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Abstract

The original definition of the Littlewood-Richardson (LR) rule for composing
partitions is exclusively considered, i.e., the classical combinatorial device for cal-
culating the Littlewood-Richardson coefficients. The main result is an explicit in-
volution on the set of LR tableaux which transforms an LR tableau of type [a, b, c]
into one of type [b, a, c]. On the basis of the involution definition it is a projection
of LR tableaux of order r into those of order r − 1, for r ≥ 1. The main feature of
this projection is the decomposition of an LR tableau of order r and type [a, b, c]
into a nested sequence of LR tableaux of order s and type [a(s), (b1, . . . , bs); (cr−s+1,
. . . , cr)], s = 1, . . . , r, where (a(s))r

s=1 is a sequence of interlacing partitions which
defines a decomposition of an LR tableau of type [b, a, c] into a nested sequence of
LR tableaux of order s and type [(b1, . . . , bs); a(s); (cr−s+1, . . . , cr)], s = 1, . . . , r.
This projection is accomplished introducing a combinatorial deletion and inser-
tion operation on a LR tableau preserving the LR conditions. This involution
yields a self-contained and direct combinatorial interpretation of the well-known
commutative property of the original LR rule, as well as of the symmetry of the
Littlewood-Richardson coefficients given by the equality N c

ab = N c
ba. It is known

that the LR rule describes the Smith invariants of a product of integral matrices.
It has been proven that this rule is also describing the eigenvalues of a sum of
Hermitian matrices [13, 14, 17]. With the present involution we aim to a deeper
understanding of the structure the LR rule and its relationship with these two
problems in matrix theory.
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1 Introduction

The Littlewood-Richardson rule (LR rule for short) has many symmetries and properties [5, 6,
9, 24]. They do not seem clear from the original definition [15, 16], i.e., from the combinatorial
algorithm that calculates the Littlewood-Richardson coefficients. In this paper, our main goal is
to present an involution on the set of LR tableaux which shows up the hidden commutativity of
the LR rule. The main result is a combinatorial bijection on the set of LR tableaux transforming
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Americana para o Desenvolvimento, project 574/94.



an LR tableau of type [a, b, c] into one of type [b, a, c], which is self-inverse. This bijection stresses
that the combinatorial algorithm defining the LR rule for composing two partitions a and b
is completely symmetric with respect to a and b. Our combinatorial approach relying on the
notion of a projection of an LR tableau of order r into one of order r − 1, with r ≥ 1, is
analogous to the behaviour of the triple of Smith invariants corresponding to a triple of square
nonsingular matrices A, B, C, with C = AB, over a local principal ideal domain, under one
row and column deletion, when a special form of the matrices A, B and C is considered, as that
one established by R. C. Thompson in [19]. In [19] it is shown that we may consider A lower
triangular, B diagonal, and C lower triangular with the Smith invariants along the diagonal.

We look mainly at the LR rule as a combinatorial object for composing partitions and focus
our attention on the structure of that combinatorial object. Our motivation comes from the
recent unified answer [13, 14, 17], given by the LRrule, for a long standing analogy between
two problems in matrix theory: the description of the invariant factors (Smith invariants)
of a product of matrices over a principal domain, and the eigenvalues of a sum of complex
Hermitian matrices. We aim to a better understanding of the relation between the structure of
this combinatorial object with these two problems in matrix theory.

In [9, 23] other descriptions of the Littlewood-Richardson coefficients are given, from which
commutativity and other properties for these numbers also follow. Also in [22], increasing LR
tableaux (or sequences) are used to point out some symmetries of the LR rule in the classical
setting. For instance, it is shown that a bijection exists between the set of LR tableaux of type
[a, b, c] and the set of increasing LR tableaux of type [b, a, c].

On the basis of [6], we consider LR rectangular tableaux and LR rectangular triples. Given
partitions a, b and c (nonnegative integral vectors by weakly decreasing order) with length
≤ r, an LR rectangular tableau of type [a,b,c] is an LR tableau of type (a, b, c∗) [16], where
c∗ = (m − cr−i+1)r

i=1 for some nonnegative integer m ≥ c1, called dual partition of c. We call
[a, b, c] an LR rectangular triple. Therefore, [a, b, c] is an LR rectangular triple iff (a, b, c∗) is an
LR triple. Let N c

a b be the Littlewood-Richardson coefficient, i.e., the number of LR tableaux of
type (a, b, c). The number of LR rectangular tableaux of type [a, b, c], written Na b c, is precisely
N c∗

a b. Let Va, Vb, Vc be irreducible finite dimensional SLr-modules with highest weights a, b and
c. In [6, 24], Na b c is the triple multiplicity, that is, the dimension of the space of SLr-invariants
in the triple tensor product Va⊗Vb⊗Vc and Na b c = N c∗

a b, where c∗ is the highest weight of the
module V ∗

c dual to Vc. In the matrix setting LR rectangular tableaux, may be interpreted as
follows. Let A, B and C r-square nonsingular matrices over a local principal ideal domain, with
invariant factors (Smith invariants) pa1 , . . . , par , pb1 , . . . , pbr , and pc1 , . . . , pcr respectively, where
the exponents of the p-powers are considered by decreasing order, such that ABC = p|c|Ir, with
|c| =

∑r
i=1 ci. Then, there is one and only one LR rectangular tableau T of type [a, b, c] which

ABC = p|c|Ir realizes. That is, AB = C∗ realizes one LR tableau of type (a, b, c∗) [1, 2, 12],
and T is the corresponding LR rectangular tableau of type [a, b, c], where C∗ is the transpose
of the adjugate of C and whose exponents of the invariant factors are given by c∗i = |c|−cr−i+1,
for i = 1, . . . , r.

The starting point for exhibiting the commutativity of the LR rule is to consider the fol-
lowing algebraic formulation of the LR rule. (For a similar presentation see [11, 20].) There
exists an LR rectangular tableau of order r and type [a, b, c] with |a|+ |b|+ |c| = rm, iff there
exists a sequence of partitions b(s) = (b(s)

1 , . . . , b
(s)
s , 0r−s), s = 0, 1, ..., r, with b(r) = b, satisfying

the interlacing inequalities

b
(s)
i+1 ≤ b

(s−1)
i ≤ b

(s)
i , for s = 1, 2, ..., r, i = 1, ..., r − 1, (i)
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and the system of linear inequalities

as−1 +
k−1∑
j=1

(b(s−1)
j − b

(s−2)
j ) ≥ as +

k∑
j=1

(b(s)
j − b

(s−1)
j ), k = 1, . . . , s− 1, s = 2, . . . , r, (ii)

as +
r∑

j=1

(b(s)
j − b

(s−1)
j ) = m− cr−s+1, s = 1, . . . , r. (iii)

Given an LR rectangular tableau T of order r and type [a, b, c] with |a| + |b| + |c| = rm,
we may associate, for each s ∈ {1, 2, . . . , r − 1}, by deleting the r, . . . , (s + 1)-th rows of T ,
an LR rectangular tableau of order s and type [(a1, . . . , as); (b

(s)
1 , . . . , b

(s)
s ); (cr−s+1, . . . , cr)].

Indeed, this sequence of nested LR rectangular triples or LR rectangular tableaux of type
[(a1, . . . , as); (b

(s)
1 , . . . , b

(s)
s ); (cr−s+1, . . . , cr)], s = 1, . . . , r, is such that the sequence of partitions

b(s) = (b(s)
1 , . . . , b

(s)
s , 0r−s), s = 0, 1, ..., r, with b(r) = b, satisfy the previous linear inequalities

(i), (ii) and (iii). We call it a b-decomposition of the LR triple [a, b, c], and the b-decomposition
of T . The number of b-decompositions of [a, b, c] is the Littlewood-Richardson number N c

ab.
The bijection to be exhibited between LR rectangular tableaux of type [a, b, c] and [b, a, c]

is based on a projection P of an LR rectangular tableau of order r into one of order r − 1,
for r ≥ 1, which defines an a-decomposition of an LR tableau of type [a, b, c]. Given an LR
rectangular tableau T of order r and type [a, b, c] with |a| + |b| + |c| = rm, the projection P
defines a nested sequence of LR rectangular tableaux T (0) ⊆ T (1) ⊆ . . . ⊆ T (r) = T , with T (0)

the empty tableau and T (s) of order s and type [(a(s)
1 , . . . , a

(s)
s ); (b1, . . . , bs); (cr−s+1, . . . , cr)],

s = 1, ..., r, and such that the sequence of partitions a(s) = (a(s)
1 , . . . , a

(s)
s , 0r−s), s = 0, 1, ..., r,

with a(r) = a, satisfies

a
(s)
i+1 ≤ a

(s−1)
i ≤ a

(s)
i , s = 1, . . . , r, i = 1, . . . , r − 1, (iv)

bs−1 +
k−1∑
j=1

(a(s−1)
j − a

(s−2)
j ) ≥ bs +

k∑
j=1

(a(s)
j − a

(s−1)
j ), k = 1, ..., s− 1, s = 2, . . . , r, (v)

bs +
r∑

j=1

(a(s)
j − a

(s−1)
j ) = m− cr−s+1, s = 1, . . . , r. (vi)

This decomposition defined by P is called the a-decomposition of T and an a-decomposition of
[a, b, c]. On the other hand, regarding inequalities (iv), (v) and (vi), [(b1, . . . , bs); (a

(s)
1 , . . . , a

(s)
s );

(cr−s+1, . . . , cr)], s = 1, ..., r, is also an a-decomposition of [b, a, c]. Thus we conclude that, given
an LR rectangular tableau T of type [a, b, c], we may associate, by means of the projection P,
an LR rectangular tableau of type [b, a, c], defined by the a-decomposition of T .

Considering [19] we may assert:
Let A, B and C be r-square non-singular matrices with entries in a local principal ideal

domain, and with ABC = p|c|Ir. Let pa1 , . . . , par , pb1 , . . . , pbr , and pc1 , . . . , pcr be the invariant
factors of A, B and C, respectively, where a1 ≥ . . . ≥ ar, b1 ≥ . . . ≥ br and c1 ≥ . . . ≥ cr. We
may assume that:

(i) A is lower triangular;
(ii) B is diagonal, B = diag(pb1 , . . . , pbr);
(iii) C∗ is lower triangular and C∗ = [γij ] with γii = pc∗i , pc∗i |γij for i > j, 1 ≤ i ≤ r ( the

symbol ”|” denotes divisibility).
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Let A(r) := A, B(r) := B and C(r) := C. Now consider the sequence of product of matrices
A(s)B(s)C(s) = p|c|Is, s = 1, . . . , r − 1, obtained by deleting the (s + 1)-th rows and columns
of A(s+1), B(s+1) and C(s+1). That is, A(s), B(s) and C(s) are the s-leading submatrices in
the first s rows of A(s+1), B(s+1) and C(s+1) respectively, for s = 1, 2, . . . , r − 1. Since A is
in the triangular form, by the interlacing property relating the invariant factors of a matrix
with those of a submatrix, we obtain, for each s ∈ {1, 2, . . . , r}, one LR rectangular tableau
of type [(a(s)

1 , . . . , a
(s)
s ); (b1, . . . , bs); (cr−s+1, . . . , cr)] realized by A(s)B(s)C(s) = p|c|Is, where the

sequence a(s) = (a(s)
1 , . . . a

(s)
s , 0r−s), s = 0, 1, . . . , r, satisfies (iv).

We point out the analogy between the sequence of LR rectangular triples [(a(s)
1 , . . . , a

(s)
s ); (b1,

. . . , bs); (cr−s+1, . . . , cr)] where a(s−1) interlaces with a(s), for s = 1, 2, . . . , r, produced by the
matrix sequence A(s)B(s)C(s) = p|c|Is, of s-leading submatrices in the first s rows of ABC =
p|c|Ir, s = 1, . . . , r, and that one produced by the sequence of projections T (s), s = 1, . . . , r,
of the LR rectangular tableau T of type [a, b, c] realized by ABC = p|c|Ir. This sequence
of projections T (s), s = 1, . . . , r, is achieved by means of a combinatorial deletion operation
defining P, which decomposes a into a sequence of interlacing partitions. A matrix translation
of this combinatorial deletion operation in the matrix product ABC = p|c|Ir is not explored
here, that is, the answer to the question whether the sequences of partitions (a(s))r

s=1 produced
by the matrix sequence A(s)B(s)C(s) = p|c|Is and the sequence of LR rectangular tableaux T (s),
s = 1, . . . , r, coincide or not. If the answer is affirmative, since by transposition, the s-leading
submatrices in the first s rows of BtAtCt = p|c|Ir, produce the sequence of LR rectangular
triples [(b1, . . . , bs); (a

(s)
1 , . . . , a

(s)
s ); (cr−s+1, . . . , cr)], s = 1, . . . , r, we obtain an a-decomposition

of [b, a, c], and the matrix meaning of our combinatorial involution in the context of the invariant
factors is the transposition.

In the case of a sum of Hermitians matrices A+B = C, except when A, B and C are diagonal
matrices, our combinatorial projection P does not translate the behaviour of the sequence of
the triples of eigenvalues of the sum A(s) + B(s) = C(s), s = 1, . . . , r, where A(s), B(s) and C(s)

are, respectively, the s-leading submatrices in the first s rows of the square Hermitian matrices
A, B and C, for s = 1, . . . , r. In the Hermitian case, other projections have to be searched.

The paper is organized as follows. In section 2 we introduce some combinatorics related
with LR rectangular tableaux as well as some polyhedral properties when looking at the set
of LR rectangular tableaux of a fixed order, as a rational polyhedral cone. We also exhibit
a bijection between the set of LR rectangular tableaux and the set of column LR rectangular
tableaux [2], [12]. This section may have independent interest.

In section 3 we introduce a combinatorial deletion operation in an LR rectangular tableau
with the aim to define a projection map P. This deletion operation acts on an LR rectangular
tableau T of order r and type [a, b, c], by deleting boxes in the diagram of a in order to decompose
T into a nested sequence of LR rectangular tableaux T (s) of type [(a(s)

1 , . . . , a
(s)
s ); (b1, . . . , bs);

(cr−s+1, . . . , cr)], s = 1, . . . , r, where (a(s))r
s=0 is a sequence of interlacing partitions.

In section 4, we introduce a combinatorial insertion operation in an LR rectangular tableau.
The insertion operation acts on an LR rectangular tableau F of type [(a(r−1)

1 , . . . , a
(r−1)
r−1 ); (b1,

. . . , br−1); (c2, . . . , cr)] by inserting boxes in the rows of the diagram of (a(r−1)
1 , . . . , a

(r−1)
r−1 , 0)

in order to make a prolongation to a new LR tableau T of type [(a1, . . . , ar); (b1, . . . , br);
(c1, . . . , cr)] with |a| + |b| + |c| = rm, satisfying P(T ) = F . The number of inserted boxes in
each row of (a(r−1)

1 , . . . , a
(r−1)
r−1 , 0) defines an insertion sequence of F .

Deletion and insertion operations are reverse of each other. Let F (s) be of type [(a(s)
1 , . . . ,

a
(s)
s ); (b1, . . . , bs); (cr−s+1, . . . , cr)], s = 1, . . . , r− 1, be the decomposition of F defined by the
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projection map P. It is shown, in theorems 6 and 7, that a sequence of non-negative integeres
(y1, . . . , yr−1, ar) is an inserting sequence modulo br, with br−1 ≥ br ≥ 0, of F with prolongation
T iff

ai+1 ≤ a
(r−1)
i ≤ ai, i = 1, . . . , r − 1,

br−1 +
k−1∑
j=1

(a(r−1)
j − a

(r−2)
j ) ≥ br +

k∑
j=1

yj , k = 1, ..., r − 1, (∗)

br +
r−1∑
j=1

yi + ar = m− c1.

Since, (a(s)
i − a

(s−1)
i )s

i=1 is an insertion sequence modulo bs of F (s−1), for s = 1, . . . , r − 1,
considering the linear inequalities (∗), we conclude that the projection P decomposes an LR
rectangular tableau T of type [a, b, c] into a sequence of LR rectangular tableaux of order s

and type [(a(s)
1 , . . . , a

(s)
s ) ; (b1, . . . , bs); (cr−s+1, . . . , cr)], s = 1, . . . , r, where a(s), s = 0, 1, . . . , r,

with a(r) = a, satisfies the linear inequalities (iv), (v) and (vi). We call [(a(s)
1 , . . . , a

(s)
s );

(b1, . . . , bs); (cr−s+1, . . . , cr)], s = 1, . . . , r, an a-decomposition of the LR triple [a, b, c], and the
a-decomposition of T .

The main result of section 4 is theorem 7. This theorem asserts under what conditions,
given LR rectangular tableaux T and F of types [(a1 . . . , ar); (b1, . . . , br); (c1, . . . , cr)] and
[(a′1 . . . , a′r−1); (b1, . . . , br−1); (c2, . . . , cr)] respectively, one has F ∈ P−1(T ).

In section 5, we define a bijection φ between LR rectangular tableaux of type [a, b, c] and
[b, a, c], and we show that φ is an involution. Given an LR rectangular tableau T of order
r and type [a, b, c], we calculate, using projection P, the a-decomposition of T , [(b1, . . . , bs)
; (a(s)

1 , . . . , a
(s)
s ); (cr−s+1, . . . , cr)], s = 1, . . . , r. We define φ by transforming T into the LR

rectangular tableau of type [b, a, c] whose a-decomposition is the a-decomposition of T . Clearly,
φ is an injection. On the other hand, if we are given an LR rectangular H of type [b, a, c]
with a-decomposition [(a(s)

1 , . . . , a
(s)
s ) ; (b1, . . . , bs); (cr−s+1, . . . , cr)], s = 1, . . . , r, then putting

T (0) the empty tableau, (a(s)
i − a

(s−1)
i )s

i=1 is an insertion sequence modulo bs of T (s−1), with
prolongation T (s) of type [(a(s)

1 , . . . , a
(s)
s ); (b1, . . . , bs); (cr−s+1, . . . , c1)], for s = 1, . . . , r. This

means that φ(T (r)) = H and φ is also a surjection.
Finally, we give a recursive algebraic definition of the a-decomposition of T of type [a, b, c].

With this, we are able to prove, in theorem 10 and corollary 5, that φ is an involution: T of
type [a, b, c] has a-decomposition defined by (a(s)

s )r
s=1, iff the b-decomposition of φ(T ) of type

[b, a, c] with a-decomposition defined by (a(s)
s )r

s=1 is the b-decomposition of T . We close this
section with an example of this involution.

2 LR rectangular tableaux and LR rectangular triples

2.1 Combinatorics and polyhedral properties

By partition a we mean any finite sequence a = (a1, . . . , ar) of nonnegative integers by (weakly)
decreasing order. The weight of a, written |a|, is the sum of of the components. The partition
of weight zero is denoted by 0. By length of a partition a we mean the number of non zero
entries of a.

Let m ≥ 0 and r > 0 be integers. Let Pr = {a ∈ ZZr : 0 ≤ ar ≤ . . . ≤ a1} be the set of
all partitions with r components. We write (xr) to mean the constant partition of Pr with all
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components equal to x. We define Pr,m = {a ∈ Pr : 0 ≤ ar ≤ . . . ≤ a1 ≤ m}. (Pr,0 = {0}.)
Notice that, Pr =

⋃
m≥0 Pr,m.

Given a ∈ Pr,m, a∗ := (m− ar−i+1)r
i=1 ∈ Pr,m is called the dual partition of a in Pr,m.

Consider the rectangular Young diagram of (mr), i.e., a sequence of r rows of boxes with
row lengths m. If a ∈ Pr,m then a ⊆ (mr). (We identify a partition with its Young diagram.)
Graphically, a∗ is the partition defined by the complement of a in the Young diagram of (mr).
For example, if r = 5, m = 6 and a = (5, 5, 4, 4, 2) we have a∗ = (4, 2, 2, 1, 1) (reading from
bottom to top) represented by the blank boxes:

. .

. . . .

. . . .

. . . . .

. . . . .

Clearly, (a∗)∗ = a.
Given a, b ∈ Pr, we say that a and b are congruent, written a ≡ b, if b = a + (M r),

for some integer M ≥ 0. Clearly, a ≡ (a1 − ar, . . . ar−1 − ar, 0) + (ar
r). Therefore, when

we write a∗ without mentioning an upper bound for the largest component, we mean a
partition congruent to (a1− ar−i+1)

r
i=1. Moreover, if a and b are congruent, a∗ and b∗ are

congruent. Clearly, a∗ ∈ Pr,k, for all k ≥ a1.
Given a, b, c ∈ Pr, we say that (a, b, c) is an LR triple if there is an LR tableau of

type (a, b, c) [8]. Folowing [11], we identify an LR tableau of type (a, b, c) filled with xij

symbols j in row i, for r ≥ i ≥ j ≥ 1, with the element (a, b, c, X) ∈ ZZ3r+r2

, where
X = [xij] is an, r× r, integral lower triangular matrix, such that the following system of
linear inequalities is satisfied [8, 11, 17]:

xij ≥ 0, 1 ≤ i, j ≤ r. (1)
r∑

i=1

xij = bj, j = 1, . . . , r. (2)

r∑
j=1

xij = ci − ai, i = 1, . . . , r. (3)

k∑
i=1

xij ≥
k+1∑
i=1

xi,j+1, 1 ≤ k, j ≤ r − 1. (4)

ai +
k−1∑
j=1

xij ≥ ai+1 +
k∑

j=1

xi+1,j, k=1,...,r−1 and i=1,...,r−1. (5)

The Littlewood-Richardson number, N c
a b, is the number of lower triangular matrices

X ∈ ZZr,r whose entries satisfy this system of linear inequalities for fixed partitions a, b
and c.

