Littlewood-Richardson fillings and their symmetries

Olga Azenhas
Departamento de Matemática
Universidade de Coimbra
3000 Coimbra, Portugal

Abstract

Considering the classical definition of the Littlewood-Richardson rule and its 2-dimensional representation by means of rectangular tableaux, we exhibit 24 sym metries of this rule when considering dualization, conjugation and their composition. Extending the Littlewood-Richardson rule to sequences of nonnegative real numbers, six of these symmetries may be generalized. Our point is to stress the role of different Littlewood-Richardson fillings, opposite (or increasing) [1, 2, 12] and column, $[1,2,7]$ in guiding these symmetries. The main result is a bijection in the set of Littlewood-Richardson rectangular tableaux which transforms LittlewoodRichardson fillings of type $[a, b, c]$ into $[b, a, c]$. This bijection is based on the projection of Littlewood-Richardson tableaux of order r into Littlewood-Richardson tableaux of order $r-1$, for each $r \in \mathbb{N}$.

1 Introduction

The Littlewood-Richardson rule ($L R$ rule for short) has a lot of symmetries. They do not seem clear from the original definition in terms of tableaux [8, 9]. Our goal is to show up the hidden symmetries of the $L R$ fillings in the classical setting.

We consider $L R$ rectangular tableaux and $L R$ rectangular triples. Given partitions a, b and c (nonnegative integral vectors by weakly decreasing order) with lenght $\leq r$, an $L R$ rectangular tableau of type [a,b,c] is an LR tableau of type (a, b, c^{*}) [9], where $c^{*}=\left(m-c_{r-i+1}\right)_{i=1}^{r}$ for some nonnegative integer $m \geq c_{1}$, called dual partition of c. We call $[a, b, c]$ an LR rectangular triple. Therefore, $[a, b, c]$ is an LR rectangular triple iff $\left(a, b, c^{*}\right)$ is an LR triple. Let $N_{a b}^{c}$ be the Littlewood-Richardson number, i.e., the number of LR tableaux of type (a, b, c). The number of LR rectangular tableaux of type $[a, b, c]$, written $N_{a b c}$, is precisely $N_{a b}^{c^{*}}$. Let V_{a}, V_{b}, V_{c} be irreducible finite dimensional $S L_{r^{-}}$ modules with highest weights a, b and c. In [3, 14], $N_{a b c}$ is the triple multiplicity, that is, the dimension of the space of $S L_{r}$-invariants in the triple tensor product $V_{a} \otimes V_{b} \otimes V_{c}$ and $N_{a b c}=N_{a b}^{c^{*}}$, where c^{*} is the highest weight of the module V_{c}^{*} dual to V_{c}. In [3], a new combinatorial object is given to calculate $N_{a b c}$. Using this object many symmetries of $N_{a, b, c}$ become apparent. In [5, 13], several formulations of the classical LittlewoodRichardson rule are given, from which commutativity and other properties also follow.

In [12], increasing LR tableaux (or sequences) are used to point out some symmetries of the LR rule in the classical setting. More precisely, it is shown that a bijection exists between the $L R$ tableaux of type (a, b, c) and increasing $L R$ tableaux of type (b, a, c), and between LR tableaux of type (a, b, c) and increasing $L R$ tableaux of type (a^{*}, b^{*}, c^{*}).

Our approach, as in [12], uses only the classical definition of Littlewood-Richardson rule, that is, the language of tableaux. Using exclusively the language of LittlewoodRichardson fillings, we exhibit bijections between LR fillings of type $[a, b, c]$ and $\left[a^{\prime}, b^{\prime}, c^{\prime}\right]$
where $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ is a permutation of $(a, b, c),\left(a^{*}, b^{*}, c^{*}\right),(\widetilde{a}, \widetilde{b}, \widetilde{c})(\sim$ means conjugation $)$ or $\left(\widetilde{a^{*}}, \widetilde{b^{*}}, \widetilde{c^{*}}\right)$. Combining these transformations we obtain 24 symmetries. The combinatorial algorithms constructed to exhibit bijections between $L R$ fillings of type $[a, b, c]$ and [$\left.a^{\prime}, b^{\prime}, c^{\prime}\right]$, where $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ is a permutation of (a, b, c), may be generalized to LR fillings extended to sequences of nonnegative real numbers.

