Key polynomials, invariant factors and an action of the symmetric group on Young tableaux

Olga Azenhas and Ricardo Mamede

Abstract

We give a combinatorial description of the invariant factors associated with certain sequences of product of matrices, over a local principal ideal domain, under the action of the symmetric group by place permutation. Lascoux and Schützenberger have defined a permutation on a Young tableau to associate to each Knuth class a right and left key which they have used to give a combinatorial description of a key polynomial. The action of the symmetric group on the sequence of invariant factors generalizes this action of the symmetric group, by Lascoux and Schützenberger, to Young tableaux of the same shape and weight. As a dual translation, we obtain an action of the symmetric group on words congruent with key-tableaux based on nonstandard pairing of parentheses. Résumé. Nous donnons une description combinatoire des facteurs invariants associés à certaines suites de produits de matrices, sur un domaine local des idéaux principaux, par l'action du groupe symétrique au permutation de place. Lascoux et Schützenberger ont consideré une permutation sur un tableau de Young pour associer à chaque classe de Knuth une clef gauche et droite qu'ils ont utilisé pour donner une description combinatoire d'un polynôme de clef. L'action du groupe symétrique sur la suite des facteurs invariants generalise cette action du groupe symétrique, dû à Lascoux et Schützenberger, aux tableaux de Young de même forme et poids. Comme résultat dual nous obtennons une action du groupe symétrique sur les mots congrues aux tableaux de clef basée au couplage non-standard des parenthèses.

1. Introduction

The purpose of this paper is twofold - to give a combinatorial description of the hexagons defined by the invariant factors associated with a certain type of sequences of product of matrices, over a local principal ideal domain, under the action of the symmetric group by place permutation; and to show its relationship with the combinatorics developed by Lascoux and Schützenberger to give a combinatorial description of key polynomials. Key polynomials were combinatorially investigated by Lascoux and Schützenberger, in the case of the symmetric group, in $[\mathbf{1 3}, \mathbf{1 4}]$.

Given an n by n non-singular matrix A, with entries in a local principal ideal domain with prime p, by Gaußian elimination one can reduce A to a diagonal matrix Δ_{α} with diagonal entries $p^{\alpha_{1}}, \ldots, p^{\alpha_{n}}$, for unique nonnegative integers $\alpha_{1} \geq \ldots \geq \alpha_{n}$, called the Smith normal form of A. The sequence $p^{\alpha_{1}}, \ldots, p^{\alpha_{n}}$ defines the invariant factors of A, and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ the invariant partition of A. It is known that α, β, γ are invariant partitions of nonsingular matrices A, B, and C such that $A B=C$ if and only if there exists a Littlewood-Richardson tableau T of type (α, β, γ), that is, a tableau of shape γ / α which rectifies to the keytableau of weight β (Yamanouchi tableau of weight β) $[\mathbf{5}, \mathbf{6}]$. The relationship between invariant factors and the product of Schur functions was noticed earlier by several authors, with different approaches, as P. Hall, J. A. Green, T. Klein, R. C. Thompson et al $[\mathbf{9 , 1 1 , 1 7 , 1]}$. (For an overview and other interconnectedness, see the survey by W. Fulton $[\mathbf{6}]$ as well as $[\mathbf{5}, \mathbf{7}, \mathbf{8}]$.)

[^0]Let $m=\left(m_{1}, \cdots, m_{t}\right)$ be a weak composition. Let the symmetric group S_{t} act on weak compositions of length $\leq t$ via the left action $s_{i} m=\left(m_{1}, \cdots, m_{i+1}, m_{i}, \cdots, m_{t}\right)$ with $s_{i}, 1 \leq i \leq t-1$, the simple transpositions of S_{t}. Let $\beta(m)$ be the unique partition in the orbit $S_{t} m$ and $\beta^{\prime}(m)$ its conjugate. $K(m)$ denotes the key-tableau of weight m, that is, the tableau of weight m whose column shape is $\beta^{\prime}(m)$, and $D_{\left[m_{k}\right]}$ the n by n diagonal matrix having the i th diagonal entry equals p whenever $i \in\left[m_{k}\right]$ and 1 otherwise. The invariant partition of $D_{\left[m_{k}\right]}$ is $\left(1^{m_{k}}\right)$. Indeed there is an obvious bijection between compositions and key-tableaux [16]. Thus, we identify $K(m)$ with the sequence of diagonal matrices $\left(D_{\left[m_{1}\right]}, \cdots, D_{\left[m_{t}\right]}\right)$ in the sense that the sequence of partitions $\left(1^{m_{1}}\right) \subseteq\left(1^{m_{1}}\right)+\left(1^{m_{2}}\right) \subseteq \cdots \subseteq\left(1^{m_{1}}\right)+\cdots+\left(1^{m_{t}}\right)=\beta^{\prime}(m)$ defines the key $K(m)$ and, simultaniously, are the invariant partitions of the sequence of product of matrices $D_{\left[m_{1}\right]}$, $D_{\left[m_{1}\right]} D_{\left[m_{2}\right]}, \cdots, D_{\left[m_{1}\right]} D_{\left[m_{2}\right]} \cdots D_{\left[m_{t}\right]}$. (French notation is adopted.) For instance,

$$
K(10325)=\begin{array}{rrrrr}
5 & & & & \\
4 & 5 & & & \\
3 & 4 & 5 & & \\
1 & 3 & 3 & 5 & 5
\end{array}
$$

$$
\text { is identified with }\left(D_{[1]}, D_{\emptyset}, D_{[3]}, D_{[2]}, D_{[5]}\right) \text {. }
$$

Let $T(m)$ be a skew-tableau of weight m. Let J_{k} denote the column-word of length m_{k} defined by the set of column-indices of the letter k in $T(m)$, and put $J:=J_{t} \cdots J_{2} J_{1}$, called the indexing-set word of $T(m)$. The sequence of column lengths of $J_{t}, \cdots, J_{2}, J_{1}$ is $m^{\#}$ the reverse of m. Let w be the word of $T(m)$ defined by concatenation of the column-words of T left to right. Write $(\emptyset \leftarrow w)=(P(w), \mathcal{Q}(w))$ to mean that the row insertion of w produces the pair of tableaux $P=P(w)$ and $\mathcal{Q}(w)$ of the same shape, with $\mathcal{Q}(w)$ a standard tableau, called the \mathcal{Q}-symbol. We have $(\emptyset \leftarrow J)=(P(J), \mathcal{Q}(J))$ such that $\mathcal{Q}(J)=(\operatorname{std}(\text { evac } P))^{t}$ and $\mathcal{Q}(w)=(\operatorname{std} P(J))^{t}$, where evac denotes evacuation, ${ }^{t}$ transposition and std standardization. J is a frank word of shape $m^{\#}$ if and only if $P=K(m)$. (For convenience we shall allow null parts in the shape of frank words.) Equivalently $\mathcal{Q}(J)=\operatorname{std}\left(K\left(m^{\#}\right)\right)^{t}$.

