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Littlewood-Richardson coefficients as structure constants

The ring of symmetric polynomials: the product of Schur polynomials. Let
x = (x1, . . . , xd). Schur polynomials sλ(x) for all partitions with `(λ) ≤ d
form a Z-linear basis for the ring Λd := Z[x ]Sd of symmetric polynomials in
x ,

sµsν =
∑
λ

`(λ)≤d

cλµ νsλ, cλµ ν ∈ Z+
≥0.

Schubert calculus of Grassmannians: the product in the cohomology of
Grassmannians. Schur polynomials sλ(x) with λ inside a rectangle
d × (n − d) (0 < d < n) may be interpreted as representatives of Schubert
classes σλ

.

Schubert classes {σλ}λ⊆n×(n−d) form a Z-linear basis for the cohomology
ring H∗(G (d , n)) of the Grassmannian G (d , n) (the set of all complex
d-dimensional linear subspaces of Cn), and

σµσν =
∑

λ⊆d×(n−d)

cλµ νσλ.
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Littlewood-Richardson coefficients

These numbers cλµ,ν also arise as

I tensor product multiplicities. Schur polynomials sλ(x) may be
interpreted as irreducible characters of the general linear group
GLd(C). The decomposition of the tensor product of two irreducible
polynomial representations V µ and V ν of the general linear group
GLd(C) into irreducible representations of GLd(C), is given by

V µ ⊗ V ν =
⊕
`(λ)≤d

V λ⊕c
λ
µ ν .

Positivity of Littlewood-Richardson coefficients in existence problems. There
exist d × d non singular matrices A, B and C , over a local principal ideal
domain, with Smith invariants µ, ν and λ respectively, such that AB = C iff
cλµ ν > 0.

The commutativity of Littlewood-Richardson coefficients

cλµν = cλνµ
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Our structure coefficients are combinatorial numbers

The structure coefficient cλµ,ν is

the cardinality of an explicit set of combinatorial objects.

It is possible to determine cλµ,ν > 0 without determining its exact value.

Exhibiting the commutation symmetry of these combinatorial objects means:

Fix µ, ν ⊂ λ with |µ|+ |ν| = |λ|, and your set LRµ,ν,λ of combinatorial
objects counted by cλµ,ν . An LR commutor is any bijection

LRµ,ν,λ → LRν,µ,λ

cλµ ν = cλν µ.

5 / 29



Coincidence of LR commutors

Problem (Pak, Vallejo’04). Show that all LR commutors are involutions and
coincide.

One has several LR commutors and all are involutions.

One involution needs to be included in the coincidence list :

Goal: Internal insertion LR commutor coincides with switching LR commutor.
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The Littlewood-Richardson (LR) rule (D.E. Littlewood and A. Richardson
34; M.-P. Schützenberger 77; G.P. Thomas 74). In the linear expansion of a
product of two Schur polynomials

sµ(x) sν(x) =
∑
λ

cλµν sλ(x)

the coefficients are given by

cλµν = #{ballot SSYT of shape λ/µ and content ν}.

The coefficients cλµν are known as Littlewood–Richardson (LR) coefficients,
and the ballot SSYT’s are also known as Littlewood-Richardson tableaux.

LR tableau, ballot tableau The content of each initial segment of the
reading word, right to left across rows and top to bottom, is a partition.

1 1 2
1 2

1 3
2112131

1 1 1
2 2

1 3
1112231

1 1 1
1 2

2 3
1112132

one has 3 candidates 1,2,3 each receiving 4,2,1 votes respectively. A particular ordering of

the votes is then a ballot sequence of length 7 where at any stage candidate 1 has at least
many votes as candidate 2, and candidate 2 has at least many votes as candidate 3.
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Tableau Switching (Benkart-Sotille-Stroomer)

A perforated tableau U of shape λ is a filling of some of the boxes in λ with

integers satisfying some restrictions:
x′

x
, x′ x x ≥ x ′; and

x′

x
x > x ′.