The bijection exhibited between LR fillings of type $[a, b, c]$ and $[b, a, c]$ is based on the projection of LR rectangular tableaux of order r into LR rectangular tableaux of order $r-1$, for each $r \in \mathbb{N}$. More precisely, there exists a Littlewood-Richardson filling of type $\left[\left(a_{1}, \ldots, a_{r}\right) ;\left(b_{1}, \ldots, b_{r}\right) ;\left(c_{1}, \ldots, c_{r}\right)\right]$ only if, for each $k \in\{2, \ldots, r\}$, there exists a Littlewood-Richardson filling of type $\left[\left(a_{1}^{(k)}, \ldots, a_{k-1}^{(k)}\right) ;\left(b_{1}, \ldots, b_{k-1}\right) ;\left(c_{r-k+1}, \ldots, c_{r}\right)\right]$ where $a_{i+1}^{(k+1)} \leq a_{i}^{(k)} \leq a_{i}^{(k+1)}$, for $i=1, \ldots, k$, is such that

$$
\begin{equation*}
b_{k}+\sum_{s=1}^{j-1}\left(a_{s}^{(k)}-a_{s}^{(k-1)}\right) \geq b_{k+1}+\sum_{s=1}^{j}\left(a_{s}^{(k+1)}-a_{s}^{(k)}\right), j=1, \ldots, k-1 . \tag{*}
\end{equation*}
$$

(We convention $a^{(0)}:=0$ and $a^{(r+1)}:=\left(a_{1}, \ldots, a_{r}\right)$.)

2 LR rectangular tableaux and LR rectangular triples

By a partition a we mean any finite sequence $a=\left(a_{1}, \ldots, a_{r}\right)$ of nonnegative integers by (weakly) decreasing order. The weight of a, written $|a|$, is the sum of of the components. The partition of weight zero is denoted by 0 .

Let $m \geq 0$ and $r>0$ be integers. Let $\mathcal{P}_{r}=\left\{a \in \mathbb{Z}^{r}: 0 \leq a_{r} \leq \ldots \leq a_{1}\right\}$ be the set of all partitions with r components. We write $\left(x^{r}\right)$ to mean the constant partition of \mathcal{P}_{r} with all components equal to x. We define $\mathcal{P}_{r, m}=\left\{a \in \mathcal{P}_{r}: 0 \leq a_{r} \leq \ldots \leq a_{1} \leq m\right\}$. ($\mathcal{P}_{r, 0}=\{0\}$.) Notice that, $\mathcal{P}_{r}=\bigcup_{m \geq 0} \mathcal{P}_{r, m}$.

Given $a \in \mathcal{P}_{r, m}, a^{*}:=\left(m-a_{r-i+1}\right)_{i=1}^{r} \in \mathcal{P}_{r, m}$ is called the dual partition of a in $\mathcal{P}_{r, m}$.
Consider the rectangular Young diagram of $\left(m^{r}\right)$, i.e., a sequence of r rows of boxes with row lengths m. If $a \in \mathcal{P}_{r, m}$ then $a \subseteq\left(m^{r}\right)$. (We identify a partition with its Young diagram.) Graphically, a^{*} is the partition defined by the complement of a in the Young diagram of $\left(m^{r}\right)$. For example, if $r=5, m=6$ and $a=(5,5,4,4,2)$ we have $a^{*}=(4,2,2,1,1)$ (reading from bottom to top) represented by the blank boxes:

Clearly, $\left(a^{*}\right)^{*}=a$.
Given $a, b \in \mathcal{P}_{r}$, we say that a and b are congruent, written $a \equiv b$, if $b=a+\left(M^{r}\right)$, for some integer $M \geq 0$. Clearly, $a \equiv\left(a_{1}-a_{r}, \ldots a_{r-1}-a_{r}, 0\right)+\left(a_{r}^{r}\right)$. Therefore, when we write a^{*} without mentioning an upper bound for the largest component, we mean a partition congruent to $\left(a_{1}-a_{r-i+1}\right)_{i=1}^{r}$. Moreover, if a and b are congruent, a^{*} and b^{*} are congruent. Clearly, $a^{*} \in \mathcal{P}_{r, k}$, for all $k \geq a_{1}$.

Given $a, b, c \in \mathcal{P}_{r}$, we say that (a, b, c) is an $L R$ triple if there is an LR tableau of type (a, b, c) [4]. We identify an LR tableau of type (a, b, c) filled with $x_{i j}$ symbols j in row i,
for $r \geq i \geq j \geq 1$, with the element $(a, b, c, X) \in \mathbb{Z}^{3 r+r^{2}}$, where $X=\left[x_{i j}\right]$ is an, $r \times r$, integral lower triangular matrix, such that the following system of linear inequalities is satisfied [4, 6]:

$$
\begin{align*}
x_{i j} & \geq 0, \quad 1 \leq i, j \leq r . \tag{1}\\
\sum_{i=1}^{r} x_{i j} & =b_{j}, \quad j=1, \ldots, r . \tag{2}\\
\sum_{j=1}^{r} x_{i j} & =c_{i}-a_{i}, \quad i=1, \ldots, r . \tag{3}\\
\sum_{i=1}^{k} x_{i j} & \geq \sum_{i=1}^{k+1} x_{i, j+1}, \quad 1 \leq k, j \leq r-1 . \tag{4}\\
a_{i}+\sum_{j=1}^{k-1} x_{i j} & \geq a_{i+1}+\sum_{j=1}^{k} x_{i+1, j,} \quad k=1, \ldots, r-1 \text { and } i=1, \ldots, r-1 . \tag{5}
\end{align*}
$$

