Skew RSK and coincidence of Littlewood-Richardson commutors

Olga Azenhas, CMUC, University of Coimbra

September 10-13, 2017
79th Séminaire Lotharingien de Combinatoire Joint session with
XXI Incontro Italiano di Combinatoria Algebrica Bertinoro

Littlewood-Richardson coefficients as structure constants

- The ring of symmetric polynomials: the product of Schur polynomials. Let $x=\left(x_{1}, \ldots, x_{d}\right)$. Schur polynomials $s_{\lambda}(x)$ for all partitions with $\ell(\lambda) \leq d$ form a \mathbb{Z}-linear basis for the ring $\Lambda_{d}:=\mathbb{Z}[x]^{\mathfrak{G}_{d}}$ of symmetric polynomials in x,

$$
s_{\mu} s_{\nu}=\sum_{\substack{\lambda \\ \ell(\lambda) \leq d}} c_{\mu \nu}^{\lambda} s_{\lambda}, \quad c_{\mu \nu}^{\lambda} \in \mathbb{Z}_{\geq 0}^{+} .
$$

- Schubert calculus of Grassmannians: the product in the cohomology of Grassmannians. Schur polynomials $s_{\lambda}(x)$ with λ inside a rectangle $d \times(n-d)(0<d<n)$ may be interpreted as representatives of Schubert classes σ_{λ}

Schubert classes $\left\{\sigma_{\lambda}\right\}_{\lambda \subseteq n \times(n-d)}$ form a \mathbb{Z}-linear basis for the cohomology ring $H^{*}(G(d, n))$ of the Grassmannian $G(d, n)$ (the set of all complex d-dimensional linear subspaces of $\left.\mathbb{C}^{n}\right)$, and

$$
\sigma_{\mu} \sigma_{\nu}=\sum_{\lambda \subseteq d \times(n-d)} c_{\mu \nu}^{\lambda} \sigma_{\lambda}
$$

Littlewood-Richardson coefficients

- These numbers $c_{\mu, \nu}^{\lambda}$ also arise as
- tensor product multiplicities. Schur polynomials $s_{\lambda}(x)$ may be interpreted as irreducible characters of the general linear group $G L_{d}(\mathbb{C})$. The decomposition of the tensor product of two irreducible polynomial representations V^{μ} and V^{ν} of the general linear group $G L_{d}(\mathbb{C})$ into irreducible representations of $G L_{d}(\mathbb{C})$, is given by

$$
V^{\mu} \otimes V^{\nu}=\bigoplus_{\ell(\lambda) \leq d} V^{\lambda \oplus c_{\mu \nu}^{\lambda}}
$$

- Positivity of Littlewood-Richardson coefficients in existence problems. There exist $d \times d$ non singular matrices A, B and C, over a local principal ideal domain, with Smith invariants μ, ν and λ respectively, such that $A B=C$ iff $c_{\mu \nu}^{\lambda}>0$.

Littlewood-Richardson coefficients

- These numbers $c_{\mu, \nu}^{\lambda}$ also arise as
- tensor product multiplicities. Schur polynomials $s_{\lambda}(x)$ may be interpreted as irreducible characters of the general linear group $G L_{d}(\mathbb{C})$. The decomposition of the tensor product of two irreducible polynomial representations V^{μ} and V^{ν} of the general linear group $G L_{d}(\mathbb{C})$ into irreducible representations of $G L_{d}(\mathbb{C})$, is given by

$$
V^{\mu} \otimes V^{\nu}=\bigoplus_{\ell(\lambda) \leq d} V^{\lambda \oplus c_{\mu \nu}^{\lambda}}
$$

