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Abstract. We give a combinatorial description of the invariant factors associated with certain sequences of
product of matrices, over a local principal ideal domain, under the action of the symmetric group by place
permutation. Lascoux and Schützenberger have defined a permutation on a Young tableau to associate to
each Knuth class a right and left key which they have used to give a combinatorial description of a key
polynomial. The action of the symmetric group on the sequence of invariant factors generalizes this action
of the symmetric group, by Lascoux and Schützenberger, to Young tableaux of the same shape and weight.
As a dual translation, we obtain an action of the symmetric group on words congruent with key-tableaux
based on nonstandard pairing of parentheses.

Résumé. Nous donnons une description combinatoire des facteurs invariants associés à certaines suites
de produits de matrices, sur un domaine local des idéaux principaux, par l’action du groupe symétrique
au permutation de place. Lascoux et Schützenberger ont consideré une permutation sur un tableau de
Young pour associer à chaque classe de Knuth une clef gauche et droite qu’ils ont utilisé pour donner une
description combinatoire d’un polynôme de clef. L’action du groupe symétrique sur la suite des facteurs
invariants generalise cette action du groupe symétrique, dû à Lascoux et Schützenberger, aux tableaux de
Young de même forme et poids. Comme résultat dual nous obtennons une action du groupe symétrique sur
les mots congrues aux tableaux de clef basée au couplage non-standard des parenthèses.

1. Introduction

The purpose of this paper is twofold - to give a combinatorial description of the hexagons defined by the
invariant factors associated with a certain type of sequences of product of matrices, over a local principal
ideal domain, under the action of the symmetric group by place permutation; and to show its relationship
with the combinatorics developed by Lascoux and Schützenberger to give a combinatorial description of key
polynomials. Key polynomials were combinatorially investigated by Lascoux and Schützenberger, in the case
of the symmetric group, in [13, 14].

Given an n by n non-singular matrix A, with entries in a local principal ideal domain with prime p,
by Gaußian elimination one can reduce A to a diagonal matrix ∆α with diagonal entries pα1 , . . . , pαn , for
unique nonnegative integers α1 ≥ . . . ≥ αn, called the Smith normal form of A. The sequence pα1 , . . . , pαn

defines the invariant factors of A, and α = (α1, . . . , αn) the invariant partition of A. It is known that α, β, γ
are invariant partitions of nonsingular matrices A, B, and C such that AB = C if and only if there exists a
Littlewood-Richardson tableau T of type (α, β, γ), that is, a tableau of shape γ/α which rectifies to the key-
tableau of weight β (Yamanouchi tableau of weight β) [5, 6]. The relationship between invariant factors and
the product of Schur functions was noticed earlier by several authors, with different approaches, as P. Hall,
J. A. Green, T. Klein, R. C. Thompson et al [9, 11, 17, 1]. (For an overview and other interconnectedness,
see the survey by W. Fulton [6] as well as [5, 7, 8].)
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Let m = (m1, · · · ,mt) be a weak composition. Let the symmetric group St act on weak compositions
of length ≤ t via the left action sim = (m1, · · · ,mi+1,mi, · · · ,mt) with si, 1 ≤ i ≤ t − 1, the simple
transpositions of St. Let β(m) be the unique partition in the orbit Stm and β′(m) its conjugate. K(m)
denotes the key-tableau of weight m, that is, the tableau of weight m whose column shape is β′(m), and
D[mk] the n by n diagonal matrix having the ith diagonal entry equals p whenever i ∈ [mk] and 1 otherwise.
The invariant partition of D[mk] is (1mk). Indeed there is an obvious bijection between compositions and
key-tableaux [16]. Thus, we identify K(m) with the sequence of diagonal matrices (D[m1], · · · , D[mt]) in the
sense that the sequence of partitions (1m1) ⊆ (1m1) + (1m2) ⊆ · · · ⊆ (1m1) + · · · + (1mt) = β′(m) defines
the key K(m) and, simultaniously, are the invariant partitions of the sequence of product of matrices D[m1],
D[m1]D[m2], · · · , D[m1]D[m2] · · ·D[mt]. (French notation is adopted.) For instance,

K(10325) =

5
4 5
3 4 5 is identified with (D[1], D∅, D[3], D[2], D[5]).
1 3 3 5 5

Let T (m) be a skew-tableau of weight m. Let Jk denote the column-word of length mk defined by the set
of column-indices of the letter k in T (m), and put J := Jt · · · J2J1, called the indexing-set word of T (m).
The sequence of column lengths of Jt, · · · , J2, J1 is m# the reverse of m. Let w be the word of T (m) defined
by concatenation of the column-words of T left to right. Write (∅ ← w) = (P (w),Q(w)) to mean that the
row insertion of w produces the pair of tableaux P = P (w) and Q(w) of the same shape, with Q(w) a
standard tableau, called the Q-symbol. We have (∅ ← J) = (P (J),Q(J)) such that Q(J) = (std(evacP ))t

and Q(w) = (stdP (J))t, where evac denotes evacuation, t transposition and std standardization. J is a
frank word of shape m# if and only if P = K(m). (For convenience we shall allow null parts in the shape
of frank words.) Equivalently Q(J) = std(K(m#))t.

