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Littlewood-Richardson (LR) coefficients cλµ ν are non-negative integer
numbers depending on three non-negative integer vectors µ, ν, λ
ordered decreasingly.

Who cares?

How can one evaluate them?
What do they count?

Are there conditions to see whether or not a given LR-coefficient is
non-zero ?
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Littlewood-Richardson coefficients: cλµ ν
Schur functions {sλ}λ form a Z-basis for the ring of symmetric
functions

sµsν =
X

λ

cλµ νsλ.

I For which λ does sµsν contain sλ as a (positive) summand?

I Given µ, ν and λ when does one have cλ
µ ν > 0?

The tensor product of two irreducible polynomial representations Vµ
and Vν of the general linear group GLd(C) decomposes into
irreducible representations of GLd(C)

Vµ ⊗ Vν =
X

l(λ)≤d
cλµ νVλ.

I Given µ and ν, for which λ does V λ appear (with positive multiplicity)
in V µ ⊗ V ν?

I Given µ, ν and λ when does one have cλ
µ ν > 0?
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Littlewood-Richardson coefficients: cλµ ν

Schubert classes σλ form a linear basis for H∗(G (d , n)), the
cohomology ring of the Grassmannian G (d , n) of complex
d-dimensional linear subspaces of Cn,

σµσν =
X

λ⊆d×(n−d)
cλµ νσλ.

There exist n × n non singular matrices A, B and C , over a local
principal ideal domain, with Smith invariants µ = (µ1, . . . , µn),
ν = (ν1, . . . , νn) and λ = (λ1, . . . , λn) respectively, such that AB = C
if and only if cλµ ν > 0.

There exist n × n Hermitian matrices A, B and C , with integer
eigenvalues arranged in weakly decreasing order µ = (µ1, . . . , µn),
ν = (ν1, . . . , νn) and λ = (λ1, . . . , λn) respectively, such that
C = A + B if and only if cλµ,ν > 0.
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1. Schur functions

Partitions and Young diagrams

Fix a positive integer r ≥ 1.

λ = (λ1, . . . , λr ), with λ1 ≥ · · · ≥ λr > 0 positive integers, is a
partition of length l(λ) = r .

Each partition λ is identified with a Young (Ferrer) diagram λ
consisting of |λ| = λ1 + · · ·+ λr boxes arranged in r bottom left
adjusted rows of lengths λ1 ≥ · · · ≥ λr > 0.

Example

λ = (4, 3, 2), |λ| = 9, l(λ) = 3

λ =
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Young Tableaux

n ≥ r , λ = (λ1, . . . , λr ), l(λ) = r .

A semistandard tableau T of shape λ is a filling of the boxes of the
Ferrer diagram λ with elements i in {1, . . . , n} which is

I weakly increasing across rows from left to right
I strictly increasing up columns

T has type α = (α1, . . . , αn) if T has αi entries equal i .

Example

λ = (4, 3, 2), l(λ) = 3, n = 6

T =

5 6
4 4 6
2 3 4 6

semistandard tableau T of shape λ = (4, 3, 2), α = (0, 1, 1, 3, 1, 3).
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Schur functions

Example

n = 7

T =

5 6
4 4 6
2 3 4 6 xα(T ) = x0

1x2x3x3
4x5x3

6x0
7

α(T )=(0,1,1,3,1,3,0)
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Schur functions continued
Let x = (x1, . . . , xn) be a sequence of variables.

Given the partition λ, the Schur function (polynomial) sλ(x)
associated with the partition λ is the homogeneous polynomial of
degree |λ| on the variables x1 . . . , xn

sλ(x) =
X

T

Xα(T )

where T runs over all semistandard tableaux of shape λ on the
alphabet {1, . . . , n}.

Example

λ = (2, 1), |λ| = 3

n = 3

2
1 1

3
1 1

2
1 2

3
1 2

2
1 3

3
1 3

3
2 2

3
2 3 .

sλ(x1, x2, x3) = x2
1x2 + x2

1x3 + x1x2
2 + 2x1x2x3 + x1x2

3 + x2
2x3 + x2x2

3 .

d = 2, sλ(x1, x2) = x2
1x2 + x1x2

2 .
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Kostka number Kλ, α is the number of semistandard tableaux of shape
λ and type α.

The Schur function on the variables x1, . . . , xn

sn(λ, x) =
X

α ∈ Zn
≥0

Kλ, αxα,

with α1 + · · ·+ αn = |λ|.
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Kλβ = Kλα, with β any permutation of α.