Switch an integer with the neighbour empty box � to the south, east, north
or west, in a perforated tableau, so that the result is still a perforated
tableau:

contracts U �
x →s

x
� � x→

s
x �

expands U x
� →

s

�
x x �→

s
� x .

A perforated tableau pair U ∪ V of shape λ is the superimposing of two
perforated tableaux U and V of shape λ, so that together they completely
fill λ and no two letters are in a same box.

If u and v are vertically or horizontally adjacent letters from U and V
respectively, then an interchanging of u with v is a switch, written u↔

s
v,

provided it produces a new perforated tableau pair,

u
v ↔

s

v
u u v↔

s
v u .
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switching in a perforated tableau: local moves preserve the perforated
condition.

1 1 1�
2 2 2
3��
�

1 1 1�
2 2 2
���
3

1 1 1�
2��
� 2 2
3

1� 1 1
2��
� 2 2
3

�� 1 1
1��
2 2 2
3

�� 1 1
� 1�
2 2 2
3

��� 1
� 1 1
2 2 2
3

switching in a perforated pair: local moves preserve the perforated condition.

1 1 1 1
2 2 2
3 2 2
1

1 1 1 1
2 2 2
1 2 2
3

1 1 1 1
2 2 2
1 2 2
3

1 1 1 1
2 2 2
1 2 2
3

1 1 1 1
1 2 2
2 2 2
3

1 1 2 1
2 1 1
2 2 2
3

Jeu de taquin in a skew tableau is a particular case of switching where an
order of the switches has been imposed. The game can be reduced to the
local moves:

� b → a b , a≤b � b →b � , a>b
a � a a

��� 1
� 1 1
2 2 2
3

��� 1
1� 1
2 2 2
3

��� 1
1 1�
2 2 2
3

��� 1
1 1 2
2 2�
3

�� 1�
1 1 2
2 2�
3

� 1 1�
1� 2
2 2�
3

� 1 1�
1 2 2
2��
3

1 1 1�
2 2 2
3��
�
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Switching LR commutor ρ1

ρ
(n)
1 : LRµ,ν,λ → LRν,µ,λ, `(λ) ≤ n.

Y32 ∪ T =
1 1 1 1
2 2 1 2
1 2 3

→
s

1 1 1 1
1 2 1 2
2 2 3

→
s

1 1 1 1
1 1 2 2
2 2 3

→
s

1 1 1 1
1 1 2 2
2 3 2

→
s

1 1 1 1
1 1 2 2
2 3 2

→
s

1 1 1 1
2 1 2 2
1 3 2

→
s

1 1 1 1
2 2 1 2
1 3 2

→
s

1 1 1 1
2 2 1 2
3 1 2

= Y321 ∪ H, H ≡ T .

Tableau sliding LR commutor (Thomas-Yong infusion). To each entry of the
inner shape (in red) associate a jeu de taquin slide.

Y32 ∪ T =
1 1 1 1
2 2 1 2
1 2 3

→
1 1 1 1
2 1 2 2
1 2 3

→
1 1 1 1
2 1 2 2
1 2 3

→
1 1 1 1
1 1 2 2
2 2 3

→
1 1 1 1
1 1 2 2
2 3 2

→

1 1 1 1
1 1 2 2
2 3 2

→
1 1 1 1
1 1 2 2
2 3 2

→
1 1 1 1
1 2 1 2
2 3 2

→
1 1 1 1
1 2 1 2
2 3 2

→
1 1 1 1
2 2 1 2
1 3 2

→
1 1 1 1
2 2 1 2
3 1 2

= Y321 ∪ H, H ≡ T .
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Internal and External insertion on skew-tableaux

For skew tableaux there are two types of row insertion: external and internal.
External insertion is similar to Schensted’s original procedure.