Let U be a n by n unimodular matrix, that is, a matrix whose determinant is not divided by p. Put
∆αUK(m) for the sequence ∆α, ∆αUD[m1], ∆αUD[m1]D[m2], · · · ,∆αUD[m1]D[m2] · · ·D[mt]. The sequence
of invariant partitions α0 = α ⊆ α1 ⊆ . . . ⊆ γ = αt, associated with this sequence of matrices, satisfy for
k = 0, 1, . . . , t− 1, |αk+1| − |αk| = mk+1 and αk

i ≤ αk+1
i ≤ αk

i + 1, for any i. Thus ∆αUK(m) is identified
with a tableau T (m) of conjugate shape γ/α and weight m, and it is shown in [3] that P (w) = K(m) and J is
a frank word of shape m#. When we consider the action of the symmetric St on weak compositions of length
≤ t via the left action, we are at the same time defining an action of the symmetric group on the sequence
of matrices ∆αUK(m), where U is a fixed unimodular matrix, and, therefore, on tableaux of skew-shape.
We obtain two families of hexagons, which are dual translation of each other: one on frank words running
over tableaux with the same shape and weight, rather than on the frank words within a Knuth class; and,
the other one on key-tableaux based on nonstandard pairing of parentheses. However in each hexagon there
is only one tableau and we may associate to it right and left keys. The construction which leads to the first
hexagon is based on a particular row shuffle decomposition of a three-column frank word and on a variant of
the jeu de taquin on a two-column tableau or contretableau. This means that the second hexagon is based on
a column shuffle decomposition of a word congruent with a key-tableau over a three-letter alphabet and on
a nonstandard pairing of parentheses. These hexagons, contain in particular, the ones defined, respectively,
by the jeu de taquin operation, and by the operation based on the standard matching of parentheses.

2. Variants of the jeu de taquin on two-column frank words, pairing of parentheses and
invariant factors

In this section, we describe the invariant factors, equivalently, the skew-tableaux on a two-letter alphabet,
associated with the sequences ∆αUK(m) and ∆αUK(s1m) with m = (m1,m2). For this, we have to define
variants of the jeu de taquin on two-column frank words and to show its relationship with pairings of
parentheses on words congruent with key-tableaux over a two-letter alphabet.

We denote by Θ the jeu de taquin operation on a two-column tableau or contre-tableau (a two-column
skew-tableau such that the pair of columns is aligned at the top) J2 J1, and by Θ̃ a variant of Θ which
runs as follows. If J2J1 is a contretableau (tableau), slide vertically the entries of the column J2 (J1) along
the column J1 (J2) such that the row weak increasing order is preserved, and a common label to the two
columns never has a vacant west (east) neighbor. Then exchange the vacant positions with the east (west)
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neighbors. In particular, when the first (second) column J2 (J1) is slided down (up) maximally such that
the row weakly increasing order is preserved, we get the jeu de taquin. For instance,

(2.1) Θ :

2 5
1 4
¥ 3
¥ 2

←→
¥ 5
¥ 4
2 3
1 2

←→
5 ¥
4 ¥
2 3
1 2

,

(2.2) Θ̃ :

2 5
1 4
¥ 3
¥ 2

←→
¥ 5
2 4
¥ 3
1 2

←→
5 ¥
2 4
3 ¥
1 2

←→
5 ¥
3 ¥
2 4
1 2

.

Clearly, Θ̃(J2J1) and Θ(J2J1) are not congruent unless Θ̃ = Θ, but Θ̃(J2J1) is a frank word with the
same shape and weight as Θ(J2J1).

Let w = w1w2 . . . wk be a word on the two-letter alphabet {r, r + 1}. A pairing of w is a set of indexed
pairs (called r-pairs) (wi, wj) such that 1 ≤ i < j ≤ k, wi = r+1, and wj = r, and if (wl, ws) is another pair,
then i, l, j, s are pairwise distinct. View each r (resp. r +1) as a left (resp. right) parenthesis. The r-pairs of
w are precisely the matched parentheses. Furthermore the subword of unpaired r′s and (r+1)′s is a subword
of w the form rk(r + 1)l. In general, not every r-pairing gives the maximal number of r-pairs of w,and if θ̃r

is the operation which replaces the word rk(r + 1)l of unpaired r′s and (r + 1)′s in w (in the corresponding
positions) by rl(r + 1)k, unless certain conditions are imposed on the r-pairing, the maximal number of
r-pairs of θ̃rw and w may be different. However, when either k = 0 or l = 0, although w and θ̃rw may
have different r-pairings, they have always the same maximal number of r-pairs. We shall restrict ourselves
to words w in these conditions, that is, w is a word on a two-letter alphabet congruent with a two-letter
key-tableau. In this case, the operation θ̃r can be reduced to a variant of jeu de taquin on two-column frank
words. In particular, the operation based on the standard r-pairing, denoted by θr, can be reduced to the
jeu de taquin.

Suppose that w is congruent with the key-tableau of weight (0r−1,mr,mr+1). Without loss of generality,
assume mr+1 ≤ mr. Let Jr+1Jr be a frank word of shape (mr+1,mr, 0r−1), such that by sorting the billeters

of the biword Σ′ =
(

Jr+1Jr

(r + 1)mr+1rmr

)
, by weakly increasing rearrangement of the billeters for the anti-

lexicographic order with priority on the first row, we get Σ =
(

Jr+1Jr ↑
w

)
, where Jr+1Jr ↑ indicates Jr+1Jr

by weakly increasing order. Consider an r-pairing in w defined by an increasing injection i : Jr+1 −→ Jr, that
is, x ≤ i(x), such that Jr ∩Jr+1 ⊆ i(Jr+1). (We identify a column word with its underlying set.) To perform
θ̃rw based on this r-pairing means to apply an operation Θ̃ on Jr+1Jr (denoted by Θ̃r) which exchanges
the vacant entries of the first column with the correspondent east neighbors consisting of Jr \ i(Jr+1) in the
second column Jr. Conversely, an operation Θ̃r on Jr+1Jr means an operation θ̃r on w, where the r-pairing
on w is defined by any increasing injection i : Jr+1 −→ Jr such that Θ̃Jr+1Jr = [Jr+1 ∪ (Jr \ B)]B, where
Jr ∩ Jr+1 ⊆ i(Jr+1) = B. When Θ̃r = Θr we get the standard pairing of parentheses on w and thus θr.
Thus the operations Θ̃r, Θr and θ̃r, θr are respectively translated into each other, according the following
commutative diagram,

(2.3)

Σ =
(

Jr+1Jr ↑
w

)
Σ′ =

(
Jr+1Jr

(r + 1)mr+1rmr

)

Σ̃ =
(

Θ̃(Jr+1Jr) ↑
θ̃rw

)
Σ̃′ =

(
Θ̃(Jr+1Jr)

(r + 1)mrrmr+1

)

......................................................................................................... ................ .........................................................................................................................