- Positivity of Littlewood-Richardson coefficients in existence problems. There exist $d \times d$ non singular matrices A, B and C, over a local principal ideal domain, with Smith invariants μ, ν and λ respectively, such that $A B=C$ iff $c_{\mu \nu}^{\lambda}>0$.
- The commutativity of Littlewood-Richardson coefficients

$$
c_{\mu \nu}^{\lambda}=c_{\nu \mu}^{\lambda}
$$

Our structure coefficients are combinatorial numbers

- The structure coefficient $c_{\mu, \nu}^{\lambda}$ is
the cardinality of an explicit set of combinatorial objects.
- It is possible to determine $c_{\mu, \nu}^{\lambda}>0$ without determining its exact value.
- Exhibiting the commutation symmetry of these combinatorial objects means:

Fix $\mu, \nu \subset \lambda$ with $|\mu|+|\nu|=|\lambda|$, and your set $\mathbb{L}^{\mu}, \nu, \lambda$ of combinatorial objects counted by $c_{\mu, \nu}^{\lambda}$. An LR commutor is any bijection

$$
\begin{aligned}
\mathbb{L R}_{\mu, \nu, \lambda} & \rightarrow \mathbb{L} \mathbb{R}_{\nu, \mu, \lambda} \\
c_{\mu \nu}^{\lambda} & =c_{\nu \mu}^{\lambda} .
\end{aligned}
$$

Coincidence of LR commutors

- Problem (Pak, Vallejo'04). Show that all LR commutors are involutions and coincide.

One has several LR commutors and all are involutions.
One involution needs to be included in the coincidence list :
Goal: Internal insertion LR commutor coincides with switching LR commutor.

- The Littlewood-Richardson (LR) rule (D.E. Littlewood and A. Richardson 34; M.-P. Schützenberger 77; G.P. Thomas 74). In the linear expansion of a product of two Schur polynomials

$$
s_{\mu}(x) s_{\nu}(x)=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}(x)
$$

the coefficients are given by

$$
c_{\mu \nu}^{\lambda}=\#\{\text { ballot SSYT of shape } \lambda / \mu \text { and content } \nu\} .
$$

The coefficients $c_{\mu \nu}^{\lambda}$ are known as Littlewood-Richardson (LR) coefficients, and the ballot SSYT's are also known as Littlewood-Richardson tableaux.

- LR tableau, ballot tableau The content of each initial segment of the reading word, right to left across rows and top to bottom, is a partition.

one has 3 candidates 1,2,3 each receiving 4,2,1 votes respectively. A particular ordering of the votes is then a ballot sequence of length 7 where at any stage candidate 1 has at least many votes as candidate 2 , and candidate 2 has at least many votes as candidate 3.

Tableau Switching (Benkart-Sotille-Stroomer)

- A perforated tableau U of shape λ is a filling of some of the boxes in λ with integers satisfying some restrictions: ${ }^{\mathrm{x}^{\prime}} \mathrm{x}^{\prime} \quad \mathrm{x}^{\prime} \mathrm{x} \quad x \geq x^{\prime}$; and ${ }_{\mathrm{x}} \mathrm{x} \quad x>x^{\prime}$. Switch an integer with the neighbour empty box to the south, east, north or west, in a perforated tableau, so that the result is still a perforated tableau:

A perforated tableau pair $U \cup V$ of shape λ is the superimposing of two perforated tableaux U and V of shape λ, so that together they completely fill λ and no two letters are in a same box.

- If \mathbf{u} and \mathbf{v} are vertically or horizontally adjacent letters from U and V respectively, then an interchanging of \mathbf{u} with \mathbf{v} is a switch, written $\mathbf{u} \underset{s}{\leftrightarrow} \mathbf{v}$, provided it produces a new perforated tableau pair,

$$
\underset{\mathbf{v}}{\mathbf{u}} \underset{s}{\underset{\mathrm{u}}{\mathbf{v}}} \quad \mathrm{uvv} \underset{\mathrm{~s}}{\underset{\mathrm{v}}{ } \mathrm{vu} .}
$$

- switching in a perforated tableau: local moves preserve the perforated condition.