Let U be a n by n unimodular matrix, that is, a matrix whose determinant is not divided by p. Put $\Delta_{\alpha} U K(m)$ for the sequence $\Delta_{\alpha}, \Delta_{\alpha} U D_{\left[m_{1}\right]}, \Delta_{\alpha} U D_{\left[m_{1}\right]} D_{\left[m_{2}\right]}, \cdots, \Delta_{\alpha} U D_{\left[m_{1}\right]} D_{\left[m_{2}\right]} \cdots D_{\left[m_{t}\right]}$. The sequence of invariant partitions $\alpha^{0}=\alpha \subseteq \alpha^{1} \subseteq \ldots \subseteq \gamma=\alpha^{t}$, associated with this sequence of matrices, satisfy for $k=0,1, \ldots, t-1,\left|\alpha^{k+1}\right|-\left|\alpha^{k}\right|=m_{k+1}$ and $\alpha_{i}^{k} \leq \alpha_{i}^{k+1} \leq \alpha_{i}^{k}+1$, for any i. Thus $\Delta_{\alpha} U K(m)$ is identified with a tableau $T(m)$ of conjugate shape γ / α and weight m, and it is shown in [3] that $P(w)=K(m)$ and J is a frank word of shape $m^{\#}$. When we consider the action of the symmetric S_{t} on weak compositions of length $\leq t$ via the left action, we are at the same time defining an action of the symmetric group on the sequence of matrices $\Delta_{\alpha} U K(m)$, where U is a fixed unimodular matrix, and, therefore, on tableaux of skew-shape. We obtain two families of hexagons, which are dual translation of each other: one on frank words running over tableaux with the same shape and weight, rather than on the frank words within a Knuth class; and, the other one on key-tableaux based on nonstandard pairing of parentheses. However in each hexagon there is only one tableau and we may associate to it right and left keys. The construction which leads to the first hexagon is based on a particular row shuffle decomposition of a three-column frank word and on a variant of the jeu de taquin on a two-column tableau or contretableau. This means that the second hexagon is based on a column shuffle decomposition of a word congruent with a key-tableau over a three-letter alphabet and on a nonstandard pairing of parentheses. These hexagons, contain in particular, the ones defined, respectively, by the jeu de taquin operation, and by the operation based on the standard matching of parentheses.

2. Variants of the jeu de taquin on two-column frank words, pairing of parentheses and invariant factors

In this section, we describe the invariant factors, equivalently, the skew-tableaux on a two-letter alphabet, associated with the sequences $\Delta_{\alpha} U K(m)$ and $\Delta_{\alpha} U K\left(s_{1} m\right)$ with $m=\left(m_{1}, m_{2}\right)$. For this, we have to define variants of the jeu de taquin on two-column frank words and to show its relationship with pairings of parentheses on words congruent with key-tableaux over a two-letter alphabet.

We denote by Θ the jeu de taquin operation on a two-column tableau or contre-tableau (a two-column skew-tableau such that the pair of columns is aligned at the top) $J_{2} J_{1}$, and by $\tilde{\Theta}$ a variant of Θ which runs as follows. If $J_{2} J_{1}$ is a contretableau (tableau), slide vertically the entries of the column $J_{2}\left(J_{1}\right)$ along the column $J_{1}\left(J_{2}\right)$ such that the row weak increasing order is preserved, and a common label to the two columns never has a vacant west (east) neighbor. Then exchange the vacant positions with the east (west)
neighbors. In particular, when the first (second) column $J_{2}\left(J_{1}\right)$ is slided down (up) maximally such that the row weakly increasing order is preserved, we get the jeu de taquin. For instance,

Clearly, $\tilde{\Theta}\left(J_{2} J_{1}\right)$ and $\Theta\left(J_{2} J_{1}\right)$ are not congruent unless $\tilde{\Theta}=\Theta$, but $\tilde{\Theta}\left(J_{2} J_{1}\right)$ is a frank word with the same shape and weight as $\Theta\left(J_{2} J_{1}\right)$.

Let $w=w_{1} w_{2} \ldots w_{k}$ be a word on the two-letter alphabet $\{r, r+1\}$. A pairing of w is a set of indexed pairs (called r-pairs) $\left(w_{i}, w_{j}\right)$ such that $1 \leq i<j \leq k, w_{i}=r+1$, and $w_{j}=r$, and if $\left(w_{l}, w_{s}\right)$ is another pair, then i, l, j, s are pairwise distinct. View each r (resp. $r+1$) as a left (resp. right) parenthesis. The r-pairs of w are precisely the matched parentheses. Furthermore the subword of unpaired $r^{\prime} s$ and $(r+1)^{\prime} s$ is a subword of w the form $r^{k}(r+1)^{l}$. In general, not every r-pairing gives the maximal number of r-pairs of w, and if $\tilde{\theta}_{r}$ is the operation which replaces the word $r^{k}(r+1)^{l}$ of unpaired $r^{\prime} s$ and $(r+1)^{\prime} s$ in w (in the corresponding positions) by $r^{l}(r+1)^{k}$, unless certain conditions are imposed on the r-pairing, the maximal number of r-pairs of $\tilde{\theta}_{r} w$ and w may be different. However, when either $k=0$ or $l=0$, although w and $\tilde{\theta}_{r} w$ may have different r-pairings, they have always the same maximal number of r-pairs. We shall restrict ourselves to words w in these conditions, that is, w is a word on a two-letter alphabet congruent with a two-letter key-tableau. In this case, the operation $\tilde{\theta}_{r}$ can be reduced to a variant of jeu de taquin on two-column frank words. In particular, the operation based on the standard r-pairing, denoted by θ_{r}, can be reduced to the jeu de taquin.

Suppose that w is congruent with the key-tableau of weight $\left(0^{r-1}, m_{r}, m_{r+1}\right)$. Without loss of generality, assume $m_{r+1} \leq m_{r}$. Let $J_{r+1} J_{r}$ be a frank word of shape ($m_{r+1}, m_{r}, 0^{r-1}$), such that by sorting the billeters of the biword $\Sigma^{\prime}=\binom{J_{r+1} J_{r}}{(r+1)^{m_{r+1}} r^{m_{r}}}$, by weakly increasing rearrangement of the billeters for the antilexicographic order with priority on the first row, we get $\Sigma=\binom{J_{r+1} J_{r} \uparrow}{w}$, where $J_{r+1} J_{r} \uparrow$ indicates $J_{r+1} J_{r}$ by weakly increasing order. Consider an r-pairing in w defined by an increasing injection $i: J_{r+1} \longrightarrow J_{r}$, that is, $x \leq i(x)$, such that $J_{r} \cap J_{r+1} \subseteq i\left(J_{r+1}\right)$. (We identify a column word with its underlying set.) To perform $\tilde{\theta}_{r} w$ based on this r-pairing means to apply an operation $\tilde{\Theta}$ on $J_{r+1} J_{r}$ (denoted by $\tilde{\Theta}_{r}$) which exchanges the vacant entries of the first column with the correspondent east neighbors consisting of $J_{r} \backslash i\left(J_{r+1}\right)$ in the second column J_{r}. Conversely, an operation $\tilde{\Theta}_{r}$ on $J_{r+1} J_{r}$ means an operation $\tilde{\theta}_{r}$ on w, where the r-pairing on w is defined by any increasing injection $i: J_{r+1} \longrightarrow J_{r}$ such that $\tilde{\Theta} J_{r+1} J_{r}=\left[J_{r+1} \cup\left(J_{r} \backslash B\right)\right] B$, where $J_{r} \cap J_{r+1} \subseteq i\left(J_{r+1}\right)=B$. When $\tilde{\Theta}_{r}=\Theta_{r}$ we get the standard pairing of parentheses on w and thus θ_{r}. Thus the operations $\tilde{\Theta}_{r}, \Theta_{r}$ and $\tilde{\theta}_{r}, \theta_{r}$ are respectively translated into each other, according the following commutative diagram,

$$
\begin{gather*}
\Sigma=\binom{J_{r+1} J_{r} \uparrow}{w} \longleftrightarrow \Sigma^{\prime}=\binom{J_{r+1} J_{r}}{(r+1)^{m_{r+1}} r^{m_{r}}} \\
\uparrow \tag{2.3}\\
\downarrow \\
\downarrow \\
\tilde{\Sigma}=\binom{\tilde{\Theta}\left(J_{r+1} J_{r}\right) \uparrow}{\tilde{\theta}_{r} w} \longleftrightarrow \tilde{\Sigma}^{\prime}=\binom{\tilde{\Theta}\left(J_{r+1} J_{r}\right)}{(r+1)^{m_{r}} r^{m_{r+1}}}
\end{gather*}
$$

