# Puzzles <br> Littlewood-Richardson coefficients and Horn inequalities 

Olga Azenhas

CMUC, Centre for Mathematics, University of Coimbra
Seminar of the Mathematics PhD Program UCoimbra-UPorto Porto, 26 October 2009

- Littlewood-Richardson (LR) coefficients $c_{\mu \nu}^{\lambda}$ are non-negative integer numbers depending on three non-negative integer vectors $\mu, \nu, \lambda$ ordered decreasingly.
- Littlewood-Richardson (LR) coefficients $c_{\mu \nu}^{\lambda}$ are non-negative integer numbers depending on three non-negative integer vectors $\mu, \nu, \lambda$ ordered decreasingly.
- Who cares?
- Littlewood-Richardson (LR) coefficients $c_{\mu \nu}^{\lambda}$ are non-negative integer numbers depending on three non-negative integer vectors $\mu, \nu, \lambda$ ordered decreasingly.
- Who cares?
- How can one evaluate them?
- Littlewood-Richardson (LR) coefficients $c_{\mu \nu}^{\lambda}$ are non-negative integer numbers depending on three non-negative integer vectors $\mu, \nu, \lambda$ ordered decreasingly.
- Who cares?
- How can one evaluate them?

What do they count?

- Littlewood-Richardson (LR) coefficients $c_{\mu \nu}^{\lambda}$ are non-negative integer numbers depending on three non-negative integer vectors $\mu, \nu, \lambda$ ordered decreasingly.
- Who cares?
- How can one evaluate them?

What do they count?

- Are there conditions to see whether or not a given LR-coefficient is non-zero ?


## Littlewood-Richardson coefficients: $c_{\mu \nu}^{\lambda}$

- Schur functions $\left\{s_{\lambda}\right\}_{\lambda}$ form a $\mathbb{Z}$-basis for the ring of symmetric functions

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}
$$

## Littlewood-Richardson coefficients: $c_{\mu \nu}^{\lambda}$

- Schur functions $\left\{s_{\lambda}\right\}_{\lambda}$ form a $\mathbb{Z}$-basis for the ring of symmetric functions

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda} .
$$

- For which $\lambda$ does $s_{\mu} s_{\nu}$ contain $s_{\lambda}$ as a (positive) summand?


## Littlewood-Richardson coefficients: $c_{\mu \nu}^{\lambda}$

- Schur functions $\left\{s_{\lambda}\right\}_{\lambda}$ form a $\mathbb{Z}$-basis for the ring of symmetric functions

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda} .
$$

- For which $\lambda$ does $s_{\mu} s_{\nu}$ contain $s_{\lambda}$ as a (positive) summand?
- Given $\mu, \nu$ and $\lambda$ when does one have $c_{\mu \nu}^{\lambda}>0$ ?


## Littlewood-Richardson coefficients: $c_{\mu \nu}^{\lambda}$

- Schur functions $\left\{s_{\lambda}\right\}_{\lambda}$ form a $\mathbb{Z}$-basis for the ring of symmetric functions

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}
$$

- For which $\lambda$ does $s_{\mu} s_{\nu}$ contain $s_{\lambda}$ as a (positive) summand?
- Given $\mu, \nu$ and $\lambda$ when does one have $c_{\mu \nu}^{\lambda}>0$ ?
- The tensor product of two irreducible polynomial representations $V_{\mu}$ and $V_{\nu}$ of the general linear group $G L_{d}(\mathbb{C})$ decomposes into irreducible representations of $G L_{d}(\mathbb{C})$

$$
V_{\mu} \otimes V_{\nu}=\sum_{I(\lambda) \leq d} c_{\mu \nu}^{\lambda} V_{\lambda} .
$$

## Littlewood-Richardson coefficients: $c_{\mu \nu}^{\lambda}$

- Schur functions $\left\{s_{\lambda}\right\}_{\lambda}$ form a $\mathbb{Z}$-basis for the ring of symmetric functions

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}
$$

- For which $\lambda$ does $s_{\mu} s_{\nu}$ contain $s_{\lambda}$ as a (positive) summand?
- Given $\mu, \nu$ and $\lambda$ when does one have $c_{\mu \nu}^{\lambda}>0$ ?
- The tensor product of two irreducible polynomial representations $V_{\mu}$ and $V_{\nu}$ of the general linear group $G L_{d}(\mathbb{C})$ decomposes into irreducible representations of $G L_{d}(\mathbb{C})$

$$
V_{\mu} \otimes V_{\nu}=\sum_{I(\lambda) \leq d} c_{\mu \nu}^{\lambda} V_{\lambda} .
$$