- switching in a perforated pair: local moves preserve the perforated condition.

- Jeu de taquin in a skew tableau is a particular case of switching where an order of the switches has been imposed. The game can be reduced to the local moves:

Switching LR commutor ρ_{1}

- $\rho_{1}^{(n)}: \mathbb{L}_{\mathbb{R}_{\mu, \nu, \lambda}} \rightarrow \mathbb{L}_{\mathbb{R}_{\nu, \mu, \lambda}}, \ell(\lambda) \leq n$.

Switching LR commutor ρ_{1}

- $\rho_{1}^{(n)}: \mathbb{L}_{\mathbb{R}_{\mu, \nu, \lambda}} \rightarrow \mathbb{L}_{\nu, \mu, \lambda}, \ell(\lambda) \leq n$.
- Tableau sliding LR commutor (Thomas-Yong infusion). To each entry of the inner shape (in red) associate a jeu de taquin slide.

$$
\begin{aligned}
& \left.Y_{32} \cup T=\begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline
\end{array} \right\rvert\, \begin{array}{l}
1 \\
\hline 1
\end{array} 2 \\
& \begin{array}{|l|l|l|l}
\hline & 1 & 1 & 1 \\
\hline 1 & 1 & 2 & 2 \\
\hline 2 & 3 & 2
\end{array} \rightarrow \begin{array}{|l|l|l|l|}
\hline 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 2 & 2 \\
\hline 2 & 3 & 2
\end{array} \rightarrow \begin{array}{|l|l|l|l}
\hline 1 & 1 & 1 & 1 \\
\hline 1 & 2 & 1 & 2 \\
\hline 2 & 3 & 2 & \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|l|}
\hline 1 & 1 & 1 & 1 \\
\hline 1 & 2 & 1 & 2 \\
\hline 2 & 3 & 2
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline 2 & 2 & 1 \\
\hline 1 & 2 \\
\hline 1 & 3 & 2 \\
\hline
\end{array} \\
& \left.\rightarrow \begin{array}{|l|l|l}
1 & 1 & 1 \\
2 & 2 & 1 \\
\hline 3 & 2 & 1 \\
3 & 1 & 2
\end{array}\right]=Y_{321} \cup H, H \equiv T .
\end{aligned}
$$

Internal and External insertion on skew-tableaux

For skew tableaux there are two types of row insertion: external and internal. External insertion is similar to Schensted's original procedure.

Sagan-Stanley internal insertion operator ϕ_{i} on T a skew-tableau:

$$
\phi_{3} T=
$$

			11
		12	2
	3	33	
1	2) 4	44	
(3)			

- Definition of internal insertion operator ϕ_{i} on T. Need $\left(i, \mu_{i}+1\right)$ to be an inner corner of T :
- ϕ_{i} bumps the entry, say x, in the inner corner cell $\left(i, \mu_{i}+1\right)$ of T, and then inserts (externally as in the Schensted procedure) the bumped element x in the subtableau consisting of the last $n-i$ rows of T.

Special case of Sagan-Stanley skew RSK correspondence

- Internal row insertion correspondence. Fix partitions $\mu \subseteq \alpha, \beta$. There is a bijection, defined below,

$$
\begin{array}{rll}
Y T(\alpha / \mu) \times Y T(\beta / \mu) & \longrightarrow & \bigcup_{\lambda} \\
& & \\
(T, U) & \longrightarrow & (\lambda|=|\alpha|+|\beta|-|\mu| \\
\mid P, Q),
\end{array}
$$

where $P \equiv T$ and $Q \equiv U$. The P-tableau P is the internal row insertion of T whose sequence of inner corners containing the entries of T to be internally inserted is dictated by the entries of U in the standard order.