The Littlewood-Richardson number, $N_{a b}^{c}$, is the number of lower triangular matrices $X \in \mathbb{Z}^{r, r}$ whose entries satisfy this system of linear inequalities for fixed partitions a, b and c.

We may easily extend the $L R$ rule to finite sequences of nonnegative real numbers. Given $\alpha=\left(\alpha_{1}, \ldots, \alpha_{r}\right), \beta=\left(\beta_{1}, \ldots, \beta_{r}\right)$ and $\gamma=\left(\gamma_{1}, \ldots, \gamma_{r}\right)$ sequences of nonnegative real numbers by weakly decreasing order, we say (α, β, γ) is a real $L R$ triple if there is a lower triangular matrix $X=\left[x_{i j}\right] \in \mathbb{R}^{r, r}$ such that $(\alpha, \beta, \gamma, X) \in \mathbb{R}^{3 r+r^{2}}$ satisfy the system of linear inequalities above (replacing a by α, b by β and c by γ). We call $(\alpha, \beta, \gamma, X)$ an $L R$ design of order $r[6]$. When α, β, γ and X are integral, we have an integral $L R$ design or, equivalently, an $L R$ tableau of order r.

For $r \geq 1$, let $L R D_{r}^{\mathbf{R}}$ be the set of elements $(\alpha, \beta, \gamma, X) \in \mathbb{R}_{\geq 0}^{3 r+r^{2}}$ such that the following conditions hold: $\alpha_{1} \geq \ldots \geq \alpha_{r} \geq 0, \beta_{1} \geq \ldots \geq \beta_{r} \geq 0, \gamma_{1} \geq \ldots \geq \gamma_{r} \geq 0$ and $(\alpha, \beta, \gamma, X)$ satisfy linear inequalities (1) - (5). Let $L R D_{r}:=L R D_{r}^{\mathbf{R}} \cap \mathbb{Z}^{3 r+r^{2}}$ be the set of integral LR tableaux of order r.
$L R D_{r}^{\mathbf{R}}$ is a pointed rational polyhedral cone in $\mathbb{R}^{3 r+r^{2}}$. Therefore, $L R D_{r}^{\mathbf{R}}$ has an integral Hilbert basis [10] and $L R D_{r}$ is a finitely generated (additive) semigroup. Notice that $(a, b, c, X)+\left(a^{\prime}, b^{\prime}, c^{\prime}, X^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}, X+X^{\prime}\right)$, with componentwise sum.

Let $L R_{r}=\left\{(a, b, c) \in\left(\mathcal{P}_{r}\right)^{3}:(a, b, c, X) \in L R D_{r}\right.$, for some, $r \times r$, integral matrix X $\}$ be the set of LR triples of order r. Clearly, $L R_{r}$ is also a finitely generated (additive) semigroup, called the Littlewood-Richardson semigroup of order r [14].

Let $L R_{r}^{\mathbf{R}}$ be the set of real $L R$ triples of order $r . L R_{r}^{\mathbf{R}}$ is also a pointed rational polyhedral cone, finitely generated by the indecomposable elements of $L R_{r}$.

Let $a, b, c \in \mathcal{P}_{r}$. A rectangular tableau of type $[a, b, c]$ is a tableau of type $\left(a, b, c^{*}\right)$.
Notice that rectangular tableaux are in some sense symmetric relatively to a and c. Reading a rectangular tableau from right to left and from bottom to top we obtain an opposite (or increasing) rectangular tableau of type $[c, b, a]$, replacing each symbol i by $r-i+1$ (see [2]).

Example 1

						1	1
					1		
		1	2	2			
1	2	2	3				

						4	4
					4		
		4	3	3			
4	3	3	2				

are, respectively, a rectangular $L R$ tableau of type $[a, b, c]$ and the corresponding increasing $L R$ rectangular tableau of type $[c, b, a]$.

