Partitions with full equivalence Schur support are monotone ribbons with full Schur support

O. Azenhas, R. Mamede (based on arXiv:1812.04705)

CMUC, University of Coimbra

Seminar of Representation Theory and Related Areas 7th Workshop 15 December 2018, Universidade de Lisboa As λ ranges over all partitions of n, the Specht modules (over C) of λ, S^λ, are the irreducible representations of S_n. The Frobenius characteristic map

$$ch(S^{\lambda}) = s_{\lambda}$$

Given the skew shape A, one can define the skew Spetch module S^A which has a decomposition into irreducibles given by the LR rule

$$S^A \cong \bigoplus_{\nu \in [r(A), c(A)']} (S^{\nu})^{\oplus c_A^{\nu}} = S^{r(A)} \oplus \cdots \oplus (S^{\nu})^{\oplus c_A^{\nu}} \oplus \cdots \oplus S^{c(A)'}$$

$$ch(S^A) = s_A = 1s_{r(A)} + \cdots + c_A^{
u}s_{
u} + \cdots + 1s_{c(A)'}$$

General diagrams

► A diagram *D* is an arbitrary finite collection of unit lattice boxes in the plane

The construction of S^λ, λ a partition, allows a construction of the Specht module S^D for any diagram D. S^D may be decomposed into irreducible representations

$$S^D\cong igoplus_{
u\in [\,,\,]}(S^
u)^{\oplus c^
u_D}$$

where c_D^{ν} is the number of times S^{ν} appears in the decomposition of S^D .

This allows to define the Schur function associated to D

$$s_D := ch(S^D) = \sum_
u c_D^
u s_
u.$$

It is not known a combinatorial description of the coefficients c_D^{ν} for D in general

3/29

Is the *D*-support contained in an interval w.r.t. dominance order?

Computational evidence for diagrams D with at most 8 boxes in Ricky Liu PhD thesis (2010)

Our problem: overview

Connected ribbon shapes with rows of length at least two.

- **Problem** Given the *partition* α ,
 - when do we have

$$supp[S^{R_{lpha}}] = supp[S^{R_{eta}}] \Leftrightarrow supp[s_{R_{lpha}}] = supp[s_{R_{eta}}]$$

for any rearrangement β of α ?

• when does R_{α} have full Schur support?

Partial answer:

- Gaetz-Hardt-Sridhar necessary condition (2017). R_{α} has full equivalence class \Rightarrow some inequalities on α are satisfied.
- (A., Mamede) These inequalities characterize partitions α so that R_α has full Schur support.
 R_α has full equivalence class ⇒ R_α has full Schur support.

Conjecture: (A., Mamede, 2018)

 R_{α} has full equivalence class $\Leftrightarrow R_{\alpha}$ has full Schur support.

Ribbon shapes

• A partition or straight shape ν

$$\nu = (6532) =$$
 $|\nu| = 6 + 5 + 3 + 2 = 16, \quad \ell(\nu) = 4$

• A skew-shape ν/μ , $\mu \subseteq \nu$

Connected ribbons with row lengths at least 2 are encoded by compositions α with parts at least 2

12 compositions in the orbit of the $\alpha^+ = (5532)$

Schur interval of a ribbon shape

•
$$R_{\alpha}$$
: $\alpha^+ = (5532)$, $|\alpha| = 5 + 5 + 3 + 2 = 15$, $\ell(\alpha) = 4$

The Schur interval of the connected ribbons in the orbit of the partition α⁺ is the interval, in the dominance lattice of partitions of |α|,

$$[\alpha^+; \hat{\alpha} = (|\alpha| - \ell(\alpha) + 1, \ell(\alpha) - 1)] = \{\nu : \alpha^+ \leq \nu \leq \hat{\alpha}\}.$$

$$\alpha^+ = (5532), \ \ell(\alpha) - 1 = 3$$

 $(7611) \in [(5532), (15 - 3, 3)] = \{\nu : (5532) \preceq \nu \preceq (12, 3)\}$

Ribbon tableaux

 A semistandard tableau of straight shape (partition) ν is a filling T of the ν with positive integers,

$$T = \underbrace{1 \quad 1 \quad 3 \quad 4}_{3 \quad 3} \mapsto x^T = x_1^2 x_2^0 x_3^3 x_4^3 \text{ monomial weight of } T$$

weight (2, 0, 3, 3), $|\nu| = 8$.