- $T=$| 1 | 3 |
| :--- | :--- |
| 2 | 3 |,$\quad U=$| 1 | $1 \mid 2$ |
| :--- | :--- | :--- |
| 2 | 2 |$s t d U=$| 1 | 215 |
| :--- | :--- | :--- |
| 34 | |.
- internal insertion order word $R(U)=12211=R(s t d U)$.
- $P=\phi_{R(U)} T=\phi_{R(s t d U)} T=\phi_{12211} T=\phi_{1} \phi_{2} \phi_{2} \phi_{1} \phi_{1} T$.
P-tableau in the Internal row insertion correspondence
- $\phi_{R(U)}=\phi_{R(s t d U)}=\phi_{12211}=\phi_{1} \phi_{2} \phi_{2} \phi_{1} \phi_{1}$,

$$
\begin{aligned}
& P=\phi_{12211} T=\phi_{12211} \begin{array}{|c}
\frac{1}{2} 3 \\
\frac{13}{\frac{1}{2} 3} \\
\frac{3}{2}
\end{array}=\phi_{122} \begin{array}{|l|l|}
\hline \frac{1}{2} & 3 \\
\hline
\end{array}
\end{aligned}
$$

- Under which conditions do we have coincidence of the P-tableau?

$$
\begin{aligned}
& U^{\prime}={\frac{1^{3}}{}}^{2} \text { and } V^{\prime}=\square_{\frac{1}{2}}{ }^{3}, R\left(U^{\prime}\right)=312 \equiv R\left(V^{\prime}\right)=132 \text {, and } \\
& \phi_{312} T=\phi_{132} T=\frac{\frac{1}{\frac{1}{3}}}{\frac{2}{2}} .
\end{aligned}
$$

The Knuth class of an internal insertion order word

- Elementary Knuth transformations on words:

$$
k i j \equiv k j i=\begin{aligned}
& i \\
& k
\end{aligned} j, \quad i<k \leq j, \quad i j k \equiv j i k=\begin{aligned}
& i \\
& \hline j
\end{aligned}, \quad i \leq k<j .
$$

- Sufficient conditions for the coincidence of the P-tableau in the internal insertion correspondence.

Theorem

Knuth commutation of internal insertion operators A. (2016). Let u be an internal insertion order word of T and $v \equiv u$. Then
(a) v is an internal insertion order word of T.
(c) $\phi_{u} T=\phi_{v} T=P$.

Extension of Internal insertion operators

Sagan-Stanley internal insertion operator $\bar{\phi}_{i}$ on $Y \cup T, Y$ Yamanouchi tableau, T a skew-tableau:

Internal insertion LR commutor A.'99; A., King, Terada'16

- $Y_{32} \cup T=$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 2 | 2 | 1 |
| | 2 | 1 |
| | 2 | 2 |$\quad \bar{\phi}_{12} \bar{\phi}_{1}$

$$
\begin{aligned}
& \bullet \quad \chi_{\chi_{1}^{3} \omega_{1}^{1}}^{\rightarrow 1} 1 \\
& \chi_{3}^{0} \bar{\phi}_{12} \omega_{3}^{1}\left[\chi_{2}^{2} \bar{\phi}_{1} \omega_{2}^{1}\left[\chi_{1}^{3} \omega_{1}^{1}(\emptyset)\right]\right]=Y_{321} \cup H
\end{aligned}
$$

Internal insertion LR commutor A.'99; A., King, Terada'16

- $Y_{32} \cup T=$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 2 | 1 | 1 |
| | 2 | 1 |
| | 2 | 2 |$\quad \bar{\phi}_{12} \bar{\phi}_{1}$

$\chi_{3}^{0} \bar{\phi}_{12} \omega_{3}^{1}\left[\chi_{2}^{2} \bar{\phi}_{1} \omega_{2}^{1}\left[\chi_{1}^{3} \omega_{1}^{1}(\emptyset)\right]\right]=Y_{321} \cup H$