We may easily extend the LR rule to finite sequences of nonnegative real numbers.
Given α = (α1, ..., αr), β = (β1, . . . , βr) and γ = (γ1, . . . , γr) sequences of nonnegative
real numbers by weakly decreasing order, we say (α, β, γ) is a real LR triple if there

is a lower triangular matrix X = [xij] ∈ RRr,r such that (α, β, γ, X) ∈ RR3r+r2

satisfies
the system of linear inequalities above (replacing a by α, b by β and c by γ). We call
(α, β, γ, X) an LR design of order r [11]. When α, β, γ and X are integral, we have an
integral LR design or, equivalently, an LR tableau of order r.
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For r ≥ 1, let LRDRR
r be the set of elements (α, β, γ, X) ∈ RR3r+r2

≥0 such that the
following conditions hold: α1 ≥ . . . ≥ αr ≥ 0, β1 ≥ . . . ≥ βr ≥ 0, γ1 ≥ . . . ≥ γr ≥ 0 and
(α, β, γ, X) satisfy linear inequalities (1)− (5). Let LRDr := LRDRR

r ∩ ZZ3r+r2

be the set
of integral LR tableaux of order r.

LRDRR
r is a pointed rational polyhedral cone in RR3r+r2

. Therefore, LRDRR
r has an

integral Hilbert basis [18] and LRDr is a finitely generated (additive) semigroup. Notice
that (a, b, c, X) + (a′, b′, c′, X ′) = (a + a′, b + b′, c + c′, X + X ′), with componentwise sum.

Let LRr = {(a, b, c) ∈ (Pr)
3 : (a, b, c, X) ∈ LRDr, for some, r × r, integral matrix X}

be the set of LR triples of order r. Clearly, LRr is also a finitely generated (additive)
semigroup, called the Littlewood -Richardson semigroup of order r [24].

Let LRRR
r be the set of real LR triples of order r. LRRR

r is also a pointed rational
polyhedral cone, finitely generated by the indecomposable elements of LRr with respect
to the sum. In [14] it is shown that LRr is saturated in LRRR

r .
Let a, b, c ∈ Pr. A rectangular tableau of type [a, b, c] is a tableau of type (a, b, c∗).
Notice that rectangular tableaux are symmetric in some sense relatively to a and c.

Reading a rectangular tableau from right to left and from bottom to top we obtain an
opposite (or increasing) rectangular tableau of type [c, b, a], replacing each symbol i by
r − i + 1 (see [4]).

Example 1 Graphically, the following

1 2 2 3

1 2 2
1

1 1

, 4 3 3 2

4 3 3
4

4 4

are, respectively, a rectangular LR tableau of type [a, b, c] and the corresponding increasing
LR rectangular tableau of type [c, b, a], where a = (6, 5, 2, 0), b = (4410), e c = (4, 3, 2, 0).

For rectangular tableaux and rectangular triples, we define, respectively,

LRDr = {[a, b, c, X] : (a, b, c∗, X) ∈ LRDr},

and
LRr = {[a, b, c] : (a, b, c∗) ∈ LRr}.

Clearly, if [a, b, c, X] ∈ LRDr then |a|+ |b|+ c| = rm, for some non negative integer m.
Graphically, [a, b, c, X] ∈ LRDr may be represented as follows:

a1 c3x11

a2 c2x21 x22

a3 c1x31 x32 x33

an LR rectangular tableau of type [a, b, c], where xij denotes the number of symbols j
in row i, for r ≥ i ≥ j ≥ 1.
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Let [a, b, c, X] ∈ LRDr with |a| + |b| + c| = rm. Notice that [a, b, c, X] ∈ LRDr if
X = [xij] satisfy the system of linear inequalities defined by (1), (2), (4), (5) and (3)
replaced by

r∑
j=1

xij = m− ai − cr−i+1, i = 1, . . . , r. (∗∗)

Denoting by Na,b,c the number of matrices X satisfying the conditions (1)− (5) of the
above system, with (3) replaced by (∗∗), it is clear that Na,b,c = N c∗

a,b. Hence, studying LRr

and LRDr is the same as studying LRr and LRDr, respectively, with the advantage that
this triples and these tableaux are more symmetrical (see [6]). Extending the definitions
of LR rectangular tableau and LR rectangular triple to nonnegative real numbers, we

define LRD
RR
r the set of LR rectangular designs and LR

RR
r the set of real LR rectangular

triples which are also pointed rational polyhedral cones in RR3r+r2

. The integral vectors
of these cones, LRDr and LRr respectively, are finitely generated semigroups.

2.2 Column LR rectangular tableaux

Column LR tableaux were firstly introduced in [12]. A reformulation of this rule in terms
of indexing sets was given in [2].

In this subsection we exhibit a bijection between LR rectangular tableaux and column
rectangular tableaux of the same type. The basic facts for this bijection are theorem 1 and
algorithm 1 below. Algorithm 1 establishes a bijection between LR rectangular tableaux
of type [a, b, c] and column LR rectangular tableaux of type [c, b, a]; then theorem 1, (a)
establishes a bijection between these tableaux and the opposite column LR rectangular
tableaux of type [a, b, c], and, finally, theorem 1, (b) establishes a bijection between the
latter ones and the column LR rectangular tableaux of type [a, b, c]

Definition 1 [2]Let J = {x1, ..., xs} and K = {y1, ..., ym} be finite sets of integers, where
we are assuming that x1 > ... > xs and y1 > ... > ym. Then we write J ≥ K (or K ≤ J)
whenever s ≥ m and xi ≥ yi, for i = 1, ...,m.

Definition 2 [2, 3, 4] Let J and K be the finite sets of integers defined above, where we
are assuming that x1 < ... < xs and y1 < ... < ym. We write J ≥op K (or K ≤op J)
whenever s ≤ m and xi ≥ yi, for i = 1, ..., s.

Definition 3 [2] Let T be a column rectangular tableau of type [a, b, c] with indexing
sets J1, ..., Jt. We say that T is a column Littlewood-Richardson rectangular tableau or
a column Littlewood-Richardson sequence if

J1 ≥ ... ≥ Jt.

Definition 4 [3] Let T be a column rectangular tableau of type [a, b, c] with indexing sets
J1, ..., Jt. We say that T is an opposite column Littlewood-Richardson rectangular tableau
or an opposite column Littlewood-Richardson sequence if

J1 ≥op ... ≥op Jt.
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Theorem 1 (a) There is a bijection between the set of column LR rectangular tableaux
of type [a, b, c] and the set of opposite column LR rectangular tableaux of type [c, b, a].

(b) There is a bijection between the set of column LR rectangular tableaux [a, b, c] and
the set of column opposite LR rectangular tableaux of type [a, b, c].

Proof : (a) See [3], Theorem 2.15.
(b) See [4], pp. 75, 79, 80.

In [22] an opposite LR sequence is called increasing LR sequence.

Let us denote by LRD
col
r the set of column rectangular LR tableaux of degree r. If

T is a column rectangular tableau of type [a, b, c] with indexing sets J1, ..., Jt, we write
T = [a, b, c, J1, ..., Jt].

Let J ⊆ {1, . . . , r}. We define the characteristic function χJ as (χJ)i = 1 if i ∈ J ,
and (χJ)i = 0 otherwise. If b is a partition and b̃ = (y1, . . . , yt) is the conjugate partition
of b, then b =

∑t
i=1(χ

Ji), where Ji = {1, . . . , yi}, for i = 1, . . . , t.

The next algorithm defines a bijection between LRDr and LRD
col
r transforming rect-

angular tableaux of type [a, b, c] into those of type [c, b, a].

Algorithm 1 Let T = [a, b, c, X] ∈ LRDr and b̃ = (y1, . . . , yt).

1. Let k = 0, T (0) := T , b(0) := b, c(0) := c and X(0) := X.

Let F (0) := [c, 0, c∗, ∅, . . . , ∅].

2. Do k := k + 1. Consider the upper right most symbols 1, 2, . . . , yk in T (k−1) and
replace each of them by k. Let 1 ≤ i1 < . . . < iyk

be, respectively, the indices of the
rows of these symbols. Define

Jk := {r − ij + 1 : j = 1, . . . , yk},

b(k) := b(k−1) − (1yk),

c(k) := c(k−1) + χJk ,

X(k) = [x
(k)
ij ], with x

(k)
ij := x

(k−1)
ij − χ{i1,...,iyk

},

T (k) := [a, b(k); c(k); X(k)],

and

F (k) := [c,
k∑

j=1

(1yj); (c(k))∗; J1, . . . , Jk].

3. If k = t, stop and write F = [c, b, a; J1, . . . , Jt]. Otherwise, go to 2.

Clearly F = [c, b, a; J1, . . . , Jt] is a column LR rectangular tableau, since by construc-
tion J1 ≥ . . . ≥ Jt.

Example 2

T = 1 2 2 3
1 2 2

1
1 1

−→ F = 5 4 3 1
4 2 1

3
2 1

F is obtained reading the second tableau from right to left, along rows, and from up to
down, along columns.
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3 Deletion, deletion sequences and projection of LR

rectangular tableaux

The main goal of this section is to define a deletion operation acting on an LR rect-
angular tableau preserving the LR conditions. We shall see that this operation acting
on an LR rectangular tableau defines a projection map on LRDr by transforming an
LR tableau of order r and type [(a1, . . . , ar); (b1, . . . , br); (c1, . . . , cr)] into one of order
r − 1, and type [(a′1, . . . , a

′
r−1); (b1, . . . , br−1); (c2, . . . , cr)], where ai+1 ≤ a′i ≤ ai, for

i = 1, . . . , r − 1. This combinatorial operation aims to decompose an LR rectangular
tableau of order r and type [a, b, c] into a sequence of LR rectangular tableaux of or-

der s and type [(a
(s)
1 , . . . , a(s)

s ); (b1, . . . , bs); (cr−s+1, . . . , cr)], s = 1, . . . , r − 1, such that

a(s) = (a
(s)
1 , . . . , a(s)

s , 0r−s), s = 0, 1, . . . , r, is a sequence of interlacing partitions.

3.1 Paths, path chains and deletion path chains. The poset of
interior paths of length at least r − k of an LR rectangular
tableau of order r

A skew-diagram is called a vertical k-strip, where k > 0, if it has k boxes and at most
one box in each row. We let the vertical 0-strip equals to the empty set. For example,

is a vertical 4-strip.
For convenience, in what follows, we assume that the blank boxes of rectangular

tableaux are numbered by 0.

Definition 5 Let r ≥ 1, T = [a, b, c, X] ∈ LRDr and k ∈ {1, . . . , r}. An (r, k)-path Z
of T is a numbered vertical k-strip of T containing exactly one nonzero numbered box of
each row i ∈ {r − k + 1, . . . , r}, such that

1. if (zr, . . . , zr−k+1) is the k-tuple of positive integers numbering the vertical k-strip,
then

r ≥ zr > . . . > zr−k+1 ≥ 1.

2. if (jr, . . . , jr−k+1) with jr, . . . , jr−k+1 ∈ {ar + 1, . . . , ar−k} is the k-tuple of column
indices of the vertical k-strip, from bottom to top and from left to right, then

ai + 1 ≤ ji ≤ min {ar−k, ai +
i∑

t=1

xit}, for i = r − k + 1, . . . , r.

(When k = r, we convention that a0 := a1 + x11.)

We let the (r, 0)-path equals to the empty set ∅, and we call it the empty path
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The strictly decreasing sequence (zr, . . . , zr−k+1) of positive integers is called the
numbering sequence of Z, and (jr, . . . , jr−k+1), where ar < jr ≤ ... ≤ jr−k+1 ≤ ar−k, is
called the column indexing sequence.

An (r, k)-path Z is completely identified by its numbering sequence and its column
indexing sequence. We write

Z = ((zr, jr), . . . , (zr−k+1, jr−k+1)) ∈ ZZ2k.

All (r, k)-paths Z of T , for k ∈ {1, . . . , r}, have the bottom cell in the r-th row, and
the top cell in the (r− k + 1)-th row of T . Condition 2 of the previous definition means
that the top cell of Z is always under a cell numbered by 0 when r > k ≥ 1. Clearly,
1 ≤ k ≤ zr ≤ r and 1 ≤ zr−k+1 ≤ zr − k + 1 ≤ r − k + 1.

Two paths are said disjoint if the supporting strips do not have cells in common.
The maximum number of pairwise disjoint (r, r)-paths of T = [a, b, c, X] is br =

xr,r. That is, the maximum number of pairwise disjoint vertical strips with numbering
sequences of the form (r, r− 1, . . . , 2, 1) is br. These paths are called the border paths of
T .

Clearly, if the bottom cell of an (r, k)-path is numbered with zr < r, then k < r and
zi < i, for all i = r − k + 1, . . . , r. We have also 1 ≤ zr−k+1 ≤ zr − k + 1 < r − k + 1.

Definition 6 Let r ≥ 1 and k ∈ {0, 1, . . . , r − 1}. An (r, k)-path Z of T is called an
interior (r, k)-path of T if its numbering sequence (zr, . . . , zr−k+1) satisfies r > zr.

If k > 0, an interior (r, k)-path is an (r, k)-path whose bottom cell is numbered with
zr < r. Therefore, an interior path has length k < r and does not have the top cell in
the first row of T .

The set of interior paths of T may be reduced to the empty path. This happens when
xr1 = . . . = xr,r−1 = 0.

Example 3 Let

T = 1 3 4 5 6

1 2 3 4 5 6 6

7

1 2 3 3 5 5
2 4 4 44

2 3 3 3 3
1 1 2 2 2 2

1 1 1 11

The following numbered vertical strips of T

Q =
1

, Z1 =

3

4

5
, Z2 =

2

3

5

6

, W =

3

5

6
, U =

2

3

6

7

, V =

1

2

3

4

5

6

7

.

are paths of T : the first four Q,Z1,Z2, W are interior ones, V is a border path and U
is neither interior or border.

The vertical strips

11



4

5 ,

3

6

7

are not paths of T .

We shall omit ”r” in the prefix (r, k)− of these notations since ”r” is always the order
of the rectangular LR tableau, and we write only (interior) path or k-path if we want to
stress the length of the strip.

Definition 7 Let r ≥ 1, T ∈ LRDr and k, s ∈ {1, . . . , r}. Let Z be a k-path and W
be an s-path of T . We say that Z is less than W, written Z < W, if k ≤ s and the
supporting strip of W is strictly to the right of the supporting strip of Z. That is, for all
i ≤ min{k, s}, the cell of W in the (r− i + 1)-th row is strictly to the right of the cell of
Z in the (r − i + 1)-th row. We write ∅ < W, where ∅ is the empty path.

If Z < W , then Z and W are disjoint. In particular, distinct paths with cells in
common are not comparable.

We say that Z is less than or equal toW , written Z ≤ W , if either Z < W or Z = W .
Let P be a non empty subset of the set of (interior) paths of T then (P,≤) is a finite

poset.

Definition 8 Let r ≥ 1, T ∈ LRDr and k, s ∈ {1, . . . , r}. Let Z be a k-path and W be
an s-path of T . We say that W is to the right of Z, written Z � W, if k ≤ s and the
supporting strip of W is to the right of the supporting strip of Z possibly with cells in
common. We write ∅ � ∅ and ∅ � W.

Clearly, if Z ≤ W then Z � W . We write Z ≺ W when Z � W and Z 6= W .
Clearly, if Z ≺ W and Z, W do not have cells in common, then Z < W . Let P as before
then (P,�) is a finite poset. (P,�) has maximum (minimum) if there is the right (left)
most path of P , and, in this case, it is the left (right) most minimal (maximal) element
of (P,≤).

Example 4 In example 3, the least interior path and greatest interior path with respect
to ” � ”, are Q and Z2 respectively,

Q =
1

, Z2 =

2

3

5

6

.

Definition 9 [7, 10] Let (P,≤) be a poset.
(a) A chain C in P is a non empty subset, which, as a subposet is a chain.
(b) The length of a finite chain C is #C − 1.
(c) A chain C in P is maximal if for any chain D in P , C ⊆ D implies C = D.
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(# stands for the cardinal of a set.)
We say that C = {x0 < x1 < . . . < xd} is a connected chain in P if xi covers xi−1 for

all i. If C is maximal then C is connected.

Definition 10 [10] Let (P,≤) be a finite poset. The dimension of P , written d[P ], is

max {q : x0 < x1 < . . . < xq is a connected chain in P}.

Let s ≥ 0 and Z0 < Z1 < . . . < Zs, W0 < W1 < . . . < Ws two s-chains of paths
of T with respect to ” ≤ ”.. We say that W0 < W1 < . . . < Ws is to the right of
Z0 < Z1 < . . . < Zs, written (Z0,Z1, . . . ,Zs) � (W0,W1, . . . ,Ws), if Zi � Wi, for
i = 0, 1, . . . , s

If C is a non empty set of s-chains (Z0,Z1, . . . ,Zs) of T , then (C,�) is a poset.
A chain ∅ < Z1 < . . . < Zs is called the right most s-chain of C if, for all s-chains,
∅ < W1 < . . . < Ws in C it holds Wi � Zi, for i = 1, . . . , s.

Definition 11 Let r ≥ 1 and T ∈ LRDr. For each k ∈ {0, 1, . . . , r − 1}, let Ik+1 be
the set of all interior paths of T having one cell in the (k + 1)-th row, plus the 0-path.
Equivalently, the set of all interior paths whose top cells are in the first k + 1 rows, plus
the 0-path.

For k ∈ {0, 1, . . . , r − 1}, (Ik+1,≤) is a finite poset. (Ik+1,≤) is the poset of interior
paths of length at least r − k of T , plus the 0-path. Clearly, {∅} = I1 ⊆ I2 ⊆ . . . ⊆ Ir

and 0 = d[I1] ≤ d[I2] ≤ . . . ≤ d[Ir].
Let ∅ < Z < W in Ik+1. Then W covers Z iff Z and W have at least two adjacent

cells, and Z covers ∅ iff ∅ < X < Z implies X /∈ Ik+1.
Let W0 < W1 < . . . < Wd be a chain in Ik+1. Then, W0 < W1 < . . . < Wd is a

maximal chain only if, W0 = ∅, and, for each i ∈ {1, . . . , d− 1}, Wi, Wi+1 have at least
two adjacent cells. In particular, if W0 < W1 < . . . < Wd is a connected chain such that
W0 = ∅, and the bottom symbols of the paths W1, . . . ,Wd are the d-right most symbols
< r of the r-th row, then the chain is maximal and it is the longest right most one.

In the following we determine the dimension of the poset (Ik+1,≤) and we characterize
the right most longest chain in order to define a deletion operation on an LR tableau.

If W0 < W1 < . . . < Wq is a chain in (Ik+1,≤), then {W0,W1, . . . ,Wq} is a subset of
Ik+1 of pairwise disjoint interior paths. In general, if W0 < W1 < . . . < Wq is a maximal
chain in Ik+1, it is not true that {W0,W1, . . . ,Wq} is a maximal subset of pairwise disjoint
paths of Ik+1 with respect to set inclusion (see example 5). But if W0 < W1 < . . . < Wq

has maximum length next proposition shows that {W0,W1, . . . ,Wq} is a maximal subset
of pairwise disjoint paths of Ik+1 with respect to set inclusion. Furthermore, we show
that d[Ik+1] is the maximum cardinal of a maximal subset of Ik+1 \ {∅}, with respect to
set inclusion. Equivalently, d[Ik+1] is the maximum number of pairwise disjoint interior
paths of Ik+1 \ {∅}.

Proposition 1 Let r ≥ 1, T ∈ LRDr and k ∈ {0, 1, . . . , r − 1}. Let D ⊆ Ik+1 be a
maximal subset of Ik+1 of pairwise disjoint interior paths, with respect to set inclusion,
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that is, X ∈ Ik+1 \ {∅} only if X ∩Y 6= ∅, for some Y ∈ D. Then, there exists D′ ⊆ Ik+1

such that
(a) #D′ = #D;
(b) D′ is a maximal chain of (Ik+1,≤);
(c) the set of cells defining the paths of D and the set of cells defining D′ respectively,

are the same.

Proof: Clearly, if there exists a chain D′ satisfying (a) and (c), then D′ is a maximal
chain of (Ik+1,≤). Let d := #D. We prove by induction on d that there exists a chain
D′ satisfying (a) and (c).

If d = 1, 2, then D′ = D. In particular, D′ = D = {∅}, if d = 1.
Let d > 2 and suppose the claim true for d − 1. Let D = {∅,W1, . . . ,Wd} and

f
(r)
1 ≤ . . . ≤ f

(r)
d the bottom symbols of W1, . . . ,Wd, respectively.