 A ribbon semistandard tableau is a semistandard filling R of a ribbon shape R_α

Ribbon Schur functions

Given a partition ν the Schur function s_ν in the variables
 x = (x₁, x₂,...) is the generating function of all semi standard tableaux T of shape ν

$$s_{\nu} = \sum_{T} x^{T}.$$

The Schur functions s_{ν} for all ν , form a linear basis of the ring Λ of (homogeneous) symmetric functions in the components of x.

Given the composition α, the ribbon-Schur function s_{Rα} in the variables x = (x₁, x₂,...) is the generating function of all ribbons tableaux R of shape R_α,

$$s_{R_{\alpha}} = \sum_{R} x^{R}.$$

• $s_{R_{\alpha}}$ is a symmetric function

$$s_{\mathcal{R}_{\alpha}} = \sum_{\nu \in [\alpha^+, (|\alpha| - \ell(\alpha) + 1, \ell(\alpha) - 1)]} c_{\mathcal{R}_{\alpha}}^{\nu} s_{\nu}, \quad c_{\mathcal{R}_{\alpha}}^{\nu} \in \mathbb{Z}_{\geq 0},$$

 $c_{R_{\alpha}}^{\nu}$ are called Littlewood-Richardson coefficients.

LR coefficients as numbers that count

- Given a ribbon R_{α} and ν a partition of $|\alpha|$,
- $c_{R_{\alpha}}^{\nu} = \#$ ribbon **LR tableaux** of shape R_{α}
 - ribbon semistandard tableaux of shape R_{α} and weight ν with;
 - the word Yamanouchi condition.

111221113344222

11122<mark>2</mark>11334422<mark>1</mark>

LR coefficients as numbers that count

- Given a ribbon R_{α} and ν a partition of $|\alpha|$,
- $c_{R_{\alpha}}^{\nu} = \#$ ribbon **LR tableaux** of shape R_{α}
 - ribbon semistandard tableaux of shape R_{α} and weight ν with;
 - the word Yamanouchi condition.

•
$$\alpha = (3, 5, 2, 5), \ \nu = (6522)$$

111221113344222

11122<mark>2</mark>113344221

The companion tableau of shape ν and content α of each of the two ribbon LR tableaux of shape R_α and weight ν

Companions of ribbon LR tableaux and descent sets

How to detect the companion tableau of a ribbon LR tableau? The descent set does it!

Companions of ribbon LR tableaux and descent sets

How to detect the companion tableau of a ribbon LR tableau? The descent set does it!

•
$$\alpha = (3, 5, 2, 5), \ \nu = (6522)$$

The companion tableau of a ribbon LR tableau of shape R_α and weight ν is a SSYT of shape ν and weight α and descent set S(α) = {α₁, α₁ + α₂,..., α₁ + ··· + α_{ℓ(α)-1}}.

descent set $\{\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3\} = \{3, 8, 10\}$

• Let α be any composition and R_{α} the corresponding connected ribbon shape. Then

$$s_{\mathcal{R}_lpha} = \sum_{
u \in [lpha^+, \hat lpha = (|lpha| - \ell(lpha) + 1, \ell(lpha) - 1)]} c^
u_{\mathcal{R}_lpha} s_
u,$$

where

$$c_{R_{lpha}}^{
u}=\# \; {
m SYT} \; {
m of} \; {
m shape} \;
u \; {
m and} \; {
m descent} \; {
m set}, \qquad c_{R_{lpha}}^{lpha^+}=c_{R_{lpha}}^{\hat lpha}=1.$$

$$S(\alpha) = \{\alpha_1, \alpha_1 + \alpha_2, \dots, \alpha_1 + \dots + \alpha_{\ell(\alpha)-1}\}.$$

LR coefficients and crystals: multiplicity numbers

• B_{μ} and B_{ν} crystals of type A with highest weights μ and ν .

$$B_{\mu}\otimes B_{
u}\cong igoplus_{\lambda}B_{\lambda}^{\mathsf{c}_{\lambda/\mu}^{
u}},$$

 $c_{\lambda/\mu}^{\nu}=\# \text{highest weight elements of weight }\lambda$ in $B_{\mu}\otimes B_{\nu}$

• How to detect the highest weight elements of weight λ in $B_{\mu} \otimes B_{\nu}$?