We define

$$
\begin{gathered}
\overline{L R D}_{r}=\left\{[a, b, c, X]:\left(a, b, c^{*}, X\right) \in L R D_{r}\right\}, \\
\overline{L R}_{r}=\left\{[a, b, c]:\left(a, b, c^{*}\right) \in L R_{r}\right\} .
\end{gathered}
$$

Graphically, $[a, b, c, X] \in \overline{L R D}_{r}$ may be represented as follows:

a_{1}				x_{11}	c_{3}	
a_{2}		x_{21}	x_{22}	c_{2}		
a_{3}	x_{31}	x_{32}	x_{33}			c_{1}

an $L R$ rectangular tableau of type $[a, b, c]$.
Notice that $[a, b, c, X] \in \overline{L R D}_{r}$ if $X=\left[x_{i j}\right]$ satisfy the system of linear inequalities defined by (1), (2), (4), (5) and

$$
\sum_{j=1}^{r} x_{i j}=m-a_{i}-c_{r-i+1}, i=1, \ldots, r
$$

for some nonnegative integer m.
Denoting by $N_{a, b, c}$ the number of matrices X satisfying the conditions (6) - (10) of the system above, it is clear that $N_{a, b, c}=N_{a, b}^{c^{*}}$. Hence, studying $L R_{r}$ and $L R D_{r}$ is the same as studying $\overline{L R}_{r}$ and $\overline{L R D}_{r}$, respectively, with the advantage that this triples and these tableaux are more symmetrical (see [3]). As before, we define $\overline{L R D}_{r}^{\mathbf{R}}$ and $\overline{L R}_{r}^{\mathbf{R}}$ which are also pointed rational polyhedral cones in $\mathbb{R}^{3 r+r^{2}}$ and $\overline{L R}_{r}, \overline{L R D}_{r}$ are finitely generated semigroups.

3 Symmetries

We present combinatorial algorithms to define bijections between the set of $L R$ rectangular tableaux of type $[a, b, c]$ and the set of $L R$ rectangular tableaux of type $\left[a^{\prime}, b^{\prime}, c^{\prime}\right]$ where $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ is a permutation of $(a, b, c),\left(a^{*}, b^{*}, c^{*}\right)$ or $(\widetilde{a}, \widetilde{b}, \widetilde{c})$. The main tools are: (i) an algorithm exhibiting the commutativity of a and b in $L R$ rectangular tableaux of type $[a, b, c]$, the opposite (or increasing) $L R$ filling $[1,12]$ to exhibit the symmetry of a and c in $L R$ rectangular tableaux of type $[a, b, c]$, and the algorithm converting an opposite (or increasing) $L R$ filling into an $L R$ filling (see [2]); and (ii) the column $L R$ filling [7] which is intrinsically related with dualization and conjugation [2, 12]. The algorithms defined in (i) and (ii) can be applied to $L R$ rectangular designs.

We stress that the algoritm mentioned in (i) exhibits a bijection between LR rectangular tableaux of type $[a, b, c]$ and $[b, a, c]$.

3.1 Commutativity

To understand the commutativity of the LR rule it is convenient to formulate conditions (4) as a sequence of partitions $b^{(1)}, \ldots, b^{(r)}=b$ in \mathcal{P}_{r}, where $b^{(k)}$ has lenght $\leq k$, for $k=1, \ldots, r$, satisfying the interlacing inequalities $b_{i+1}^{(k+1)} \leq b_{i}^{(k)} \leq b_{i}^{(k+1)}$, for $k=1, \ldots, r-1$, $i=1, \ldots, k$. Therefore, conditions (5) may also be written

$$
a_{i}+\sum_{j=1}^{k-1}\left(b_{j}^{(i)}-b_{j}^{(i-1)}\right) \geq a_{i+1}+\sum_{j=1}^{k}\left(b_{j}^{(i+1)}-b_{j}^{(i)}\right), k=1, \ldots, r-1, \quad \text { and } i=1, \ldots, r-1 .
$$

We identify a rectangular $L R$ tableau $[a, b, c, X]$ with $\left[a, b, c, b^{(1)}, b^{(2)}, \ldots, b^{(r)}=b\right]$, where $b^{(k)}=\left(\sum_{i=j}^{k} x_{i j}, 0^{r-k}\right)_{j=1}^{k}$, for $k=1, \ldots, r$.