Sagan-Stanley internal insertion operator φi on T a skew-tableau:

T =

1 1
1 2 2

2© 3 3
1 3 4 4
5 5

φ3T =

1 1
1 2 2

© 3 3
1 2© 4 4
3© 5
5©

Definition of internal insertion operator φi on T . Need (i , µi + 1) to be an
inner corner of T :

I φi bumps the entry, say x , in the inner corner cell (i , µi + 1) of T , and
then inserts (externally as in the Schensted procedure) the bumped
element x in the subtableau consisting of the last n − i rows of T .

12 / 29



Special case of Sagan-Stanley skew RSK correspondence

Internal row insertion correspondence. Fix partitions µ ⊆ α, β. There is a
bijection, defined below,

YT (α/µ)× YT (β/µ) −→
⋃
λ

|λ|=|α|+|β|−|µ|

YT (λ/β)× YT (λ/α)

(T ,U) −→ (P,Q),

where P ≡ T and Q ≡ U. The P-tableau P is the internal row insertion of
T whose sequence of inner corners containing the entries of T to be
internally inserted is dictated by the entries of U in the standard order.

T = 1 3
2 3

, U = 1 1 2
2 2

stdU = 1 2 5
3 4

.

internal insertion order word R(U) = 12211 = R(stdU).

P = φR(U)T = φR(stdU)T = φ12211T = φ1φ2φ2φ1φ1T .
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P-tableau in the Internal row insertion correspondence

φR(U) = φR(stdU) = φ12211 = φ1φ2φ2φ1φ1,

P = φ12211T = φ12211
1 3

2 3
= φ1221

3
1 3
2

= φ122 1 3 3
2

= φ12
3 3

1
2

= φ1
3

1 3
2

= 3
1 3
2

Under which conditions do we have coincidence of the P-tableau?

U = 1
2

and V = 3
1

, φ2φ1T =
3

3
1
2

6= φ1φ2T =
3

1
2 3

.

U ′ =
2

1
3

and V ′ =
3

1
2

, R(U ′) = 312 ≡ R(V ′) = 132, and

φ312T = φ132T =
3

1
3

2

.

Knuth equivalence on internal insertion words provides a sufficient condition.
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The Knuth class of an internal insertion order word

Elementary Knuth transformations on words:

kij ≡ kji = i j
k

, i < k ≤ j , ijk ≡ jik = i k
j , i ≤ k < j .

Sufficient conditions for the coincidence of the P-tableau in the internal
insertion correspondence.

Theorem

Knuth commutation of internal insertion operators A. (2016). Let u be an
internal insertion order word of T and v ≡ u. Then

(a) v is an internal insertion order word of T .

(c) φuT = φvT = P.
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Extension of Internal insertion operators

Sagan-Stanley internal insertion operator φ̄i on Y ∪T , Y Yamanouchi tableau, T
a skew-tableau:

Y ∪ T =

1 1 1 1 1 1
2 2 1 2 2
3 2© 3 3
1 3 4 4
5 5

φ̄3(Y ∪ T ) =

1 1 1 1 1 1
2 2 1 2 2
3 3© 3 3
1 2© 4 4
3© 5
5©
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Internal insertion LR commutor A.’99; A., King, Terada’16

Y32 ∪ T =
1 1 1 1
2 2 1 2
1 2 3

φ̄12φ̄1

∅ →
χ3

1ω
1
1

1 1 1 1 →
χ2

2φ̄1ω1
2

1 1 1 1
2 1 2 2

→
χ0

3φ̄1φ̄2ω1
3

1 1 1 1
2 2 1 2
3 1 2

= Y321 ∪ H

χ0
3φ̄12ω

1
3[χ2

2φ̄1ω
1
2[χ3

1ω
1
1(∅)]] = Y321 ∪ H

(Y ∪ T )(1) = 1 1 1 1 →
s

1 1 1 1 = ρ
(1)
1 [(Y ∪ T )(1)] = χ3

1ω
1
1ρ

(0)
1 [∅]