Corollary

The Schur function s(λ, x) =
P

α weak composition of |λ|
Kλ, αxα, is a

homogeneous symmetric function in x1, . . . , xn.
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Product of Schur functions

The Schur functions sλ form an additive basis for the ring of the
symmetric functions.

A product of Schur functions sµsν can be expressed as a non-negative
integer linear sum of Schur functions:

sµsν =
X

λ

cλµ νsλ.
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What does cλµν count?
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2. Littlewood-Richardson rule

µ = (3, 1), ν = (2, 2)

2 2
1 1

2 2
1 1

2
2

1 1

2
1 2

1

2 2
1

1

2
1

2
1

2 2
1 1

2
1 2

1

invalid tableaux
1

1
2 211

1 2 2
1 1221
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sµsν = s53 + s521 + s431 + s422 + s4211 + s332 + s3221
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Littlewood-Richardson rule
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Littlewood-Richardson rule
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µ = (3, 1), ν = (2, 1)
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c421
µ ν = 2
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µ = (3, 1), ν = (2, 1)
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µ = (3, 1), ν = (2, 1)
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µ = (3, 1), ν = (2, 1)
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µ = (3, 1), ν = (2, 1)
2
1 1

2
1 1

2

1 1

1 2
1

2
1

1

1
2

1

2
1

1

2
1 1

1 2
1

2
1

1

sµsν = s52 + s511 + s43 + 2s421 + s4111 + s331 + s322 + s3211

c421
µ ν = 2

64 / 92
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Littlewood-Richardson rule
cλµν is the number of tableaux with shape λ/µ and content ν
satisfying

I If one reads the labeled entries in reverse reading order, that is, from
right to left across rows taken in turn from bottom to top,

at any stage, the number of i ’s encountered is at least as large as the
number of (i + 1)’s encountered, #1′s ≥ #2′s . . . .

λ

µ

ν = (5, 3, 2)

332

221

1111

1
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3.Integer Hives (99)
Knutson-Tao (99)
An n-integer hive is a triangular graph made of

(
n + 1

2
) + (

n
2

) = n2 unitary triangles and (
n + 2

2
) vertices with

non-negative edge labels satisfying a set of conditions given by linear
inequalities called hive conditions

n = 5

1
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(Edge) Hive conditions
Two distinct types of elementary triangles with non-negative integer
edge labelling

ρ

σ τ

σ + τ = ρ

ρ

στ

σ + τ = ρ

1
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(Edge) Hive conditions continued
Three distinct types of rhombi with non-negative integer edge
labelling

α γ

δ

β

γ β

α ≥ γ
β ≥ δ

α + δ = β + γ

α

γ

β δ

γ β

δ α

γ β

1
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Hive conditions continued

α γ

δ

β

γ β

α ≥ γ
β ≥ δ

α + δ = β + γ

α

γ

β δ

γ β

δ α

γ β

1
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Hive boundary conditions
overlapping pairs of rhombi: edge labels along any line parallel to
north-west, north-east and southern boundaries are weakly decreasing
in the north-east, south-east and easterly directions.

α β

γ

α ≥ β ≥ γ
α γ

β

β

α

γ

µ ν

λ

1
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Knutson-Tao Hives 99

The Littlewood-Richardson coefficients cλµ ν is the number of Hives
with boundary µ, ν and λ.
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4. Horn conjecture (62)

There exist n × n Hermitian matrices A, B and C , with integer
eigenvalues arranged in weakly decreasing order µ = (µ1, . . . , µn),
ν = (ν1, . . . , νn) and λ = (λ1, . . . , λn) respectively, such that
C = A + B if and only if µ, ν and λ satisfy a certain huge system of
linear inequalities.
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Horn inequalities

Let N = {1, 2, . . . , n}, then for fixed d , with 1 ≤ d ≤ n, let
I = {i1, i2, . . . , id} ⊆ N.

Let I , J,K ⊆ N with #I = #J = #K = d and ordered decreasingly.
One defines the partitions

α(I ) = I − (d , . . . , 2, 1),

β(J) = J − (d , . . . , 2, 1),

γ(K ) = K − (d , . . . , 2, 1).

Let T n
d be the set of all triples (I , J,K ) with I , J,K ⊆ N and

#I = #J = #K = d such that c
γ(K)
α(I ),β(J) > 0.

78 / 92



Horn inequalities

Let N = {1, 2, . . . , n}, then for fixed d , with 1 ≤ d ≤ n, let
I = {i1, i2, . . . , id} ⊆ N.

Let I , J,K ⊆ N with #I = #J = #K = d and ordered decreasingly.
One defines the partitions

α(I ) = I − (d , . . . , 2, 1),

β(J) = J − (d , . . . , 2, 1),

γ(K ) = K − (d , . . . , 2, 1).

