i_{1}>i_{2}>\cdots>i_{d}\right\} \subseteq N$.
- Let $I, J, K \subseteq N$ with $\# I=\# J=\# K=d$ and ordered decreasingly. One defines the partitions

$$
\begin{aligned}
\alpha(I) & =I-(d, \ldots, 2,1), \\
\beta(J) & =J-(d, \ldots, 2,1), \\
\gamma(K) & =K-(d, \ldots, 2,1) .
\end{aligned}
$$

- Let $T_{d}^{n}$ be the set of all triples $(I, J, K)$ with $I, J, K \subseteq N$ and $\# I=\# J=\# K=d$ such that $c_{\alpha(I), \beta(J)}^{\gamma(K)}>0$.
- $c_{\mu, \nu}^{\lambda}>0$ if and only if the Horn-Klyachko inequalities are satisfied

$$
\begin{aligned}
& \sum_{k=1}^{n} \lambda_{k}=\sum_{i=1}^{n} \mu_{i}+\sum_{j=1}^{n} \nu_{j} \\
& \sum_{k \in K} \lambda_{k} \leq \sum_{i \in I} \mu_{i}+\sum_{j \in J} \nu_{j}
\end{aligned}
$$

for all triples $(I, J, K) \in T_{d}^{n}$ with $d=1, \ldots, n-1$.

- Lidskii- Wielandt inequalities and the dominance order

$$
\begin{aligned}
& \sum_{i \in I} \lambda_{i} \leq \sum_{i \in I} \mu_{i}+\sum_{i \leq d} \nu_{i}, \text { for all } I \subseteq\{1, \ldots, n\} \text { with } \# I=d \\
& \Leftrightarrow \sum_{i \in I}\left(\lambda_{i}-\mu_{i}\right) \leq \sum_{i \leq d} \nu_{i}, \text { for all } I \subseteq\{1, \ldots, n\} \text { with } \# I=d \\
& \Leftrightarrow \sum_{i \leq d}\left(\lambda_{i}-\mu_{i}\right)^{+} \leq \sum_{i \leq d} \nu_{i}
\end{aligned}
$$