1st case. W1, . . . ,Wd−1 are comparable with Wd with respect to ” ≤ ”. Since f
(r)
1 ≤

. . . ≤ f
(r)
d , this means Wi < Wd, for i = 1, . . . , d − 1. Let D̃ := {W1, . . . ,Wd−1}. By

induction hypothesis, there exists D′′ = {∅ < W ′′
1 < . . . < W ′′

d−1} where the cells of D′′

and D̃ are the same. Therefore D′ = D′′ ∪ {Wd} satisfies the required conditions.
2nd case. Let Wα, . . . ,Wγ with α < . . . < γ, be the elements of D which are not

comparable with Wd with respect to ” ≤ ” (that is, Wi < Wd iff i 6∈ {d, α, . . . , γ}).
Suppose the numbering sequence of Wγ and Wd are f r

γ < . . . < fu
γ and f r

d < . . . <
f v

d respectively. To fix ideas let u ≥ v. We define the interior path Wd � W ′
d with

numbering sequence (max{f r
γ , f r

d}, . . . ,max {f v
γ , f v

d }, f v+1
γ , . . . , fu

γ )} and the interior path
W ′

γ � Wγ with numbering sequence (min {f r
γ , f r

d}, . . . ,min {f v
γ , f v

d }). Clearly, W ′
γ < W ′

d

and W ′
γ ∩Wi = W ′

d ∩Wi = ∅, for i 6= d, γ, since the sets of cells involved in the paths
of W ′

γ, W ′
d and Wγ, Wd respectively, are the same. We have therefore Wi < W ′

d, for
i 6∈ {d, α, . . . , γ}, and W ′

γ < W ′
d.

Now, we repeat the same reasoning for W ′
d and {Wα, . . . ,Wγ} \ {Wγ}, etc. At the

end of the process we obtain: Wi < W ′
d � W̃d, for i ∈ {1, . . . , d − 1} \ {α, . . . , γ},

W ′
α � Wα, . . . ,W ′

γ � Wγ and W ′
α, . . . ,W ′

γ < W̃d. Moreover, the cells involved in

{Wα, . . . ,Wγ,Wd} and {W ′
α, . . . ,W ′

γ, W̃d} respectively, are the same.

Let D̃ := {W ′
α, . . . ,W ′

γ, W̃d} ∪({∅,W1, . . . ,Wd−1} \ {Wα, . . . ,Wγ}). D̃ is also a set

of disjoint interior paths and the set of cells involved in D and D̃ are the same. We get
reduced to the first case.

Corollary 1 Let ∅ < Z1 < . . . < Zq be a chain of (Ik+1. ≤).
(a) If q = d[Ik+1], then {∅,Z1, . . . ,Zq} is a maximal subset of Ik+1 of pairwise disjoint

paths,
X ∈ Ik+1, X 6= ∅ only if X ∩ Zj 6= ∅, for some j ∈ {1, . . . , q}.

(b) q = d[Ik+1] iff {∅,Z1, . . . ,Zq} is a maximal subset of Ik+1 of pairwise disjoint paths,
with maximum cardinal.

Proof: (a) Suppose that X ∈ Ik+1, X 6= ∅ and {X , ∅,Z1, . . . ,Zq} is a subset of
pairwise disjoint paths of Ik+1. By previous proposition, there would be a chain in Ik+1

of length at least q + 1, wich contradicts q = d[Ik+1].
(b) Follows from (a) and the previous proposition. .
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Corollary 2 Suppose ∅ < Z1 < . . . < Zq is the right most q-chain of (Ik+1,≤). Then,
the following conditions are equivalent

(a) q = d[Ik+1].
(b) {∅,Z1, . . . ,Zq} is a maximal subset of Ik+1 of pairwise disjoint paths,

X ∈ Ik+1, X 6= ∅ only if X ∩ Zj 6= ∅, for some j ∈ {1, . . . , q}.

(c) X 6= ∅, X < Z1 only if X /∈ Ik+1.

Proof: (a) ⇒ (b). It is corollary 1, (a).
(b) ⇒ (c). Suppose that ∅ < X < Z1 and X ∈ Ik+1. Then {∅,X , Z1, . . . ,Zq} is a set

of pairwise disjoint paths of X ∈ Ik+1, which contradicts (b).
(c) ⇒ (a). Suppose d[Ik+1] = t > q and let ∅ < W1 < . . . < Wt−q+1 < . . . < Wt be

a chain of maximum length of Ik+1. In particular, ∅ < Wt−q+1 < . . . < Wt is a q-chain,
then Wt−q+1 � Z1 . . .Wt � Zq. Since W1 < . . . < Wt−q+1 this implies W1 < Z1 with
∅ < W1 and W1 ∈ Ik+1. This contradicts (c).

The last corollary says that to find a chain of maximum length in (Ik+1,≤) it is
enough to choose among the right most q-chains ∅ < Z1 < . . . < Zq in Ik+1 that one
satisfying Z1 covers ∅.

Example 5 Let

T = 2 3 3

21 31 2
1

4

1

2

1

2

1

.

The following paths of T

(∅,
1

3 ,

1

3 ) form a maximal subset of pairwise disjoint paths of I3 and therefore

a maximal chain of I3 but not a maximal chain of maximum length. On the other hand,

(∅,F1,F2) = (∅
1

3 ,

1

2

3
) form a a maximal chain of I3 but does not form a

maximal subset of pairwise disjoint paths of I3. (∅,F1,F2) is a maximal chain but not
of maximum length. In this case,

(∅,
1

2 ,

1

3 ,

1

2

3
) is a maximal chain of maximum length of I3 and

d[I3] = 3. This means that not all connected chains between fixed end points have the
same length.

The following definition aims characterizing the right most maximal chain of maxi-
mum length.

Let r ≥ 1 and T = [a, b, c, X] ∈ LRDr. Let 1 ≤ α < β < . . . < γ < r, and
0 ≤ u ≤ xr,α, 0 ≤ v ≤ xr,β, . . . , 0 ≤ w ≤ xr,γ We say that Λ = {α1, . . . , αu, β1, . . . , βv,
. . . , γ1, . . . , γw} is a list of symbols < r in the r-th row of T , if α1, . . . , αu, β1, . . . , βv, . . . ,
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γ1, . . . , γw are, respectively, the right most u symbols α, v symbols β, . . . , and w symbols
γ of the r-th row of T . If u = v = . . . = w = 0, we have Λ = ∅, the empty list of symbols.
When u + . . . + v + w =

∑r−1
j=1 xrj, we have the full list of symbols < r of the r-th row of

T .

Definition 12 Let Λ = {z1 ≤ . . . ≤ zs}, s ≥ 0, be a list of symbols, not necessarily the
full list, of the r-th row of T . We denote by CΛ (or Cz1,...,zs if s > 0) the set of all tuples
(∅,Z1, . . . ,Zs) of s-chains ∅ < Z1 < . . . < Zs of interior paths of T , where the bottom
cells of Z1, . . . ,Zs are numbered by z1, . . . , zs, respectively. When, s = 0, Λ = ∅, and we
have CΛ = {(∅)}.

For every list of symbols Λ in the r-th row of T , (CΛ,�) is a poset.
Let Λ = {z1, . . . , zs}, s ≥ 0. The maximum of CΛ is characterized in the following

Proposition 2 The maximum (Z0,Z1, . . . ,Zs) of (CΛ,�) is such that Z0 = ∅, Zs is the
right most path with bottom symbol zs, and for 1 ≤ j < s, Zj is the right most path with
bottom symbol zj, satisfying Zj < Zj+1.

Proof: If Λ = {∅}, the maximum of CΛ is (∅).
We assume T ∈ LRDr, with r > 1. We recall that the cells with nonzero symbols of

a tableau are numbered along columns, from down to up, by strictly decreasing order.
The maximum element of (CΛ,�) may be determined as follows:

We start the process in the r-th row of T . Write z
(r)
i := zi, for i = 1, . . . , s. Let

0 ≤ z
(r−1)
1 ≤ . . . ≤ z(r−1)

s < r − 1 be the right most s symbols (possibly zeros) of the
(r − 1)-th row of T such that

0 ≤ z
(r−1)
1 < z

(r)
1 , . . . , z(r−1)

s < z(r)
s < r.

Delete the symbols 0 among 0 ≤ z
(r−1)
1 ≤ . . . ≤ z(r−1)

s < r − 1. If they are all
0, then the maximum is the chain ∅ < Z1 < . . . < Zs of interior 1-paths containing
the symbols z

(r)
1 , . . . , z(r)

s , respectively. Otherwise, nonzero symbols are left, let us say,

0 < z
(r−1)
u+1 < . . . < z(r−1)

s < r − 1, where s > u ≥ 0.

Let 0 ≤ z
(r−2)
u+1 ≤ . . . ≤ z(r−2)

s < r− 2 be the right most s−u symbols of the (r− 2)-th
row of T such that

0 ≤ z
(r−2)
u+1 < z

(r−1)
u+1 , . . . , z(r−2)

s < z(r−1)
s < r − 1.

Delete the symbols 0 among 0 ≤ z
(r−2)
u+1 ≤ . . . ≤ z(r−2)

s < r − 2. If they are all 0, then
the maximum element of CΛ is the chain ∅ < Z1 < . . . < Zu < Zu+1 < . . . < Zs, where

Z1 < . . . < Zu is the chain of u interior 1-paths containing the symbols z
(r)
1 , . . . , z(r)

u and

Zu+1 < . . . < Zs is the chain of s−u interior 2-paths containing the symbols z
(r)
u+1, . . . , z

(r)
s .

Otherwise, nonzero symbols are left, and, as before, proceed up, to the next rows, until
nothing is left. The process will end up in the first row or before since the initial step
starts in the r-th row with symbols < r and, in each row, the symbols are at least one
unity lesser than in the previous row. At the end of the process we arrive at the chain
(Z1, . . . , Zs).
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Let (∅,W1, . . . ,Ws) ∈ CΛ. We claim that (∅,W1, . . . ,Ws) � (∅,Z1, . . . , Zs). Clearly,
Ws � Zs. By construction, Zs−1 is the right most path < Zs, thereforeWs−1 � Zs−1. Let
1 ≤ j < s, and suppose that Wj+1 � Zj+1. Since Wj < Wj+1 it follows that Wj < Zj+1.
By construction, Zj is the right most path < Zj+1. Therefore, Wj � Zj. The claim is
proved.

Definition 13 Let s ≥ 0 and Λ = {z1, . . . , zs} be a list of symbols. Let Z = (∅,Z1, . . . ,
Zs) be the maximum of CΛ. Z = (∅,Z1, . . . , Zs) is called the deletion path chain of T
generated by the list of symbols Λ = {z1, . . . , zs}, or the symbols z1, . . . , zs, with s ≥ 0.
(If s = 0, Λ = ∅ and Z = (∅).)

For i = 1, . . . , r − 1, let yZ
r,i be the number of interior paths in Z = (∅,Z1, . . . , Zs)

with length r − i. Equivalently, the number of interior paths in (∅,Z1, . . . , Zs) with top
cells in the (i + 1)− th row of T . Clearly,

∑r−1
i=1 yZ

ri = s and, for k = 1, . . . , r− 1,
∑k

i=1 yrj

is the number of interior paths of Z = (∅,Z1, . . . , Zs) with top cells in the first k + 1
rows of T .

Notice that yZ
r,i is precisely the number of zeros deleted in the i-th row of the diagram

of a during the process of calculation of the maximum element Z described in the previous
proposition. Thus, we call (yZ

r,1, y
Z
r,2, ..., yZ

r,r−1) the Z-deletion sequence of T or the deletion
sequence generated by the symbols z1, . . . , zs. When there is no ambiguity we omit the
supraindexation ”Z” of each yZ

r,i in the notation of the Z-deletion sequence, and writing
only (yr1, yr2, ..., yr,r−1).

Definition 14 Let T ∈ LRDr with r ≥ 1 and
∑r−1

i=1 xri = s ≥ 0. Let Λ = {z1 ≤ . . . ≤
zs}, s ≥ 0, be the full list of symbols < r in the r-th row, and Z = (∅,Z1, . . . , Zs) the
maximum of CΛ. Let (yr1, yr2, ..., yr,r−1) be the deletion sequence generated by the symbols
z1 ≤ . . . ≤ zs, s ≥ 0. We call (yr1, yr2, ..., yr,r−1) the r-deletion sequence of T , and
Z = (∅,Z1, . . . , Zs) the r-deletion path chain of T .

Note that if Λ = ∅, (0, . . . , 0)︸ ︷︷ ︸
r−1

is the r-deletion sequence of T .

Example 6 In example 3, the maximum element of C56 is

Z = (∅,Z1,Z2) = (∅,

3

4

5
,

2

3

5

6

),

and the Z-deletion sequence is (0, 0, 1, 1, 0, 0). The 7-deletion path chain of T is

(∅, 1
,

1

2

3
,

2

3

4
,

3

4

5
,

2

3

5

6

),
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and the deletion sequence is (0, 0, 1, 3, 1, 1).

Considering proposition 2 and the definition of Z-deletion sequence, we have

Observation 1 Let r ≥ 1, T = [a, b, c, X] ∈ LRDr. Let Λ = {z1, . . . , zs}, s ≥ 0, be a
list of symbols and Λj = {zj, . . . , zs}, for j = 1, . . . , s.

1. (∅,Z1, . . . ,Zs) = max CΛ iff (∅,Zj, . . . ,Zs) = max CΛj
, for j = 1, . . . , s.

2. Let Z be the maximum of CΛ with Z-deletion sequence (yr1, . . . , yr,r−1). Let (∅,W1,
. . . ,Ws) ∈ CΛ, and mri the number of interior paths in (∅,W1, . . . ,Ws) with top
cells in the (i + 1)-th row of T , for i = 1, . . . , r − 1. Then,

(a) ai+1 ≤ ai − yri ≤ ai, for i = 1, . . . , r − 1.

(b) (yr1, yr2, ..., yr,r−1) majorizes (mr1, mr2, ..., mr,r−1), that is,

k∑
j=1

yrj ≥
k∑

j=1

mrj, for k = 1, . . . , r − 1,

with
∑r−1

j=1 yrj =
∑r−1

j=1 mrj = s. Among the chains in CΛ, Z is the one which
have more top cells in the first k + 1 rows, for k = 1, . . . , r − 1.

Lemma 1 Let r ≥ 1, T ∈ LRDr. Let (Z0,Z1, . . . , Zs) be the r-deletion path chain and
(yr1, . . . , yr,r−1) the r-deletion sequence of T . Let k ∈ {0, 1, . . . , r− 1} and m =

∑k
j=1 yrj.

Then

1. For i = k + 1, . . . , r,
∑k

j=1 yrj ≤
∑i−1

j=1 xi,j and
∑k

j=1 yrj + br ≤ ∑i
j=1 xi,j. In

particular, when k = r − 1,
∑r−1

j=1 yrj =
∑r−1

j=1 xr,j.

2. d[Ir] =
∑r−1

j=1 yrj and Z0 < Z1 < . . . < Zs is the right most longest chain of Ir.

3. Zj ∈ Ik+1 iff j ∈ {s−m + 1, . . . , s} or j=0.

4. If X ∈ Ik+1 and X 6= ∅, then X � Zs and there exists j ∈ {s−m + 1, . . . , s} such
that X ∩ Zj 6= ∅. That is, X 6= ∅, X < Zs−m+1 only if X /∈ Ik+1.

Proof: (1) and (2) are obvious.
(3) Let Zj 6= ∅. By definition of r-deletion sequence and m, if j < s−m+1, Zj /∈ Ik+1.
(4) Suppose that X 6= ∅, X < Zs−m+1 and X ∈ Ik+1. Since Zs−m < . . . < Zs is the

right most (m + 1)-chain of Ir, it holds X � Zs−m < Zs−m+1. But then ∅ < Zs−m <
Zs−m+1 < . . . < Zs is a chain in Ik+1. This is a contradiction with (3).

Theorem 2 Let r ≥ 1, T ∈ LRDr and k ∈ {0, 1, . . . , r−1}. Let Z = (Z0,Z1, . . . , Zs) be
the r-deletion path chain of T with r-deletion sequence (yr1, . . . , yr,r−1). Let m =

∑k
j=1 yrj.

Then

1. (Ik+1,≤) is a poset of dimension
∑k

j=1 yrj, and ∅ < Zs−m+1 < . . . < Zs is the right
most longest chain of Ik+1.
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2. If ak − ak+1 > 0, d[Ik+1] < ak − ak+1 only if d[Ir] < ak − ar.

3. Ik+1 = {∅} only if d[Ir] ≤ ak+1 − ar.

Proof: (1) By construction, ∅ < Zs−m+1 < . . . < Zs is the right most m-chain of
Ik+1 and satisfies condition (4) of the previous lemma. By corollary 2, this means that
∅ < Zs−m+1 < . . . < Zs is the right most maximal chain of Ik+1 of maximum length.

(2) Let q := ak − ak+1 > 0. If ak ≤ ar +
∑r−1

j=1 xrj, there is a chain W1 < . . . < Wq ∈
Ik+1 with top cells exactly in row k + 1 of T . Now the conclusion follows from (1).

(3) If ar +
∑r−1

j=1 xrj > ak+1 there is a path in Ik+1 with the top cell in some row
i ∈ {2, . . . , k + 1}.

3.2 Deletion, projection of LR rectangular tableaux and inter-
lacing conditions

Based on the notion of deletion path chain and deletion sequence of an LR rectangular
tableau introduced in the previous subsection, we are led to a deletion operation in LR
rectangular tableaux. Given an LR rectangular tableau T of type [a, b, c] with deletion
sequence (y1, . . . , yr−1) and deletion path sequence (∅,Z1, . . . ,Zs), the deletion operation
is defined as follows: moving one step up the cells along each path Zj, j > 0, of the
deletion path sequence, insert in each row i of the diagram of a, the yi top cells of the yi

paths in (∅,Z1, . . . ,Zs) whose top cells are in row i+1 of T , and remove equal number of
cells in the row i of a; eventually, delete the last rows of a, b and the first row of c. This
combinatorial operation defines a projection P of LRDr on LRDr−1, for r ≥ 1. The map
P on LRDr transforms an LR tableau T of type [(a1, . . . , ar); (b1, . . . , br); (c1, . . . , cr)]
with |a|+ |b|+ |c| = rm into one of type [(a′1, . . . , a

′
r−1, 0); (b1, . . . , br−1, 0); (m, c2, . . . , cr)],

such that the partition a′ interlaces with a, that is, ai+1 ≤ a′i ≤ ai, for i = 1, . . . , r − 1.

Lemma 2 (Elementary deletion) Let r ≥ 1 and T = [(a1, ..., ar), (b1, ..., br), (c1, ..., cr),
X] ∈ LRDr. Let Λ be a list of symbols such that 0 ≤ #Λ ≤ 1 and Z the maximum of
CΛ. If Λ = ∅, let XZ = X(∅) = X. If Λ 6= ∅, let Z = (∅,Z1) with (kr, kr−1, ..., kr−s+1)
the numbering sequence of Z1, and XZ = (X(Z1))(∅), where X(Z1) = [x′ij] ∈ ZZr,r is such
that x′i,ki+1

= xi,ki+1
+ 1, r − 1 ≤ i ≤ r − s, x′i,ki

= xi,ki
− 1, r ≤ i ≤ r − s + 1, and

x′ij = xij, otherwise. Then T Z = [(a1, . . . , ar−s − #Λ, . . . , ar−1, ar), (b1, ..., br), (c1 +

#Λ, ..., cr), X
Z] ∈ LRDr.

Proof: If Λ = ∅, there is nothing to prove. Let r > 1 and Λ = {kr}. The proof
imitates the calculation of the maximum element Z of Ckr in proposition 2. Recall that
r > kr > kr−1 > . . . > kr−s+1 and that ki is the right most symbol of the i-th row
such that ki+1 > ki, for i ∈ {r − s + 1, . . . , r}. ( We let kr+1 := k + 1.) Insert the
symbol kr of the r-th row in the (r− 1)-th row by shoving the symbol kr−1. Then insert
kr−1 in the (r − 2)-th row by shoving the symbol kr−2. We shall get x′r,kr

= xr,kr − 1,
x′r−1,kr

= xr−1,kr + 1 and x′r−1,kr−1
= xr−1,kr−1 − 1, x′r−2,kr−1

= xr−2,kr−1 + 1. Proceed up,
in this way, until reaching the (r − s)-th row, where the symbol kr−s+1 is inserted by
deleting the right most symbol zero in the (r− s)-th row of the diagram of a. Eventualy,
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x′r−s,kr−s+1
= xr−s,kr−s+1 + 1. It is clear, that the output is a rectangular tableau T Z =

[(a1, . . . , ar−s−1, . . . , ar−1, ar), (b1, ..., br), (c1 +1, ..., cr), X
Z], that is the nonzero symbols

strictly increase along columns, from up to down, and do not decrease along rows, from
left to right.

Let us prove that T Z is in LRDr. We have only to check that XZ satisfies inequality
(4), in the definition of LR rectangular tableau given in section 2, for kr ≥ j ≥ kr−s+1

and r ≥ i ≥ r − s.
Let t ∈ {r − s + 1, . . . , r − 1} and t + 1 > u = kt+1 > v = kt. The basic operation in

the previous process is as follows: the right most symbol u of the (t+1)-th row is inserted
in the t-th row by shoving the right most symbol v, which on its turn, is inserted in the
(t− 1)-th row by shoving a symbol < v. Therefore x′tu = xtu + 1, x′t+1,u = xt+1,u − 1 ≥ 0
and x′iu = xiu, for i 6= t, t + 1.