(Y ∪ T )(2) = 1 1 1 1
2 2 1 2 →s

1 1 1 1
2 1 2 2 = ρ

(2)
1 [(Y ∪ T )(2)]

= χ2
2φ̄1ω

1
2ρ

(1)
1 [(Y ∪ T )(1)]

(Y ∪ T )(3) =
1 1 1 1
2 2 1 2
1 2 3

→
s

1 1 1 1
2 2 1 2
3 1 2

= Y321 ∪ H = ρ
(3)
1 [(Y ∪ T )(3)]

= χ0
3φ̄12ω

1
3ρ

(2)
1 (Y ∪ T )(2).
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Internal insertion and switching LR commutors coincide

Theorem
(A., 2017)

Let n ≥ 1 and Y ∪ T ∈ LR(n) with Y = Yµ Yamanouchi tableau and T a ballot
tableau of shape λ/µ and weight ν. Consider the nth row word of T where F is
the row subword restricted to the entries in [n − 1], and νn is the number of
entries equal to n. Then

ρ
(n)
1 (Y ∪ T ) = χµn

n φ̄Fω
νn
n ρ

(n−1)
1 [(Y ∪ T )(n−1)] = χµn

n ω
νn
n φ̄Fρ

(n−1)
1 [(Y ∪ T )(n−1)],

with ρ
(0)
1 (∅) := ∅. In particular, all bumping routes of φ̄F are pairwise disjoint and

terminate in the nth row.

(Y ∪ T )(n−1) consists of the first n − 1 rows of T .

21 / 29



A bit more: Sketch of the proof (main steps)

Reduce to the case µ = (µ1, . . . , µn−1, 0). By induction on n ≥ 1 and
|F | ≥ 0.

n = 1, trivial,

ρ
(1)
1 (∅ ∪ Y(ν1)) = ων1

1 ∅ = ων1
1 ρ

(0)
1 [∅] = Y(ν1) ∪ ∅.

∅ ∪ Y(ν1) = ∅ ∪ 1 1 1 → 1 1 1 ∪ ∅ = Y(ν1) ∪ ∅
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Sketch of the proof

Assume the statement true for n and prove for n+ 1. Detach the n+ 1th row

Y ∪ T = F (n + 1)νn+1 ∗ (Y ∪ T )(n),

F a word on the alphabet [n].

We claim
ρ

(n+1)
1 (Y ∪ T ) = ωνn+1

n+1 φ̄Fρ
(n)
1 [(Y ∪ T )(n)].

I |F | = 0. Trivial. Switching on Y ∪ T reduces to (Y ∪ T )(n), the first n
rows of Y ∪ T , and φ̄F = id ,

ρ
(n+1)
1 (Y ∪ T ) = ωνn+1

n+1ρ
(n)
1 [(Y ∪ T )(n)].
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Sketch of the proof

Let |F | ≥ 1. Apply switching to decompose Y ∪ T and reduce |F |

Y ∪ T →
s

[Y ′ ∪ S ] ∪ [D ∗ Q(n)] = [F̂ (n + 1)νn+1 ∗ (Y ′ ∪ S)(n)] ∪ [D ∗ Q(n)],

Y ′ = Y(µ1,...,µd−1), µd > 0, S ≡ T , D ∗ Q(n) ≡ Y(µd ,...,µn−1), F̂ strict

subword of F and D = d |D|, |D| > 0,

|F̂ |+ |D| = |F |.

0 ≤ |F̂ | < |F |. By induction on |F |,

ρ
(n+1)
1 (Y ′ ∪ S) = ωνn+1

n+1 φ̄F̂ρ
(n)
1 [(Y ′ ∪ S)(n)],

all φ̄F̂ -bumping routes terminate in the (n + 1)th row.
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One has so far

ρ
(n+1)
1 (Y ∪ T ) = ωνn+1

n+1 φ̄F̂ρ
(n)
1 [(Y ′ ∪ S)(n)] ∪ (D ∗ Q(n)),

all φ̄F̂ -bumping routes terminate in the (n + 1)th row.