Each crystal connected component in $B_\mu \otimes B_\nu$ has highest weight element

$$Y_\mu \otimes T_
u$$

of weight λ , where T_{ν} is the companion tableau of the LR tableau T of shape λ/μ and weight ν .

Schur support and Schur support equality

The Schur support [R_α] of the ribbon shape R_α is a subset of the Schur interval of α⁺,

$$[R_{\alpha}] := \{\nu : c_{R_{\alpha}}^{\nu} > 0\} \subseteq [\alpha^+, \hat{\alpha} = (|\alpha| - \ell(\alpha) + 1, \ell(\alpha) - 1)].$$

$$\alpha^+, \hat{\alpha} = (|\alpha| - \ell(\alpha) + 1, \ell(\alpha) - 1) \in [R_\alpha]$$

The ribbon R_{α} is said to have **full Schur support** when the support coincides with the Schur interval.

Let α and β be compositions, rearrangements of each other. The ribbons R_α and R_β are said to be Schur support equivalent if their supports coincide, [R_α] = [R_β].

The ribbon R_{α^+} is said to have **support full equivalence class** if $[R_{\alpha^+}] = [R_{\alpha}]$, for any rearrangement α of the entries of α^+ .

Schur support equality and symmetries of LR coefficients

LR coefficients satisfy a number of symmetries:

$$c_{\lambda/\mu}^
u=c_{\lambda/
u}^\mu,\;c_{\lambda/\mu}^
u=c_{(\lambda/\mu)^\circ}^
u,\;c_{\lambda/\mu}^
u=c_{\lambda'/\mu'}^{
u'},$$

 $(\lambda/\mu)^{\circ}$ is the π -rotation of λ/μ , and

• $[\lambda/\mu] = [(\lambda/\mu)^{\circ}]$ and $[(\lambda/\mu)'] = [\lambda/\mu]'$ and

$$s_{\lambda/\mu} = s_{(\lambda/\mu)^{\circ}}$$
 and $s_{\lambda'/\mu'} = \sum_{\nu \in [r(\lambda/\mu), c(\lambda/\mu)']} c_{\lambda/\mu}^{\nu} s_{\nu'}.$

The full support of one of the shapes λ/μ, (λ/μ)' or (λ/μ)° implies the full support of any of the others

How monotone ribbons with full support and ribbons with full equivalence class are related?

Obstructions for the full Schur support

Given α a composition, the overlapping partition p = (p₁,..., p_{ℓ(α)-1}, 0) of the connected ribbon α

Schur support of R_{α+} does not decrease with rearrangements of the row lengths of α⁺?

combinatorial interpretation of dominance order on partitions:

 $\lambda \preceq \nu \Leftrightarrow$ Young diagram of ν is obtained by *lifting* at least one box in the Young diagram of λ

$$\lambda \preceq
u \Rightarrow
u_i \leq \sum_{q=i}^{\ell(\lambda)} \lambda_q = \lambda_i + \sum_{q=i+1}^{\ell(\lambda)} \lambda_q, \ 1 \leq i \leq \ell(\lambda)$$

Positivity of monotone ribbon LR coefficients

▶ **Theorem**. (A., Mamede) Given $\alpha = (\alpha_1, \ldots, \alpha_{\ell(\alpha)})$ a partition with parts ≥ 2 , let ν be a partition of $|\alpha|$, and $p = (p_1, \ldots, p_{\ell(\alpha)-1}, 0)$, with $p_i = \ell(\alpha) - i$, for $i = 1, \ldots, \ell(\alpha)$. Then

$$c_{R_{\alpha}}^{\nu} > 0 \Leftrightarrow \begin{cases} \nu \in [\alpha, (|\alpha| - p_1, p_1)] \Leftrightarrow \alpha \preceq \nu \preceq (|\alpha| - p_1, p_1), \\ \nu_i \leq \sum_{q=i}^{\ell(\alpha)} \alpha_q - p_i = \alpha_i + \sum_{q=i+1}^{\ell(\alpha)} \alpha_q - p_i, \text{ for } 1 \leq i \leq \ell(p). \end{cases}$$