Given $\mathcal{T}=[a, b, c, X] \in \overline{L R D}_{r}$, we define iductively the deleting matrix $Z=\left[z_{i j}\right] \in$ $\mathbb{Z}^{r, r}$ of \mathcal{T} as follows:

For $r=1$, we have $\mathcal{T}=\left(\left(a_{1}\right),\left(x_{11}\right),\left(a_{1}+x_{11}\right) ;\left[x_{11}\right]\right)$ and $Z=\left[a_{1}\right]$.
For $r \geq 2$ let $\mathcal{F}=\left[\left(a_{i}+x_{i 1}\right)_{i=2}^{r} ;\left(b_{2}, \ldots, b_{r}\right) ;\left(c_{2}, \ldots, c_{r}\right) ; X^{\prime}\right] \in \overline{L R D}_{r-1}$, where X^{\prime} is the $(r-1) \times(r-1)$ matrix obtained from X by suppressing the first row and the first column. By induction, let $F=\left[f_{i j}\right] \in \mathbb{Z}^{r-1, r-1}$ be the deleting matrix of \mathcal{F}, and $Y=\left[y_{i j}\right] \in \mathbb{Z}^{r, r}$ such that $y_{i j}=f_{i-1, j-1}$, for $i, j \in\{2, \ldots, r\}$ and $y_{i j}=0$, otherwise. Then, $Z=\left[z_{i j}\right] \in \mathbb{Z}^{r, r}$ with $z_{i j}=0$, for $j>i$, the deleting matrix of \mathcal{T}, is determined in the following way:

Let $x_{i 1}^{(r+1)}:=x_{i 1}, i=1, \ldots, r$.
For $k=r, \ldots, 2$, define
$\theta_{i}^{(k)}:=\min \left\{x_{i 1}^{(k+1)}, y_{k i}\right\}, i=1, \ldots, k$, and $\theta_{k+1}^{(k)}:=0$,
$x_{i, 1}^{(k)}:=x_{i 1}^{(k+1)}-\theta_{i}^{(k)}+\theta_{i+1}^{(k)}, i=1, \ldots, k-1$,
$z_{k, i}:=y_{k i}-\theta_{i}^{(k)}+\theta_{i+1}^{(k)}, i=1, \ldots, k$, and $z_{11}=a_{1}-\sum_{j=2}^{r} \theta_{2}^{(j)}$.
Let $\mathcal{T}^{(r+1)}:=\mathcal{T}, a^{(r+1)}:=a$ and $X^{(r+1)}:=X$. For each $k \in\{1, \ldots, r\}$, let $a_{i}^{(k)}=$ $a_{i}^{(k+1)}-z_{k, i}, i=1, \ldots, k-1$. We have, $a_{i+1}^{(k+1)} \leq a_{i}^{(k)} \leq a_{i}^{(k+1)}$, for $i=1, \ldots, k-1$.

We call $\left(z_{k 1}, \ldots, z_{k k}\right)$ the k-deleting sequence of $\mathcal{T}^{(k+1)}=\left[\left(a_{i}^{(k+1)}\right)_{i=1}^{k},\left(b_{i}\right)_{i=1}^{k},\left(c_{i}\right)_{i=r-k+1}^{r}\right.$, $\left.X^{(k+1)}\right] \in \overline{L R D}_{k}$, for $k=1, \ldots, r$. (Note that $z_{k, k}=a_{k}^{(k+1)}$.)

The deleting matrix of a tableau \mathcal{T} is well defined and is unique.
Theorem 1 Let $n \geq 1$ and $\left[\left(a_{1}^{\prime}, \ldots, a_{r}^{\prime}\right),\left(b_{1}, \ldots, b_{r}\right),\left(c_{2}, \ldots, c_{r+1}\right), X^{\prime}\right] \in \overline{L R D}_{r}$ with $\sum_{i}\left(a_{i}^{\prime}+\right.$ $\left.b_{i}+c_{r+2-i}\right)=r m$, and r-deleting sequence $\left(z_{r 1}, \ldots, z_{r, r-1}, a_{r}^{\prime}\right)$. Let $a=\left(a_{1}, \ldots, a_{r+1}\right)$, $b=\left(b_{1}, \ldots, b_{r+1}\right)$, and $c=\left(c_{1}, \ldots, c_{r+1}\right) \in \mathcal{P}_{r+1}$ such that $a_{i+1} \leq a_{i}^{\prime} \leq a_{i}, i=1, \ldots, r$, and $|a|+|b|+|c|=(r+1) m$. Moreover, suppose the following conditions hold

$$
b_{r}+\sum_{s=1}^{k-1} z_{r s} \geq b_{r+1}+\sum_{s=1}^{k}\left(a_{s}-a_{s}^{\prime}\right), k=1, \ldots, r .
$$

Then, there exists $X \in \mathbb{Z}^{r+1, r+1}$ such that $[a, b, c ; X] \in \overline{L R D}_{r+1}$ with $r+1$-deleting sequence $\left(z_{r+1,1}, \ldots, z_{r+1, r}, a_{r+1}\right)$ where $z_{r+1, i}=a_{i}-a_{i}^{\prime}, i=1, \ldots, r$.