- $(Y \cup T)^{(1)}=1|1| 1 \mid \underset{s}{\rightarrow 1|1| 1}=\rho_{1}^{(1)}\left[(Y \cup T)^{(1)}\right]=\chi_{1}^{3} \omega_{1}^{1} \rho_{1}^{(0)}[\emptyset]$

Internal insertion LR commutor A.'99; A., King, Terada'16

- $Y_{32} \cup T=$| 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- |
| 2 | 2 | 1 | 2 |
| 1 | 2 | 3 | 2 |$\quad \bar{\phi}_{12} \bar{\phi}_{1}$

$\bullet \quad \chi_{\chi_{1}^{3} \omega_{1}^{1}}^{\rightarrow 1} 1$

$$
\chi_{3}^{0} \bar{\phi}_{12} \omega_{3}^{1}\left[\chi_{2}^{2} \bar{\phi}_{1} \omega_{2}^{1}\left[\chi_{1}^{3} \omega_{1}^{1}(\emptyset)\right]\right]=Y_{321} \cup H
$$

- $(Y \cup T)^{(1)}=1|1| 1 \mid \underset{s}{\rightarrow 1|1| 1}=\rho_{1}^{(1)}\left[(Y \cup T)^{(1)}\right]=\chi_{1}^{3} \omega_{1}^{1} \rho_{1}^{(0)}[\emptyset]$

$$
\begin{aligned}
& =\chi_{2}^{2} \bar{\phi}_{1} \omega_{2}^{1} \rho_{1}^{(1)}\left[(Y \cup T)^{(1)}\right]
\end{aligned}
$$

Internal insertion LR commutor A.'99; A., King, Terada'16

- $Y_{32} \cup T=$	1	1	1	1
2	2	1	2	
1	2	3	2	$\quad \bar{\phi}_{12} \bar{\phi}_{1}$

- $(Y \cup T)^{(1)}=1|1| 1 \mid \underset{s}{\rightarrow 1|1| 1}=\rho_{1}^{(1)}\left[(Y \cup T)^{(1)}\right]=\chi_{1}^{3} \omega_{1}^{1} \rho_{1}^{(0)}[\emptyset]$

$$
\begin{aligned}
& =\chi_{2}^{2} \bar{\phi}_{1} \omega_{2}^{1} \rho_{1}^{(1)}\left[(Y \cup T)^{(1)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\chi_{3}^{0} \bar{\phi}_{12} \omega_{3}^{1} \rho_{1}^{(2)}(Y \cup T)^{(2)} \text {. }
\end{aligned}
$$

Internal insertion and switching LR commutors coincide

Theorem

(A., 2017)

Let $n \geq 1$ and $Y \cup T \in \mathcal{L R}^{(n)}$ with $Y=Y_{\mu}$ Yamanouchi tableau and T a ballot tableau of shape λ / μ and weight ν. Consider the nth row word of T where F is the row subword restricted to the entries in [$n-1$], and ν_{n} is the number of entries equal to n. Then

$$
\rho_{1}^{(n)}(Y \cup T)=\chi_{n}^{\mu_{n}} \bar{\phi}_{F} \omega_{n}^{\nu_{n}} \rho_{1}^{(n-1)}\left[(Y \cup T)^{(n-1)}\right]=\chi_{n}^{\mu_{n}} \omega_{n}^{\nu_{n}} \bar{\phi}_{F} \rho_{1}^{(n-1)}\left[(Y \cup T)^{(n-1)}\right],
$$

with $\rho_{1}^{(0)}(\emptyset):=\emptyset$. In particular, all bumping routes of $\bar{\phi}_{F}$ are pairwise disjoint and terminate in the nth row.
$(Y \cup T)^{(n-1)}$ consists of the first $n-1$ rows of T.