If v < u− 1, x′i,u−1 = xi,u−1, for all i, and, in particular, x′t,u−1 = xt,u−1 = 0.
If v = u− 1, x′t,u−1 = xt,u−1 − 1 ≥ 0 and x′t−1,u−1 = xt−1,u−1 + 1.
It is sufficient to prove that∑t−1

i=1 x′i,u−1 ≥
∑t

i=1 x′iu.
Case 1: v < u− 1 ⇔ xt,u−1 = 0.
In this case,∑t−1

i=1 x′i,u−1 =
∑t−1

i=1 xi,u−1 =
∑t

i=1 xi,u−1 ≥
∑t+1

i=1 xi,u =
∑t−1

i=1 xi,u + xtu +1+ xt+1,u − 1

≥ ∑t−1
i=1 xi,u + xtu + 1 =

∑t
i=1 x′i,u.

Case 2 : v = u− 1 ⇔ xt,u−1 > 0.
In this case,

∑t−1
i=1 x′i,u−1 =

∑t−1
i=1 xi,u−1 + 1 ≥ ∑t

i=1 xi,u + 1 =
∑t

i=1 x′i,u.

We say that T Z is obtained from T by Z-deleting zeros or, by abuse of language, by
Z1-deleting zeros when Z = (∅,Z1).

Remark 1 In the previous lemma, let Λ 6= ∅ be the full list of symbols and k the right
most symbol < r in the r-th row. If (∅,Z1, . . . , Zs) is the r-deletion path chain of T then
(∅,Zs) is the maximum element of Ck. Suppose the top cell of Zs is in the (t + 1)-th row
of T , then the r-deletion sequence is (0, . . . , 0, yrt 6= 0, . . . , yr,r−1). If T Zs is obtained
from T by Zs-deleting zeros, then the r-deletion path chain of T Zs is (∅,Z1, . . . , Zs−1)
and the r-deletion sequence is (0, . . . , 0, yrt − 1, . . . , yr,r−1).

Example 7 Let C6 of T (example 3) with maximum (∅,Z2) and Z2 = ((k7, j7); (k6, j6);
(k5, j5); (k4, j4)) = ((6, 6); (5, 6); (3, 7); (2, 7)). The (∅,Z2)-deletion sequence is (0, 0, 1, 0,
0, 0).

T = 1 3 4 5 6

1 2 3 4 5 6 6

7

1 2 3 3 5 5

2 4 44 4
2 3 3 3 3
1 1 2 2 2 2

1 1 1 1 1

T ′ = 1 3 4 5 7

1 2 3 4 6 6 6
1 2 3 5 5 5

3 4 44 4
22 3 3
1

3 3
1 2 2 2 2

1 1 1 11

T ′ is obtained from T by Z2-deleting zeros. X ′ is such that x′76 = x76 − 1, x′65 = x65 − 1;
x′53 = x53 − 1; x′42 = x42 − 1; x′66 = x66 + 1; x′55 = x55 + 1; x′43 = x43 + 1; x′32 = x32 + 1.
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Theorem 3 Let r ≥ 1 and T = [(a1, ..., ar); (b1, ..., br); (c1, ..., cr); X] ∈ LRDr. Let Λ =
{α1 ≤ . . . ≤ αp}, p ≥ 0, be a list of symbols of the r-th row of T and Z = (Q0, Q1, . . . ,Qp)
the maximum of CΛ with Z-deletion sequence (qr1, . . . , qr,r−1). Let X(Qp) be as in lemma
1, and X(Q0,Q1,...,Qp) ∈ ZZr,r defined inductively by X(Qp−i,...,Qp) = (X(Qp−i+1,...,Qp))(Qp−i),
for i = 1, . . . , p. Then, T Z = [(a1−qr1, . . . , ar−1−qr,r−1, ar), (b1, ..., br), (c1+p, c2, . . . , cr),
X(Q0,Q1,...,Qp)] ∈ LRDr and ai+1 ≤ ai − qri ≤ ai, for i = 1, . . . , r − 1.

Proof: Observe that the maximum (Q0,Q1, . . . ,Qp) of CΛ is such that: (∅,Qp) is the
maximum of Cαp of T ; if T Qp is the LR rectangular tableau obtained, according to lemma
1, by Qp-deleting zeros on T , and XQp is the matrix defined as in lemma 1, then (∅,Qp−1)
is the maximum of Cαp−1 in T Qp ; again, if T Qp−1,Qp is the LR rectangular tableau obtained,
according to lemma 1, byQp−1-deleting zeros on T Qp , and X(Qp−1,Qp) = (XQp)(Qp−1), then
(∅,Qp−2) is the maximum of Cαp−2 in T Qp−1,Qp . Therefore, applying successively lemma
1 p-times, we obtain T Q0,Q1,...,Qp .

We say that T Q0,Q1,...,Qp is obtained from T by (Q0,Q1, . . . ,Qp)-deleting zeros.

Remark 2 (a) In the theorem above, let α1, . . . , αp be the p right most symbols <
r. Let (∅,Z1, . . . ,Zs) be the r-deletion path chain of T and (yr1, . . . , yr,r−1) the r-
deletion sequence. Let T Z0,Zs−p+1,...,Zs be the rectangular LR tableau obtained from T
by (∅,Zs−p+1, . . . ,Zs)-deleting zeros. Then (∅,Z1, . . . ,Zs−p) is the r-deletion path chain
of T Z0,Zs−p+1,...,Zs and the r-deletion sequence is (0, . . . , 0, y′rt, yr,t+1, . . . , yr,r−1) where t ∈
{1, . . . , r − 1} is such that p−∑t−1

j=1 yrj = y′rt and
∑t−1

j=1 yrj ≤ p <
∑t

j=1 yrj.
(b) Let Λj := {αj, . . . , αp}, j = 1, . . . , p, Λp+1 := ∅ and Λ0 := Λ1. The lemma and

theorem above give another characterization of (Q0,Q1, . . . ,Qp) the maximum of CΛ,
namely: (∅,Qp) is the maximum of CΛp\Λp+1 in T ; and, if T Qp is the LR rectangular
tableau obtained by Qp-deleting zeros, then, for i ≥ 1, (∅,Qp−i) is the maximum of
CΛp−i\Λp−i+1

in T Zp−i+1,...,Zp obtained from T Zp−i+2,...,Zp by Qp−i+1-deleting zeros.

Example 8 Let C5,6 of T , defined in examples 3, 4, with maximum element Z = (∅,Z1,Z2),
as defined in example 4, and with Z-deleting sequence (0, 0, 1, 1, 0, 0).

Applying theorem above to T , we obtain

T ” = 1 3 4 7
1 2 3 5 6 6 6

1 2 4 5 5 5

3 4 44 4

22 3 3 3 3
1 1 2 2 2 2

1 1 1 1 1

3
1

by (∅,Z1,Z2)-deleting zeros on T .

Theorem 4 Let r ≥ 0 and T = [(a1, ..., ar+1), (b1, ..., br+1), (c1, ..., cr+1), X] ∈ LRDr+1

with (r + 1)-deleting path chain (Z0,Z1, . . . ,Zs). Let a′ = (a′1, ..., a
′
r) ∈ Pr such that

ai+1 ≤ a′i ≤ ai, for i = 1, ..., r. If (a1− a′1, . . . , ar − a′r) is the (r + 1)-deleting sequence of
T , then T (r) = [a′, (b1, ..., br), (c2, ..., cr+1), X ′] ∈ LRDr, where X(Z0,Z1,...,Zs) = X ′ ⊕ [br].
(When r = 0, we let T (0) be the empty tableau.)
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Proof: Applying theorem 3, by (r+1)-deleting zeros on T , we obtain the rectangu-
lar LR tableau T Z0,Z1,...,Zs = [a′ = (a′1, . . . , a

′
r, ar+1); (b1, ..., br, br+1), (c1 + s, c2, ..., cr+1),

X(Z0,Z1,...,Zs)] ∈ LRDr+1. After deleting the (r + 1)-th row of T Z0,Z1,...,Zs ∈ LRDr+1, we
obtain T (r) ∈ LRDr as desired.

T (r) is obtained by (Z0,Z1, . . . ,Zs) deleting zeros and the (r + 1)-th row of T .
If (yr+1,1, . . . , yr+1,r) is the (r+1)-deletion sequence of T = [(a1, ..., ar+1), (b1, ..., br+1),

(c1, ..., cr+1), X] ∈ LRDr+1, we shall call (yr+1,1, . . . , yr+1,r, ar+1) the (r + 1)-full deletion
sequence of T . In particular, when r = 0, the 1-full deletion sequence is (a1).

We say that T (r) is obtained by (r + 1)-full deletion .

Corollary 3 Let r ≥ 0. [(a1, . . . , ar+1), (b1, . . . , br+1), (c1, . . . , cr+1)] ∈ LRr+1 only if
there exists a partition (a′1, . . . , a

′
r) ∈ Pr satisfying ai+1 ≤ a′i ≤ ai, for i = 1, . . . , r, such

that [a′, (b1, . . . , br), (c2, . . . , cr+1)] ∈ LRr.

Proof: Let (a′1, . . . , a
′
r) ∈ Pr such that (a1 − a′1, . . . , ar − a′r, ar+1) is the (r + 1)-full

deletion sequence of some LR rectangular tableau of type [(a1, . . . , ar+1), (b1, . . . , br+1),
(c1, . . . , cr+1)].

Example 9 Applying to T the full deletion operation we obtain T ′.

T = 1 2 2 3

21 32 2
1

4

1
2 2

1 1

=⇒ T ′ = 1 2 2 2 3

1 2
1 1 1 1

2 2

3

In particular, the rectangular LR triple [(6, 5, 2, 0); (5, 4, 1, 0); (4, 3, 2, 0)] of degree 4 is
transformed into the rectangular LR triple [(5, 4, 0); (5, 4, 1); (3, 2, 0)] of degree 3.

A map P on a set A is called a projection if P2 = P.
If [(a1, . . . , ar−1); (b1, . . . , br−1); (c1, . . . , cr−1); X ′] ∈ LRDr−1, with |a|+ |b|+ |c| = rm,

then [(a1, . . . , ar−1, 0); (b1, . . . , br−1, 0); (m, c1, . . . , cr−1); X
′ ⊕ [0]] ∈ LRDr. So, we may

look at LRDr−1 as a subset of LRDr and the r-full deletion operation as a projection of
LRDr on LRDr−1, r ≥ 1, as shown in the next theorem.

Theorem 5 Let r ≥ 1 and P : LRDr −→ LRDr defined by P([a, b, c, X]) = T ′, where
T ′ = [(a1−yr,1, . . . , ar−1−yr,r−1, 0); (b1, . . . , br−1, 0); (m, c2, . . . , cr); X

′⊕ [0]], is such that
rm = |a| + |b| + |c|, X(Z0,Z1,...,Zs) = X ′ ⊕ [br], with (Z0,Z1, . . . ,Zs) and (yr,1, . . . , yr,r−1)
respectively, the r-deletion path chain and the r-deletion sequence of [a, b, c, X]. Then, P
is a projection on LRDr−1.

Proof: It is a consequence of the previous theorem. Since the r-deletion sequence of
T ′ is (0, . . . , 0︸ ︷︷ ︸

r−1

), P(T ′) = T ′ and P is a projection on LRDr−1. Therefore, in LRDr−1 we

may identify T (r−1) with P(T ).
The next remark shows that given an LR rectangular tableau T of type [a, b, c] and

order r, not all sequences of nonnegative integers (yr1, . . . , yr,r−1) satisfying the conditions
ai−ai+1 ≥ yri, for i = 1, . . . , r−1, and such that [(a1−yr1, . . . , ar−1−yr,r−1); (b1, . . . , br−1);
(c2, . . . , cr)] ∈ LRr−1 are r-deletion sequences of T . In the next section we shall see that
a deletion sequence has to satisfy further conditions.
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Remark 3 (a) Let [(a′1, . . . , a
′
r), (b1, . . . , br), (c2, . . . , cr+1)] ∈ LRr and [(a1, . . . , ar+1),

(b1, . . . , br+1), (c1, . . . , cr+1)] ∈ LRr+1 such that ai+1 ≤ a′i ≤ ai, i = 1, . . . , r. In general,
it is not true that there exist X ′ ∈ ZZr,r and X ∈ ZZr+1,r+1 such that T ′ = [(a′1, . . . , a

′
r),

(b1, . . . , br), (c2, . . . , cr+1), X
′] ∈ LRDr may be obtained from T = [(a1, . . . , ar+1), (b1,

. . . , br+1), (c1, . . . , cr+1), X] ∈ LRDr+1 by the (r + 1)-deletion operation, that is, P(T ) =
T ′. So, if we are given T ∈ LRDr+1, interlacing conditions are not sufficient for T ′

to be a projection of T by P. For example, consider [(4, 3, 0); (4, 1, 1); (3, 2, 0)] ∈ LR3.
There is only one LR tableau of this type which is

T = 1 1 3
2

1 1

Let [(3, 2); (4, 1); (2, 0)] ∈ LR2. We have (a1, a2, a3) = (4, 3, 0) and (a′1, a
′
2) = (3, 2)

such that a3 ≤ a′2 ≤ a2 ≤ a′1 ≤ a1. On the other hand, the projection of T is

T ′ = 1 1 2
1 1

which is of type [(4, 1); (4, 1); (2, 0)]. In fact (1, 1) is not the deletion sequence of T and
therefore of none LR tableau of type [(4, 3, 0); (4, 1, 1); (3, 2, 0)].

(b) Also [(4, 2, 0); (5, 4, 0); (6, 3, 0)] ∈ LR3 but [(2, 2); (5, 4); (3, 0)] /∈ LR2, with (a1, a2,
a3) = (4, 2, 0) and (a′1, a

′
2) = (2, 2) stisfying a′2 ≤ a2 ≤ a′1 ≤ a1.

Let r ≥ 1, [(a1, . . . , ar, ar+1); (b1, . . . , br, br+1); (c1, . . . , cr, cr+1)] ∈ LRr+1 and [(a′1,
. . . , a′r); (b1, . . . , br); (c2, . . . , cr, cr+1)] ∈ LRr such that ai+1 ≤ a′i ≤ ai, for i = 1, . . . , r.
Given T ∈ LRDr+1 of type [(a1, . . . , ar, ar+1); (b1, . . . , br, br+1); (c1, . . . , cr, cr+1)] and
T ′ ∈ LRDr of type [(a′1, . . . , a

′
r); (b1, . . . , br); (c2, . . . , cr, cr+1)], under what conditions do

we have P(T ) = T ′?
This question will be answered in the next section.

4 Insertion and insertion sequences of an LR rect-

angular tableau

The main goal of this section is to answer the question addressed at the end of the previous
section. Since every elementary deletion operation on an LR rectangular tableau can be
reversed downwards, we are led to insertion path chains and insertion sequences of an
LR rectangular tableau. Here we introduce an insertion operation on LR rectangular
tableaux preserving the LR property.

Given an LR tableau T ′ ∈ LRDr of type [a′, b, c], the insertion operation is defined
by inserting zeros (cells numbered with zeros) on the diagram of a, and by adjoining one
bottom row to a and b, and one top row to c such that the obtained tableau T ∈ LRDr+1

of type [(a1, . . . , ar, ar+1); (b1, . . . , br, br+1), (c1, . . . , cr+1)] with ai+1 ≤ a′i ≤ ai, 1 ≤ i ≤ r,
satisfies P(T ) = T ′.

Recall that if k ∈ {0, 1, . . . , r−1}, Ik+1 is the set of interior paths which have the top
cells in the first k + 1 rows of T , plus the empty path, and that any maximal subset of
pairwise disjoint interior nonempty paths has cardinal less or equal than

∑k
j=1 yrj, where

(yr1, . . . , yr,r−1) is the deleting sequence of T . Therefore, the number of zeros which may
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be inserted in each row of a will depend on the deletion sequence of T . More precisely,
the length of a maximal chain (with respect to ” ≤ ”) of interior paths with the top cells
in row k + 1 of T should be lesser or equal than the dimension of the poset (Ik+1,≤).

Theorem 6 gives necessary and sufficient conditions for a sequence of non negative
integers to be an insertion sequence. These conditions relate insertion sequence with the
deletion sequence of the given LR tableau. Finally, since every insertion operation can
be reversed upwards, every deletion sequence is an insertion sequence of the projected
LR tableau and our question is answered.

4.1 The poset of the paths of length r− k of an LR rectangular
tableau of order r

Definition 15 Let r ≥ 1 and T ∈ LRDr. For each k ∈ {0, 1, . . . , r− 1}, let Ck+1 be the
set of interior paths whose top cells are in row k + 1 of T , plus the empty path. That is,

C1 = I1 = {∅}, and Ck+1 = Ik+1 \ Ik ∪ {∅}, for k > 0.

Definition 16 Let r ≥ 1 and T ∈ LRDr. For each k ∈ {0, 1, . . . , r− 1}, let C̆k+1 be the
set of paths of T with top cells in row k + 1 whose bottom cells are numbered with r, plus

the empty path, and Ck+1
= Ck+1 ∪C̆k+1, the set of paths of T with top cells in row k +1,

plus the empty path.

Ck+1 ⊆ Ik+1, and so (Ck+1,≤) is a subposet of (Ik+1,≤) with d[Ck+1] ≤ d[Ik+1].
(C̆k+1,≤) is finite poset of dimension ≤ br and, therefore, (C̄k+1,≤) is a finite poset of
dimension ≤ d[Ik+1] + br.

In the following, we determine the dimensions of (Ck+1,≤) and (Ck+1
,≤) and relate

them with the dimension of (Ik+1,≤). Since we want to determine the left most longest
chains of those posets in order to define insertion paths chains and insertion sequences
of an LR rectangular tableau, we also consider the posets(Ck+1,�) and (C̄k+1,�).

Lemma 3 Let r ≥ 1 and T = [a, b, c, X] ∈ LRDr with r-deletion path chain (Z0,Z1,
. . . ,Zs). Let k ∈ {0, 1, . . . , r − 1} and m = d[Ik+1]. Let (Ck+1,�) and (C̄k+1,�). Then

1. Ck+1 6= {∅} iff min{ak − ak+1, d[Ik+1]} > 0.

2. C̆k+1 6= {∅} iff min{ak − ak+1, ak − ar − d[Ir], br} > 0. In particular, when Ck+1 =
{∅}, it holds C̆k+1 6= {∅} iff min{ak − ak+1, br} > 0.

3. Ck+1 6= {∅} iff min{ak − ak+1, d[Ik+1] + br} > 0.

4. If Ck+1 6= {∅}, the numbering sequence (vr > . . . > vk+1) of min (C̄k+1 \ {∅}) is
defined as follows: vk+1 is the left most nonzero symbol in the (k + 1)-th row of T ,
and, for i ≥ k + 2, vi is the left most nonzero symbol in the i-th row of T such that
vi > vi−1. We have vr < r if Ck+1 6= {∅} and vr = r if Ck+1 = {∅}. Moreover,
if Ck+1 6= {∅}, min (C̄k+1 \ {∅}) = min (Ck+1 \ {∅}) = min{Z ∈ Ck+1 : ∅ < Z �
Zs−m+1}; and if Ck+1 = {∅}, min (C̆k+1 \ {∅}) = min (C̄k+1 \ {∅}).
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Proof: (1) By definition Ck+1 = Ik+1 \ Ik ∪ {∅}. We claim that Ik+1 \ Ik 6= ∅ iff
ak − ak+1 > 0 and Ik+1 6= {∅}. The ”only if” part is obvious. If ak − ak+1 > 0 and
Ik+1 6= {∅}, consider the (r− k)-path B with numbering sequence (vr > . . . > vk+1) such
that vk+1 is the left most nonzero symbol in the (k + 1)-th row of T , and, for i ≥ k + 2,
vi is the left most nonzero symbol in the i-th row of T with vi > vi−1. By construction
B � W, for all path W of length at least (r− k) in T . Since Z0 < Zs−m+1 < . . . < Zs is
the right most longest chain of Ik+1, then, in particular, B � Zs−m+1. Therefore, vr < r,
and Z ∈ Ik+1 \ Ik. Hence, Ck+1 6= {∅} iff ak − ak+1 > 0 and Ik+1 6= {∅}.

(2) The ”if” part. If br > 0, ak − ak+1 > 0 and ar +
∑r−1

j=1 xrj < ak, we may define

an (r − k) -path with column indexing (jr, . . . , jk+1) where ji = min {ai +
∑i

j=1 xij, ak},
for i = k + 1, , . . . , r. Since br > 0, then xii > 0, for all i, and it follows that ji ∈
{ai + 1, . . . , ak}, for i = k + 1, , . . . , r. The bottom cell of this path is numbered with r
because ar +

∑r−1
j=1 xrj < jr ≤ ak. So, C̆k+1 6= {∅}.

The ”only if” part. If C̆k+1 6= ∅, by definition there exists an (r−k)-path with bottom
cell numbered with r. So, br > 0, and considering the definition of path (definition 5),
ak − ak+1 > 0, ar +

∑r−1
j=1 xrj < ak.