Theorem 1 defines a bijection between LR rectangular tableaux of type $[a, b, c]$ and $[b, a, c]$. More precisely, a bijection $\pi: \overline{L R D}_{r} \longleftrightarrow \overline{L R D}_{r}$ such that $\pi([a, b, c, X])$ is a rectangular tableau of type $[b, a, c]$, with the deleting matrix X. For this theorem says that there exists an LR rectangular tableau $[a, b, c, X]$ only if there exists an LR rectangular tableau of type $[b, a, c]$ with deleting matrix X. Since the number of LR rectangular tableaux of a given type is finite and the deleting matrix of a tableau is unique, we have in fact an injection which transforms an LR rectangular tableau $[a, b, c, X]$ into an LR rectangular tableau of type $[b, a, c]$ with deleting matrix X. So $N_{a b c} \leq N_{b a c}$. Clearly, we have also a injection which transforms an LR rectangular tableau $[b, a, c, Y]$ into an LR rectangular tableau of type $[a, b, c]$ with deleting matrix Y. So $N_{a b c} \geq N_{b a c}$. Hence, $N_{a b c}=N_{b a c}, \psi$ is a bijection and in addition we may conclude that distint $L R$ rectangular tableaux of the same type do not have the same deleting matrix. Thus, there exists an LR rectangular tableau of type $[a, b, c]$ with deleting matrix Y iff there exists an LR rectangular tableau $[b, a, c, Y]$, and, therefore, conditions $(*)$ are satisfyied.

We have another bijection $\phi: \overline{L R D}_{r} \longleftrightarrow \overline{L R D}_{r}$ such that $\phi([a, b, c, X])=[b, a, c, Y]$, where Y is the deleting matrix of $[a, b, c, X]$.

It is clear that, if $[a, b, c, X]$ is transformed by π into $[b, a, c, Y]$ with deleting matrix X, then $[b, a, c, Y]$ is transformed by ϕ into an LR tableau $[a, b, c, X]$. This means, $\pi \phi=\phi \pi=i d$.

Combinatorialy π may be described by two operations: row-insertion and column sliding.

Row-insertion and column sliding: Consider x symbols $k_{1} \leq \ldots \leq k_{x}$ in $\{0,1,2, \ldots\}$. Insert these x symbols k_{1}, \ldots, k_{x} in a row of the tableau by sliding down, to the next row, the left most x symbols $z_{1} \leq \ldots \leq z_{x}$ such that $k_{i}<z_{i}$, for $i=1, \ldots, k$.

The following example is an illustration of π in $\overline{L R D}_{4}$. Let

$$
\left[(6,5,2,0) ;(5,4,1,0) ;(4,3,2,0) ; X=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 \\
1 & 2 & 1 & 0
\end{array}\right]\right] \in \overline{L R D}_{4}
$$

whose $L R$ rectangular tableau is

						1	1
					1		
		1	2	2			
1	2	2	3				

To calculate the image of this LR rectangular tableau under π the algorithm runs as follows:

We consider the following rectangular numbered diagram, where the boxes of lenght $x_{i j}$ can be thought as being $x_{i j}$ unitary boxes labelled with 0 ,

x_{11}		1	1	1	1	1	1
x_{21}	2	2	2	2	2		
x_{32}		x_{31}	3	3			
x_{43}	x_{42}		x_{41}				

Now, the row insertion and column sliding operations are going as follows:

The first row of this numbered diagram defines an LR rectangular tableau of type [$\left.x_{11}, a_{1}, 0\right]$.

Insert $x_{21}=1$ symbol 0 in the first row by sliding down, to the second row, the left most $x_{21}=1$ symbol 1

x_{11}		x_{21}	1	1	1	1	1
2		2	2	2	2	2	
x_{32}		x_{31}	3	3			
x_{43}		x_{42}		x_{41}			

The two first rows of this numbered diagram define an LR rectangular tableau of type $\left[\left(x_{11}+x_{21}, 0\right) ;\left(a_{1}, a_{2}\right) ;\left(c_{3}, 0\right)\right]$.