## Littlewood-Richardson coefficients: $c_{\mu \nu}^{\lambda}$

- Schur functions $\left\{s_{\lambda}\right\}_{\lambda}$ form a $\mathbb{Z}$-basis for the ring of symmetric functions

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}
$$

- For which $\lambda$ does $s_{\mu} s_{\nu}$ contain $s_{\lambda}$ as a (positive) summand?
- Given $\mu, \nu$ and $\lambda$ when does one have $c_{\mu \nu}^{\lambda}>0$ ?
- The tensor product of two irreducible polynomial representations $V_{\mu}$ and $V_{\nu}$ of the general linear group $G L_{d}(\mathbb{C})$ decomposes into irreducible representations of $G L_{d}(\mathbb{C})$

$$
V_{\mu} \otimes V_{\nu}=\sum_{I(\lambda) \leq d} c_{\mu \nu}^{\lambda} V_{\lambda} .
$$

- Given $\mu$ and $\nu$, for which $\lambda$ does $V^{\lambda}$ appear (with positive multiplicity) in $V^{\mu} \otimes V^{\nu}$ ?
- Given $\mu, \nu$ and $\lambda$ when does one have $c_{\mu \nu}^{\lambda}>0$ ?


## Littlewood-Richardson coefficients: $c_{\mu \nu}^{\lambda}$

## Littlewood-Richardson coefficients: $c_{\mu \nu}^{\lambda}$

- Schubert classes $\sigma_{\lambda}$ form a linear basis for $H^{*}(G(d, n))$, the cohomology ring of the Grassmannian $G(d, n)$ of complex $d$-dimensional linear subspaces of $\mathbb{C}^{n}$,

$$
\sigma_{\mu} \sigma_{\nu}=\sum_{\lambda \subseteq d \times(n-d)} c_{\mu \nu}^{\lambda} \sigma_{\lambda} .
$$

## Littlewood-Richardson coefficients: $c_{\mu \nu}^{\lambda}$

- Schubert classes $\sigma_{\lambda}$ form a linear basis for $H^{*}(G(d, n))$, the cohomology ring of the Grassmannian $G(d, n)$ of complex $d$-dimensional linear subspaces of $\mathbb{C}^{n}$,

$$
\sigma_{\mu} \sigma_{\nu}=\sum_{\lambda \subseteq d \times(n-d)} c_{\mu \nu}^{\lambda} \sigma_{\lambda} .
$$

- There exist $n \times n$ non singular matrices $A, B$ and $C$, over a local principal ideal domain, with Smith invariants $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$, $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$ and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ respectively, such that $A B=C$ if and only if $c_{\mu \nu}^{\lambda}>0$.


## Littlewood-Richardson coefficients: $c_{\mu \nu}^{\lambda}$

- Schubert classes $\sigma_{\lambda}$ form a linear basis for $H^{*}(G(d, n))$, the cohomology ring of the Grassmannian $G(d, n)$ of complex $d$-dimensional linear subspaces of $\mathbb{C}^{n}$,

$$
\sigma_{\mu} \sigma_{\nu}=\sum_{\lambda \subseteq d \times(n-d)} c_{\mu \nu}^{\lambda} \sigma_{\lambda}
$$

- There exist $n \times n$ non singular matrices $A, B$ and $C$, over a local principal ideal domain, with Smith invariants $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$, $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$ and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ respectively, such that $A B=C$ if and only if $c_{\mu \nu}^{\lambda}>0$.
- There exist $n \times n$ Hermitian matrices $A, B$ and $C$, with integer eigenvalues arranged in weakly decreasing order $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$, $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$ and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ respectively, such that $C=A+B$ if and only if $c_{\mu, \nu}^{\lambda}>0$.


## 1. Schur functions

Partitions and Young diagrams

- Fix a positive integer $r \geq 1$.


## 1. Schur functions

Partitions and Young diagrams

- Fix a positive integer $r \geq 1$.
- $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$, with $\lambda_{1} \geq \cdots \geq \lambda_{r}>0$ positive integers, is a partition of length $I(\lambda)=r$.