A bit more: Sketch of the proof (main steps)

- Reduce to the case $\mu=\left(\mu_{1}, \ldots, \mu_{n-1}, 0\right)$. By induction on $n \geq 1$ and $|F| \geq 0$.
- $n=1$, trivial,

$$
\begin{gathered}
\rho_{1}^{(1)}\left(\emptyset \cup Y_{\left(\nu_{1}\right)}\right)=\omega_{1}^{\nu_{1}} \emptyset=\omega_{1}^{\nu_{1}} \rho_{1}^{(0)}[\emptyset]=Y_{\left(\nu_{1}\right)} \cup \emptyset . \\
\emptyset \cup Y_{\left(\nu_{1}\right)}=\emptyset \cup 111 \rightarrow 111 \cup \emptyset=Y_{\left(\nu_{1}\right)} \cup \emptyset
\end{gathered}
$$

Sketch of the proof

- Assume the statement true for n and prove for $n+1$. Detach the $n+1$ th row

$$
Y \cup T=F(n+1)^{\nu_{n+1}} *(Y \cup T)^{(n)},
$$

F a word on the alphabet $[n]$.
We claim

$$
\rho_{1}^{(n+1)}(Y \cup T)=\omega_{n+1}^{\nu_{n+1}} \bar{\phi}_{F} \rho_{1}^{(n)}\left[(Y \cup T)^{(n)}\right] .
$$

- $|F|=0$. Trivial. Switching on $Y \cup T$ reduces to $(Y \cup T)^{(n)}$, the first n rows of $Y \cup T$, and $\bar{\phi}_{F}=i d$,

$$
\rho_{1}^{(n+1)}(Y \cup T)=\omega_{n+1}^{\nu_{n+1}} \rho_{1}^{(n)}\left[(Y \cup T)^{(n)}\right] .
$$

Sketch of the proof

- Let $|F| \geq 1$. Apply switching to decompose $Y \cup T$ and reduce $|F|$

$$
\begin{aligned}
& Y \cup T \underset{s}{\rightarrow}\left[Y^{\prime} \cup S\right] \cup\left[D * Q^{(n)}\right]=\left[\widehat{F}(n+1)^{\nu_{n+1}} *\left(Y^{\prime} \cup S\right)^{(n)}\right] \cup\left[D * Q^{(n)}\right], \\
& Y^{\prime}=Y_{\left(\mu_{1}, \ldots, \mu_{d-1}\right)}, \mu_{d}>0, S \equiv T, D * Q^{(n)} \equiv Y_{\left(\mu_{d}, \ldots, \mu_{n-1}\right)}, \widehat{F} \text { strict } \\
& \text { subword of } F \text { and } D=d^{|D|},|D|>0,
\end{aligned}
$$

$$
|\widehat{F}|+|D|=|F|
$$

- $0 \leq|\widehat{F}|<|F|$. By induction on $|F|$,

$$
\rho_{1}^{(n+1)}\left(Y^{\prime} \cup S\right)=\omega_{n+1}^{\nu_{n+1}} \bar{\phi}_{\widehat{F}} \rho_{1}^{(n)}\left[\left(Y^{\prime} \cup S\right)^{(n)}\right]
$$

all $\bar{\phi}_{\hat{F}}$-bumping routes terminate in the $(n+1)$ th row.

- One has so far

$$
\rho_{1}^{(n+1)}(Y \cup T)=\omega_{n+1}^{\nu_{n+1}} \bar{\phi}_{\widehat{F}} \rho_{1}^{(n)}\left[\left(Y^{\prime} \cup S\right)^{(n)}\right] \cup\left(D * Q^{(n)}\right),
$$

all $\bar{\phi}_{\hat{F}}$-bumping routes terminate in the $(n+1)$ th row.