Notice that theorem 2, (3) implies ar +
∑r−1

j=1 xrj ≤ ak+1, when Ik+1 = {∅}. Therefore,

when Ck+1 = {∅}, min{ak − ak+1, ak − ar −
∑r−1

j=1 xrj, br} = min{ak − ak+1, br}.
(3) By definition C̄k+1 6= {∅} iff Ck+1 6= {∅} or C̆k+1 6= {∅}. We claim that Ck+1 6=

{∅} ∨ C̆k+1 6= {∅} iff ak − ak+1 > 0 ∧ (Ik+1 6= {∅} ∨ br > 0).
From (1), Ck+1 6= {∅} iff ak − ak+1 > 0 and Ik+1 6= {∅}. From (2), Ck+1 = {∅} and

C̆k+1 6= {∅} iff ak − ak+1 > 0, Ik+1 = {∅} and br > 0.
(4) Follows from (1) and (3).

Lemma 4 (Elementary insertion) Let r ≥ 1, T = [(a1, . . . , ar), (b1, ..., br), (c2, ..., cr+1),
X] ∈ LRDr, with |a| + |b| + |c| = rm, and k ∈ {1, . . . , r}. Suppose C̄k 6= {∅} with left
most non empty path B = ((vr, jr), . . . , (vk, jk)). Let BX = [x′ij] ∈ ZZr+1,r+1 be such that
x′i,vi

= xi,vi
−1, x′i+1,vi

= xi+1,vi
+1, k ≤ i ≤ r−1, x′r,vr

= xr,vr−1, x′r+1,vr
= 1, xr+1,j = 0,

for j 6= vr and x′ij = xij, otherwise. Then BT = [(a1, . . . , ak + 1, . . . , ar, 0), (b1, ..., br, 0),

(m − 1, c2, ..., cr+1),
B X] ∈ LRDr+1. Moreover, the (r + 1)-deletion sequence of BT is

(0, . . . , yr+1,k = 1, . . . , 0) and the (r + 1)-deletion path chain is ((vr, 1), (vr−1, jr), . . . ,
(vk, jk+1)).

Proof: Let vr > vr−1 > . . . > vk be the numbering sequence of B. Recall that
vr > vr−1 > . . . > vk and that vk is the left most nonzero symbol of the k-th row
and, for i ≥ k + 1, vi is the left most symbol in the i-th row such that vi > vi−1, for
i ∈ {k+1, . . . , r}. Insert one symbol zero in the k-th row by shoving the symbol vk. Then,
insert vk in the (k + 1)-th row by shoving the symbol vk+1 which, on its turn, is inserted
in the (k+2)-th row by shoving vk+3. We shall get x′k,vk

= xk,vk
−1, x′k+1,vk

= xk+1,vk+1
+1

and x′k+1,vk+1
= xk+1,vk

− 1, x′k+2,vk+1
= xk+2,vk+1

+ 1. Proceed down, in this way, until
reaching the r-th row, where the symbol vr−1 is inserted by shoving vr, which, on its
turn, is inserted in the row r + 1. We shall get x′r+1,vr

= 1. It is clear, that the output is
a rectangular tableau BT = [(a1, . . . , ak + 1, . . . , ar, 0), (b1, ..., br, 0), (c1, c2, ..., cr+1),

B X],
that is the nonzero symbols strictly increase along columns, from up to down, and do
not decrease along rows, from left to right.
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Let us prove that BT is in LRDr+1. We have only to check that BX satisfy inequality
(4), in the definition of rectangular LR tableau give in section 2, for vk ≤ j ≤ vr and
k ≤ i ≤ r.

Let t ∈ {k, . . . , r − 1} and u = vt+1 > w = vt. The basic operation in the previous
process is as follows: the nonzero symbol w of the t-th row is inserted in the t+1-th row
by shoving the symbol u, which on its turn, is inserted in the (t + 2)-th row by shoving
a symbol > u. Therefore, x′tw = xtw − 1 ≥ 0, x′t+1,w = xt+1,w + 1, x′t+1,u = xt+1,u − 1 ≥ 0
and x′iw = xiw, for i 6= t, t + 1.

If u > w + 1, x′i,w+1 = xi,w+1, for all i, and, in particular, x′t+1,w+1 = xt+1,w+1 = 0.
If u = w + 1, x′t+1,w+1 = xt+1,w+1 − 1 and x′i,w+1 = xi,w+1, 1 ≤ i ≤ t.
It is sufficient to prove that∑t

i=1 x′i,w ≥
∑t+1

i=1 x′i,w+1.
Case 1: u > w + 1 ⇔ xt+1,w+1 = 0.
In this case,∑t

i=1 x′i,w =
∑t−1

i=1 xi,w+x′tw =
∑t−1

i=1 xi,w+xtw−1 ≥∑t
i=1 xi,w+1+xtw−1 =

∑t
i=1 x′i,w+1+

x′t+1,w+1 =
∑t+1

i=1 x′i,w+1.
Case 2 : u = w + 1 ⇔ xt+1,w+1 > 0.
In this case,∑t

i=1 x′i,w =
∑t−1

i=1 xi,w + xtw − 1 ≥ ∑t+1
i=1 xi,w+1 − 1 =

∑t
i=1 xi,w+1 + xt+1,w+1 − 1 =∑t

i=1 x′i,w+1 + xt+1,w+1 − 1 =
∑t+1

i=1 x′i,w+1.
The remain claim it is obvious.
We denote by BT the rectangular tableau in LRDr+1 obtained from T in LRDr by

B-inserting zeros. We call this operation an elementary insertion operation.
The insertion of one symbol 0 in the row k of the diagram of a yields to a sliding

move in X described as follows: let vk be the index of the column of the first nonzero
entry in the k-th row of X, and, for s = k + 1, . . . , r, let vs be the index of the column
of the first nonzero entry of the s-th row of X such that vs−1 < vs. Then, BX is

x1,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 . . . 0 xk,vk

− 1 ? ? ? ? xk,k 0 0 0 0 0 0 0 0
? ? xk+1,vk

+ 1 0 . 0 xk+1,vk+1 − 1 . xk+1,k+1 0 0 0 0 0 0 0

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

. 0 0
? ? ? ? ? ? ? ? ? ? xr,vr−1 + 1 0. 0 xr,vr − 1 ? xrr 0
0 0 0 . 0 0 0 0 0 0 0 0 0 1 0 0 0


Note that, if C̄k 6= {∅} and Ck = {∅}, vr = r and x′rr = xrr − 1. We say that BX is

obtained from X by inserting (0k−1, 1, 0r−k, 0). By reversing the operations we say that X
is obtained from BX by deleting (0k−1, 1, 0r−k, 0). When C̄k = {∅}, we let ∅X := X⊕[0] ∈
ZZr+1,r+1, and ∅T := [(a1, . . . , ak, . . . , ar, 0), (b1, ..., br, 0), (m, c2, ..., cr+1),

∅ X] ∈ LRDr+1.
We say that ∅X was obtained from X by inserting (0r, 0).

Notation Let r ≥ 1. Given T ∈ LRDr, we denote by T̂ the rectangular tableau in

LRDr−1 obtained by suppressing the last row of T . Note that T = ∅̂T .

Lemma 5 Let r ≥ 1 and T ∈ LRDr with r-deletion path chain (Z0,Z1, . . . ,Zs). Let
k ∈ {1, . . . , r} and C̄k 6= {∅} with left most non empty path B1. Let m = d[Ik]. Then:
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(a) If C̄k(B̂1T ) 6= {∅} and B2 is its left most non empty path, then B2 ∈ C̄k and
B1 < B2.

(b) If m > 0,

(i) (Z0,Zs−m+2, . . . ,Zs) is the right most longest chain of Ik(B̂1T ).

(ii) d[Ik(B̂1T )] = d[Ik]− 1, and d[Iu(B̂1 T )] = min{d[Iu], d[Ik]− 1}, for u < k.

Proof: (a) Let B1 = ((vr, jr), (vr−1, jr−1), . . . , (vk, jk)) and take into account the
construction of B1T as shown in the previous lemma. Then, by lemma 3, B2 is defined
as follows. Let wk be the symbol immediately to the right of vk in the k-th row of T .
We have vk ≤ wk. Since the left most symbol in the (k + 1)-th row of B̂T is vk and B̂T
has at least one (r − k + 1)-path, there is a symbol wk+1 in the (k + 1)-th row of B̂T
such that wk+1 > wk. So, wk+1 > vk, and the cell labelled with wk+1 is to the right of
the cell (jk+1, vk). On the other hand, the left most symbol in the (k + 1)-th row of T is
vk+1. So, wk+1 ≥ vk+1. Again, since the left most symbol in the (k + 2)-th row of BT is

vk+1 and B̂T has at least one (r − k + 1)-path, there is a symbol wk+2 in the (k + 2)-th

row of B̂T such that wk+2 > wk+1 ≥ vk+1. So, wk+2 > vk+1, and so on. So, B1 < B2 and
therefore B2 ∈ C̄k.

(b) If m > 0, we have Ck 6= {∅}. (i) We claim that (Z0,Zs−m+2, . . . ,Zs) is the right

most m-chain of Ik and Ik(B̂1T ). Let X ∈ Ik(B̂1T ) such that ∅ < X < Zs−m+2. Since

B2 is its left most non empty path of C̄k(B̂1T ), it follows B2 � X . On the other hand,
B2 ∈ Ck and therefore X ∈ Ik. But then ∅ < B1 < B2 � X < Zs−m+2 in Ik. This
contradicts m = d[Ik].

(ii) It is a consequence of (a).
The next propositions characterize the left most maximal chains with maximum

length of (Ck+1,≤) and (C̄k+1,≤), respectively, and, therefore, the dimensions of (Ck+1,≤)
and (C̄k+1,≤).

Proposition 3 Let r ≥ 1 and T ∈ LRDr with r-deletion path chain Z0 < Z1 < . . .
< Zs. Let k ∈ {0, 1, . . . , r − 1}. Then,

1. d[Ck+1] = min{ak − ak+1, d[Ik+1]}.

2. (a) The left most longest chain B0 < B1 < . . . < Bl of Ck+1, where l = d[Ck+1], is
defined inductively by setting, for 1 ≤ t ≤ l,

Bt = min {B ∈ Ck+1( ̂B0B1...Bt−1T ) : B > ∅},

with ̂B0,B1,...,BtT ∈ LRDr obtained from Bt( ̂B0,B1,...,Bt−1T ) ∈ LRDr+1 by sup-
pressing the last row. Moreover, B0 < B1 < . . . < Bl is such that

Bt = min{B ∈ Ck+1 : Bt−1 < B � Zs−m+t}, for t = 1, . . . , l,

where m = d[Ik+1].

(b) For t ∈ {0, 1, . . . , l} and u < k + 1,

i. d[Ik+1] = t + d[Ik+1(
̂B0,B1,...,BtT )].
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ii. d[Iu(
̂B0,B1,...,BtT )] = min {d[Iu], d[Ik+1]− t}.

iii. d[Ck+1( ̂B0,B1,...,BtT )] = d[Ck+1]− t.

iv. d[Cu( ̂B0,B1,...,BtT )] = min {au−1 − au, d[Iu], d[Ik+1]− t}.

Proof: Let l := min{ak − ak+1, m}. The proof will proceed by induction on l.
1, 2, (a). If l = 0, by lemma 3, Ck+1 = {∅}. In this case, d[Ck+1] = 0 and the longest

chain is (B0 = ∅).
Let l > 0 and suppose the veracity of the statement for l − 1. Since l > 0, Ck+1 6=

{∅} and we may consider B1 = min(Ck+1 \ {∅}). Let B̂1T ∈ LRDr. By lemma 5,

Z0 < Zs−m+1 < . . . < Zs is the right most longest chain of Ik+1(B̂1T ), d[Ik+1(B̂1T )] =

d[Ik+1] − 1 and d[Iu(B̂1T )] = min{d[Iu], d[Ik+1] − 1}, u < k + 1. So, B̂1T is in the

conditions of induction hypothesis. By induction hypothesis we have: d[Ck+1(B̂1T )] =

min{ak − ak+1, d[Ik+1]} − 1 = l − 1, and d[Cu(B̂1T )] = min{au−1 − au, d[Iu(B̂1T )]} =
min{au−1−au, d[Iu], d[Ik+1]−1}, u < k+1; the left most longest chain B0 < B2 < . . . < Bl

of Ck+1(B̂1T ) is such that, for 2 ≤ t ≤ l, Bt = min {B ∈ Ck+1( ̂B0B1...Bt−1T ) : B > ∅} =
min{B ∈ Ck+1 : Bt−1 < B � Zs−m+t}.

On the other hand, since ∅ < B2 < . . . < Bl is a chain in Ck+1 and ∅ < B1 < B2 <
. . . < Bl is the left most l-chain of Ck+1, then ∅ < B1 < . . . < Bl is the left most longest
chain of Ck+1. Otherwise there would be a chain ∅ < Q1 < . . . < Ql+d, with d > 0, in
Ck+1 such that ∅ < B2 � Q2 < . . . < Ql+1. This implies ∅ < Q2 < . . . < Ql+1 is a

l-chain in Ck+1(B̂1T ) which is absurd. Therefore, d[Ck+1] = l = min{ak − ak+1, d[Ik+1]}
and ∅ < B1 < . . . < Bl satisfy the required conditions.

Concerning 2, (b), if l = 0, recall that Iu ⊆ Ik+1 for u < k +1, and B̂0T = T . If l ≥ 1,
the equalities (i)− (iv) follow easily by induction on l.

Remark 4 Let d[Ck+1] = l and B0 < B1 < . . . < Bl the left most longest chain of Ck+1.

(a) ak − ak+1 > d[Ck+1] and br > 0 iff C̆k+1( ̂B0B1...BlT ) 6= {∅}.
(b) If ak− ak+1 > d[Ck+1], then d[Ck+1] = d[Ik+1] and Iu(

̂B0B1...BlT ) = {∅}, u ≤ k + 1.
(c) d[C̄k+1] > d[Ck+1] iff d[Ck+1] = d[Ik+1] < ak − ak+1 and br > 0.

The following lemma relates the dimensions of Ck+1 and C̄k+1.

Lemma 6 Let r ≥ 1 and T = [a, b, c, X] ∈ LRDr. Let k ∈ {0, 1, . . . , r − 1} and
d[Ik+1] = 0. Then

(a) d[C̆k+1] = min {ak − ak+1, br}.
(b) The left most longest chain (B0,B1, . . . ,Bl̆) of C̆k+1, with l̆ = d[C̆k+1], is such that,

for 1 ≤ t ≤ l̆,
Bt = min {B ∈ C̆k+1( ̂B0B1...Bt−1T ) : ∅ < B}.

Proof: In this case, by lemma 2, C̆k+1 6= {∅} iff min {ak − ak+1, br} 6= 0. Since
C̆k+1 = C̄k+1, the claim follows from successive applications of lemma 5.

We are now in condition to calculate left most maximal chain of maximum length
and the dimension of (C̄k+1,≤).

Proposition 4 Let r ≥ 1 and T = [a, b, c, X] ∈ LRDr. Let k ∈ {0, 1, . . . , r − 1}. Then,
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1. d[C̄k+1] = d[Ck+1] + min{max{0, ak − ak+1 − d[Ik+1]}, br}.

2. d[Ck+1
] = min{ak − ak+1, d[Ik+1] + br}.

3. If (B0,B1, . . . ,Bl) is the left most longest chain of Ck+1, and (B0,Bl+1, . . . ,Bl+l̆) is

the left most longest chain of C̆k+1( ̂B0,B1,...,BlT ), it holds

(a) (B0,B1, . . . ,Bl,Bl+1, . . . ,Bl+l̆) is the left most longest chain of C̄k+1.

(b) For t ∈ {0, 1, . . . , l + l̆},

i. d[Iu(
̂B0,B1,...,BtT )] = min{d[Iu], max{0, d[Ik+1]− t}}, u ≤ k + 1.

ii. d[C̄k+1( ̂B0,B1,...,BtT )] = d[C̄k+1]− t and

d[C̄u( ̂B0,B1,...,BtT )] = min{au−1−au, br+d[Iu], br+d[Ik+1]−t}, for u < k+1.

Proof: We consider two cases:
1st Case: Ck+1 = {∅}.
In this case, d[Ck+1] = 0 and C̄k+1 = C̆k+1. Therefore, Ik+1 = {∅} or ak − ak+1 = 0.
If ak − ak+1 = 0, C̄k+1 = C̆k+1 = {∅} and d[Ck+1] = d[C̄k+1] = d[C̆k+1] = 0.
If Ik+1 = {∅} it holds d[Ik+1] = 0, and, by previous lemma, d[C̄k+1] = d[C̆k+1] =

min{ak − ak+1, br} = min{max{0, ak − ak+1}, br}.
If l̆ = d[C̆k+1], then (B0,B1, . . . ,Bl̆) is the leftmost longest chain of C̄k+1.
2nd Case: Ck+1 6= {∅}.
In this case, l := d[Ck+1] > 0. Let (B0,B1, . . . ,Bl) be the leftmost longest chain of

Ck+1.
We claim that d[C̄k+1] = d[Ck+1]+ d[C̆k+1( ̂B0,B1,...,BlT )].

For, let ̂B0,B1,...,BlT = [â, b̂, ĉ, X̂] where âk+1 = ak+1 + l, âi = ai, for i 6= k + 1, and
b̂r = br. By proposition 3, l = min{ak−ak+1, d[Ik+1]}. So, ak− âk+1 > 0 iff ak−ak+1 > l,
and ak = âk+1 iff d[Ik+1] ≥ ak − ak+1.

Since Ck+1( ̂B0,B1...BlT ) = {∅} it follows that C̄k+1( ̂B0,B1...BlT ) = C̆k+1( ̂B1...BlT ).

By previous lemma, d[C̆k+1( ̂B0,B1...BlT )] = min {ak−âk+1, br}. Let l̆ := d[C̆k+1( ̂B0,B1...BlT )].
Notice that, ak − âk+1 = max{0, ak − ak+1 − d[Ik+1]}. So, l̆ = min{max{0, ak − ak+1 −
d[Ik+1]}, br}.

1st Subcase: If l̆ = 0, then C̄k+1 = Ck+1 and, either br = 0 or d[Ik+1] ≥ ak − ak+1.
In both cases, d[C̄k+1] = d[Ck+1] and (1), (2) hold. The leftmost longest chain of C̄k+1 is
leftmost longest chain of Ck+1.

2nd Subcase: If l̆ > 0, let B0 < Bl+1 < . . . < Bl+l̆ be the leftmost longest chain of

C̆k+1( ̂B0,B1...BlT ). Then, C̆k+1( ̂B0,B1,...,BtT ) 6= {∅}, for l+1 ≤ t < l+l̆, and C̄k+1(
̂B0,B1,...,Bl+l̆T ) =

{∅}. Therefore, the leftmost longest chain of C̄k+1 is B0 < B1 < . . . < Bl < Bl+1 < . . . <
Bl+l̆ and d[C̄k+1] = l + l̆. So, (1) holds.

On the other hand, if l̆ > 0, C̆k+1( ̂B0,B1...BlT ) 6= {∅}. By remark 4, it follows that
ak − ak+1 > d[Ck+1] = d[Ik+1]. So, l + l̆ = d[Ik+1] + min{ak − ak+1 − d[Ik+1], br} =
min{ak − ak+1, d[Ik+1] + br}. We have proven 1, 2, 3(a).

3, (b), (i) It follows from proposition 3 and remark 4.
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(ii) For t < l, it follows from 2 and (i). For t ≥ l, we have l = d[Ik+1] and

C̄u( ̂B0B1...BtT ) = C̆u( ̂B0B1...BtT ). Now the result follows from lemma 6 taking into account

that ̂B0,B1,...,BlT = [â, b̂, ĉ, X̂] is such that b̂r = br + d[Ik+1]− t < br + d[Iu].
As a consequence of this proposition, we obtain the following corollary, which will be

useful in the next subsection.

Corollary 4 Let r ≥ u > v > w ≥ 1, (B0,B1, . . . ,Bp) the left most p-chain of C̄u, and

(B0,Bp+1, . . . ,Bp+q) the left most q-chain of C̄v( ̂B0B1...BpT ). Then,

d[C̄w( ̂B0B1...Bp+qT )] = min{aw−1 − aw, br + d[Iw], br + d[Iv]− q, br + d[Iu]− p− q}.

Proof: Let T̃ :=B0B1...Bp T , where T̃ = [ã, b̃, c̃, X̃] is such that b̃r = br if p ≤ d[Iu], and

b̃r = br − d[Iu]− p if p > d[Iu]. Note that ̂B0B1...Bp+qT =
̂Bp+1...Bp+q T̃ .

By 3, (b) of the previous proposition, and considering the fact that d[Iw(T̃ )] =
d[Iv(T̃ )] = 0 if p > d[Iu], we have

d[C̄w(
̂Bp+1...Bp+q T̃ )] = min{aw − aw−1, b̃r + d[Iw(T̃ )], b̃r + d[Iv(T̃ )]− q}

= min{aw − aw−1, br + d[Iw], br + d[Iv]− q, br + d[Iu]− p− q}.