If $(\emptyset \leftarrow w)=(P, Q)$ then $\left(\emptyset \leftarrow \tilde{\theta}_{r} w\right)=\left(\theta_{r} P, Q^{\prime}\right)$, where Q and Q^{\prime} are distinct unless $\tilde{\theta}_{r}=\theta_{r}$. As $\tilde{\Theta}_{r}$ runs out of the congruence class, $\tilde{\theta}_{r}$ does not preserve the Q-symbol but we have $\theta_{r} w \equiv \tilde{\theta}_{r} w$. For instance, in (2.1), any increasing injection $\{1,2\} \rightarrow\{2,3\}$ defines a standard pairing of parentheses, giving
rise to $\theta_{1}:(2(21) 1) 1 \rightarrow(2(21) 1) 2$; and in (2.2), any increasing injection $\{1,2\} \rightarrow\{2,4\}$ defines a pairing of parentheses, giving rise to $\tilde{\theta}_{1}:(2(21) 11) \rightarrow(2(21) 21)$.

We are now in conditions to describe the invariant factors, equivalently, the skew-tableaux on a two-letter alphabet associated with the sequences $\Delta_{\alpha} U K(m)$ and $\Delta_{\alpha} U K\left(s_{1} m\right)$.

Lemma 2.1. [2] (a) Let U be an n by n unimodular matrix. Then, there exists $\sigma \in \mathcal{S}_{n}$ such that $U=T P_{\sigma} Q L$, where T is an n by n upper triangular matrix, with 1^{\prime} s along the main diagonal, Q is an n by n upper triangular matrix, with 1 's along the main diagonal, and multiples of p above it, and L is an n by n lower triangular matrix, with units along the main diagonal.
(b) By elementary operations on the left and on the right, $\Delta_{\alpha} U K(m)$ may be considered equal to $\Delta_{\alpha} P_{\sigma} Q K(m)$, with $\sigma \in \mathcal{S}_{n}$.
(c) The Smith normal form of $\Delta_{\alpha} P_{\sigma} Q D_{\left[m_{1}\right]}$, with $\sigma \in \mathcal{S}_{n}$, is the diagonal matrix $\Delta_{\alpha^{1}}$ where $\alpha \subseteq \alpha^{1}$ is a vertical strip of length m_{1}.

Theorem 2.2. [2] Let $m=\left(m_{1}, m_{2}\right)$. Let T and T^{\prime} be respectively the tableaux defined by the sequences $\Delta_{\alpha} U K(m)$ and $\Delta_{\alpha} U K\left(s_{1} m\right)$, with indexing-set words $J_{2} J_{1}, J_{2}^{\prime} J_{1}^{\prime}$, and words w, w^{\prime}. Then,
(a) $J_{2} J_{1}, J_{2}^{\prime} J_{1}^{\prime}$ are frank words such that $\tilde{\Theta}_{1} J_{2} J_{1}=J_{2}^{\prime} J_{1}^{\prime}$.
(b) $w \equiv K(m)$ and $w^{\prime}=\tilde{\theta}_{1} \omega \equiv K\left(s_{1} m\right)$.

Conversely, if T and T^{\prime} are respectively tableaux of skew-shape with indexing-set frank words $J_{2} J_{1}$ and $J_{2}^{\prime} J_{1}^{\prime}$ satisfying $J_{2}^{\prime} J_{1}^{\prime}=\tilde{\Theta}_{1} J_{2} J_{1}$, then there exist an unimodular matrix U such that $\Delta_{\alpha} U K(m)$ and $\Delta_{\alpha} U^{\prime} K\left(s_{1} m\right)$ define the tableaux T and T^{\prime} respectively.

Example 2.3. Let $U=P_{4321} T_{14}(p)$, where P_{4321} is the permutation matrix associated with $4321 \in S_{4}$ and $T_{14}(p)$ is the elementary matrix obtained from the identity by placing the prime p in position $(1,4)$.
With $\alpha=(2,1)$ the sequences $\Delta_{\alpha} U\left(D_{[3]}, D_{[2]}\right)$ and $\Delta_{\alpha} U\left(D_{[2]}, D_{[3]}\right)$ define, respectively, $T=\bullet \quad 1 \quad 2$

- 11
and $T^{\prime}=\bullet 2 \quad 2 \quad$. The words $w=21211$ of T and $w^{\prime}=22211$ of T^{\prime} satisfy $\tilde{\theta}_{1} w=w^{\prime} \equiv \theta_{1} \omega$, where
- - 11
$\tilde{\theta}_{1}$ is the operation based on the parentheses matching $(21(21) 1)$. However, if we choose $U^{\prime}=P_{3241} T_{24}(p)$,
the sequences $\Delta_{\alpha} U^{\prime}\left(D_{[3]}, D_{[2]}\right)$ and $\Delta_{\alpha} U^{\prime}\left(D_{[2]}, D_{[3]}\right)$ define, respectively, T and $T^{\prime \prime}=\bullet \quad 1 \quad 2 \quad$. In this
- 12
case, the word $w^{\prime \prime}$ of $T^{\prime \prime}$ satisfy $\theta_{1} w=w^{\prime \prime}$. The corresponding operations on the indexing frank words are displayed as follows

The operations $\Theta_{r}\left(\theta_{r}\right)$ can be extended to frank words with more than two columns (words on a t-letter alphabet, $t \geq 2$) $[\mathbf{1 2}, \mathbf{1 5}]$. Under certain conditions, operations $\tilde{\Theta}_{r}\left(\tilde{\theta}_{r}\right)$ can be extended, as well, to frank words with more than two columns (words on a t-letter alphabet, $t \geq 2$). For this, we generalize a criterion, by Lascoux and Schützenberger in [14], to test whether the concatenation of a frank word with a column word is a frank word. Denote, respectively, by $L(J)$ and $R(J)$ the left and right columns of a frank word J.

Theorem 2.4. [14] The concatenation $J J^{\prime}$ of two frank words J, J^{\prime} is frank if and only if $R(H) L\left(H^{\prime}\right)$ is frank for any pair of frank words H, H^{\prime} such that $H \equiv J$ and $H^{\prime} \equiv J^{\prime}$.

Notice that when J, J^{\prime} are column-words, $J J^{\prime}$ is frank if and only if $J J^{\prime}$ is a tableau or a contretableau. Therefore, we deduce the following criterion for the concatenation of a column with a frank word.

Corollary 2.1. Let $J=J_{k} \cdots J_{1}$ be a frank word and J_{k+1} a column. Then, $J_{k+1} J$ is frank if and only if $J_{k+1} J_{k}$ and $\overline{J_{k}} J_{k-1} \cdots J_{1}$ are frank words, where $\bar{J}_{k+1} \bar{J}_{k}=\Theta_{k}\left(J_{k+1} J_{k}\right)$.

The criterion given by this corollary can be generalized to operations $\tilde{\Theta}$. Given two columns B, B^{\prime}, we write $B \leq B^{\prime}$ [respectively, $B \triangleright B^{\prime}$] if there is an increasing injection $B \rightarrow B^{\prime}$ [respectively, decreasing injection $\left.B \leftarrow B^{\prime}\right]$. We put $|J|$ for the cardinal of J as a set.