......................................................................................................... ................ .........................................................................................................................

................................................................................
........
........
........
........
........
........
........
........
........
........
........
........................
................

................................................................................
........
........
........
........
........
........
........
........
........
........
........
........................
................

.

If (∅ ← w) = (P, Q) then (∅ ← θ̃rw) = (θrP,Q′), where Q and Q′ are distinct unless θ̃r = θr. As
Θ̃r runs out of the congruence class, θ̃r does not preserve the Q-symbol but we have θrw ≡ θ̃rw. For
instance, in (2.1), any increasing injection {1, 2} → {2, 3} defines a standard pairing of parentheses, giving



4 Olga Azenhas and Ricardo Mamede

rise to θ1 : (2(21)1)1 → (2(21)1)2 ; and in (2.2), any increasing injection {1, 2} → {2, 4} defines a pairing of
parentheses, giving rise to θ̃1 : (2(21)11) → (2(21)21) .

We are now in conditions to describe the invariant factors, equivalently, the skew-tableaux on a two-letter
alphabet associated with the sequences ∆αUK(m) and ∆αUK(s1m).

Lemma 2.1. [2] (a) Let U be an n by n unimodular matrix. Then, there exists σ ∈ Sn such that
U = TPσQL, where T is an n by n upper triangular matrix, with 1′s along the main diagonal, Q is an n by
n upper triangular matrix, with 1′s along the main diagonal, and multiples of p above it, and L is an n by
n lower triangular matrix, with units along the main diagonal.

(b) By elementary operations on the left and on the right, ∆αUK(m) may be considered equal to
∆αPσQK(m), with σ ∈ Sn.

(c) The Smith normal form of ∆αPσQD[m1], with σ ∈ Sn, is the diagonal matrix ∆α1 where α ⊆ α1 is
a vertical strip of length m1.

Theorem 2.2. [2] Let m = (m1,m2). Let T and T ′ be respectively the tableaux defined by the sequences
∆αUK(m) and ∆αUK(s1m), with indexing-set words J2J1, J ′2J

′
1, and words w, w′. Then,

(a) J2J1, J ′2J
′
1 are frank words such that Θ̃1J2J1 = J ′2J

′
1.

(b) w ≡ K(m) and w′ = θ̃1ω ≡ K(s1m).
Conversely, if T and T ′ are respectively tableaux of skew-shape with indexing-set frank words J2J1

and J ′2J
′
1 satisfying J ′2J

′
1 = Θ̃1J2J1, then there exist an unimodular matrix U such that ∆αUK(m) and

∆αU ′K(s1m) define the tableaux T and T ′ respectively.

Example 2.3. Let U = P4321T14(p), where P4321 is the permutation matrix associated with 4321 ∈ S4

and T14(p) is the elementary matrix obtained from the identity by placing the prime p in position (1, 4).

With α = (2, 1) the sequences ∆αU(D[3], D[2]) and ∆αU(D[2], D[3]) define, respectively, T =
2
• 1 2
• • 1 1

and T ′ =
2
• 2 2
• • 1 1

. The words w = 21211 of T and w′ = 22211 of T ′ satisfy θ̃1w = w′ ≡ θ1ω, where

θ̃1 is the operation based on the parentheses matching (21(21)1). However, if we choose U ′ = P3241T24(p),

the sequences ∆αU ′ (D[3], D[2]) and ∆αU ′ (D[2], D[3]) define, respectively, T and T ′′ =
2
• 1 2
• • 1 2

. In this

case, the word w′′ of T ′′ satisfy θ1w = w′′. The corresponding operations on the indexing frank words are
displayed as follows

(2.4) Θ :
¥ 4
3 3
1 2

←→
4 ¥
3 3
1 2

Θ̃ :
3 4
1 3
¥ 2

←→
3 4
1 3
2 ¥

←→
3 ¥
2 4
1 3

.

The operations Θr (θr) can be extended to frank words with more than two columns (words on a t-letter
alphabet, t ≥ 2) [12, 15]. Under certain conditions, operations Θ̃r (θ̃r) can be extended, as well, to frank
words with more than two columns (words on a t-letter alphabet, t ≥ 2). For this, we generalize a criterion,
by Lascoux and Schützenberger in [14], to test whether the concatenation of a frank word with a column
word is a frank word. Denote, respectively, by L(J) and R(J) the left and right columns of a frank word J .

Theorem 2.4. [14] The concatenation JJ ′ of two frank words J, J ′ is frank if and only if R(H)L(H ′)
is frank for any pair of frank words H, H ′ such that H ≡ J and H ′ ≡ J ′.

Notice that when J, J ′ are column-words, JJ ′ is frank if and only if JJ ′ is a tableau or a contretableau.
Therefore, we deduce the following criterion for the concatenation of a column with a frank word.

Corollary 2.1. Let J = Jk · · · J1 be a frank word and Jk+1 a column. Then, Jk+1J is frank if and
only if Jk+1Jk and JkJk−1 · · · J1 are frank words, where Jk+1 Jk = Θk(Jk+1Jk).

The criterion given by this corollary can be generalized to operations Θ̃. Given two columns B, B′,
we write B ≤ B′ [respectively, B . B′] if there is an increasing injection B → B′ [respectively, decreasing
injection B ← B′]. We put |J | for the cardinal of J as a set.
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Corollary 2.2. Let J = Jk · · · J1 be a frank word and Jk+1 a column. Then, Jk+1J is frank if and
only if Jk+1Jk and J̃kJk−1 · · · J1 are frank words, where J̃k+1 J̃k = Θ̃k(Jk+1Jk) for some operation Θ̃k.