We claim
ρ

(n+1)
1 (Y ∪ T ) = ωνn+1

n+1 φ̄Fρ
(n)
1 [(Y ∪ T )(n)].
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Y ∪ T →
s

[Y ′ ∪ S ] ∪ [D ∗ Q(n)] = [F̂ (n + 1)νn+1 ∗ (Y ′ ∪ S)(n)] ∪ [D ∗ Q(n)].

Detach the nth row

(Y ′ ∪ S)(n) = GCnν̂n ∗ (Y ′ ∪ S)(n−1),

G and C row words in the alphabet [n − 1], |G | = |F̂ |+ |D| = |F |.

[F̂ (n + 1)νn+1 ∪ D] ∗ [GCnν̂n ∪ X ] =
A B C n∗ ··· n∗ X

F̂ n+1∗ ··· n+1∗ D

s↔

G1 F2 G3 F4 ··· Gk−1 Fk C n∗ ··· n∗ X

F1 D2 F3 D4 ... Fk−1 Dk n+1∗ ··· n+1∗

s↔

G1 D2 G3 D4 ··· Gk−1 Dk C n∗ ··· n∗ X

F1 F2 F3 F4 ... Fk−1 Fk n+1∗ ··· n+1∗

Ĝ := G1G3 . . .Gk−1 a subword of G := AB, |Ĝ | = |F̂ |, and

F̂G ≡ FĜ Knuth equivalent.

(Y ∪ T )(n) →
s

[ĜCnν̂n ∗ (Y ′ ∪ S)(n−1)] ∪ (DX ∗ Q(n−1))
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By induction on n

I

ρ
(n)
1 (Y ′ ∪ S)(n) = ρ

(n)
1 [GCnν̂n ∗ (Y ′ ∪ S)(n−1)]

= φ̄Gρ
(n)
1 (Cnν̂n ∗ (Y ′ ∪ S)(n−1)),

all φ̄G -bumping routes terminate in the nth row.
I

ρ
(n)
1 [(Y ∪ T )(n)] = ρ

(n)
1 [ĜCnν̂n ∗ (Y ′ ∪ S)(n−1)] ∪ (DX ∗ Q(n−1))

= φ̄Ĝρ
(n)
1 [Cnν̂n ∗ (Y ′ ∪ S)(n−1)] ∪ (DX ∗ Q(n−1)).

all φ̄Ĝ -bumping routes terminate in the nth row.
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F̂G ≡ FĜ ⇒ φ̄F̂G = φ̄FĜ .

ρ
(n)
1 [(Y ′ ∪ S)(n)] = φ̄Gρ

(n)
1 [Cnν̂n ∗ (Y ′ ∪ S)(n−1)]

ρ
(n)
1 [(Y ∪ T )(n)] = φ̄Ĝρ

(n)
1 [Cnν̂n ∗ (Y ′ ∪ S)(n−1)] ∪ (DX ∗ Q(n−1))

ρ
(n+1)
1 (Y ∪ T ) = ωνn+1

n+1 φ̄F̂ρ
(n)
1 [(Y ′ ∪ S)(n)] ∪ (D ∗ Q(n)),

= ωνn+1

n+1 φ̄F̂ φ̄Gρ
(n)
1 [Cnν̂n ∗ (Y ′ ∪ S)(n−1)] ∪ (D ∗ Q(n))

= ωνn+1

n+1 φ̄F φ̄Ĝρ
(n)
1 [Cnν̂n ∗ (Y ′ ∪ S)(n−1)] ∪ (D ∗ X ∗ Q(n−1))

= ωνn+1

n+1 φ̄F [φ̄Ĝρ
(n)
1 (Cnν̂n ∗ (Y ′ ∪ S)(n−1)) ∪ (DX ∗ Q(n−1))]

= ωνn+1

n+1 φ̄Fρ
(n)
1 [(Y ∪ T )(n)].
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