Corollary 2.2. Let $J=J_{k} \cdots J_{1}$ be a frank word and J_{k+1} a column. Then, $J_{k+1} J$ is frank if and only if $J_{k+1} J_{k}$ and $\widetilde{J}_{k} J_{k-1} \cdots J_{1}$ are frank words, where $\widetilde{J}_{k+1} \widetilde{J}_{k}=\tilde{\Theta}_{k}\left(J_{k+1} J_{k}\right)$ for some operation $\tilde{\Theta}_{k}$.

Proof. The necessary condition is a consequence of the previous corollary. Reciprocally, assume the existence of an operation $\widetilde{\Theta}_{k}$ in the required conditions, and let $\bar{J}_{k+1} \bar{J}_{k}=\Theta_{k}\left(J_{k+1} J_{k}\right)$. Clearly, we have $\bar{J}_{k} \leq \widetilde{J}_{k}$, and also $\bar{J}_{k+1} \triangleright \widetilde{J}_{k+1}$, since $\left|\bar{J}_{k}\right|=\left|\widetilde{J}_{k}\right|$. By the hypotheses, the product $\widetilde{J}_{k} L(H)$ is frank, for any frank word $H \equiv J_{k-1} \cdots J_{1}$. This means that either $\widetilde{J}_{k} \leq L(H)$, or $\widetilde{J}_{k} \triangleright L(H)$. By transitivity, we find that either $\bar{J}_{k} \leq L(H)$, or $\bar{J}_{k} \triangleright L(H)$, i.e., $\bar{J}_{k} L(H)$ is frank. Thus, by theorem 2.4, the word $\bar{J}_{k} J_{k-1} \cdots J_{1}$ is frank, and therefore, by the previous corollary, $J_{k+1} J$ is frank.

Theorem 2.5. Let T be the tableau defined by $\Delta_{\alpha} U K(m)$, with word w and J the indexing set word. Then $P(w)=K(m)$ and J is a frank word of shape $m^{\#}$.

Proof. Let $J=J_{t} \ldots J_{1}$. We will prove, by induction on $t \geq 1$, that $J_{t} \cdots J_{1}$ is a frank word. When $t=1$ the result is trivial, and the case $t=2$ is a consequence of theorem 2.2 (see [2]). So, let $t>2$ and let T be the tableau defined by $\Delta_{\alpha} U K\left(m_{1}, \ldots, m_{t}\right)$. By the inductive step, the word $J_{t-1} \cdots J_{1}$ is frank, since the sequence $\Delta_{\alpha} U K\left(m_{1}, \ldots, m_{t-1}\right)$ defines the tableau T^{\prime} with indexing set word $J_{t-1} \ldots J_{1}$ and weight $\left(m_{1}, \ldots, m_{t-1}\right)$.

By Smith normal form theorem, there is a partition $\bar{\alpha}$ and an unimodular matrix U^{\prime} such that by elementary row operations, $\Delta_{\bar{\alpha}} U D_{\left[m_{1}\right]} \cdots D_{\left[m_{t-2}\right]}$ can be reduced to $\Delta_{\bar{\alpha}} U^{\prime}$. The sequence $\Delta_{\bar{\alpha}} U^{\prime} K\left(m_{t-1}, m_{t}\right)$ defines the tableau \bar{T} with indexing sets J_{t-1}, J_{t}, and weight $\left(m_{t-1}, m_{t}\right)$. By the case $t=2$, the word $J_{t} J_{t-1}$ is frank. Moreover, by theorem 2.2, we find that if \bar{T}^{\prime} is the tableau defined by the sequence $\Delta_{\bar{\alpha}} U, K\left(m_{t}, m_{t-1}\right)$, the indexing sets $\bar{J}_{t-1}, \bar{J}_{t}$ of \bar{T}^{\prime} satisfy $\bar{J}_{t} \bar{J}_{t-1}=\tilde{\Theta}_{t-1}\left(J_{t} J_{t-1}\right)$ for some operation $\tilde{\Theta}_{t-1}$.

Finally, notice that $\Delta_{\alpha} U K\left(m_{1}, \ldots, m_{t-2}, m_{t}\right)$ defines the tableau \widetilde{T} with indexing set word $\bar{J}_{t-1} J_{t-2} \ldots J_{1}$, and weight $\left(m_{1}, \ldots, m_{t-2}, m_{t}\right)$. By the inductive step, $\bar{J}_{t-1} J_{t-2} \cdots J_{1}$ is a frank word. Thus, by corollary 2.2 , the word $J_{t} \cdots J_{1}$ is frank, and therefore, $w \equiv K(m)$.

3. An action of the symmetric group on Young tableaux

Let U be an n by n unimodular matrix and $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=\beta\left(m_{1}, m_{2}, m_{3}\right)$. We consider the following hexagon

From the discussion in the introduction, we may look at (3.1) as an hexagon whose vertices are tableaux of skew-shape such that the words are congruent with a key-tableau $K\left(\beta_{i_{1}}, \beta_{i_{2}}, \beta_{i_{3}}\right)$, and the indexing frank words have shape $\left(\beta_{i_{1}}, \beta_{i_{2}}, \beta_{i_{3}}\right)^{\#}$ with $\left(\beta_{i_{1}}, \beta_{i_{2}}, \beta_{i_{3}}\right)$ running over the orbit $S_{3} \beta(m)$. Therefore, we have two hexagons, one defined by the words of the skew-tableaux and the other one defined by the indexing frank words. These hexagons are copies of each other since operations based on pairing of parentheses can be reduced to variations of the jeu de taquin on two-column frank words and vice versa. Taking into account theorems 2.2 and 2.5, the next statement follows from the hexagon above. Given $\sigma \in S_{t}$, put $\sigma^{\#}=r e v \sigma$, where rev denotes the longest permutation of S_{t}.

Theorem 3.1. Let $\sigma \in<s_{1}, s_{2}>, \theta \in<\theta_{1}, \theta_{2}>$ and $\Theta \in<\Theta_{1}, \Theta_{2}>$ with the same reduced word. Let $T(\sigma \beta(m))$ be the tableau defined by $\Delta_{\alpha} U K(\sigma \beta(m))$, with word σw and indexing frank word σJ of shape $\sigma^{\#} \beta(m)$. Then $\left\{T(\sigma \beta(m)): \sigma \in<s_{1}, s_{2}>\right\}$ are the vertices of an hexagon such that
(a) there exist $\tilde{\theta}_{1}$ and $\tilde{\theta}_{2}$ satisfying the Moore-Coxeter relations of the symmetric group S_{3}, where $\tilde{\theta} \in$ $<\tilde{\theta}_{1}, \tilde{\theta}_{2}>$, with the same reduced word as θ, verifies $\sigma w=\tilde{\theta} w \equiv \theta K(\beta)=K(\sigma \beta(m))$.
(b) there exist $\tilde{\Theta}_{1}$ and $\tilde{\Theta}_{2}$ satisfying the Moore-Coxeter relations of the symmetric group S_{3}, where $\tilde{\Theta} \in$ $<\tilde{\Theta}_{1}, \tilde{\Theta}_{2}>$, with the same reduced word as Θ, verifies $\sigma J=\tilde{\Theta} J$.

Our aim is therefore to describe explicitly the operations $\tilde{\theta}_{i}$ and $\tilde{\Theta}_{i}$ in the hexagons, defined in (a) and (b) of this theorem,

and

In fact the hexagon (3.1) and, hence, hexagon (3.3), obey the following conditions. (The translation of these conditions to hexagon (3.2) will be done later.)