Proof. The necessary condition is a consequence of the previous corollary. Reciprocally, assume the
existence of an operation Θ̃k in the required conditions, and let Jk+1 Jk = Θk(Jk+1Jk). Clearly, we have
Jk ≤ J̃k, and also Jk+1 . J̃k+1, since |Jk| = |J̃k|. By the hypotheses, the product J̃kL(H) is frank, for any
frank word H ≡ Jk−1 · · · J1. This means that either J̃k ≤ L(H), or J̃k . L(H). By transitivity, we find that
either Jk ≤ L(H), or Jk . L(H), i.e., JkL(H) is frank. Thus, by theorem 2.4, the word JkJk−1 · · · J1 is
frank, and therefore, by the previous corollary, Jk+1J is frank. ¤

Theorem 2.5. Let T be the tableau defined by ∆αU K(m), with word w and J the indexing set word.
Then P (w) = K(m) and J is a frank word of shape m#.

Proof. Let J = Jt . . . J1. We will prove, by induction on t ≥ 1, that Jt · · · J1 is a frank word. When
t = 1 the result is trivial, and the case t = 2 is a consequence of theorem 2.2 (see [2]). So, let t > 2 and let
T be the tableau defined by ∆αUK(m1, . . . , mt). By the inductive step, the word Jt−1 · · · J1 is frank, since
the sequence ∆αUK(m1, . . . ,mt−1) defines the tableau T ′ with indexing set word Jt−1 . . . J1 and weight
(m1, . . . ,mt−1).

By Smith normal form theorem, there is a partition ᾱ and an unimodular matrix U ′ such that by
elementary row operations, ∆ᾱUD[m1] · · ·D[mt−2] can be reduced to ∆ᾱU ′. The sequence ∆ᾱU ′K(mt−1,mt)
defines the tableau T with indexing sets Jt−1, Jt, and weight (mt−1,mt). By the case t = 2, the word JtJt−1 is
frank. Moreover, by theorem 2.2, we find that if T

′
is the tableau defined by the sequence ∆ᾱU,K(mt,mt−1),

the indexing sets J t−1, J t of T
′
satisfy J tJ t−1 = Θ̃t−1(JtJt−1) for some operation Θ̃t−1.

Finally, notice that ∆αUK(m1, . . . , mt−2,mt) defines the tableau T̃ with indexing set word J t−1Jt−2 . . . J1,
and weight (m1, . . . ,mt−2, mt). By the inductive step, J t−1Jt−2 · · · J1 is a frank word. Thus, by corollary
2.2, the word Jt · · · J1 is frank, and therefore, w ≡ K(m). ¤

3. An action of the symmetric group on Young tableaux

Let U be an n by n unimodular matrix and (β1, β2, β3) = β(m1,m2,m3). We consider the following
hexagon

(3.1) ∆αUK(β1, β2, β3)

∆αUK(β2, β1, β3) ∆αUK(β2, β3, β1)

∆αUK(β3, β2, β1)

∆αUK(β1, β3, β2) ∆αUK(β3, β1, β2)

..............
..............
..............
..............
.........s1

.................................................................s2

..............
..............

..............
..............

......... s1

................................................................. s2

........................................................................
s2

........................................................................

s1

.

From the discussion in the introduction, we may look at (3.1) as an hexagon whose vertices are tableaux
of skew-shape such that the words are congruent with a key-tableau K(βi1 , βi2 , βi3), and the indexing frank
words have shape (βi1 , βi2 , βi3)

# with (βi1 , βi2 , βi3) running over the orbit S3β(m). Therefore, we have two
hexagons, one defined by the words of the skew-tableaux and the other one defined by the indexing frank
words. These hexagons are copies of each other since operations based on pairing of parentheses can be
reduced to variations of the jeu de taquin on two-column frank words and vice versa. Taking into account
theorems 2.2 and 2.5, the next statement follows from the hexagon above. Given σ ∈ St, put σ# = rev σ,
where rev denotes the longest permutation of St.

Theorem 3.1. Let σ ∈< s1, s2 >, θ ∈ < θ1, θ2 > and Θ ∈ < Θ1, Θ2 > with the same reduced word.
Let T (σβ(m)) be the tableau defined by ∆αUK(σβ(m)), with word σw and indexing frank word σJ of shape
σ#β(m). Then {T (σβ(m)) : σ ∈< s1, s2 >} are the vertices of an hexagon such that

(a) there exist θ̃1 and θ̃2 satisfying the Moore-Coxeter relations of the symmetric group S3, where θ̃ ∈
< θ̃1, θ̃2 >, with the same reduced word as θ, verifies σw = θ̃w ≡ θK(β) = K(σβ(m)).

(b) there exist Θ̃1 and Θ̃2 satisfying the Moore-Coxeter relations of the symmetric group S3, where Θ̃ ∈
< Θ̃1, Θ̃2 >, with the same reduced word as Θ, verifies σJ = Θ̃J .
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Our aim is therefore to describe explicitly the operations θ̃i and Θ̃i in the hexagons, defined in (a) and
(b) of this theorem,

(3.2) w

θ̃1w θ̃2θ̃1w

θ̃1θ̃2θ̃1w

θ̃2w θ̃1θ̃2w

........................
........................

.........

.........................................................

........................
........................

.........

.........................................................

.................................................................................

.................................................................................

and

(3.3) J = J3J2J1

Θ̃1J = J3G2G1 Θ̃2Θ̃1J = F3F2G1

Θ̃1Θ̃2Θ̃1J = F3XH1

Θ̃2J = L3L2J1 Θ̃1Θ̃2J = L3H2H1

..............
..............
..............
..............
.........

.................................................................

..............
..............

..............
..............

.........

.................................................................

........................................................................

........................................................................

.

In fact the hexagon (3.1) and, hence, hexagon (3.3), obey the following conditions. (The translation of
these conditions to hexagon (3.2) will be done later.)