- We claim

$$
\rho_{1}^{(n+1)}(Y \cup T)=\omega_{n+1}^{\nu_{n+1}} \bar{\phi}_{F} \rho_{1}^{(n)}\left[(Y \cup T)^{(n)}\right] .
$$

- $Y \cup T \underset{s}{\rightarrow}\left[Y^{\prime} \cup S\right] \cup\left[D * Q^{(n)}\right]=\left[\widehat{F}(n+1)^{\nu_{n+1}} *\left(Y^{\prime} \cup S\right)^{(n)}\right] \cup\left[D * Q^{(n)}\right]$. Detach the nth row

$$
\left(Y^{\prime} \cup S\right)^{(n)}=G C n^{\hat{\nu}_{n}} *\left(Y^{\prime} \cup S\right)^{(n-1)}
$$

G and C row words in the alphabet $[n-1],|G|=|\widehat{F}|+|D|=|F|$.

$\left[\widehat{F}(n+1)^{\nu_{n+1}} \cup D\right] *\left[G C n^{\hat{\nu}_{n}} \cup X\right]=$| A | B | C | n^{*} | \cdots | n^{*} | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \hat{F} | $n+1^{*}$ | \cdots | $n+1^{*}$ | D | | |$\stackrel{s}{\leftrightarrow}$

G_{1}	F_{2}	G_{3}	F_{4}	\cdots	G_{k-1}	F_{k}	C	n^{*}	\cdots	n^{*}	X
F_{1}	D_{2}	F_{3}	D_{4}	\cdots	F_{k-1}	D_{k}	$n+1^{*}$	\cdots	$n+1^{*}$		
$\stackrel{s}{\leftrightarrow}$											

G_{1}	D_{2}	G_{3}	D_{4}	\ldots	G_{k-1}	D_{k}	C	n^{*}	\cdots	n^{*}	X
F_{1}	F_{2}	F_{3}	F_{4}	...	F_{k-1}	F_{k}	$n+1^{*}$	\cdots	$n+1^{*}$		

$\widehat{G}:=G_{1} G_{3} \ldots G_{k-1}$ a subword of $G:=A B,|\widehat{G}|=|\widehat{F}|$, and $\widehat{F} G \equiv F \widehat{G} \quad$ Knuth equivalent.

- $Y \cup T \underset{s}{\rightarrow}\left[Y^{\prime} \cup S\right] \cup\left[D * Q^{(n)}\right]=\left[\widehat{F}(n+1)^{\nu_{n+1}} *\left(Y^{\prime} \cup S\right)^{(n)}\right] \cup\left[D * Q^{(n)}\right]$. Detach the nth row

$$
\left(Y^{\prime} \cup S\right)^{(n)}=G C n^{\hat{\nu}_{n}} *\left(Y^{\prime} \cup S\right)^{(n-1)}
$$

G and C row words in the alphabet $[n-1],|G|=|\widehat{F}|+|D|=|F|$.

$\left[\widehat{F}(n+1)^{\nu_{n+1}} \cup D\right] *\left[G C n^{\hat{\nu}_{n}} \cup X\right]=$| A | B | C | n^{*} | \cdots | n^{*} | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \widehat{F} | $n+1^{*}$ | \cdots | $n+1^{*}$ | D | | |$\stackrel{s}{\leftrightarrow}$

G_{1}	F_{2}	G_{3}	F_{4}	\cdots	G_{k-1}	F_{k}	C	n^{*}	\cdots	n^{*}	X
F_{1}	D_{2}	F_{3}	D_{4}	\cdots	F_{k-1}	D_{k}	$n+1^{*}$	\cdots	$n+1^{*}$		
$\stackrel{s}{\leftrightarrow}$											

$\widehat{G}:=G_{1} G_{3} \ldots G_{k-1}$ a subword of $G:=A B,|\widehat{G}|=|\widehat{F}|$, and $\widehat{F} G \equiv F \widehat{G} \quad$ Knuth equivalent.