Lemma 3.2. [2] Consider the hexagons (3.1) and (3.3). Then
(a) If $L_{3} L_{2}$ and $F_{3} F_{2}$ are, respectively, the indexing frank words of $\Delta_{\alpha} U K\left(\beta_{1}, \beta_{3}\right)$ and $\Delta_{\alpha} U K\left(\beta_{2}, \beta_{3}\right)$, it holds $F_{2} \leq L_{2}$.
(b) If $L_{3} H_{2}$ and $J_{3} G_{2}$ are, respectively, the indexing frank words of $\Delta_{\alpha} U K\left(\beta_{3}, \beta_{1}\right)$ and $\Delta_{\alpha} U K\left(\beta_{2}, \beta_{1}\right)$, it holds $G_{2} \leq H_{2}$.
(c) The operations $\tilde{\Theta}_{1}$ and $\tilde{\Theta}_{2}$ defining the hexagon (3.3) are such that $\tilde{\Theta}_{2}\left[\tilde{\Theta}_{1} J\right]=F_{3} F_{2} G_{1}$ with $F_{2} \leq L_{2}$, and $\tilde{\Theta}_{1}\left[\tilde{\Theta}_{2} J\right]=L_{3} H_{2} H_{1}$ with $G_{2} \leq H_{2}$.

Remark 3.3. The conditions (c), in the previous lemma, imposed on the operations of the hexagon (3.3) do not come from the braid relations of the operations $\tilde{\Theta}_{i}$. As can be seen in the example below, there are operations $\tilde{\Theta}_{1}$ and $\tilde{\Theta}_{2}$ which close the hexagon and do not satisfy the conditions in (c). For instance,

We start to analyse the hexagon (3.3) under the conditions in (c), of the previous lemma. The Knuth class of a key-tableau over a three-letter alphabet as well as any frank word with three columns can be characterized in terms of the shuffling operation. This characterization gives a combinatorial explanation of our hexagons (3.1), (3.2) and (3.3). Indeed by Greene's theorem [10] the set of all shuffles of the columns of a key-tableau are contained in its the Knuth class. However under certain conditions we have equality.

Theorem 3.4. [3] Let K be a key-tableau with first column A. Then, the Knuth class of K is equal to the set of all shuffles of its columns if and only if each of its column is either an interval of A or is obtained from an interval of A by removing a single letter.

This criterion can be easily applied considering the planar representation of the weight of the key-tableau. For instance $K(2,0,1,2,4,2,3)$ is the shuffle of its columns, since each column in the planar representation
of the weight $(2,0,1,2,4,2,3)$,

has at most, one gap of size 1. Each column is either an interval of $A=\{1,3,4,5,6,7\}$ or is obtained from an interval of A removing one letter.

Corollary 3.1. If $K(m)$ is a key-tableau over a three-letter alphabet, then the Knuth class of $K(m)$ equals the set of all shuffles of its columns. Equivalently, if J is a three-column frank word of shape m, then J is a shuffle of rows whose lengths, by weakly decreasing order, is $\beta^{\prime}(m)$, the conjugate shape of $K\left(m^{\#}\right)$. That is J has one of the following forms

$\begin{array}{llll} & & & \\ \text { (III) } & A_{1}^{2} & & A_{3}^{2} \\ & A_{1}^{3} & A_{2}^{3} & A_{3}^{3}\end{array}$,
(IV) $\begin{array}{llll} & & & A_{3}^{1} \\ & & A_{2}^{2} & A_{3}^{2} \\ & A_{1}^{3} & A_{2}^{3} & A_{3}^{3}\end{array}$,
(V) $\begin{array}{lll}A_{1}^{1} & & \\ A_{1}^{2} & & A_{3}^{2} \\ A_{1}^{3} & A_{2}^{3} & A_{3}^{3}\end{array}$,
(VI)

A_{2}^{1}				
	A_{2}^{2}	A_{3}^{2}		
A_{1}^{3}	A_{2}^{3}	A_{3}^{3}		

where $A_{1}^{3} \leq A_{2}^{3} \leq A_{3}^{3}$, with $\left|A_{1}^{3}\right|=\left|A_{2}^{3}\right|=\left|A_{3}^{3}\right| ; A_{i}^{r} \cap A_{i}^{s}=\emptyset$, for $r \neq s, i=1,2,3$, and $A_{1}^{2} \leq A_{2}^{2}, A_{1}^{2} \leq A_{3}^{2}$, $A_{2}^{2} \leq A_{3}^{2}$, with $\left|A_{1}^{2}\right|=\left|A_{2}^{2}\right|=\left|A_{3}^{2}\right|$.

Theorem 3.5. Let $J=J_{3} J_{2} J_{1}$ be a contretableau. The following assertions are equivalent.
(a) There exist $\tilde{\Theta}_{1}$ and $\tilde{\Theta}_{2}$ defining the hexagon (3.3) such that $\tilde{\Theta}_{2}\left[\tilde{\Theta}_{1} J\right]=F_{3} F_{2} G_{1}$ with $F_{2} \leq L_{2}$, and $\tilde{\Theta}_{1}\left[\tilde{\Theta}_{2} J\right]=L_{3} H_{2} H_{1}$ with $G_{2} \leq H_{2}$.
(b) The contretableau J has a decomposition, as below, giving rise to the hexagon (3.4)

where the sets A_{i}^{j} are pairwise disjoint in each column $J_{i}, A_{i+1}^{j} \leq A_{i}^{j}$, with $\left|A_{i+1}^{j}\right|=\left|A_{i}^{j}\right|$,

$$
A_{3}^{2} \leq A_{1}^{2}<A_{2}^{4} \leq A_{1}^{4}
$$

$\left|A_{3}^{2}\right|=\left|A_{1}^{2}\right|=\left|A_{2}^{4}\right|=\left|A_{1}^{4}\right|$, and $J_{1} \cap A_{2}^{5} \subseteq A_{1}^{5},\left(J_{1} \backslash A_{1}^{5}\right) \cap A_{2}^{4} \subseteq A_{1}^{4},\left[J_{1} \backslash\left(A_{1}^{5} \cup A_{1}^{4}\right)\right] \cap A_{2}^{3} \subseteq A_{1}^{3},\left[J_{2} \cup\left(A_{1}^{2} \cup\right.\right.$ $\left.\left.A_{1}^{1}\right)\right] \cap A_{3}^{2} \subseteq A_{1}^{2}$, and $\left[J_{2} \cup\left(A_{1}^{2} \cup A_{1}^{1}\right)\right] \cap A_{3}^{5} \subseteq A_{2}^{5}$, where $<$ means \leq without common elements.