Lemma 3.2. [2] Consider the hexagons (3.1) and (3.3). Then
(a) If L3L2 and F3F2 are, respectively, the indexing frank words of ∆αUK(β1, β3) and ∆αUK(β2, β3),

it holds F2 ≤ L2.
(b) If L3H2 and J3G2 are, respectively, the indexing frank words of ∆αUK(β3, β1) and ∆αUK(β2, β1),

it holds G2 ≤ H2.
(c) The operations Θ̃1 and Θ̃2 defining the hexagon (3.3) are such that Θ̃2[Θ̃1J ] = F3F2G1 with F2 ≤ L2,

and Θ̃1[Θ̃2J ] = L3H2H1 with G2 ≤ H2.

Remark 3.3. The conditions (c), in the previous lemma, imposed on the operations of the hexagon
(3.3) do not come from the braid relations of the operations Θ̃i. As can be seen in the example below, there
are operations Θ̃1 and Θ̃2 which close the hexagon and do not satisfy the conditions in (c). For instance,

1 2 4
3

1 3
2 4

2
1 3 4

2
1 3 4

1 2 4
3

1 3
2 4

..............
..............
..............
..............
.........Θ̃1

......................................................
Θ̃2

..............
..............

..............
..............

......... Θ̃1

......................................................

Θ̃1

.................................................................Θ̃2

................................................................. Θ̃2

.

We start to analyse the hexagon (3.3) under the conditions in (c), of the previous lemma. The Knuth
class of a key-tableau over a three-letter alphabet as well as any frank word with three columns can be
characterized in terms of the shuffling operation. This characterization gives a combinatorial explanation of
our hexagons (3.1), (3.2) and (3.3). Indeed by Greene’s theorem [10] the set of all shuffles of the columns of
a key-tableau are contained in its the Knuth class. However under certain conditions we have equality.

Theorem 3.4. [3] Let K be a key-tableau with first column A. Then, the Knuth class of K is equal to
the set of all shuffles of its columns if and only if each of its column is either an interval of A or is obtained
from an interval of A by removing a single letter.

This criterion can be easily applied considering the planar representation of the weight of the key-tableau.
For instance K(2, 0, 1, 2, 4, 2, 3) is the shuffle of its columns, since each column in the planar representation
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of the weight (2, 0, 1, 2, 4, 2, 3),
7 • • •
6 • •
5 • • • •
4 • •
3 •
1 • •

1 2 3 4

has at most, one gap of size 1. Each column is either an interval of A = {1, 3, 4, 5, 6, 7} or is obtained from
an interval of A removing one letter.

Corollary 3.1. If K(m) is a key-tableau over a three-letter alphabet, then the Knuth class of K(m)
equals the set of all shuffles of its columns. Equivalently, if J is a three-column frank word of shape m, then
J is a shuffle of rows whose lengths, by weakly decreasing order, is β′(m), the conjugate shape of K(m#).
That is J has one of the following forms

(I)
A1

1

A2
1 A2

2

A3
1 A3

2 A3
3

, (II)
A1

2

A2
1 A2

2

A3
1 A3

2 A3
3

, (III)
A1

3

A2
1 A2

3

A3
1 A3

2 A3
3

,

(IV)
A1

3

A2
2 A2

3

A3
1 A3

2 A3
3

, (V )
A1

1

A2
1 A2

3

A3
1 A3

2 A3
3

, (VI)
A1

2

A2
2 A2

3

A3
1 A3

2 A3
3

,

where A3
1 ≤ A3

2 ≤ A3
3, with |A3

1| = |A3
2| = |A3

3|; Ar
i ∩ As

i = ∅, for r 6= s, i = 1, 2, 3, and A2
1 ≤ A2

2, A2
1 ≤ A2

3,
A2

2 ≤ A2
3, with |A2

1| = |A2
2| = |A2

3|.
Theorem 3.5. Let J = J3J2J1 be a contretableau. The following assertions are equivalent.
(a) There exist Θ̃1 and Θ̃2 defining the hexagon (3.3) such that Θ̃2[Θ̃1J ] = F3F2G1 with F2 ≤ L2, and

Θ̃1[Θ̃2J ] = L3H2H1 with G2 ≤ H2.
(b) The contretableau J has a decomposition, as below, giving rise to the hexagon

(3.4)

A5
3 A5

2 A5
1

A4
2 A4

1

J= A3
2 A3

1

A2
3 A2

1

A1
1

A5
3 A5

2 A5
1

A4
2 A4

1

A3
2 A3

1

A2
3 A2

1

A1
1

A5
3 A5

2 A5
1

A4
2 A4

1

A3
2 A3

1

A2
3 A2

1

A1
1

A5
3 A5

2 A5
1

A4
2 A4

1

A3
2 A3

1

A2
3 A2

1

A1
1

A5
3 A5

2 A5
1

A4
2 A4

1

A3
2 A3

1

A2
3 A2

1

A1
1

A5
3 A5

2 A5
1

A4
2 A4

1

A3
2 A3

1

A2
3 A2

1

A1
1

...............
...............

...............
...............

...............
...............

..............Θ̃1

...........................................................................................................
Θ̃2

...............
...............

...............
...............

...............
...............

.............. Θ̃1

...........................................................................................................

Θ̃1

........................................................................................................Θ̃2

........................................................................................................ Θ̃2

,

where the sets Aj
i are pairwise disjoint in each column Ji, Aj

i+1 ≤ Aj
i , with |Aj

i+1| = |Aj
i |,

A2
3 ≤ A2

1 < A4
2 ≤ A4

1,

|A2
3| = |A2

1| = |A4
2| = |A4

1|, and J1 ∩ A5
2 ⊆ A5

1, (J1 \ A5
1) ∩ A4

2 ⊆ A4
1, [J1 \ (A5

1 ∪ A4
1)] ∩ A3

2 ⊆ A3
1, [J2 ∪ (A2

1 ∪
A1

1)] ∩A2
3 ⊆ A2

1, and [J2 ∪ (A2
1 ∪A1

1)] ∩A5
3 ⊆ A5

2, where < means ≤ without common elements.