4.2 Definition of insertion path chain and insertion sequence

Let r ≥ 1 and T = [(a1, . . . , ar); (b1, . . . , br); (c2, . . . , cr+1), X] ∈ LRDr, |a| + |b| +
|∑r

i=2 ci| = rm. Let k ∈ {0, 1, . . . , r − 1} and l̄ = d[C̄k+1]. We may conclude from
the previous section that the leftmost longest chain B0 < B1 < . . . < Bl̄ of C̄k+1 may be
determined as follows.

For u = 1, . . . , l̄, the numbering sequence (vu
r > . . . > vu

k+1) of Bu is such that:

v1
k+1 ≤ . . . ≤ v l̄

k+1 are the l̄ left most nonzero symbols in the (k + 1)-th row of T ; and,

for i = k, . . . , r, v1
i ≤ . . . ≤ v l̄

i are the l̄ left most nonzero symbols in the i-th row of T
satisfying v1

i > v1
i−1, . . . , v

l̄
i > v l̄

i−1.
Let y ∈ {0, 1, . . . , l̄}. We may define the LR rectangular tableau B0,B1,...,ByT = [(a1,

. . . , ak+1 +y, . . . , ar, 0); (b1, . . . , br, 0); (m − y, c2, . . . , cr+1);
B0,B1,...,By X] ∈ LRDr+1 ob-

tained from T by (B0,B1, . . . ,By)-inserting zeros, in the following way: In the (k + 1)-th
row of T insert y symbols 0 by shoving the nonzero symbols v1

k+1 ≤ . . . ≤ vy
k+1. These

y shoved symbols are inserted in the (k + 2)-th row by shoving the nonzero symbols
v1

k+2 ≤ . . . ≤ vy
k+2. The shoved symbols v1

k+2 ≤ . . . ≤ vy
k+2 are inserted in the (k + 3)-th

row as before. Proceed down, inserting and shoving, until reaching the (r + 1)-th row.
When reaching the (r + 1)-th row, the symbols v1

r ≤ . . . ≤ vy
r shoved from the r-th

row and inserted in the (r + 1)-th row.
Notice that, for i = 1, . . . , y, if we delete the last row of B0,B1,...,BiT we obtain̂B0,B1,...,BiT the rectangular LR tableau defined above by suppressing the last row of

Bi( ̂B0,B1,...,Bi−1T ).

For i = 1, . . . , y, B0,B1,...,BiX is defined inductively by B1,...,BiX := Bi( ̂B0,B1,...,Bi−1X) +[
0r,r 0
wi−1 0

]
, where [wi−1, 0] = [0k−1, i − 1, 0r−k+1], 1 × (r + 1), is the (r + 1)-th row
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of B0,B1,...,Bi−1X, and ̂B0,B1,...,Bi−1X is the r-square matrix obtained from B0,B1,...,Bi−1X by
deleting the (r + 1)-th row and column. We say that B0B1,...,BiX was obtained from X by
inserting (0k−1, y, 0r−k, 0).

The number of symbols r in the (r + 1)-th row of B1,...,ByT is max {0, y − d[Ik+1]}.
So, after inserting y symbols 0 in the row k + 1 of T , br is reduced to min{br, br +

d[Ik+1] − y}. That is, the number of symbols r in the r-th row of B1,...,ByT is br if
y ≤ d[Ik+1], and it is br + d[Ik+1] − y if y > d[Ik+1]. If (yr1, . . . , yr,r−1) is the r-deleting
sequence of T , br is reduced to min{br, br +

∑k−1
j=1 yrj − y}.

Given the non negative integers ar+1 ≤ ar and br+1 ≤ min{br, br +
∑k−1

j=1 yrj − y}, by
inserting ar+1 symbols 0 in the bottom of the diagram of a and br+1 symbols r + 1 in the
(r + 1)-th row of B0,B1,...,ByT , we obtain the LR rectangular tableau T ′ = [(a1, . . . , ak+1

+y, . . . , ar, ar+1); (b1, . . . , br, br+1); (c1, c2, . . . , cr+1);
B0B1,...,ByX + ([0] ⊕ [br+1])]. We say

that B0B1,...,ByX + ([0]⊕ [br+1])] was obtained from X by inserting (0k−1, y, 0r−k, br+1).
We can go backwards to T by deleting zeros on T ′, and by suppressing the last rows

of (a1, . . . , ak−1, ak + y, ak+1, . . . , ar, ar+1), (b1, ..., br+1) and the first row of (c1, ..., cr+1).
Notice that if Bi = ((vi

r, j
i
r), . . . , (vi

k+1, j
i
k+1), (vi

k, j
i
k)), for i = 1, . . . , y, then, by lemma

4, the (r + 1)-deleting path chain of T ′ is (Z0,Z1, . . . ,Zy) where Zi = ((vi
r, ar+1 +

i), (vi
r−1, j

i
r), . . . , (vi

k, j
i
k+1)), for i = 1, . . . , y. We say that Zi is obtained from Bi by one

step down.
This leads us to the definition of insertion set of an LR rectangular tableau.

Let r ≥ 1 and T = [(a1, ..., ar), (b1, ..., br), (c2, ..., cr+1), X] ∈ LRDr

Definition 17 Let k ∈ {1, . . . , r}, dk = d[C̄k] and (B0,B1, . . . ,Bdk
) the left most longest

chain of C̄k. A nonnegative integer y such that y ≤ dk is called a k-insertion number of T ,
and (B0,B1, . . . ,By) is the corresponding insertion path chain. We call {y} a k-insertion
set of T .

Definition 18 Let K = {it, . . . , i2, i1} be a subset of {1, . . . , r}, where we are assuming
r ≥ it > . . . > i1 ≥ 1. Let y =

∑
s∈K ys. A set of non negative integers {ys}s∈K is called

a K-insertion set of T with insertion path chain (B0,B1, . . . ,By), if {ys}s∈K′={it,...,i2} is
a K ′ = {it, . . . , i2}-insertion set of T with insertion path chain (B0,B1, . . . ,By′) where

y′ =
∑

s∈K′ ys; and yi1 is an i1-insertion number of ̂B0B1,...,By′T with insertion path chain
(B0,By′+1, . . . ,By). We let the emptyset be an insertion set with insertion path chain
(B0 = ∅).

We say that a sequence of non negative integers (y1, . . . , yr) is an insertion sequence
of T if {yr, . . . , y1} is a {r, . . . , 1}-insertion set of T . Clearly, if {ys}s∈K is a K-insertion
set of T , then {ys}s∈{1,...,r}, with ys = 0 for s 6∈ K, is also a {r, . . . , 1}-insertion set, and,
thus, (y1, . . . , yr) is an insertion sequence of T .

Given br+1 ≤ br, we say that (y1, . . . , yr) is an insertion sequence mod(br+1) of T
if (y1, . . . , yr) is an insertion sequence of T̃ = [(a1, ..., ar), (b1, ..., br − br+1), (c2 +
br+1, ..., cr+1), X̃], where x̃rr = xrr − br+1 and x̃ij = xij, otherwise. Given ar+1 ≤ ar,
we say that (y1, . . . , yr, ar+1) is a full insertion sequence mod(br+1 of T .
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Theorem 6 Let (yr1, . . . , yr,r−1) be the r-deletion sequence of T , and br+1 ≤ br. Then,
(y1, . . . , yr) is an insertion sequence mod(br+1) of T iff

ak−1 − ak ≥ yk, k = 1, ..., r, (6)

br +
k−1∑
j=1

yrj ≥ br+1 +
k∑

j=1

yj, k = 1, ..., r. (7)

Proof: Let T̃ = [(a1, ..., ar), (b1, ..., br − br+1), (c2 + br+1, ..., cr+1), X̃], where x̃rr =
xrr− br+1 and x̃ij = xij, otherwise. Attending to definition 18, (y1, . . . , yr) is an insertion
sequence if yr ≤ d[C̄r] and, for j = 1, . . . , r−1, yr−j ≤ d[C̄r−j(B0,B1,...,Byr+...+yr−j+1T )], where
(B0,Byr−j+2+1, . . . ,Byr+...+yr−j+1

) is the left most yr−j+1-chain of C̄r−j(B0,B1,...,Byr+...+yr−j+2T ).
By an inductive argument, corollary 4 says that (y1, . . . , yr) is an insertion sequence iff
for s = 1, . . . , r,

ys ≤ min{as−1 − as, min
s≤k≤r

{br − br+1 +
k−1∑
j=1

yrj −
k∑

j=s+1

yj}}.

This is equivalent to

ak−1 − ak ≥ yk, k = 1, ..., r,
br +

∑k−1
j=1 yrj ≥ br+1 +

∑k
j=s yj, s = 1, ..., r, k = s, ..., r.

When s = 1 we obtain (7). For s = 2, . . . , r, we obtain particular cases of (7).

Let P be the projection of LRDr+1 on LRDr.
We are now in condition to show that a full deletion sequence of an LR tableau T is

a full insertion sequence of the projected LR tableau P(T ).
Let r ≥ 0 and F ∈ LRDr of type [a′; (b1, . . . , br); (c2, . . . , cr+1)] with |a′|+ ∑r

i=1(bi +
cr+2−i) = rm. As usual, we write P−1(F) = {T ∈ LRDr+1 : P(T ) = F}.

Theorem 7 Let (yr1, . . . , yr,r−1) be the r-deletion sequence of F . Let T of type [a, (b1,
. . . , br, br+1); (c1, c2, . . . , cr+1)]. Then, T ∈ P−1(F) iff

1. ai+1 ≤ a′i ≤ ai, 1 ≤ i ≤ r,

2. For k = 1, . . . , r, br +
∑k−1

j=1 yrj ≥ br+1 +
∑k

j=1(aj − a′j),

3. ar+1 +
∑r

i=1(aj − a′j) + br+1 + c1 = m.

Proof: When r = 0, F is the empty tableau and T = [(a1), (b1); (c1), [b1]], with
a1 + b1 + c1 = m. Let r ≥ 1.

Proof of the ”if” part. Let y := |a| + |a′| − ar+1. From theorem 6, conditions (1)
and (2) mean that (a1− a′1, . . . , ar− a′r, ar+1) is a full insertion sequence mod(br+1) of F .
If (B0,B1, . . . ,By) is the corresponding insertion path chain, then we have B0,B1,...,ByF =
[(a1, ..., ar , 0), (b1, ..., br, 0),(m− y, c2, ..., cr+1);

B0B1,...,ByX].
Let T be obtained from B0,B1,...,ByF by inserting ar+1 zeros in the bottom of the

diagram of a, and br+1 symbols r + 1 in the bottom row of B0,B1,...,ByF . Then, T =
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[(a1, ..., ar , ar+1), (b1, ..., br, br+1),(c1, c2, ..., cr+1), X
′] ∈ LRDr+1, where X ′ =B0B1,...,By

X + ([0]⊕ [br+1]) and m− y − br+1 = c1. Moreover, T has (r + 1)-full deletion sequence
(a1−a′1, . . . , ar−a′r, ar+1) and (r+1)-deletion path chain the one obtained from (B1, . . . ,
By) by one step down. Therefore P(T ) = F .

Proof of the ”only if” part. Let T = [(a1, ..., ar+1); (b1, ..., br+1); (c1, c2, ..., cr+1),
X] ∈ LRDr+1 with (r + 1)-deletion sequence (y1, . . . , yr), such that P(T ) = F . Then,
applying theorem 4 to T , we obtain F = [a′, (b1, . . . , br); (c2, . . . , cr+1), X ′] ∈ LRDr such
that |a′| + ∑r

i=1(bi + cr+2−i) = m, ai+1 ≤ a′i ≤ ai, 1 ≤ i ≤ r, where ai − a′i = yi, for
i = 1, . . . , r.

We claim that (y1, . . . , yr, ar+1) is a full insertion sequence mod(br+1) of F .
Let dr+1 := 0 and di := di+1 + yi, i = 1, . . . , r. Suppose (Z0,Z1, . . . ,Zdr , Zdr+1, . . . ,

Zd2 , Zd2+1, . . . , Zd1) is the (r + 1)-deletion path chain of T , where, for i = 1, . . . , r, and
di+1 < t ≤ di, Zt = ((zt

r+1, j
t
r+1), . . . , (zt

i+1, j
t
i+1).

For i = 1, . . . , r, and di+1 < t ≤ di, let Bt = ((zt
r+1, j

t
r), . . . , (z

t
i+1, j

t
i
), (zt

i , a
′
i+t)). Then,

(B0,B1, . . . , Bdr ,Bdr+1, . . . , Bd2 , . . . ,Bd2+1, . . . ,Bd1) is an insertion path chain. Note that,

for each i ∈ {1, . . . , r}, (B0, Bdi+1+1, . . . , Bdi
) is the left most yi-chain of C̄i(

̂B0,B1,...,Bdi+1T ).
Therefore, by theorem 6, conditions 1 and 2 follow.

5 An involution on the set of Littlewood-Richardson

tableaux

5.1 The deletion-insertion matrix of an LR tableau and the
commutative property of the LR rule

In section 2.1, we have defined an LR rectangular tableau of order r ≥ 1, as being
an element [a, b, c, X] ∈ ZZ3r+r2

satisfying a certain system of linear inequalities. That
is, by definition, there is an LR rectangular tableau of order r and type [a, b, c] with
|a| + |b| + |c| = rm, iff there is a lower triangular matrix X = [xij] ∈ ZZr,r satisfying the
system of linear inequalities (1), (2), (4), (5) and (∗∗).

Now, notice that, given a, b, c ∈ Pr, with |a| + |b| + |c| = rm, and X = [xij] ∈
ZZr,r, [a, b, c, X] ∈ LRDr iff b(s) = (

∑s
i=j xij, 0

r−s)s
j=1, for s = 0, 1, ..., r, is a sequence of

partitions with b(r) = b, satisfying the interlacing inequalities

b
(s)
i+1 ≤ b

(s−1)
i ≤ b

(s)
i , for s = 1, ..., r, i = 1, ..., r − 1, (8)

and the system of linear inequalities

as−1 +
k−1∑
j=1

(b
(s−1)
j − b

(s−2)
j ) ≥ as +

k∑
j=1

(b
(s)
j − b

(s−1)
j ), k = 1, . . . , s− 1, s = 2, . . . , r,(9)

as +
r∑

j=1

(b
(s)
j − b

(s−1)
j ) = m− cr−s+1, s = 1, . . . , r. (10)

We may therefore reformulate the definition of LR rectangular tableau in the following
way: There exists an LR rectangular tableau T of order r and type [a, b, c] with |a| +
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|b| + |c| = rm iff there exists a sequence of partitions b(s) = (b
(s)
1 , . . . , b(s)

s , 0r−s), s =
0, 1, ..., r, with b(r) = b, satisfying the interlacing inequalities (8) and the system of
linear inequalities (9) and (10). The sequence b(s), s = 0, 1, ..., r, defines the sequence

[(a1, . . . , as); (b
(s)
1 , . . . , b(s)

s ); (cr−s+1, . . . , cr)], s = 1, . . . , r, of LR triples, called the b-
decomposition of T .

Applying the material developped in the previous sections, we shall see that the LR
rule for composing two partitions a and b is commutative. According section 3, theorem
5, we claim:

Let r ≥ 1. Given an LR rectangular tableau T of order r and type [a, b, c] with |a|+
|b|+ |c| = rm, we may decompose T into a sequence of LR rectangular tableaux T (s), s =
0, . . . , r, such that T (0) is the empty tableau, and for s = 1, . . . , r, T (s) is of order s and
type [a(s), (b1, . . . , bs), (cr−s+1, . . . , cr)], and T (r) = T , where a(s) = (a

(s)
1 , . . . , a(s)

s , 0r−s),
s = 0, 1, ..., r, with a(r) = a, satisfy

a
(s)
i+1 ≤ a

(s−1)
i ≤ a

(s)
i , s = 1, 2, . . . , r, i = 1, . . . , r − 1. (11)

For s = 1, . . . , r, let T (s−1) be obtained from T (s) by s-full deletion, that is, T (s−1) =
P(T (s)).

For s = 1, 2, . . . , r, let (ys,1, . . . , ys,s−1, ys,s) be the s-full deletion sequence of T (s),
then

a
(s)
i − a

(s−1)
i = ysi, i = 1, . . . , s. (12)

Attending to theorem 7, for s = 1, . . . , r, T (s) is obtained from T (s−1) by full insertion-
mod(bs) the sequence (a

(s)
1 − a

(s−1)
1 , . . . , a

(s)
s−1 − a

(s−1)
s−1 , a(s)

s ). So, for s = 1, . . . , r, (a
(s)
1 −

a
(s−1)
1 , . . . , a

(s)
s−1 − a

(s−1)
s−1 , a(s)

s ) is also a full insertion sequence mod(bs) of T (s−1). Hence,
by (11) and by theorems 6 and 7, we have,

a
(s)
i+1 ≤ a

(s−1)
i ≤ a

(s)
i , i = 1, . . . , r − 1, s = 1, 2, . . . , r, (13)

bs−1 +
k−1∑
j=1

(a
(s−1)
j − a

(s−2)
j ) ≥ bs +

k∑
j=1

(a
(s)
j − a

(s−1)
j ), k = 1, ..., s− 1, s = 2, . . . , r,(14)

bs +
r∑

j=1

(a
(s)
j − a

(s−1)
j ) = m− cr−s+1, s = 1, . . . , r. (15)

Notice that, by (12), the s-th row of the diagram a(s) is given by a(s)
s = as−

∑r
t=s+1 yt,s,

for s = 1, . . . , r. When passing from T (s) to T (s−1) we suppress a(s)
s = as−

∑r
t=s+1 yt,s, the

bottom row of a(s), and when passing from T (s−1) to T (s) we add one bottom component
of length as −

∑r
t=s+1 yt,s to the diagram a(s−1).

Finally, we may conclude that if we are given an LR rectangular tableau T of order r
and type [a, b, c] with |a|+ |b|+ |c| = rm, then there exists a sequence of partitions a(s) =

(a
(s)
1 , . . . , a(s)

s , 0r−s), s = 0, . . . , r, with a(r) = a, satisfying the interlacing inequalities (13)
and the system of linear inequalities (14) and (15). The sequence a(s), s = 0, 1, ..., r,
defines the sequence [a(s); (b1, . . . , bs); (cr−s+1, . . . , cr)], s = 1, . . . , r, of LR triples, called
the a-decomposition of T .

Therefore, the LR rule for composing partitions is commutative.
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The following r× r lower triangular matrix records the deletion/insertion steps of T ,
equivalently, the a-decomposition of T :

Y =



a1 −
∑r

t=2 yt,1 0 0 0 0 0
y21 a2 −

∑r
t=3 yt,2 0 0 0 0

y31 y32 a3 −
∑r

t=4 yt3 0 0 0
...

... . . . . . . 0 0
yr−1,1 yr−1,2 yr−1,3 . . . ar−1 − yr,r−1 0
yr1 yr2 yr3 . . . yr,r−1 ar


. (16)

For s = 1, . . . , r, the first s entries (ys1, . . . , ys,s−1, ys,s) of the s-th row of Y , define the full
deletion sequence of T (s)/ the full insertion sequence of T (s−1). We call Y the deletion
-insertion matrix of T .

By construction Y is completely determined by T . The r-th row of Y is the r-full
deletion sequence of T = T (r) which is unique (recall proposition 2), and the principal
(r− 1)× (r− 1) matrix of Y is the deletion -insertion matrix of T (r−1). So by induction
on r, we may conclude that there exists one and only one deletion-insertion matrix.

The above discussion, namely (13), (14), (15), leads to

Theorem 8 If [a, b, c, X] ∈ LRDr, and Y is its deletion-insertion matrix, then [b, a, c,
Y ] ∈ LRDr.

On the other hand, if [a, b, c, X] ∈ LRDr, then b(s) = (
∑s

i=j xij, 0
r−s)s

j=1, 0 ≤ s ≤ r,

with b(r) = b, satisfy conditions (8), (9) and (10). In particular, the sequence of partitions

b(s), 0 ≤ s ≤ r, satisfy the interlacing inequalities, and this implies b
(s)
i −b

(s)
i+1 ≥ xsi, for s =

1, . . . , r, i = 1, . . . , s−1. Let W(0) be the LR tableau of order 0. Therefore, by theorem 6,
for each s = 1, . . . , r, (xs1, . . . , xs,s−1, xs,s) is an insertion sequence mod(as) of W(s−1) So,
by theorem 7, for s = 1, . . . , r, we may associate an unique tableau in LRDs of type [b(s),
(a1, . . . , as), (cr−s+1, . . . , cr)], by inserting mod(as) the sequence (xs1, . . . , xs,s−1, xs,s) on
W(s−1).

Given [a, b, c, X] ∈ LRDr, we may perform the following steps by full insertion. We
start with W(0), the LR rectangular tableau of order 0 and we pass to the LR rect-
angular tableau W(1) = [b(1) = (x11), a(1) = (a1), c

(1) = (cr), W
(1) = [a1]] of order 1.

Then we pass to the LR rectangular tableau W(2) of order 2 and type [b(2), (a1, a2),
(cr−1, cr)] by inserting-mod(a2) the sequence (x21, b2) on W(1). Repeating the pro-
cess with W(2), we may pass to the LR rectangular tableau W(3) of order 3 and type
[b(3), (a1, a2, a3), (cr−2, cr−1, cr)] by inserting mod(a3) the sequence (x31, x32, b3) on W(2),
and so on. Eventually, by inserting mod(ar) the sequence (xr1, . . . , xr,r−1, br) in W(r−1),
we get the LR rectangular tableau W of type [b, a, c], whose deletion-insertion matrix is
X. We say that W was obtained by insertion of X mod(a).