Proof. $(b) \Rightarrow(a)$ The vertices of the hexagon (3.4), by previous corollary, are frank words, and clearly satisfy (c) of lemma 3.2.
$(a) \Rightarrow(b)$ The frank words $J_{3} J_{2} J_{1}$ and $J_{3} G_{2} G_{1}$ are, respectively, in the conditions (IV) and (II) of corollary 3.1 and satisfy $\tilde{\Theta}_{1} J_{3} J_{2} J_{1}=J_{3} G_{2} G_{1}$. Then

$$
\begin{align*}
& G_{1} \subseteq J_{1},\left|G_{1}\right|=\left|J_{2}\right|, \quad J_{2} \leq G_{1}, \quad J_{1} \cap J_{2} \subseteq G_{1} \text { and } \\
& G_{2}=J_{2} \cup\left(J_{1} \backslash G_{1}\right), \quad J_{3} \leq G_{2} \tag{3.5}
\end{align*}
$$

Since the frank word $\tilde{\Theta}_{2}\left(J_{3} J_{2} J_{1}\right)=L_{3} L_{2} J_{1}$ satisfy conditions $(I I I)$ of corollary 3.1 we have $L_{2} \subseteq J_{2},\left|L_{2}\right|=$ $\left|J_{3}\right|, J_{3} \leq L_{2} \leq J_{1} J_{2} \cap J_{3} \subseteq L_{2}$ and $L_{3}=J_{3} \cup\left(J_{2} \backslash L_{2}\right)$. Again the frank word $F_{3} F_{2} G_{1}=\tilde{\Theta}_{2}\left(J_{3} G_{2} G_{1}\right)$ satisfy (\bar{V}) of corollary 3.1. Then

$$
\begin{align*}
& F_{2} \subseteq G_{2},\left|F_{2}\right|=\left|J_{3}\right|, \quad J_{3} \leq F_{2} \leq G_{1}, G_{2} \cap J_{3} \subseteq F_{2} \text { and } \\
& F_{3}=J_{3} \cup\left(G_{2} \backslash F_{2}\right) . \tag{3.6}
\end{align*}
$$

By (3.5) and (3.6), we have $F_{2} \subseteq G_{2}=J_{2} \cup\left(J_{1} \backslash G_{1}\right)$. Thus, we may write $F_{2}=A_{2}^{5} \cup A_{1}^{2}$, with $A_{2}^{5} \subseteq J_{2}$ and $A_{1}^{2} \subseteq J_{1} \backslash G_{1}$. Moreover, since $J_{3} \leq F_{2}$, we may also write $J_{3}=A_{3}^{5} \cup A_{3}^{2}$, where $A_{3}^{5} \leq A_{2}^{5}$ e $A_{3}^{2} \leq A_{1}^{2}$ satisfy $\left|\overline{A_{3}^{5}}\right|=\left|A_{2}^{5}\right|,\left|A_{3}^{2}\right|=\left|A_{1}^{2}\right|, G_{2} \cap A_{3}^{5} \subseteq A_{2}^{5}$ and $G_{2} \cap A_{3}^{2} \subseteq A_{1}^{2}$. We define $A_{1}^{1}=J_{1} \backslash\left(G_{1} \cup A_{1}^{2}\right)$, therefore $J_{1} \backslash G_{1}=A_{1}^{1} \cup A_{1}^{2}$.

The frank word $F_{3} X H_{1}=\tilde{\Theta}_{1} F_{3} F_{2} G_{1}$ satisfy (I) of corollary 3.1. Then

$$
\begin{align*}
& H_{1} \subseteq G_{1},\left|H_{1}\right|=\left|F_{2}\right|, F_{2} \leq H_{1}, F_{2} \cap G_{1} \subseteq H_{1} \text { and } \\
& F_{3} \triangleright X=F_{2} \cup\left(G_{1} \backslash H_{1}\right) \triangleright H_{1} . \tag{3.7}
\end{align*}
$$

Since $F_{2}=A_{2}^{5} \cup A_{1}^{2} \leq H_{1}$, we can define $A_{1}^{5}=\min \left\{Z \subseteq H_{1}:|Z|=\left|A_{2}^{5}\right|\right.$ and $\left.A_{2}^{5} \leq Z\right\}$, where the minimum is taken with respect to \leq, and $A_{1}^{4}=H_{1} \backslash A_{1}^{5}$. As $H_{1} \subseteq G_{1}$, put $A_{1}^{3}=G_{1} \backslash H_{1}$. We have $H_{1}=A_{1}^{5} \cup A_{1}^{4}$ and $X=A_{2}^{5} \cup A_{1}^{2} \cup A_{1}^{3}$. From $F_{2} \leq H_{1}$ and the definition of A_{1}^{5}, we get $A_{3}^{5} \leq A_{2}^{5} \leq A_{1}^{5}$ and $A_{3}^{2} \leq A_{1}^{2}<A_{1}^{4}$, where $A_{1}^{2}<A_{1}^{4}$ means that $A_{1}^{2} \leq A_{1}^{4}$ and $A_{1}^{2} \cap A_{1}^{4}=\emptyset$. Note that from (3.5) and (3.7), we obtain $J_{1} \cap A_{2}^{5} \subseteq A_{1}^{5}$. By lemma 3.2

$$
\begin{equation*}
F_{2} \leq L_{2} \tag{3.8}
\end{equation*}
$$

Now we consider the bottom edges of our hexagon (3.3). Since the frank word $L_{3} H_{2} H_{1}=\tilde{\Theta}_{1}\left(L_{3} L_{2} J_{1}\right)$ satisfy (II) of corollary 3.1 we have

$$
\begin{align*}
& H_{1} \subseteq J_{1},\left|H_{1}\right|=\left|L_{2}\right|, L_{2} \leq H_{1}, L_{2} \cap J_{1} \subseteq H_{1} \text { and } \\
& L_{3} \leq H_{2}=L_{2} \cup\left(J_{1} \backslash H_{1}\right) \triangleright H_{1} . \tag{3.9}
\end{align*}
$$

By lemma 3.2, (c), we have

$$
\begin{equation*}
G_{2} \leq H_{2} \tag{3.10}
\end{equation*}
$$

Finally, since $F_{3} X H_{1}=\tilde{\Theta}_{2}\left(L_{3} H_{2} H_{1}\right)$ we have $X \subseteq H_{2},|X|=\left|L_{3}\right|, L_{3} \leq X, H_{2} \cap L \subseteq X$ and $F_{3}=$ $L_{3} \cup\left(H_{2} \backslash X\right)$. By (3.9) and $A_{2}^{5} \cup A_{1}^{2} \cup A_{1}^{3}=X_{2} \subseteq H_{2}=L_{2} \cup A_{1}^{1} \cup A_{1}^{2} \cup A_{1}^{3}$, we conclude that $A_{2}^{5} \subseteq L_{2} \cup A_{1}^{1}$. But A_{2}^{5} and A_{1}^{1} are disjoint sets, it follows $A_{2}^{5} \subseteq L_{2}$. Define $A_{2}^{4}=L_{2} \backslash A_{2}^{5}$ and $A_{2}^{3}=J_{2} \backslash L_{2}$. As $\left|L_{2}\right|=\left|H_{1}\right|$, we also have $\left|A_{1}^{4}\right|=\left|A_{2}^{4}\right|,\left|A_{1}^{3}\right|=\left|A_{2}^{3}\right|,\left(J_{1} \backslash A_{1}^{5}\right) \cap A_{2}^{4} \subseteq A_{1}^{4}$ and $\left(J_{1} \backslash\left(A_{1}^{5} \cup A_{1}^{4}\right)\right) \cap A_{2}^{3} \subseteq A_{1}^{3}$. Moreover from the inequality $L_{2} \leq H_{1}$, we get $A_{2}^{4} \leq A_{1}^{4}$. By (3.8) and (3.5), we get $A_{1}^{2}<A_{2}^{4}$ and by (3.10), we have $A_{2}^{3} \leq A_{1}^{3}$.
$\begin{array}{cccccccc} & A_{1}^{5} & A_{1}^{5} & A_{1}^{5} & & A_{3}^{5} & A_{3}^{5} & A_{3}^{5} \\ A_{1}^{4} & A_{1}^{4} & A_{1}^{4} & A_{2}^{4} & & \\ A_{1}^{3} & A_{1}^{3} & & \text { and a left key } K_{-}= & A_{2}^{3} & A_{2}^{3} & \\ A_{1}^{2} & & & A_{3}^{2} & A_{3}^{2} & A_{3}^{2} \\ A_{1}^{1} & & & A_{1}^{1} & & \end{array}$,
with $K_{+} \geq K_{-}$.