- $(Y \cup T)^{(n)} \underset{s}{\rightarrow}\left[\widehat{G} C n^{\hat{\nu}_{n}} *\left(Y^{\prime} \cup S\right)^{(n-1)}\right] \cup\left(D X * Q^{(n-1)}\right)$
- By induction on n

$$
\begin{aligned}
\rho_{1}^{(n)}\left(Y^{\prime} \cup S\right)^{(n)} & =\rho_{1}^{(n)}\left[G C n^{\hat{\nu}_{n}} *\left(Y^{\prime} \cup S\right)^{(n-1)}\right] \\
& =\bar{\phi}_{G} \rho_{1}^{(n)}\left(C n^{\hat{\nu}_{n}} *\left(Y^{\prime} \cup S\right)^{(n-1)}\right)
\end{aligned}
$$

all $\bar{\phi}_{G}$-bumping routes terminate in the nth row.

$$
\begin{aligned}
\rho_{1}^{(n)}\left[(Y \cup T)^{(n)}\right] & =\rho_{1}^{(n)}\left[\widehat{G} C n^{\hat{\nu}_{n}} *\left(Y^{\prime} \cup S\right)^{(n-1)}\right] \cup\left(D X * Q^{(n-1)}\right) \\
& =\bar{\phi}_{\widehat{G}} \rho_{1}^{(n)}\left[C n^{\hat{\nu}_{n}} *\left(Y^{\prime} \cup S\right)^{(n-1)}\right] \cup\left(D X * Q^{(n-1)}\right)
\end{aligned}
$$

all $\bar{\phi}_{\widehat{G}}$-bumping routes terminate in the nth row.

$$
\begin{gathered}
\hat{F} G \equiv F \widehat{G} \Rightarrow \bar{\phi}_{\widehat{F} G}=\bar{\phi}_{F \widehat{G}} . \\
\rho_{1}^{(n)}\left[\left(Y^{\prime} \cup S\right)^{(n)}\right]=\bar{\phi}_{G} \rho_{1}^{(n)}\left[C n^{\hat{N}_{n}} *\left(Y^{\prime} \cup S\right)^{(n-1)}\right] \\
\rho_{1}^{(n)}\left[(Y \cup T)^{(n)}\right]=\bar{\phi}_{\widehat{G}} \rho_{1}^{(n)}\left[C n^{\hat{\nu}_{n}} *\left(Y^{\prime} \cup S\right)^{(n-1)}\right] \cup\left(D X * Q^{(n-1)}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \rho_{1}^{(n+1)}(Y \cup T)=\omega_{n+1}^{\nu_{n+1}} \bar{\phi}_{\hat{\rho}} \rho_{1}^{(n)}\left[\left(Y^{\prime} \cup S\right)^{(n)}\right] \cup\left(D * Q^{(n)}\right), \\
& =\omega_{n+1}^{\nu_{n+1}} \bar{\phi}_{\bar{F}} \bar{\phi}_{G} \rho_{1}^{(n)}\left[C_{n^{\nu_{n}}} *\left(Y^{\prime} \cup S\right)^{(n-1)}\right] \cup\left(D * Q^{(n)}\right) \\
& =\omega_{n+1}^{\nu_{n+1}} \bar{\phi}_{F} \bar{\phi}_{\widehat{G}} \rho_{1}^{(n)}\left[C_{n^{\nu_{n}}}{ }^{\hat{D}^{\prime}}\left(Y^{\prime} \cup S\right)^{(n-1)}\right] \cup\left(D * X * Q^{(n-1)}\right) \\
& =\omega_{n+1}^{\nu_{n+1}} \bar{\phi}_{F}\left[\bar{\phi}_{\widehat{G}} \rho_{1}^{(n)}\left(C_{n}^{\hat{\nu}_{n}} *\left(Y^{\prime} \cup S\right)^{(n-1)}\right) \cup\left(D X * Q^{(n-1)}\right)\right] \\
& =\omega_{n+1}^{\nu_{n+1}} \bar{\phi}_{F} \rho_{1}^{(n)}\left[(Y \cup T)^{(n)}\right] \text {. }
\end{aligned}
$$