We have proved

Theorem 9 If [a, b, c, X] ∈ LRDr, then there exists one and only one rectangular tableau
in LRDr of type [b, a, c] whose deletion-insertion matrix is X.
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Let r ≥ 1. We are now in conditions to exhibit a bijection on LRDr, transforming
an LR rectangular tableau of type [a, b, c] into one of type [b, a, c].

We consider the map φ : LRDr −→ LRDr defined by φ([a, b, c, X]) = [b, a, c, Y ],
where Y is the deletion matrix of [a, b, c, X]. Clearly, φ is well defined since Y is unique.
It remains to show that φ is a bijection.

We may define π : LRDr −→ LRDr such that π([a, b, c, X]) is the rectangular tableau
of type [b, a, c] whose insertion matrix is X. That is, π([a, b, c, X]) is defined by insertion
mod(a) of X. Clearly, π is well defined since, by definition of insertion matrix, two LR
tableaux with the same insertion matrix are equal.

Since the insertion matrix and the deletion matrix of an LR rectangular tableau are
the same, it is clear that πφ = φπ = id and thus φ and π are both bijections on LRDr.
Therefore, these inverse bijections allows one to give a combinatorial interpretation of
the equality of the Littlewood-Richardson numbers N c

ab = N c
ba. In the next subsection

we shall show that π = φ and that we have, in fact, an involution on LRDr.

5.2 φ and π are the same involution

In the previous sections we have given an algorithmic characterization of the deletion-
insertion matrix of an LR rectangular tableau T . That is, we have used the combinatorial
deletion and insertion operations to define the sequence a(s), s = 0, 1, . . . , r, of the a-
decomposition of T . Here, we give a recursive algebraic characterization. With this
inductive definition we are able to prove

Theorem 10 [a, b, c, X] is an LR rectangular tableau with deletion-insertion matrix Y
iff the deletion-insertion matrix of [b, a, c, Y ] is X.

Therefore,

Corollary 5 Considering the bijections φ and π defined above, we have φ = π and
φ2 = π2 = id. That is, φ and π are the same involution on LRDr.

We start by observing (e.g. [1]) that, if T = [a, b, c, X] ∈ LRDr, then F = [(ai +
xi1)

r
i=2; (b2, . . . , br); (c1, . . . , cr−1); X

′] ∈ LRDr−1, where X ′ is the (r − 1) × (r − 1)
principal submatrix of X obtained by suppressing the first row and the first column.
Also observe that if Y = [yij] ∈ ZZr,r is the deletion-insertion matrix of T , then the
principal submatrix in the first r−1 rows of Y is the deletion-insertion matrix of T (r−1) =
[(a

(r−1)
1 , . . . , a

(r−1)
r−1 ); (b1, . . . , br−1); (c2, . . . , cr); X

(r−1)] ∈ LRDr−1 obtained from T by r-

full deletion, where a
(r−1)
i = ai − yri, i = 1, . . . , r − 1.

Lemma 7 Let T = [a, b, c, X] ∈ LRDr and T (r−1) = [(a
(r−1)
1 , . . . , a

(r−1)
r−1 ); (b1, . . . , br−1);

(c2, . . . , cr); X(r−1)] ∈ LRDr−1 obtained from T by r- full deletion. Let F = [(ai+xi1)
r
i=2,

(b2, . . . , br), (c1, . . . , cr−1), X
′] ∈ LRDr−1, where X ′ is the (r − 1) × (r − 1) principal

submatrix obtained from X by suppressing the first row and the first column, and let
F ′ ∈ LRDr−2 obtained from F by (r − 1)-full deletion. Then
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1. F ′ = [(a
(r−1)
i + x

(r−1)
i1 )r−1

i=2 ; (b2, . . . , br−1); (c2, . . . , cr−1); X
′(r−1)] ∈ LRDr−2, where

X ′(r−1) is the (r− 2)× (r− 2) matrix obtained from X(r−1) by suppressing the first
row and the first column.

2. If (zr2, . . . , zr,r) is the (r − 1)-full deletion sequence of F and θ
(r)
i = min{xi1, zr,i},

for i = 2, . . . , r, it holds x
(r−1)
11 = x11 + θ

(r)
2 , x

(r−1)
i1 = xi1 − θ

(r)
i + θ

(r)
i+1, for i =

2, . . . , r, and the r-full deletion sequence (yr1, . . . , yr,r) of T is defined by yr1 = θ
(r)
2 ,

yr,i = zri − θ
(r)
i + θ

(r)
i+1, i = 2, . . . , r.

Proof: Let (zr,2, . . . , zr,r = ar + xr1) be the (r− 1)-full deletion sequence of F . That
is, zr,i is the number of deleted zeros in row i−1 of F , for i = 2, . . . , r. Equivalently, it is
the number of deleted cells in row i of the Young diagram (as + xs1)

r
s=1, for i = 2, . . . , r.

Then, ai + xi1 is reduced to ai + xi1 − zri, for i = 2, . . . , r, and

F ′ = [(ai + xi1 − zri)
r−1
i=2 ; (b2, . . . , br−1); (c2, . . . , cr−1); X

′(r−1)] ∈ LRDr−2. (17)

Let θ
(r)
i := min{xi1, zri}, i = 2, . . . , r, and θ

(r)
r+1 := 0. (Note that θ(r)

r = xr,1.)
When we apply the (r−1)-full deletion operation to F we are applying the r-deletion

operation to T . So, if zri is the number of deleted cells in row i of the Young diagram
(ai +xri)

r
i=1, then, when we consider the Young diagram (as +xs1)

r
s=1 marked, from right

to left, in each row i with ai zeros and xi1 symbols 1, it follows that zri − θ
(r)
i + θ

(r)
i+1 is

the number of deleted zeros in row i of T .
Therefore, the r-full deletion sequence (yr1, . . . , yrr) of T is defined by yr1 = θ

(r)
2 ,

yr,i = zri − θ
(r)
i + θ

(r)
i+1, i = 2, . . . , r.

Thus, T (r−1) = [(a
(r−1)
1 , . . . , a

(r−1)
r−1 ); (b1, . . . , br−1); (c1, . . . , cr−1); X

(r−1)] ∈ LRDr−1 is

such that a
(r−1)
i = ai − yri, i = 1, . . . , r − 1, and

x
(r−1)
11 = x11 + θ

(r)
2 , (18)

x
(r−1)
i,1 = xi1 − θ

(r)
i + θ

(r)
i+1, i = 2, . . . , r. (19)

Note that x
(r−1)
r1 = 0. On the other hand, taking into account (17) and noting that,

for i = 2, . . . , r, a
(r−1)
i + x

(r−1)
i1 = ai − yri + x

(r−1)
i1 = ai − [zri −θ

(r)
i +θ

(r)
i+1] + xi1 − θ

(r)
i

+θ
(r)
i+1 = ai − zri + xi1, the lemma is proved.

Theorem 11 Let T = [a, b, c, X] ∈ LRDr and F = [(ai + xi1)
r
i=2; (b2, . . . , br); (c1, . . . ,

cr−1); X ′] ∈ LRDr−1, where X ′ is the (r − 1) × (r − 1) matrix obtained from X by
suppressing the first row and the first column. Let Z = [zij] ∈ ZZr,r such that the (r −
1)× (r− 1) submatrix in the last r− 1 rows and columns is the deletion-insertion matrix
of F , and z1i = zi1 = 0, for i ∈ {1, . . . , r}. Then, Y = [yij] ∈ ZZr,r the deletion matrix of
T is defined inductively by setting:

x
(r)
i1 := xi1, i = 1, . . . , r.

For k = r, . . . , 2,
θ

(k)
i := min{x(k)

i1 , zki}, i = 1, . . . , k, and θ
(k)
k+1 := 0,

x
(k−1)
i,1 := x

(k)
i1 − θ

(k)
i + θ

(k)
i+1, i = 1, . . . , k − 1,

yk,i := zki − θ
(k)
i + θ

(k)
i+1, i = 1, . . . , k, and y11 = a1 −

∑r
j=2 θ

(j)
2 .
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Proof : The proof will be handled by induction on r. For r = 1, we have T =
[(a1), (x11), (c1); [x11]]. Then F = ∅, Z = [0] and Y = [a1].

For r = 2, we have T = [(a1, a2); (x11 + x21, x2,2); (c1, c2); [xij]] and F = [(a2 +
x21); (x22); (c1); [x22]] with deletion-insertion matrix F = [a2 + x21]. By previous lemma,

the second row of the deletion matrix Y of T is defined by y21 = θ
(2)
2 = x21 and y22 =

a2 + x21 − θ
(2)
2 = a2. On the other hand, [y11] is the deletion matrix of T (1) = [(a

(1)
1 );

(x11 + x21); (c2); [x
(1)
11 ]] ∈ LRD1 where a

(1)
1 = a1 − y21 and x

(1)
11 = x11 + θ

(2)
2 = x11 + x21.

Therefore, y11 = a1 − x21 = a1 − θ
(2)
2 , y21 = z21 − θ

(1)
2 + θ

(2)
2 and y22 = z22 − x21 = a2.

Let r > 2 and suppose the truth of the theorem for r − 1. By previous lemma the
r-th row of the deletion matrix Y of T is defined by yr,i = zri− θ

(r)
i + θ

(r)
i+1, i = 1, 2, . . . , r,

where θ
(r)
i := min{xi1, zri}, i = 1, . . . , r, and θ

(r)
r+1 := 0.

Again by previous lemma, when we apply the r-full deletion operation to T , we are
applying also the (r − 1)-full deletion operation to F . We obtain, therefore, T (r−1) =

[(a
(r−1)
1 , . . . , a

(r−1)
r−1 ); (b1, . . . , br−1); (c2, . . . , cr); X(r−1)] ∈ LRDr−1 with deletion matrix

Y ′ = [yij]
r−1
i,j=1 (the principal submatrix in the first r − 1 rows of Y ), and F ′ = [(a

(r−1)
i +

x
(r−1)
i1 )r

i=2; (b2, . . . , br−1), (c2, . . . , cr−1), X ′(r−1)] ∈ LRDr−2, with deletion matrix F ′ =
[fij]

r−1
i,j=2 (the principal submatrix in the first r − 2 rows of F ). Let Z ′ = [zij]

r−1
i,j=1 be the

matrix obtained from Z by suppressing the last row and the last column.
By induction hypothesis and taking into account (18), (19), the matrix Y ′ = [yij]

r−1
i,j=1

is defined as follows
For k = r − 1, . . . , 2, define
θ

(k)
i := min{x(k)

i1 , zki}, i = 1, . . . , k, and θ
(k)
k+1 := 0,

x
(k−1)
i,1 := x

(k)
i1 − θ

(k)
i + θ

(k)
i+1, i = 1, . . . , k − 1.

yk,i := zki − θ
(k)
i + θ

(k)
i+1, i = 1, . . . , k, and y11 := a1 −

∑r
j=2 θ

(j)
2 .

The theorem is proved.
Note that θ(r)

r = x
(r)
r1 , yr,r = zr,r − θ(r)

r = ar and θ
(k)
1 = 0, yk1 = θ

(k)
2 , for k = 2, . . . , r.

Futhermore, by previous lemma, zk,k = a
(k)
k + x

(k)
k1 , for k = 2, . . . , r. So, θ

(k)
k = x

(k)
k1 and

ykk = zkk − θ
(k)
k = a

(k)
k , for k = 2, . . . , r.

According to previous theorem, the matrix Y , defined in (16), equals to

a1 −
∑r

j=2
θ
(j)
2 0 0 0 0 0

θ
(2)
2 z22 − θ

(2)
2 0 0 0 0

θ
(3)
2 z32 − θ

(3)
2 + θ

(3)
3 z33 − θ

(3)
3 0 0 0

.

..
.
.. . . . . . . 0 0

θ
(r−1)
2 zr−1,2 − θ

(r−1)
2 + θ

(r−1)
3 zr−1,3 − θ

(r−1)
3 + θ

(r−1)
4 . . . zr−1,r−1 − θ

(r−1)
r−1 0

θ
(r)
2 zr2 − θ

(r)
2 + θ

(r)
3 zr3 − θ

(r)
3 + θ

(r)
4 . . . zr,r−1 − θ

(r)
r−1 + θ

(r)
r ar


.

In what follows we need

Remark 5 (a) θ
(u)
i = zui ⇒ yui = θ

(u)
i+1.

In particular, zui = 0 ⇒ θ
(u)
i = 0 ⇒ yui = θ

(u)
i+1, and

zu−1,i = zui = 0 ⇒ yu,i−1 = 0.

(b) θ
(u)
i = x

(u)
i1 ⇒ x

(u−1)
i1 = θ

(u)
i+1.

In particular, x
(u)
i1 = 0 ⇒ x

(u−1)
i1 = θ

(u)
i+1.
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(c) θ
(u)
i+1 6= 0 ⇒ x

(u−1)
i1 > 0 and yui > 0.

Let r ≥ 1 and T ∈ LRDr of type [a, b, c], with deletion-insertion matrix Y ∈
ZZr,r, and b-decomposition defined by b(s), s = 0, . . . , r. Let T (r−1) ∈ LRDr−1 of type
[a(r−1); (b1, . . . , br−1); (cr−s+1, . . . , cr)], the LR tableau obtained from T by r-full deletion,
and Y ′ the principal submatrix in the first r−1 rows of Y , the deletion matrix of T (r−1).
Since Y records the a-decomposition of T . This means that if we delete the last row of
φ(T ) = [b, a, c, Y ], we obtain φ(T (r−1)) = [(b1, . . . , br−1); a

(r−1); (cr−s+1, . . . , cr); Y
′].

Now, we address the symmetric question: Let T̂ be the LR tableau obtained from
T by suppressing the r-th row. Let Ŷ be the deletion-insertion matrix of T̂ . May we
conclude that [φ(T )](r) = φ(T̂ ) and (b1 − b

(r−1)
1 , . . . , br−1 − b

(r−1)
r−1 , br+1) is the (r + 1)-full

deletion sequence of φ(T )? This would mean that Y is obtained from Ŷ by inserting

(b1− b
(r−1)
1 , . . . , br−1− b

(r−1)
r−1 , br+1), and that the b-decomposition of φ(T ) of type [b, a, c],

defines the b-decomposition of T . In other words, if T = [a, b, c, X], the deletion-insertion
matrix of φ(T ) = [b, a, c, Y ] is X. We shall prove that this is the case.

Lemma 8 Let r ≥ 0, k ∈ {0, 1, . . . , r} and ek = (0k−1, 1, 0r−k). LetH = [(a1, . . . , ar, ar+1);

(b1, . . . , bk +1, . . . , br, br+1); (c1, c2, . . . , cr+1); H] ∈ LRDr+1 where H =

[
X 0
ek br+1

]
,

with deletion-insertion matrix Y . Let T ∈ LRDr obtained from H by suppressing the
(r+1)-th row, with deletion-insertion matrix Ŷ . Then, Y is obtained from Ŷ by inserting
(0k−1, 1, 0r−k, ar+1). (We let e0 := (0r).)

Proof: The proof will be handled by induction on k. Let k = 0, then Y =[
Ŷ 0
0 ar+1

]
which is obtained from Ŷ by inserting (0r, ar+1) .

Let k ≥ 1 and suppose the result is true for k−1. Let F = [(ai+xi1)
r
i=2; (bi)

r
i=2; (ci)

r
i=2;

X ′] ∈ LRDr−1 where X ′ is obtained from X by deleting the first row and column of X,
and G = [(a2 + x21, . . . , ar + xr1, ar+1 + 1); (b2, . . . , bk + 1, . . . , br, br+1); (c1, . . . , cr); H

′] ∈

LRDr, where H ′ =

[
X ′ 0
ek−1 br+1

]
. Let Ẑ = [ẑij] ∈ ZZr+1,r+1 with ẑi1 = ẑ1i =

ẑr+1,i = 0, for i = 1, . . . , r + 1, where [ẑij]
r
i,j=2 is the deletion-insertion matrix of F . Let

Z = [zij] ∈ ZZr+1,r+1 with zi1 = z1i = 0, for i = 1, . . . , r+1, where [zij]
r+1
i,j=2 is the deletion-

insertion matrix of G. By induction hypothesis, [zij]
r+1
i,j=2 is obtained from [ẑij]

r
i,j=2 by

inserting (0k−2, 1, 0r−k+1, ar+1). Equivalently, Z is obtained from [ẑij]
r
i,j=1 by inserting

(0k−2, 1, 0r−k+1, ar+1).
Without loss of generality, it is enough to consider Ẑ: ẑk+j,j+2 > 0, for j = 0, 1, . . . , r−

k.
Therefore, Z is such that zk+j,j+2 = ẑk+j,j+2 − 1 and zk+j+1,j+2 = ẑk+j+1,j+2 + 1, for

j = 0, 1, . . . , r − k, zr+1,r+1 = ar+1 and zij = ẑij, otherwise.

Let Ẑ as defined above. By previous theorem, given [ẑij]
r
i,j=2 the deletion-insertion

matrix of F , the deletion-insertion matrix Ŷ of T is determined recursively as follows
x

(r+1)
i1 := xi1, i = 1, . . . , r,

x
(r+1)
r+1,1 := 0.

For u = r + 1, r, . . . , 2,
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θ
(u)
i := min{x(u)

i1 , ẑui}, i = 1, . . . , u, and θ
(u)
u+1 := 0,

x
(u−1)
i,1 := x

(u)
i1 − θ

(u)
i + θ

(u)
i+1, i = 1, . . . , u− 1,

ŷu,i = ẑui − θ
(u)
i + θ

(u)
i+1, i = 1, . . . , u, and ŷ11 = a1 −

∑r
j=2 θ

(j)
2 .

For i = 1, . . . , r + 1, we have θ
(r+1)
i = 0, x

(r)
i1 = x

(r+1)
i1 and ŷr+1,i = 0.

Again, by previous theorem, given Z the deletion-insertion matrix of G, the deletion-
insertion matrix Y of H, is determined by setting

h
(r+1)
i1 := xi1, i = 1, . . . , r,

h
(r+1)
r+1,1 := 0.

For u = r + 1, . . . , 2,
λ

(u)
i := min{h(u)

i1 , zu,i}, i = 1, . . . , u, and λ
(u)
u+1 = 0,

h
(u−1)
i1 := h

(u)
i1 − λ

(u)
i + λ

(u)
i+1, i = 1, . . . , u− 1,

yui = zui − λ
(u)
i + λ

(u)
i+1, i = 1, . . . , u, and y11 := a1 −

∑r+1
j=2 λ

(j)
2 .

We want to relate the deletion-insertion matrix Y ∈ ZZr+1,r+1 of H with the deletion-
insertion matrix Ŷ ∈ ZZr,r of T . We shall relate Ŷ ⊕ [0] with Y by comparing each
row.

For u = r + 1, zr+1,r−k+2 = ẑr+1,r−k+2 + 1, zr+1,i = ẑr+1,i, for i 6= r − k + 2, r + 1.

We have λ
(r+1)
i = θ

(r+1)
i , for i 6= r − k + 2, and

λ
(r+1)
r−k+2 = min{x(r+1)

r−k+2,1, ẑr+1,r−k+2 + 1}.

Here, we have to distinguish two cases:

(Ir+1) λ
(r+1)
r−k+2 = θ

(r+1)
r−k+2 + 1

and
(IIr+1) λ

(r+1)
r−k+2 = θ

(r+1)
r−k+2 = xr−k+2,1.

Case (Ir+1): λ
(r+1)
r−k+2 = θ

(r+1)
r−k+2 + 1.

Clearly, θ
(r+1)
r−k+2 = ẑr+1,r−k+2 and x

(r+1)
r−k+2,1 > θ

(r+1)
r−k+2. This implies x

(r)
r−k+2,1 > 0.

Attending to remark 5, it follows

θ
(r+1)
r−k+2 = ẑr+1,r−k+2 ⇒ ŷr+1,r−k+2 = θ

(r+1)
r−k+3 = 0.

Now notice that we have the following implications
x

(r)
r−k+2,1 > 0 and ẑr,r−k+2 > 0 ⇒ θ

(r)
r−k+2 > 0,

θ
(r)
r−k+2 > 0 ⇒ x

(r−1)
r−k+1,1 > 0 and ŷr,r−k+1 > 0,

x
(r−1)
r−k+1,1 > 0 and ẑr−1,r−k+1 > 0 ⇒ θ

(r−1)
r−k+1 > 0,

. . .
x

(k+1)
3,1 > 0 and ẑk+1,3 > 0 ⇒ θ

(k+1)
3 > 0,

θ
(k+1)
3 > 0 ⇒ x

(k)
2,1 > 0 and ŷk+1,2 > 0,

x
(k)
2,1 > 0 and ẑk+1,3 > 0 ⇒ θ

(k)
2 > 0.