Example 3.6. For instance, given the contretableau $J=\begin{array}{ccc}3 & 5 & 5 \\ 2 & 4 \\ & \\ & \\ 3\end{array}$, we may consider the following decompositions of J which lead to different hexagons.

The second one gives the frank words in the Knuth class of J.
We may now describe the hexagon (3.2). Without loss of generality, we may consider the hexagon (3.4) in the simplified form in the sense that the sets A_{i}^{j} are singular,

with $c^{5} \leq b^{5} \leq a^{5}, b^{3} \leq a^{3}$, and $c^{2} \leq a^{2}<b^{4} \leq a^{4}$. The contretableau J is therefore splitted into row words $X_{1}=c^{2} a^{2} b^{4} a^{4}, X_{2}=c^{5} b^{5} a^{5}, X_{3}=b^{3} a^{3}$, and $X_{4}=a^{1}$. We consider the biwords

$$
\Sigma^{\prime}=\left(\begin{array}{ccc}
J_{3} & J_{2} & J_{1} \tag{3.14}\\
3^{2} & 2^{3} & 1^{5}
\end{array}\right) \longleftrightarrow \Pi=\left(\begin{array}{cccccc}
c^{2} a^{2} b^{4} a^{4} & c^{5} b^{5} a^{5} & b^{3} a^{3} & a^{1} \\
3 & 1 & 2 & 1 & 3 & 2
\end{array} 1\right.
$$

where Σ is obtained by sorting the billeters of Π by weakly increasing rearrangement for the anti-lexicographic order with priority on the first row. Since $\left(J_{3} J_{2} J_{1}\right) \uparrow$ is a shuffle of X_{1}, X_{2}, X_{3} and X_{4}, then w is a shuffle
of $3121,321,21$ and 1 such that the biword Σ is a shuffle of $\binom{X_{1}}{3121},\binom{X_{2}}{321},\binom{X_{3}}{21}$ and $\binom{X_{4}}{1}$. Therefore the hexagon (3.2) is a "shuffle" of four hexagons,

Indeed, by corollary 3.1, every Yamanouchi word w on a three-letter alphabet is a shuffle of $k \geq 0$ words $3121, l_{1}$ words $321, l_{2}$ words 21 and $l_{3}-k$ words 1 , that, by abuse of notation, we shall write $w=\operatorname{sh}\left((3121)^{k},(321)^{l_{1}},(21)^{l_{2}}, 1^{l_{3}-k}\right)$.

Theorem 3.7. The vertices of the hexagon (3.2) are the words of the tableaux of skew-shape defined by the hexagon (3.1) only if there exist a shuffle of $k \geq 0$ words $3121, l_{1}$ words $321, l_{2}$ words 21 and $l_{3}-k$ words $1, w=\operatorname{sh}\left((3121)^{k},(321)^{l_{1}},(21)^{l_{2}}, 1^{l_{3}-k}\right)$, such that
(a) $\tilde{\theta}_{i} w=\operatorname{sh}\left(\left(\theta_{i} 3121\right)^{k},\left(\theta_{i} 321\right)^{l_{1}},\left(\theta_{i} 21\right)^{l_{2}},\left(\theta_{i} 1\right)^{l_{3}-k}\right), i=1,2$;
(b) $\tilde{\theta}_{i} \tilde{\theta}_{j} w=\operatorname{sh}\left(\left(\theta_{i} \theta_{j} 3121\right)^{k},\left(\theta_{i} \theta_{j} 321\right)^{l_{1}},\left(\theta_{i} \theta_{j} 21\right)^{l_{2}},\left(\theta_{i} \theta_{j} 1\right)^{l_{3}-k}\right), 1 \leq i \neq j \leq 2$;
(c) $\tilde{\theta}_{1} \tilde{\theta}_{2} \tilde{\theta}_{1} w=\operatorname{sh}\left(\left(\theta_{1} \theta_{2} \theta_{1} 3121\right)^{k},\left(\theta_{1} \theta_{2} \theta_{1} 321\right)^{l_{1}},\left(\theta_{1} \theta_{2} \theta_{1} 21\right)^{l_{2}},\left(\theta_{1} \theta_{2} \theta_{1} 1\right)^{l_{3}-k}\right)$.

That is, the hexagon (3.2) is a "shuffle" of the hexagons (3.15), (3.16), (3.17) and (3.18) with the appropriate multiplicities.

Example 3.8. The hexagon (3.11) gives rise to the hexagon, below, where the operations are based on nonstandard pairing of parentheses

(the bared letters indicate the subwords 3121 and 1 in the shuffle).
Remark 3.9. The following example is the translation of the previous remark to hexagon (3.2). The hexagon

is not a shuffle of the two hexagons (3.16) and (3.18).
We will show that this family of actions of S_{3}, induced by the different shuffle decompositions of a Yamanouchi word w over a three letter alphabet, includes the action defined by the operations $\theta_{i}, i=1,2$. This is achieved in the following algorithm, where we exhibit a special shuffle decomposition for w. As a consequence, using (3.14), the hexagon (3.4) contains, in particular, the action defined by the jeu de taquin. We denote by $w_{\mid A}$ the subword of w obtained by suppressing the letters not in A. If $X \subseteq[l]$ with l the length of w, then $w \mid X$ is the subword of w defined by the letters of w in positions X.

Algorithm 3.10. Let $w \equiv K\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$. Our algorithm is presented as a three step definition.
Step 1. Consider the subword $w_{\mid\{2,1\}}$ and bracket every factor 21 of $w_{\mid\{2,1\}}$. The letters which are not bracketed constitute a subword of $w_{\mid\{2,1\}}$. Then bracket every factor 21 of this subword. Again, the letters which are not bracketed constitute a subword. Continue this procedure until it stops, that is, until we get a word consisting of l_{1} no bracketed letters $1^{\prime} s$ in w. This bracketing process enables us to decompose w as

$$
\begin{equation*}
w \mid\left(I_{1}, \ldots, I_{l_{3}+l_{2}}, J_{1}, \ldots, J_{l_{3}}, K_{1}, \ldots, K_{l_{1}}\right) \tag{3.20}
\end{equation*}
$$

where $w\left|I_{l}=21, l \in\left[l_{3}+l_{2}\right], w\right| J_{l}=3, l \in\left[l_{3}\right]$, and $w \mid K_{l}=1, l \in\left[l_{1}\right]$.
Step 2. Let w^{\prime} be the subword of w obtained by removing all letters 1 belonging to the factors $w \mid I_{l}$, for all $l \in\left[l_{3}+l_{2}\right]$. As in the previous step, we bracket all the successive factors 32 and 31 of w^{\prime}. We get a refinement of the decomposition (3.20), by making the unions of k sets J_{l} with k sets K_{l}, for some integer $0 \leq q \leq \min \left\{l_{3}, l_{1}\right\}$, and making the unions of the remaining $l_{3}-q$ sets J_{l} with $l_{3}-q$ sets I_{l} :

$$
w \mid\left(F_{1}, \ldots, F_{q}, G_{1}, \ldots, G_{l_{3}-q}, I_{1}, \ldots, I_{l_{2}+q}, K_{1}, \ldots, K_{l_{1}-q}\right)
$$

where $w\left|F_{l}=31, l \in[q], w\right| G_{l}=321, l \in\left[l_{3}-q\right], w \mid I_{l}=21, l \in\left[l_{2}+q\right]$, and $w \mid K_{l}=1, l \in\left[l_{1}-q\right]$ (reordering the sets I_{i} 's, J_{j} 's and K_{l} 's in (3.20) if necessary).