Proof. (b) ⇒ (a) The vertices of the hexagon (3.4), by previous corollary, are frank words, and clearly
satisfy (c) of lemma 3.2.
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(a) ⇒ (b) The frank words J3J2J1 and J3G2G1 are, respectively, in the conditions (IV ) and (II) of
corollary 3.1 and satisfy Θ̃1J3J2J1 = J3G2G1. Then

G1 ⊆ J1, |G1| = |J2|, J2 ≤ G1, J1 ∩ J2 ⊆ G1 and

G2 = J2 ∪ (J1 \G1), J3 ≤ G2.(3.5)

Since the frank word Θ̃2(J3J2J1) = L3L2J1 satisfy conditions (III) of corollary 3.1 we have L2 ⊆ J2, |L2| =
|J3|, J3 ≤ L2 ≤ J1 J2 ∩ J3 ⊆ L2 and L3 = J3 ∪ (J2 \ L2). Again the frank word F3F2G1 = Θ̃2(J3G2G1)
satisfy (V ) of corollary 3.1. Then

F2 ⊆ G2, |F2| = |J3|, J3 ≤ F2 ≤ G1, G2 ∩ J3 ⊆ F2 and

F3 = J3 ∪ (G2 \ F2).(3.6)

By (3.5) and (3.6), we have F2 ⊆ G2 = J2 ∪ (J1 \ G1). Thus, we may write F2 = A5
2 ∪ A2

1, with A5
2 ⊆ J2

and A2
1 ⊆ J1 \ G1. Moreover, since J3 ≤ F2, we may also write J3 = A5

3 ∪ A2
3, where A5

3 ≤ A5
2 e A2

3 ≤ A2
1

satisfy |A5
3| = |A5

2|, |A2
3| = |A2

1|, G2 ∩A5
3 ⊆ A5

2 and G2 ∩A2
3 ⊆ A2

1. We define A1
1 = J1 \ (G1 ∪A2

1), therefore
J1 \G1 = A1

1 ∪A2
1.

The frank word F3XH1 = Θ̃1F3F2G1 satisfy (I) of corollary 3.1. Then

H1 ⊆ G1, |H1| = |F2|, F2 ≤ H1, F2 ∩G1 ⊆ H1 and

F3 . X = F2 ∪ (G1 \H1) . H1.(3.7)

Since F2 = A5
2 ∪ A2

1 ≤ H1, we can define A5
1 = min{Z ⊆ H1 : |Z| = |A5

2| and A5
2 ≤ Z}, where the minimum

is taken with respect to ≤, and A4
1 = H1 \A5

1. As H1 ⊆ G1, put A3
1 = G1 \H1. We have H1 = A5

1 ∪A4
1 and

X = A5
2 ∪A2

1 ∪A3
1. From F2 ≤ H1 and the definition of A5

1, we get A5
3 ≤ A5

2 ≤ A5
1 and A2

3 ≤ A2
1 < A4

1, where
A2

1 < A4
1 means that A2

1 ≤ A4
1 and A2

1 ∩ A4
1 = ∅. Note that from (3.5) and (3.7), we obtain J1 ∩ A5

2 ⊆ A5
1.

By lemma 3.2

(3.8) F2 ≤ L2.

Now we consider the bottom edges of our hexagon (3.3). Since the frank word L3H2H1 = Θ̃1(L3L2J1) satisfy
(II) of corollary 3.1 we have

H1 ⊆ J1, |H1| = |L2|, L2 ≤ H1, L2 ∩ J1 ⊆ H1 and

L3 ≤ H2 = L2 ∪ (J1 \H1) . H1.(3.9)

By lemma 3.2, (c), we have

(3.10) G2 ≤ H2.

Finally, since F3XH1 = Θ̃2(L3H2H1) we have X ⊆ H2, |X| = |L3|, L3 ≤ X, H2 ∩ L ⊆ X and F3 =
L3 ∪ (H2 \X). By (3.9) and A5

2 ∪A2
1 ∪A3

1 = X2 ⊆ H2 = L2 ∪A1
1 ∪A2

1 ∪A3
1, we conclude that A5

2 ⊆ L2 ∪A1
1.

But A5
2 and A1

1 are disjoint sets, it follows A5
2 ⊆ L2. Define A4

2 = L2 \A5
2 and A3

2 = J2 \L2. As |L2| = |H1|,
we also have |A4

1| = |A4
2|, |A3

1| = |A3
2|, (J1 \ A5

1) ∩ A4
2 ⊆ A4

1 and (J1 \ (A5
1 ∪ A4

1)) ∩ A3
2 ⊆ A3

1. Moreover
from the inequality L2 ≤ H1, we get A4

2 ≤ A4
1. By (3.8) and (3.5), we get A2

1 < A4
2 and by (3.10), we have

A3
2 ≤ A3

1. ¤

From this hexagon we get, respectively, a right key K+ =

A5
1 A5

1 A5
1

A4
1 A4

1 A4
1

A3
1 A3

1

A2
1

A1
1

and a left key K− =

A5
3 A5

3 A5
3

A4
2

A3
2 A3

2

A2
3 A2

3 A2
3

A1
1

,

with K+ ≥ K−.
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Example 3.6. For instance, given the contretableau J =

3 5 5
2 4

3
2

, we may consider the following

decompositions of J which lead to different hexagons.

(3.11)

3 3
5 5

2 2
4

3 3
5 5

2 2
4

3 3
5 5
2 2
4 3 3

5 5
2 2
43 3

5 5
2 2

4

3 3
5 5

2 2
4

............
............
............
............
............
............
..........Θ1

........................................................................
Θ2

............
............

............
............

............
............

.......... Θ̃1

........................................................................

Θ1

..................................................................................Θ̃2

.................................................................................. Θ2

,

(3.12)

3 3
5 5

2 2
4

3 3
5 5

2 2
4

3 3
5 5
2 2
4 3 3

5 5
2 2
43 3

5 5
2 2

4

3 3
5 5
2 2

4

............
............
............
............
............
............
..........Θ1

........................................................................
Θ2

............
............

............
............

............
............