• **Example** $\alpha = (5532), \ [R_{\alpha}] \subseteq [(5532), (15 - 3, 3)]$

Classification of full Schur support monotone ribbons

Definition Let α be a partition with parts ≥ 2 with overlapping partition p. For each i ∈ {1,..., ℓ(p) − 1}, put

$$\varrho_i := \sum_{q=i+1}^{\ell(\alpha)} \alpha_q - \rho_{i+1} + 1 > 0.$$

▶ **Theorem**. (A., Mamede) Let α be a partition with parts ≥ 2 , and overlapping partition p. $R_{\alpha} = [\alpha, (|\alpha| - p_1, p_1)]$ if and only if

$$\ell(lpha) = 2 \text{ or } \ell(lpha) \geq 3 \text{ and } \sum_{\substack{1 \leq j \leq i \\ lpha_j < arrho_i}}^i (arrho_i - lpha_j) \geq p_{i+1}, \ 1 \leq i \leq \ell(p) - 1.$$

A weaker but simpler version: α has full support \Rightarrow

$$\alpha_i < \varrho_i \Leftrightarrow \alpha_i \le \sum_{q=i+1}^{\ell(\alpha)} \alpha_q - p_{i+1}, \quad 1 \le i \le \ell(p) - 1.$$

▶ $R_{(5532)}$ has not full support: $\alpha_2 = 5 > \varrho_2 = \alpha_3 + \alpha_4 - 1 = 3 + 2 - 1$

Necessary condition for full equivalence support

▶ Theorem: Gaetz-Hardt-Sridhar necessary condition (2017). Let α be a partition with parts \geq 2 and R_{α} a connected ribbon. If R_{α} has full equivalence class then

$$N_j := \max\{k : \sum_{\substack{1 \leq i \leq j \\ lpha_i < k}} (k - lpha_i) \leq \ell(lpha) - j - 2\} < \varrho_j, \ 1 \leq j \leq \ell(lpha) - 2.$$

• Lemma(A., Mamede, 2018) For all $j \in \{1, \ldots, \ell(\alpha) - 2\}$,

$$egin{aligned} & \mathcal{N}_j := \max\{k: \sum_{\substack{1 \leq i \leq j \ lpha_i < k}} (k - lpha_i) \leq \ell(lpha) - j - 2\} < arrho_j \Leftrightarrow \ & \Leftrightarrow \sum_{\substack{1 \leq i \leq j \ lpha_i < arrho_i}} (arrho_j - lpha_i) \geq \ell(lpha) - j - 1. \end{aligned}$$

▶ **Theorem** . (A., Mamede, 2018) Let α be a partition with parts ≥ 2 and R_{α} a connected ribbon. If R_{α} has full equivalence class then R_{α} has full Schur support. When $\ell(\alpha) \leq 4$, R_{α} has full equivalence class if and only if R_{α} has full Schur support.

$$\begin{split} \ell(\alpha) &= 3: \ \alpha \text{ full equivalence class} \Leftrightarrow [R_{\alpha}] = [\alpha, (|\alpha| - 2, 2)] \\ \Leftrightarrow \ \alpha_1 < \sum_{q=2}^3 \alpha_q. \\ \ell(\alpha) &= 4: \ \alpha \text{ full equivalence class} \Leftrightarrow [R_{\alpha}] = [\alpha, (|\alpha| - 3, 3)] \\ \Leftrightarrow \ \alpha_1 < \sum_{q=2}^4 \alpha_q - 2, \ \alpha_2 < \sum_{q=3}^4 \alpha_q. \end{split}$$

Towards to a coincidence between partitions with full Schur support and full equivalence Schur support