Step 3. Finally, let $w^{\prime \prime}$ be the subword of w obtained by removing the subwords $w \mid G_{l}=321$ and $w \mid K_{l}=1$, for all $l \geq 1$. As before, we bracket all the successive factors 3121 of $w^{\prime \prime}$. This operation consists of the union of the q sets F_{l} with q sets I_{l}. The decomposition of w obtained in this way, is denoted by $w \mid\left(I_{1}^{*}, \ldots, I_{l_{3}+l_{2}+l_{1}-q}^{*}\right)$, where $w\left|I_{l}^{*}=3121, l \in[q], w\right| I_{l}^{*}=321, l \in\left[q+1, l_{3}\right], w \mid I_{l}^{*}=21, l \in\left[l_{3}+1, l_{3}+l_{2}\right]$, and $w \mid I_{l}^{*}=1, l \in\left[l_{3}+l_{2}+1, l_{3}+l_{2}+l_{1}-q\right]$.

In next example, we illustrate the application of the previous algorithm to a Yamanouchi word.
Example 3.11. Let $w=33121121 \equiv K(4,2,2)$. Following the first step of algorithm 3.10 , we bracket all the successive factors 21 of $w_{\mid\{1,2\}}$, that is, $331(21) 1(21)$, obtaining in this way the decomposition

$$
w=w \mid(\{4,5\},\{7,8\},\{1\},\{2\},\{3\},\{6\})
$$

where $w|\{4,5\}=w|\{7,8\}=21, w|\{1\}=w|\{2\}=3$ and $w|\{3\}=w|\{6\}=1$. Next, let $w^{\prime}=3312-12-$ (where - indicates the place of the suppressed letters) be the subword of w obtained by removing the letters 1 belonging to $w \mid\{4,5\}$ and $w \mid\{7,8\}$, and bracket all the successive factors 31 and 32 of w^{\prime}. Thus, we have $w^{\prime}=3(31) 2-12-$, with the letters 3 and 1 belonging to $\{2\}$ and $\{3\}$, respectively; and then, we have $w_{1}^{\prime}=(3--2)-12-$, with the letters 3 and 2 of this factor belonging to $\{1\}$ and $\{4,5\}$, respectively. Then, we get the decomposition

$$
w=w \mid(\{1,4,5\},\{7,8\},\{2,3\},\{6\})
$$

with $w|\{1,4,5\}=321, w|\{7,8\}=21, w \mid\{2,3\}=31$ and $w \mid\{6\}=1$. Finally, let $w^{\prime \prime}=-31---21$ be the subword of w obtained by removing the subwords $w \mid(\{1,4,5\}=321$ and $w \mid\{6\}=1$. This word have only
one factor 3121 and thus we get the decomposition

$$
w=w \mid\left(\{2,3,7,8\}^{*},\{1,4,5\}^{*},\{6\}^{*}\right)=\underline{3} \overline{31} \underline{2} 11 \overline{21},
$$

where the underlined letters define 3121, the upperlined letters define 321 and the remaining letter define the shuffle component 1 . It is easy to check that the parenthesis matching operations induced by this decomposition are the standard ones:

Finally to each hexagon (3.4) corresponds an hexagon (3.1).
Theorem 3.12. [2] Given an hexagon (3.4), there exists an n by n unimodular matrix U such that, for some partition $\alpha, \Delta_{\alpha} U K(\sigma \beta(m))$, with σ running in S_{3}, is an hexagon whose indexing frank words are those of (3.4).

References

[1] O. Azenhas and E. Marques de Sá, Matrix realizations of Littlewood-Richardson sequences, Linear Algebra and Multilinear Algebra, 401, 221-275 (1990).
[2] O. Azenhas and R. Mamede, Actions of the symmetric group on sets of skew-tableaux with prescribed matrix realization, Linear Algebra and its Applications, 401, 221-275 (2005).
[3] O. Azenhas, R. Mamede, Matrix realizations of pairs of tableaux, keys and shuffles, Séminaire Lotharingien de Combinatoire 53, B53H (electronic) (2006).
[4] W. Fulton, Young Tableaux: With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts, Cambridge University Press, Cambridge, United Kingdom (1997).
[5] W. Fulton, Eigenvalues of sums of Hermitiam matrices (after Klyachko), Séminaire Bourbaki, 845, 1987-98 (1998).
[6] W. Fulton, Eigenvalues, invariant factors, highest weigths, and Schubert calculus, Bulletin of the American Mathematical Society, 37, 209-249, (2000).
[7] W. Fulton, Eigenvalues of majorized Hermitian matrices and Littlewood-Richardson coefficients Special Issue: Workshop on Geometric and Combinatorial Methods in the Hermitian Sum Spectral Problem (Coimbra, 1999), Linear Algebra and its Applications, 319, no. 1-3, 23-36 (2000).
[8] W. Fulton, Eigenvalues, singular values, and Littlewood-Richardson coefficients American Journal of Mathematics 127, no. 1, 101-127 (2005).
[9] J. A. Green, Symmetric Functions and p-Modules, Lecture notes, University of Manchester, Manchester (1961).
[10] C. Greene, An extension of Schensted's theorem, Advances in Mathematics 14, 254-265 (1974).
[11] T. Klein, The multiplication of Schur functions and extensions of p-Modules, Journal of London Mathematical Society, 43, 280-282 (1968).
[12] A. Lascoux, M. -P. Schützenberger, Le monoïde plaxique, Noncommutative Structures in Algebra and Geometric Combinatorics, (Naples, 1978), Quad. "Ricerca Sci.", vol. 109, CNR, Rome (1981).
[13] A. Lascoux, M. -P. Schützenberger, Tableaux and non-commutative Schubert polynomials, Funct. Anal. Appl., 23 63-64 (1989).
[14] A. Lascoux, M. -P. Schützenberger, Keys and standard bases, Invariant theory and tableaux, (Minneapolis, MN, 1988) IMA, Math. Appl., 19, 125-144, Springer, New York-Berlin, (1990).
[15] A. Lascoux and B. Leclerc and J-Y Thibon, The plactic monoid in M. Lothaire (ed.), Algebraic Combinatorics on Words, Vol. 90 of Enciclopedia of Mathematics and its Applications, 164-196, Cambridge University Press, Cambridge, United Kingdom (2002).
[16] V. Reiner and M. Shimozono Key polynomials and a flagged Littlewood-Richardson rule, Journal of Combinatorial Theory Ser. A 70, no. 1, 107-143 (1995).
[17] R. C. Thompson, Smith invariants of a product of integral matrices, Linear algebra and its role in systems theory (Brunswick, Maine, 1984), Contemp. Math., 47, Amer. Math. Soc., Providence, RI, 401-435. (1985).

CMUC, Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, Portugal E-mail address: oazenhas@mat.uc.pt

CMUC, Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, Portugal
E-mail address: mamede@mat.uc.pt

[^0]: 2000 Mathematics Subject Classification. 05E05, 05E10, 15A45.
 Key words and phrases. Action of the symmetric group on Young tableaux, frank words, invariant factors, jeu de taquin, key polynomials and matrices over a local principal ideal domain.

 The first author was supported by CMUC/FCT and SFRH/BSAB/515/2005, grant by the Portuguese Foundation of Science and Technology, FCT, at the Combinatorics Group, Fakultät für Mathematik, Universität Wien, Austria, and the second by CMUC/FCT.