This means that

ŷk,1, ŷk+1,2, . . . , ŷr−1,r−k, ŷr,r−k+1 > 0. (20)
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Then,
h

(r)
i1 = xi1, i 6= r − k + 1, r − k + 2,

h
(r)
r−k+1,1 = xr−k+1,1 + 1,

h
(r)
r−k+2,1 = xr−k+2,1 − 1.

The (r + 1)-th row of Y is, therefore,

yr+1,i = ŷr+1,i = 0, for i 6= r − k + 1, r − k + 2, r + 1,

yr+1,r−k+1 = 1, yr+1,r−k+2 = 0 and yr+1,r+1 = ar+1.

Proceed to the r-th row of Y .
Since the r-th row of Z is defined by zri = ẑri, for i 6= r − k + 1, r− k + 2, zr,r−k+1 =

ẑr,r−k+1 + 1 and zr,r−k+2 = ẑr,r−k+2 − 1, we have

λ
(r)
i = θ

(r)
i , for i 6= r − k + 1, r − k + 2,

λ
(r)
r−k+1 = θ

(r)
r−k+1 + 1,

λ
(r)
(r−k+2) = θ

(r)
r−k+2 − 1.

Hence,
h

(r−1)
i1 = x

(r−1)
i1 , for i 6= r − k, r − k + 1,

h
(r−1)
r−k,1 = x

(r−1)
r−k,1 + 1, and

h
(r−1)
r−k,1 = x

(r−1)
r−k+1,1 − 1.

Finally, we get
yr,i = ŷr,i, for i 6= r − k, r − k + 1,
yr,r−k = ŷr,r−k + 1, and yr,r−k+1 = ŷr,r−k+1 − 1.
Proceeding to the (r − 1)-th row of Y , we verify that we are reduced to the previous

situation. So, by an inductive argument, we conclude that Y is defined by

yk,1 = ŷk,1 − 1,

yk+1,1 = ŷk+1,1 + 1, yk+1,2 = ŷk+1,2 − 1,

. . .

yr−1,r−k−1 = ŷr−1,r−k−1 + 1, yr−1,r−k = ŷr−1,r−k − 1,

yr,r−k = ŷr,r−k + 1, yr,r−k+1 = ŷr,r−k+1 − 1,

and
yr+1,r−k+1 = 1, yr+1,r+1 = ar+1,

and
yi,j = ŷi,j, otherwise.

Considering (20), Y is obtained from Ŷ by inserting (0k−1, 1, 0r−k, ar+1).

Case(IIr+1): λ
(r+1)
r−k+2 = θ

(r+1)
r−k+2 = x

(r+1)
r−k+2,1.

First notice that θ
(r+1)
r−k+2 = x

(r+1)
r−k+2,1 and

θ
(r+1)
r−k+2 = x

(r+1)
r−k+2,1 ⇒ x

(r)
r−k+2,1 = θ

(r+1)
r−k+3,1 = 0,
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x
(r)
r−k+2,1 = 0 ⇒ θ

(r)
r−k+2 = 0, (21)

θ
(r)
r−k+2 = 0 and ẑr,r−k+2 > 0 ⇒ ŷr,r−k+2 > 0.

In this case the (r + 1)-th row of Y is defined by

yr+1,r−k+2 = 1, yr+1,r+1 = ar+1, and yr+1,i = ŷr+1,i, otherwise.

Proceeding to the r-th row of Y , we start by checking

λ
(r)
i = θ

(r)
i , for i 6= r − k + 1, r − k + 2.

Considering x
(r)
r−k+2,1 = 0 = θ

(r)
r−k+2, we have

λ(r−k+2)
r = θ

(r)
r−k+2 = 0.

Now,
λ(r−k+1)

r = min{x(r)
r−k+1,1, ẑr,r−k+1 + 1}.

So, here, we have again to distinguish two cases

(Ir) λ
(r)
r−k+1 = θ

(r)
r−k+1 + 1,

and
(IIr) λ

(r)
r−k+1 = θ

(r)
r−k+1 = x

(r)
r−k+1,1.

Subcase (Ir): λ
(r)
r−k+1 = θ

(r)
r−k+1 + 1.

Clearly, θ
(r)
r−k+1 = ẑr+1,r−k+1 and x

(r)
r−k+1,1 > θ

(r)
r−k+1. This implies x

(r−1)
r−k+1,1 > 0.

Considering remark 5 and (21), x
(r)
r−k+2,1 = θ

(r)
r−k+2 = 0, it follows

θ
(r)
r−k+1 = ẑr,r−k+1 ⇒ ŷr,r−k+1 = θ

(r)
r−k+2 = 0.

Now, notice that we have the following implications
x

(r−1)
r−k+1,1 > 0 and ẑr−1,r−k+1 > 0 ⇒ θ

(r−1)
r−k+1 > 0,

θ
(r−1)
r−k+1,1 > 0 ⇒ x

(r−2)
r−k+1 > 0 and ŷr−1,r−k > 0,

. . .
x

(k+1)
3,1 > 0 and ẑk+1,3 > 0 ⇒ θ

(k+1)
3 > 0,

θ
(k+1)
3 > 0 ⇒ x

(k)
2,1 > 0 and ŷk+1,2 > 0,

x
(k)
2,1 > 0 and ẑk+1,3 > 0 ⇒ θ

(k)
2 > 0.

This means that

ŷk,1, ŷk+1,2, . . . , ŷr−1,r−k > 0. (22)

We have
h

(r−1)
i1 = x

(r−1)
i1 , for i 6= r − k, r − k + 1,

h
(r−1)
r−k,1 = x

(r−1)
r−k,1 + 1 and

h
(r−1)
r−k,1 = x

(r−1)
r−k+1,1 − 1.
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Finally, we get the r-th row of Y

yr,i = ŷr,i, for i 6= r − k, r − k + 1, r − k + 2,

yr,r−k = ŷr,r−k + 1, yr,r−k+1 = ŷr,r−k+1 = 0, and yr,r−k+2 = ŷr,r−k+2 − 1.

Proceeding to the (r − 1)-th row of Y , we verify that this situation has been already
studied in case (Ir+1). So, Y is defined by

yk,1 = ŷk,1 − 1,

yk+1,1 = ŷk+1,1 + 1, yk+1,2 = ŷk+1,2 − 1,

. . .

yr−1,r−k−1 = ŷr−1,r−k−1 + 1, yr−1,r−k = ŷr−1,r−k − 1,

yr,r−k = ŷr,r−k + 1, yr,r−k+1 = ŷr,r−k+1 − 1,

and
yr,r−k+1 = 0, yr,r−k+2 = ŷr,r−k+2 − 1,

yr+1,r−k+2 = 1, and ŷr+1,r+1 = ar+1,

and yi,j = ŷi,j, otherwise.

Considering (22), Y is obtained from Ŷ by inserting (0k−1, 1, 0r−k, ar+1).
It remains to consider
Subcase(IIr): λ

(r)
r−k+1 = θ

(r)
r−k+1 = x

(r)
r−k+1,1.

First notice that θ
(r)
r−k+1 = x

(r+1)
r−k+1,1 and

θ
(r)
r−k+1 = x

(r+1)
r−k+1,1 ⇒ x

(r−1)
r−k+1,1 = θ

(r)
r−k+2,1 = 0,

x
(r−1)
r−k+1,1 = 0 ⇒ θ

(r−1)
r−k+1 = 0, (23)

θ
(r−1)
r−k+1 = 0 and ẑr−1,r−k+1 > 0 ⇒ ŷr−1,r−k+1 > 0.

In this case, the r-th row of Y is defined by

yr,r−k+1 = ŷr,r−k+1 + 1, yr,r−k+2 = ŷr,r−k+2 − 1,

and yr,i = ŷr,i, otherwise.
Proceeding to the (r − 1)-th row of Y , we start by checking that

λ
(r−1)
i = θ

(r−1)
i , for i 6= r − k, r − k + 1.

Considering x
(r−1)
r−k+1,1 = 0 = θ

(r−1)
r−k+1, we have

λ
(r−1)
(r−k+1) = θ

(r−1)
r−k+1 = 0.
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Now,
λ

(r−k)
(r−1) = min{x(r−1)

r−k,1, ẑr−1,r−k + 1}.

We verify that this situation has been already studied, and, therefore, we have two
possibilities for Y : either it is defined by

yk,1 = ŷk,1 − 1,

yk+1,1 = ŷk+1,1 + 1, yk+1,2 = ŷk+1,2 − 1,

. . .

yk+u,u+1 = ŷk+u,u+1 +1, yk+u,u+2 = 0, yk+u,u+3 = ŷk+u,u+3−1, for some 1 ≤ u < r−k−1,

yk+u+1,u+3 = ŷk+u+1,u+3 + 1, yk+u+1,u+3 = ŷk+u+1,u+3 − 1

and

yr,r−k+1 = ŷr,r−k+1 + 1, yr,r−k+2 = ŷr,r−k+2 − 1, yr+1,r−k+2 = 1, and yr+1,r+1 = ar+1,

and yi,j = ŷi,j, otherwise; or by

yk+j,j+2 = ŷk+j,j+2 − 1, yk+j+1,j+2 = ŷk+j+1,j+2 + 1, for j = 0, 1, . . . , r − k.

yr+1,r−k+2 = 1, and yij = ŷij, otherwise.

In both cases, we have Y obtained from Ŷ by inserting (0k−1, 1, 0r−k, ar+1).

Proposition 5 Let r ≥ 0 and k ∈ {0, 1, . . . , r}. Let H = [(a1, . . . , ar, ar+1); (b1, . . . ,

bk+α, . . . , br, br+1); (c1, c2, . . . , cr+1); H] ∈ LRDr+1, where α > 0, H =

[
X 0
αek br+1

]
,

with deletion-insertion matrix Y . Let T ∈ LRDr obtained from H by suppressing the
(r+1)-th row, with deletion-insertion matrix Ŷ . Then, Y is obtained from Ŷ by inserting
(0k−1, α, 0r−k, ar+1).

Proof: When k = 0, this situation has been already studied in the previous lemma.
Let k ≥ 1. The proof will be handled by induction on α.

By previous lemma, the result is true for α = 1.
Let α > 1 and suppose the result is true for α − 1. For i = 1, . . . , α − 1, let

Hi = [(a1, . . . , ar, 0); (b1, . . . , bk + i, . . . , br, br+1); (c1 + α − i, c2, . . . , cr+1); Hi], where

Hi =

[
X 0
iek br+1

]
. Let Yi be the deletion-insertion matrix of Hi, for i = 1, . . . , α− 1.

Let Y ′
1 be the principal submatrix in the first r rows of Y1. We shall show that

Y ∈ ZZr+1,r+1, is obtained as follows: (i) by inserting (0k−1, 1, 0r−k+1) to Ŷ , we get
Y1 ∈ ZZr+1,r+1; then (ii) by inserting (0k−1, α−1, 0r−k, ar+1) in Y ′

1 , we get an (r+1)×(r+1)
matrix, let us say, W ; and eventually (iii) by adding the (r + 1)-th row of Y1 to the
(r + 1)-th row of W , we get Y . This means that Y is obtained from Ŷ by inserting
(0k−1, α, 0r−k, ar+1).
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By previous lemma, the deletion-insertion matrix Y1 of H1, is obtained from Ŷ by
inserting (0k−1, 1, 0r−k+1, 0). Let (H1)

(r) be the LR rectangular tableau obtained from
H1 by (r + 1)-full deletion. The deletion-insertion matrix of (H1)

(r) is Y ′
1 .

Let us denote by k1, . . . , kα−1, kα, from left to right, the α symbols k in the (r + 1)-
th row of H. Let K1, . . . ,Kα−1,Kα be the deletion paths generated by k1, . . . , kα−1, kα,
respectively.

Now, let HKα be the LR rectangular tableau obtained from H by deletion generated
by the symbol kα, and ĤKα the one obtained from HKα by suppression of the (r + 1)-th

row. Therefore, ĤKα = (H1)
(r) and the deletion-insertion matrix of ĤKα is Y ′

1 .
Let W be the deletion-insertion matrix of HKα . By inductive hypothesis, W is ob-

tained from Y ′
1 by inserting (0k−1, α− 1, 0r−k, ar+1).

We claim that Y = W +

[
0r,r 0
w 0

]
, where [w, 0], 1× (r + 1), is the (r + 1)-th row of

Y1.
Let W ′ and Y ′ be the principal submatrices in the first r rows of W and Y , respec-

tively.
Let H(r) and (HKα)(r) be the LR rectangular tableaux obtained, respectively, from

H and HKα by (r + 1)-full deletion. Then, H(r) = (HKα)(r) and the deletion-insertion
matrix of H(r) is Y ′ = W ′.

Finally, note that the (r + 1)-deletion sequence of H is the (r + 1)-th row of W plus
the (r + 1)-th row of Y1, wich, by definition of deletion matrix, is precisely the (r + 1)-th
row of Y . Hence, the claim is true. This means that Y , the deletion-insertion matrix of
H, is obtained from Ŷ by inserting (0k−1, α, 0r−k, ar+1).

Proposition 6 Let r ≥ 0 and H = [(a1, . . . , ar, ar+1); (b1 + α1, . . . , br + αr, br+1); (c1,

c2, . . . , cr+1); H] ∈ LRDr+1, where H =

[
X 0

α1 . . . αr br+1

]
, αi ≥ 0, i = 1, . . . , r. Let

Y be the deletion-insertion matrix of H. Let T ∈ LRDr obtained from H by deleting the
(r+1)-th row, with deletion-insertion matrix Ŷ . Then, Y is obtained from Ŷ by inserting
(α1, . . . , αr, ar+1).

Proof: Let m := #{i ∈ {1, . . . , r} : αi > 0}. The proof will be handled by induction
on m. By previous proposition the result is true for m = 0, 1.

Let m > 1, and suppose the result is true for m − 1. Without loss of generality, we
may assume that α1, . . . , αm > 0. Let Hαm = [(a1, . . . , ar, 0); (b1, . . . , bm + αm, . . . , br,
br+1); (c1 + α1 + . . . + αm−1, c2, . . . , cr+1); Hm] ∈ LRDr+1 with deletion-insertion matrix
Yαm . Let (Hαm)(r) be the LR rectangular tableau obtained from Hαm by (r + 1)-full
deletion. Then, the deletion-insertion matrix of (Hαm)(r) is the principal submatrix in
the first r rows of Yαm , denoted by (Yαm)′.

Let Z be the deletion path chain generated by the αm symbols m. Now, let HZ

be the LR rectangular tableau obtained by deletion generated by the αm symbols m
in the (r + 1)-th row of H. Let W be the deletion-insertion matrix of HZ. Since,

ĤZ = (HZ)(r) it follows by induction hypothesis that W is obtained from (Yαm)′ by
inserting (α1, . . . , αm−1, 0

r−m, ar+1).
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Let (HZ)(r) and (H)(r) be the LR rectangular tableaux obtained, respectively, from
HZ and H by (r + 1)-full deletion. Let W ′ and Y ′ be the principal submatrices in the
first r rows of W and Y , respectively.

Then, (HZ)(r) = (H)(r) and the deletion-insertion matrix of (H)(r) is W ′ = Y ′. But
the (r +1)-deletion sequence of H is precisely the (r +1)-th row of W plus the (r +1)-th
row of Yαm .

Proof of theorem 11.
We claim that if [a, b, c, X] ∈ LRDr has deletion- insertion matrix Y , then the

deletion-insertion matrix of [b, a, c, Y ] ∈ LRDr is X.
We prove the claim by induction on r. For r = 1, we have [(a1), (b1), (c1), X = [b1]] ∈

LRD1 with deletion-insertion matrix Y = [a1]. So, [(b1), (a1), (c1), Y = [a1]] ∈ LRD1

and the deletion-insertion matrix is clearly X = [b1].
Let r > 1 and suppose the claim is true for r − 1. Let T = [(a1, . . . , ar); (b1, . . . , br);

(c1, . . . , cr); X = [xij]] ∈ LRDr with deletion-insertion matrix Y . Let T̂ = [(a1, . . . , ar−1);
(b1 − α1, . . . , br−1 − αr−1); (c2, . . . , cr); X ′] ∈ LRDr−1 obtained from T by suppressing

the last row. Therefore, X =

[
X ′ 0

α1 . . . αr−1 br

]
, and, in particular, recall that

ar−1 +
∑k−1

j=1 xr−1,j ≥ ar +
∑k

j=1 αj, for k = 1, . . . , r − 1.

Let Ŷ be the deletion-insertion matrix of T̂ . According to previous proposition, Y is
obtained from Ŷ by inserting (α1, . . . , αr−1, br).

Now, let H = [(b1, . . . , br); (a1, . . . , ar); (c1, . . . , cr); Y ] ∈ LRDr and H′ = [(b1 −
α1, . . . , br−1 − αr−1); (a1, . . . , ar−1) (c2, . . . , cr); Ŷ ] ∈ LRDr−1. By induction hypothesis,
the deletion-insertion matrix of H′ is X ′ and, in particular, (xr−1,1, . . . , xr−1,r−2) is the
(r − 1)-deletion sequence of H′.

By theorem 6, (α1, . . . , αr−1, br) is a full insertion sequence mod(ar) of H′. Therefore,
by inserting mod(ar), (α1, . . . , αr−1, br), on H′ we obtain an LR rectangular tableau.
Considering the relationship between Y and Ŷ , this LR tableau is precisely H, and
considering the definition of insertion matrix, the deletion-insertion matrix of H is X.
The claim is proved.

5.3 An example

Here we give illustrations of the algorithm of insertion defining π and of the algorithm
of deletion defining φ.

The following example is an illustration of π in LRD4. Let

T = [(6, 5, 2, 0); (5, 4, 1, 0); (4, 3, 2, 0); X =

 2 0 0 0
1 0 0 0
1 2 0 0
1 2 1 0

] ∈ LRD4,

graphically represented by

1 2 2 3
1 2 2

1
1 1
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To calculate the image of this LR rectangular tableau under π, the algorithm of
insertion runs as follows.

We consider the following rectangular numbered diagram, where the boxes of length
xij can be thought as being xij unitary boxes labelled with 0,

x43 x42 x41

x32 x31

x21

x11

2 2 2 2 2

3 3

1 1 1 1 1 1

Now, the row insertion and column sliding operations are going as follows.
The first row of this numbered diagram defines an LR rectangular tableau of type

[x11, a1, 0].
Insert x21 = 1 symbol 0 in the first row by sliding down, to the second row, the left

most x21 = 1 symbol 1

x43 x42 x41

x32 x31

1

x11

2 2 2 2 2
3 3

2

x21 1 1 1 1 1

The two first rows of this numbered diagram define an LR rectangular tableau of type
[(x11 + x21, 0); (a1, a2); (c3, 0)].

Insert x32 = 2 symbols 0 in the second row by sliding down, to the third row, the left
most x32 = 2 symbols which are strictly larger than 0 (one symbol 1 and one symbol 2);
insert x31 = 1 symbol 0 in the first row by sliding down, to the second row, the left most
x31 = 1 symbol 1; on each turn, this x31 = 1 slided symbol 1 is inserted in the second row
by sliding down, to the third row, the left most x31 = 1 symbol which is strictly larger
than 1 (one symbol 2),

x43 x42 x41

x32

2

x11

2
1 2 2 2

3 3
2

x21 x31 1 1 1 1

1

The first three rows of this numbered diagram defines an LR rectangular tableau of
type [(

∑3
i=1 xi1, x32, 0); (a1, a2, a3); (c2, c3, 0)].

Insert x43 = 1 symbol 0 in the third row by sliding down, to the 4th row, the left most
x43 = 1 symbol which is strictly larger than 0 (one symbol 1); insert x42 = 2 symbols 0
in the second row by sliding down, to the third row, the left most x42 = 2 symbols (one
symbol 1 and one symbol 2) which are strictly larger than 0; on each turn, these slided
x42 = 2 symbols are inserted in the third row by sliding down, to the 4th row, the left
most x42 = 2 symbols which are strictly larger respectively than 1 and 2 (one symbol 2
and one symbol 3),

1 2 3 x41

x32

2

x11

1

x42 2 2
2 3

2

x21 x31 1 1 1 1

x43
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Now, insert x41 = 1 symbols 0 in the first row by sliding down, to the second row, one
symbol 1; this symbol 1 will be inserted in the second row by sliding down to the third
row, one symbol 2; and this symbol 2 will be inserted in the third row by sliding down
to the 4th row one symbol 3; finally, the symbol 3 is inserted in the 4th row,

1 2 3 3

x32

2

x11

1

x42 1 2
2 2

2

x21 x31 x41 1 1 1

x43

The output is [b, a, c, Y =

 3 0 0 0
1 1 0 0
1 3 0 0
1 1 2 0

]. Now applying π to

y43 y42 y41

y32

y22

y11

y21 2 2 2 2
y31 3

1 1 1 1 1

we obtain [a, b, c, X].

Now, we illustrate the mapping φ. To calculate φ(T ) we have to perform the following
projections starting with T .

1 2 2 3

1 2 2
1

1 1

, 1 2 2 2 3

1 2
1 1 1

, 1 2 2 2 2

1 1 1 1

, 1 1 1 1 1

We obtain the following sequence of deletion sequences (y41 = 1, y42 = 1, y43 =
2, y44 = 0); (y31 = 1, y32 = 3, y33 = 0); (y22 = 1, y21 = 1); (y11 = 3).

So we have π(T ) = φ(T ).
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