## 1. Schur functions

Partitions and Young diagrams

- Fix a positive integer $r \geq 1$.
- $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$, with $\lambda_{1} \geq \cdots \geq \lambda_{r}>0$ positive integers, is a partition of length $I(\lambda)=r$.
- Each partition $\lambda$ is identified with a Young (Ferrer) diagram $\lambda$


## 1. Schur functions

Partitions and Young diagrams

- Fix a positive integer $r \geq 1$.
- $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$, with $\lambda_{1} \geq \cdots \geq \lambda_{r}>0$ positive integers, is a partition of length $I(\lambda)=r$.
- Each partition $\lambda$ is identified with a Young (Ferrer) diagram $\lambda$ consisting of $|\lambda|=\lambda_{1}+\cdots+\lambda_{r}$ boxes arranged in $r$ bottom left adjusted rows of lengths $\lambda_{1} \geq \cdots \geq \lambda_{r}>0$.


## Example

$\lambda=(4,3,2),|\lambda|=9, I(\lambda)=3$


## Young Tableaux

- $n \geq r, \lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right), I(\lambda)=r$.
- A semistandard tableau $T$ of shape $\lambda$ is a filling of the boxes of the Ferrer diagram $\lambda$ with elements $i$ in $\{1, \ldots, n\}$ which is
- weakly increasing across rows from left to right
- strictly increasing up columns


## Young Tableaux

- $n \geq r, \lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right), I(\lambda)=r$.
- A semistandard tableau $T$ of shape $\lambda$ is a filling of the boxes of the Ferrer diagram $\lambda$ with elements $i$ in $\{1, \ldots, n\}$ which is
- weakly increasing across rows from left to right
- strictly increasing up columns
- $T$ has type $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ if $T$ has $\alpha_{i}$ entries equal $i$.


## Example

$\lambda=(4,3,2), I(\lambda)=3, n=6$


## Young Tableaux

- $n \geq r, \lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right), I(\lambda)=r$.
- A semistandard tableau $T$ of shape $\lambda$ is a filling of the boxes of the Ferrer diagram $\lambda$ with elements $i$ in $\{1, \ldots, n\}$ which is
- weakly increasing across rows from left to right
- strictly increasing up columns
- $T$ has type $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ if $T$ has $\alpha_{i}$ entries equal $i$.


## Example

$\lambda=(4,3,2), I(\lambda)=3, n=6$


$$
\left.T=\begin{array}{|l|l|l|}
\hline 5 & 6 & \\
\\
\hline 4 & 4 & 6 \\
& \\
\hline 2 & 3 & 4
\end{array}\right)
$$

## Young Tableaux

- $n \geq r, \lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right), I(\lambda)=r$.
- A semistandard tableau $T$ of shape $\lambda$ is a filling of the boxes of the Ferrer diagram $\lambda$ with elements $i$ in $\{1, \ldots, n\}$ which is
- weakly increasing across rows from left to right
- strictly increasing up columns
- $T$ has type $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ if $T$ has $\alpha_{i}$ entries equal $i$.


## Example

$\lambda=(4,3,2), I(\lambda)=3, n=6$


$$
T=
$$

semistandard tableau $T$ of shape $\lambda=(4,3,2)$,

## Young Tableaux

- $n \geq r, \lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right), I(\lambda)=r$.
- A semistandard tableau $T$ of shape $\lambda$ is a filling of the boxes of the Ferrer diagram $\lambda$ with elements $i$ in $\{1, \ldots, n\}$ which is
- weakly increasing across rows from left to right
- strictly increasing up columns
- $T$ has type $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ if $T$ has $\alpha_{i}$ entries equal $i$.


## Example

$\lambda=(4,3,2), I(\lambda)=3, n=6$


$$
T=
$$

semistandard tableau $T$ of shape $\lambda=(4,3,2), \alpha=(0,1,1,3,1,3)$.

## Young Tableaux

- $n \geq r, \lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right), I(\lambda)=r$.
- A semistandard tableau $T$ of shape $\lambda$ is a filling of the boxes of the Ferrer diagram $\lambda$ with elements $i$ in $\{1, \ldots, n\}$ which is
- weakly increasing across rows from left to right
- strictly increasing up columns
- $T$ has type $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ if $T$ has $\alpha_{i}$ entries equal $i$.


## Example

$\lambda=(4,3,2), I(\lambda)=3, n=6$


$$
T=
$$

semistandard tableau $T$ of shape $\lambda=(4,3,2), \alpha=(0,1,1,3,1,3)$.