.......... Θ1

........................................................................

Θ1

..................................................................................Θ2

.................................................................................. Θ2

.

The second one gives the frank words in the Knuth class of J .

We may now describe the hexagon (3.2). Without loss of generality, we may consider the hexagon (3.4)
in the simplified form in the sense that the sets Aj

i are singular,

(3.13) J =

c5 b5 a5

b4 a4

b3 a3

c2 a2

a1

c5 b5 a5

b4 a4

b3 a3

c2 a2

a1

c5 b5 a5

b4 a4

b3 a3

c2 a2

a1

c5 b5 a5

b4 a4

b3 a3

c2 a2

a1

c5 b5 a5

b4 a4

b3 a3

c2 a2

a1

c5 b5 a5

b4 a4

b3 a3

c2 a2

a1

...............
...............

...............
...............

...............
...............

..............Θ̃1

...........................................................................................................
Θ̃2

...............
...............

...............
...............

...............
...............

.............. Θ̃1

...........................................................................................................

Θ̃1

........................................................................................................Θ̃2

........................................................................................................ Θ̃2

with c5 ≤ b5 ≤ a5, b3 ≤ a3, and c2 ≤ a2 < b4 ≤ a4. The contretableau J is therefore splitted into row words
X1 = c2a2b4a4, X2 = c5b5a5, X3 = b3a3, and X4 = a1. We consider the biwords

(3.14) Σ′ =
(

J3 J2 J1

32 23 15

)
←→ Π =

(
c2a2b4a4 c5b5a5 b3a3 a1

3 1 2 1 3 2 1 2 1 1

)
←→ Σ =

(
(J3J2J1) ↑

w

)
,

where Σ is obtained by sorting the billeters of Π by weakly increasing rearrangement for the anti-lexicographic
order with priority on the first row. Since (J3J2J1) ↑ is a shuffle of X1, X2, X3 and X4, then w is a shuffle
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of 3121, 321, 21 and 1 such that the biword Σ is a shuffle of
(

X1

3121

)
,
(

X2

321

)
,
(

X3

21

)
and

(
X4

1

)
.

Therefore the hexagon (3.2) is a ”shuffle” of four hexagons,

(3.15)

(
c2a2b4a4

3 2 3 1

)(
c2a2b4a4

3 1 2 1

)

(
c2a2b4a4

3 2 2 1

) (
c2a2b4a4

3 2 3 1

)

(
c2a2b4a4

3 1 2 1

) (
c2a2b4a4

3 2 2 1

)

θ1θ1

θ2θ2

θ2

θ1

...........
...........
...........
...........
...........
...........
..........

............................................................................

...........
...........

...........
...........

...........
...........

..........

............................................................................

.................................................................

.................................................................

(3.16)

(
c5a5b5

3 2 1

)(
c5a5b5

3 2 1

)

(
c5a5b5

3 2 1

) (
c5a5b5

3 2 1

)

(
c5a5b5

3 2 1

) (
c5a5b5

3 2 1

)

θ1θ1

θ2θ2

θ2

θ1

...........
...........
...........
...........
...........
...........
..........

............................................................................

...........
...........

...........
...........

...........
...........

..........

............................................................................

.................................................................

.................................................................

(3.17)

(
b3a3

3 2

)(
b3a3

2 1

)

(
b3a3

3 1

) (
b3a3

3 2

)

(
b3a3

2 1

) (
b3a3

3 1

)

θ1θ1

θ2θ2

θ2

θ1

..........
..........
..........
..........
..........
..........
.........

.....................................................................

..........
..........

..........
..........

..........
..........

.........

.....................................................................

.................................................................

.................................................................

(3.18)

(
a1

3

)(
a1

1

)

(
a1

1

) (
a1

2

)

(
a1

2

) (
a1

3

)

θ1θ1

θ2θ2

θ2

θ1

...........
...........
...........
...........
...........
...........
..........

............................................................................

...........
...........

...........
...........

...........
...........

..........

............................................................................

.................................................................

................................................................. .

Indeed, by corollary 3.1, every Yamanouchi word w on a three-letter alphabet is a shuffle of k ≥ 0
words 3121, l1 words 321, l2 words 21 and l3 − k words 1, that, by abuse of notation, we shall write
w = sh((3121)k, (321)l1 , (21)l2 , 1l3−k).

Theorem 3.7. The vertices of the hexagon (3.2) are the words of the tableaux of skew-shape defined by
the hexagon (3.1) only if there exist a shuffle of k ≥ 0 words 3121, l1 words 321, l2 words 21 and l3−k words
1, w = sh((3121)k, (321)l1 , (21)l2 , 1l3−k), such that

(a) θ̃iw = sh((θi3121)k, (θi321)l1 , (θi21)l2 , (θi1)l3−k), i = 1, 2;
(b) θ̃iθ̃jw = sh((θiθj3121)k, (θiθj321)l1 , (θiθj21)l2 , (θiθj1)l3−k), 1 ≤ i 6= j ≤ 2;
(c) θ̃1θ̃2θ̃1w = sh((θ1θ2θ13121)k, (θ1θ2θ1321)l1 , (θ1θ2θ121)l2 , (θ1θ2θ11)l3−k).
That is, the hexagon (3.2) is a ”shuffle” of the hexagons (3.15), (3.16), (3.17) and (3.18) with the

appropriate multiplicities.

Example 3.8. The hexagon (3.11) gives rise to the hexagon, below, where the operations are based on
nonstandard pairing of parentheses

(3.19)

3 1 2 1 1̄ 2 13 2 3 2 3̄ 3 1

3 2 3 2 2̄ 2 1 3 1 3 1 1̄ 2 1

3 2 3 1 3̄ 3 1 3 2 2 1 2̄ 2 1

θ̃1θ1

θ2θ̃2

θ2

θ1

.................
.................

.................
.................

.................
...........

................................................................................................

.................
.................

.................
.................

.................
...........

................................................................................................

......................................................................................