Insert $x_{32}=2$ symbols 0 in the second row by sliding down, to the third row, the left most $x_{32}=2$ symbols which are strictly larger than 0 (one symbol 1 and one symbol 2); insert $x_{31}=1$ symbol 0 in the first row by sliding down, to the second row, the left most $x_{31}=1$ symbol 1 ; on its turn, this $x_{31}=1$ slided symbol 1 is inserted in the second row by sliding down, to the third row, the left most $x_{31}=1$ symbol which is strictly larger than 1 (one symbol 2),

x_{11}	x_{21}	x_{31}	1	1	1	1	
x_{32}	1	2	2	2			
1	2	2	3	3			
x_{43}	x_{42}		x_{41}				

The first three rows of this numbered diagram define an LR rectangular tableau of type $\left[\left(\sum_{i=1}^{3} x_{i 1}, x_{32}, 0\right) ;\left(a_{1}, a_{2}, a_{3}\right) ;\left(c_{2}, c_{3}, 0\right)\right]$.

Insert $x_{43}=1$ symbol 0 in the third row by sliding down, to the 4 th row, the left most $x_{43}=1$ symbol which is strictly larger than 0 (one symbol 1); insert $x_{42}=2$ symbols 0 in the second row by sliding down, to the third row, the left most $x_{42}=2$ symbols (one symbol 1 and one symbol 2) which are strictly larger than 0 ; on their turn, these slided $x_{42}=2$ symbols are inserted in the third row by sliding down, to the 4 th row, the left most $x_{42}=2$ symbols which are strictly larger respectively than 1 and 2 (one symbol 2 and one symbol 3),

x_{11}		x_{21}	x_{31}	1	1	1	1
x_{32}		x_{42}		2	2		
x_{43}	1	2	2	3			
1	2	3	x_{41}				

Now, insert $x_{41}=1$ symbols 0 in the first row by sliding down, to the second row, one symbol 1; this symbol 1 will be inserted in the second row by sliding down to the third row, one symbol 2 ; and this symbol 2 will be inserted in the third row by sliding down to the 4 th row one symbol 3 ; finally, the symbol 3 is inserted in the 4 th row,

x_{11}		x_{21}	x_{31}	x_{41}	1	1	1
x_{32}		x_{42}			1	2	
x_{43}	1	2	2	2			
1	2	3	3				

The output is $\left[b, a, c, Y=\left[\begin{array}{llll}3 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 1 & 2 & 0\end{array}\right]\right.$. Now applying ϕ to the output we obtain $[a, b, c, X]$, which illustrates that $\phi \pi=i d$.

3.2 Opposite LR tableaux and symmetries

We exhibit a combinatorial algorithm to define an involution $\psi: \overline{L R D}_{r} \longleftrightarrow \overline{L R D}_{r}$ such that $\psi([a, b, c, X])=[c, b, a, Z]$. First ψ sends $[a, b, c, X]$ to an opposite (or increasing) $L R$ rectangular tableau $\left[c, b, a, X^{\prime}\right][1,12]$. The matrix $X^{\prime}=\left[x_{i j}^{\prime}\right]$ is such that $x_{i j}^{\prime}=$ $x_{r-i+1, r-j+1}$, for all i, j. Graphically it is precisely the tableau obtained from $[a, b, c, X]$, when reading from bottom to top and from right to left and replacing the symbol j by $r-j+1$. See, below, the second tableau of our example. Then, using the algorithm defined in [2], we transform the increasing $L R$ rectangular tableau $\left[c, b, a, X^{\prime}\right]$ into an LR rectangular tableau $[c, b, a, Z]$,

Reading the last $L R$ rectangular tableau from left to right and from bottom to top, the output is $\left[c, b, a, Z=\left[\begin{array}{cccc}4 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0\end{array}\right]\right.$. Applying ψ to $[c, b, a, Z]$ we obtain $[a, b, c, X]$.

Now combining ϕ (or π) and ψ we may exhibit six symmetries of the LR fillings and conclude that $N_{a, b, c}$ is invariant under the permutations of (a, b, c). These bijections ϕ (or π) and ψ can be extended to LR rectangular designs.

3.3 Duality and symmetries

A combinatorial algorithm is given to define an involution $\theta: \overline{L R D}_{r} \longleftrightarrow \overline{L R D}_{r}$ such that $\theta([a, b, c, X])=\left[c^{*}, b^{*}, a^{*}, W\right]$. The definition of θ is based on a bijection λ between $L R$ rectangular tableaux of type $[a, b, c]$ and column $L R$ rectangular tableaux of type $[c, b, a]$ (see $[2,12]$). The second rectangular tableau of our example, reading from right to left and from bottom to top, is a column $L R$ rectangular tableau of type $[c, b, a]$. Then, this tableau is sent to a column $L R$ rectangular tableau of type $\left[a^{*}, b^{*}, c^{*}\right]$ (we may consider the partitions with the last component equals zero). The column $L R$ filling of type $\left[a^{*}, b^{*}, c^{*}\right]$ is as follows: let $\widetilde{b}=\left(y_{1}, \ldots, y_{t}\right)(\sim$ means conjugation $)$ and $\widetilde{b^{*}}=\left(z_{1}, \ldots, z_{t}\right)$ (note, $t=b_{1}$ and $y_{i}+z_{t-i+1}=r$), then, for each $i=1, \ldots, t$, place exactly one symbol i in each of the z_{i} rows corresponding to the rows, in the previous column rectangular tableau of type $[c, b, a]$, free of symbols $t-i+1$. See the third rectangular tableau in our example, here $t=5$. Finally, using the bijection λ we obtain an LR rectangular tableau of type $\left[c^{*}, b^{*}, a^{*}\right]$,