Let T n
d be the set of all triples (I , J,K ) with I , J,K ⊆ N and

#I = #J = #K = d such that c
γ(K)
α(I ),β(J) > 0.

79 / 92



Horn inequalities

Let N = {1, 2, . . . , n}, then for fixed d , with 1 ≤ d ≤ n, let
I = {i1, i2, . . . , id} ⊆ N.

Let I , J,K ⊆ N with #I = #J = #K = d and ordered decreasingly.
One defines the partitions

α(I ) = I − (d , . . . , 2, 1),

β(J) = J − (d , . . . , 2, 1),

γ(K ) = K − (d , . . . , 2, 1).

Let T n
d be the set of all triples (I , J,K ) with I , J,K ⊆ N and

#I = #J = #K = d such that c
γ(K)
α(I ),β(J) > 0.

80 / 92



Horn inequalities continued

µ, ν, λ are said to satisfy the Horn inequalities if

nX

k=1

λk =
nX

i=1

µi +
nX

j=1

νj

X

k∈K
λk ≤

X

i∈I
µi +
X

j∈J
νj

for all triples (I , J,K ) ∈ T n
d with d = 1, . . . , n − 1.

Not all of Horn’s inequalities are essential. The essential inequalities

are those for which (I , J,K ) satisfy c
γ(K)
α(I ),β(J) = 1.
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Horn inequalities and Littlewood-Richardson coefficients

cλµ,ν > 0 if and only if the Horn inequalities are satisfied

nX

k=1

λk =
nX

i=1

µi +
nX

j=1

νj

X

k∈K
λk ≤

X

i∈I
µi +
X

j∈J
νj

for all triples (I , J,K ) ∈ T n
d with d = 1, . . . , n − 1.
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Where do Horn inequalities come from?

Impose on a n-hive a puzzle of size n.
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5. Knutson-Tao-Woodward Puzzles (04)
A puzzle of size n is a tiling of an equilateral triangle of side length n with puzzle pieces

each of unit side length.

I Puzzle pieces may be rotated in any orientation but not reflected, and
wherever two pieces share an edge, the numbers on the edge must
agree.

1 1
1

0 0
0

1

0

0

1

00

1

0

1

1

1 0 1 0 1

0

1

1

0

1

µ ν

λ

1

(Knutson-Tao) cµ ν λ is the number of puzzles with µ, ν and λ appearing clockwise as
01-strings along the boundary.
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Partitions and 01-strings
Fix positive integers 0 < d < n and consider a d × (n − d) rectangle.

d = 4 n = 10

d = 4

n − d = 6

1
0

1
0

1
0 0

1
0 0

λ = (4, 2, 1, 0)↔ 0010010101

λ∨ = (6, 5, 4, 2)↔ 1010100100

λ∨

1
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Fix positive integers 0 < d < n and consider a d × (n − d) rectangle.

d = 4 n = 10

d = 4

n − d = 6

1
0

1
0

1
0 0

1
0 0

λ = (4, 2, 1, 0)↔ 0010010101

λ∨ = (6, 5, 4, 2)↔ 1010100100

λ∨

1
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Puzzle rule
(Knutson-Tao-Woodward) cλµ ν is the number of puzzles with µ, ν
and λ appearing as 01-strings along the boundary.

1 1
1

0 0
0

1

0

0

1

00

1

0

1

1

1 0 1 0 1

0

1

1

0

1

µ ν

λ

1
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Horn triples and puzzles

(I , J,K ) is Horn triple if it specifies the positions of the 0’s on the
boundary of any puzzle. It is essential if the puzzle with these
boundary 0’s edges is unique.
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Example
I = {1, 3}, J = {1, 4}, K = {2, 4} is a Horn triple since I , J, and K
specify the positions of the 0’s on the boundary of the puzzle

1
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Example continued
I = {1, 3}, J = {1, 4}, K = {2, 4} is a Horn triple. Superimpose the
puzzle, with pink edges specified by those sets I , J,K , on a hive of
size 5 and explore the hive conditions

λ1 λ2 λ3 λ4 λ5

µ1

µ2

µ3

µ4

µ5

ν5

ν4

ν3

ν2

ν1

x y z
q

w u

r

s

t

λ2 + λ4 = x + y + w + u ≤ µ1 + y + w + u ≤ µ1 + z + y + ν4

≤ µ1 + z + y + ν4 = µ1 + q + ν4 ≤ µ1 + r + ν4

≤ µ1 + µ3 + s + ν4 ≤ µ1 + µ3 + ν1 + ν4

1
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