......................................................................................
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(the bared letters indicate the subwords 3121 and 1 in the shuffle).

Remark 3.9. The following example is the translation of the previous remark to hexagon (3.2). The
hexagon

3211

3221 3321

3321

3211 3221

..............
..............
..............
..............
.........θ̃1 ........................................................................

θ̃2

..............
..............

..............
..............

......... θ̃1

........................................................................

θ̃1

.................................................................
θ̃2

.................................................................
θ̃2

is not a shuffle of the two hexagons (3.16) and (3.18).

We will show that this family of actions of S3, induced by the different shuffle decompositions of a
Yamanouchi word w over a three letter alphabet, includes the action defined by the operations θi, i = 1, 2.
This is achieved in the following algorithm, where we exhibit a special shuffle decomposition for w. As a
consequence, using (3.14), the hexagon (3.4) contains, in particular, the action defined by the jeu de taquin.
We denote by w|A the subword of w obtained by suppressing the letters not in A. If X ⊆ [l] with l the length
of w, then w|X is the subword of w defined by the letters of w in positions X.

Algorithm 3.10. Let w ≡ K(β1, β2, β3). Our algorithm is presented as a three step definition.
Step 1. Consider the subword w|{2,1} and bracket every factor 21 of w|{2,1}. The letters which are not

bracketed constitute a subword of w|{2,1}. Then bracket every factor 21 of this subword. Again, the letters
which are not bracketed constitute a subword. Continue this procedure until it stops, that is, until we get a
word consisting of l1 no bracketed letters 1′s in w. This bracketing process enables us to decompose w as

(3.20) w|(I1, . . . , Il3+l2 , J1, . . . , Jl3 ,K1, . . . , Kl1),

where w|Il = 21, l ∈ [l3 + l2], w|Jl = 3, l ∈ [l3], and w|Kl = 1, l ∈ [l1].
Step 2. Let w′ be the subword of w obtained by removing all letters 1 belonging to the factors w|Il, for

all l ∈ [l3 + l2]. As in the previous step, we bracket all the successive factors 32 and 31 of w′. We get a
refinement of the decomposition (3.20), by making the unions of k sets Jl with k sets Kl, for some integer
0 ≤ q ≤ min{l3, l1}, and making the unions of the remaining l3 − q sets Jl with l3 − q sets Il:

w|(F1, . . . , Fq, G1, . . . , Gl3−q, I1, . . . , Il2+q,K1, . . . ,Kl1−q),

where w|Fl = 31, l ∈ [q], w|Gl = 321, l ∈ [l3− q], w|Il = 21, l ∈ [l2 + q], and w|Kl = 1, l ∈ [l1− q] (reordering
the sets Ii’s, Jj ’s and Kl’s in (3.20) if necessary).

Step 3. Finally, let w′′ be the subword of w obtained by removing the subwords w|Gl = 321 and
w|Kl = 1, for all l ≥ 1. As before, we bracket all the successive factors 3121 of w′′. This operation consists
of the union of the q sets Fl with q sets Il. The decomposition of w obtained in this way, is denoted by
w|(I∗1 , . . . , I∗l3+l2+l1−q), where w|I∗l = 3121, l ∈ [q], w|I∗l = 321, l ∈ [q + 1, l3], w|I∗l = 21, l ∈ [l3 + 1, l3 + l2],
and w|I∗l = 1, l ∈ [l3 + l2 + 1, l3 + l2 + l1 − q].

In next example, we illustrate the application of the previous algorithm to a Yamanouchi word.

Example 3.11. Let w = 33121121 ≡ K(4, 2, 2). Following the first step of algorithm 3.10, we bracket
all the successive factors 21 of w|{1,2}, that is, 331(21)1(21), obtaining in this way the decomposition

w = w|({4, 5}, {7, 8}, {1}, {2}, {3}, {6}),
where w|{4, 5} = w|{7, 8} = 21, w|{1} = w|{2} = 3 and w|{3} = w|{6} = 1. Next, let w′ = 3312 − 12−
(where − indicates the place of the suppressed letters) be the subword of w obtained by removing the letters
1 belonging to w|{4, 5} and w|{7, 8}, and bracket all the successive factors 31 and 32 of w′. Thus, we have
w′ = 3(31)2 − 12−, with the letters 3 and 1 belonging to {2} and {3}, respectively; and then, we have
w′1 = (3−−2)− 12−, with the letters 3 and 2 of this factor belonging to {1} and {4, 5}, respectively. Then,
we get the decomposition

w = w|({1, 4, 5}, {7, 8}, {2, 3}, {6}),
with w|{1, 4, 5} = 321, w|{7, 8} = 21, w|{2, 3} = 31 and w|{6} = 1. Finally, let w′′ = −31 − − − 21 be the
subword of w obtained by removing the subwords w|({1, 4, 5} = 321 and w|{6} = 1. This word have only
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one factor 3121 and thus we get the decomposition

w = w|({2, 3, 7, 8}∗, {1, 4, 5}∗, {6}∗) = 3 3 1 2 1 1 2 1,

where the underlined letters define 3121, the upperlined letters define 321 and the remaining letter define
the shuffle component 1. It is easy to check that the parenthesis matching operations induced by this
decomposition are the standard ones:

(3.21)

3 3 2 2 1 3 3 13 3 1 2 1 1 2 1

3 3 2 2 1 2 2 1 3 3 2 2 1 3 3 1

3 3 1 2 1 1 2 1 3 3 2 2 1 2 2 1

θ1θ1

θ2θ2

θ2

θ1

.................
.................

.................
.................

.................
...........

................................................................................................

.................
.................

.................
.................

.................
...........

................................................................................................

......................................................................................

...................................................................................... .

Finally to each hexagon (3.4) corresponds an hexagon (3.1).

Theorem 3.12. [2] Given an hexagon (3.4), there exists an n by n unimodular matrix U such that, for
some partition α, ∆αUK(σβ(m)), with σ running in S3, is an hexagon whose indexing frank words are those
of (3.4).
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