						1	1
					1		
		1	2	2			
1	2	2	3				

$\xrightarrow{\lambda}$

Combining ϕ (or π), ψ and θ we may exhibit a bijection $\overline{L R D}_{r} \longleftrightarrow \overline{L R D}_{r}$ such that
$\theta([a, b, c, X])=\left[a^{\prime}, b^{\prime}, c^{\prime}, X^{\prime}\right]$, where $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ is a permutation of $\left(a^{*}, b^{*}, c^{*}\right)$. Therefore, $N_{a, b, c}$ is also invariant under the replacement of (a, b, c) by $\left(a^{*}, b^{*}, c^{*}\right)$. So far we have twelve symmetries of the LR triples.

3.4 Conjugation and symmetries

For $m \geq 0$, we consider $\overline{L R D}_{r, m}=\left\{[a, b, c, X] \in \overline{L R D}_{r}: a, b, c \in \mathcal{P}_{r, m}\right\}$, and $\overline{L R}_{r, m}=$ $\left\{[a, b, c] \in \overline{L R}_{r}: a, b, c \in \mathcal{P}_{r, m}\right\}$. We construct a bijection $\omega: \overline{L R D}_{r, m} \longleftrightarrow \overline{L R D}_{m, r}$ such that $\omega([a, b, c, X])=[\widetilde{c}, \tilde{b}, \widetilde{a}, W]$. The definition of ω is based on the bijection λ defined above. First ω sends $[a, b, c, X]$ to a column LR rectangular tableau of type $[c, b, a]$, via λ, and then, by transposing, to an LR rectangular tableau of type $[\tilde{c}, \widetilde{b}, \widetilde{a}, W]$.

						1	1
					1		
		1	2	2			
1	2	2	3				

						2	1
					3		
		4	2	1			
5	4	3	1				

			1
			2
		3	
	1		
1	2		
3	4		
4			
5			

Combining ω with the previous bijections we obtain 24 symmetries.
Acknowledgments : The author is grateful to A. Kovačec, E. Marques de Sá, A. P. Santana and I. Zaballa, for valuable and stimulating discussions.

References

[1] O. Azenhas, Opposite Littlewood-Richardson sequences and their matrix realizations, Linear Algebra and its Applications, 225 : 91 - 116, 1995.
[2] O. Azenhas, The admissible interval for the invariant factors of a product of matrices, Linear and Multilinear Algebra, 46 : 51 - 99, 1999.
[3] A. D. Berenstein and A. Zelevinsky, Triple multiplicities for $s l(r+1)$ and the spectrum of the exterior algebra of the adjoint representation, Journal of Algebraic Combinatorics, $1: 7-22,1992$.
[4] W. Fulton and J. Harris, Representation Theory, Springer Verlag, New York, 1991.
[5] W. Fulton, Young Tableaux, London Math. Soc. Student Texts 35, Cambridge U. P., 1997.
[6] S. Johnson, The Schubert Calculus and Eigenvalue Inequalities for Sums of Hermitian Matrices, Dissertation, Santa Barbara, 1979 (unpublished).
[7] T. Klein, The multiplication of Schur functions and extensions of p-modules, J. London Math. Soc., 43:280-284, 1968.
[8] D. E. Littlewood and A. R. Richardson, Group Characters and Algebra, Philos. Trans. London Ser. A 233:99-141, 1934.
[9] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford U. P., Oxford, 1974.
[10] A. Schrijver, Theory of Linear Programming and Integer Programming, John Wiley \& Sons, New York, 1986.
[11] R. C. Thompson, Matrix Spectral Inequalities, Lecture Notes, Johns Hopkins University, Baltimore, 1988.
[12] I. Zaballa, Increasing and decreasing Littlewood-Richardson sequences and duality, preprint.
[13] A. Zelevinsky, A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence, Journal of Algebra, 69:82-94, 1981.
[14] A. Zelevinsky, Littlewood-Richardson semigroups, Workshop on Representation Theory and Symmetric Functions, extended abstract (1997) (http://www.msri.org).