► Theorem

Let α be a partition with parts ≥ 2 , and $R_{\alpha_{\pi}}$ a connected ribbon with overlapping partition p^{π} , with $\pi \in \sum_{\ell(\alpha)}$. Let $\nu \in [\alpha, (|\alpha| - \ell(\alpha) + 1, \ell(\alpha) - 1)]$. Then

$$\nu \in [R_{\alpha_{\pi}}](c_{R_{\alpha_{\pi}}}^{\nu} > 0) \Rightarrow \nu_{i} \leq \sum_{q=i}^{\ell(\alpha)} \alpha_{q} - p_{i}^{\pi}, \ 1 \leq i \leq \ell(p).$$
(1)

• Assuming that inequalities (1) are sufficient for $\nu \in [R_{\alpha_{\pi}}]$,

$$\nu \in [R_{\alpha}] \Rightarrow \nu_{i} \leq \sum_{q=i}^{\ell(\alpha)} \alpha_{q} - (\ell(\alpha) - i) \leq \sum_{q=i}^{\ell(\alpha)} \alpha_{q} - p_{i}^{\pi}, \ 1 \leq i \leq \ell(p)$$
$$\Rightarrow \nu \in [R_{\alpha_{\pi}}].$$
$$[R_{\alpha}] \subseteq [R_{\alpha_{\pi}}], \text{ for any } \pi \in \sum_{\ell(\alpha)}.$$
$$R_{\alpha} \text{ has full Schur support} \Rightarrow [R_{\alpha_{\pi}}] = [R_{\alpha}], \text{ for any } \pi \in \sum_{\ell(\alpha)}, \text{ and }$$
$$R_{\alpha} \text{ has full equivalence class.}$$

Horn-Klyachko linear inequalities

• Let
$$N = \{1, 2, \dots, n\}$$
, then for fixed d , with $1 \le d \le n$, let $I = \{i_1 > i_2 > \dots > i_d\} \subseteq N$.

Horn-Klyachko linear inequalities

- Let $N = \{1, 2, \dots, n\}$, then for fixed d, with $1 \le d \le n$, let $I = \{i_1 > i_2 > \dots > i_d\} \subseteq N$.
- Let I, J, K ⊆ N with #I = #J = #K = d and ordered decreasingly. One defines the partitions

$$\alpha(I) = I - (d, \dots, 2, 1),$$

 $\beta(J) = J - (d, \dots, 2, 1),$
 $\gamma(K) = K - (d, \dots, 2, 1).$

Horn-Klyachko linear inequalities

- ▶ Let $N = \{1, 2, ..., n\}$, then for fixed d, with $1 \le d \le n$, let $I = \{i_1 > i_2 > \cdots > i_d\} \subseteq N$.
- Let I, J, K ⊆ N with #I = #J = #K = d and ordered decreasingly. One defines the partitions

$$\alpha(I) = I - (d, \dots, 2, 1),$$

 $\beta(J) = J - (d, \dots, 2, 1),$
 $\gamma(K) = K - (d, \dots, 2, 1).$

▶ Let T_d^n be the set of all triples (I, J, K) with $I, J, K \subseteq N$ and #I = #J = #K = d such that $c_{\alpha(I),\beta(J)}^{\gamma(K)} > 0$.

Horn-Klyachko linear inequalities and Littlewood-Richardson coefficients

 c^λ_{μ,ν} > 0 if and only if the Horn-Klyachko inequalities are satisfied

$$\sum_{k=1}^{n} \lambda_k = \sum_{i=1}^{n} \mu_i + \sum_{j=1}^{n} \nu_j$$
$$\sum_{k \in K} \lambda_k \le \sum_{i \in I} \mu_i + \sum_{j \in J} \nu_j$$

for all triples $(I, J, K) \in T_d^n$ with $d = 1, \ldots, n-1$.

Lidskii- Wielandt inequalities and the dominance order

$$\sum_{i \in I} \lambda_i \le \sum_{i \in I} \mu_i + \sum_{i \le d} \nu_i, \text{ for all } I \subseteq \{1, \dots, n\} \text{ with } \#I = d$$

$$\Leftrightarrow \sum_{i \in I} (\lambda_i - \mu_i) \le \sum_{i \le d} \nu_i, \text{ for all } I \subseteq \{1, \dots, n\} \text{ with } \#I = d$$
$$\Leftrightarrow \sum_{i \le d} (\lambda_i - \mu_i)^+ \le \sum_{i \le d} \nu_i.$$