## Schur functions

Example

$$
\begin{aligned}
& n=7 \\
& T=\begin{array}{ll|l|l|}
\begin{array}{|l|l|l|}
\hline 5 & 6 & \\
\hline 4 & 4 & 6 \\
2 & \\
\hline 2 & 3 & 4
\end{array} & 6 \\
\alpha(T)=(0,1,1,3,1,3,0)
\end{array}
\end{aligned}
$$

$$
x^{\alpha(T)}=x_{1}^{0} x_{2} x_{3} x_{4}^{3} x_{5} x_{6}^{3} x_{7}^{0}
$$

## Schur functions continued

- Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a sequence of variables.


## Schur functions continued

- Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a sequence of variables.
- Given the partition $\lambda$, the Schur function (polynomial) $s_{\lambda}(\mathbf{x})$ associated with the partition $\lambda$ is the homogeneous polynomial of degree $|\lambda|$ on the variables $x_{1} \ldots, x_{n}$

$$
s_{\lambda}(\mathbf{x})=\sum_{T} X^{\alpha(T)}
$$

where $T$ runs over all semistandard tableaux of shape $\lambda$ on the alphabet $\{1, \ldots, n\}$.

## Example

$\lambda=(2,1),|\lambda|=3$

- $n=3$


## Schur functions continued

- Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a sequence of variables.
- Given the partition $\lambda$, the Schur function (polynomial) $s_{\lambda}(\mathbf{x})$ associated with the partition $\lambda$ is the homogeneous polynomial of degree $|\lambda|$ on the variables $x_{1} \ldots, x_{n}$

$$
s_{\lambda}(\mathbf{x})=\sum_{T} X^{\alpha(T)}
$$

where $T$ runs over all semistandard tableaux of shape $\lambda$ on the alphabet $\{1, \ldots, n\}$.

## Example

$\lambda=(2,1),|\lambda|=3$

- $n=3$

| 2 | 3 |  | 2 |  | 3 |  | 2 |  | 3 |  |  |  |  | 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | 3 |  |  | 2 | 2 | 3 |

$$
s_{\lambda}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+2 x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}
$$

## Schur functions continued

- Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a sequence of variables.
- Given the partition $\lambda$, the Schur function (polynomial) $s_{\lambda}(\mathbf{x})$ associated with the partition $\lambda$ is the homogeneous polynomial of degree $|\lambda|$ on the variables $x_{1} \ldots, x_{n}$

$$
s_{\lambda}(\mathbf{x})=\sum_{T} X^{\alpha(T)}
$$

where $T$ runs over all semistandard tableaux of shape $\lambda$ on the alphabet $\{1, \ldots, n\}$.

## Example

$\lambda=(2,1),|\lambda|=3$

- $n=3$

| 2 | 3 |  | 2 |  | 3 |  | 2 |  | 3 |  |  |  |  | 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | 3 |  |  | 2 | 2 | 3 |

$$
s_{\lambda}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+2 x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}
$$

- Kostka number $K_{\lambda, \alpha}$ is the number of semistandard tableaux of shape $\lambda$ and type $\alpha$.
- The Schur function on the variables $x_{1}, \ldots, x_{n}$

$$
s_{n}(\lambda, \mathbf{x})=\sum_{\alpha \in \mathbb{Z}_{\geq 0}^{n}} K_{\lambda, \alpha} x^{\alpha},
$$

with $\alpha_{1}+\cdots+\alpha_{n}=|\lambda|$.

- $K_{\lambda \beta}=K_{\lambda \alpha}$, with $\beta$ any permutation of $\alpha$.
- $K_{\lambda \beta}=K_{\lambda \alpha}$, with $\beta$ any permutation of $\alpha$.


## Corollary

- The Schur function $s(\lambda, \mathbf{x})=$

$K_{\lambda, \alpha} x^{\alpha}$, is a $\alpha$ weak composition of $|\lambda|$ homogeneous symmetric function in $x_{1}, \ldots, x_{n}$.


## Product of Schur functions

- The Schur functions $s_{\lambda}$ form an additive basis for the ring of the symmetric functions.
- A product of Schur functions $s_{\mu} s_{\nu}$ can be expressed as a non-negative integer linear sum of Schur functions:

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda} .
$$

- What does $c_{\mu \nu}^{\lambda}$ count?


## 2. Littlewood-Richardson rule

$\mu=(3,1), \quad \nu=(2,2)$
2. Littlewood-Richardson rule
$\mu=(3,1), \quad \nu=(2,2)$


| 2 | 2 |
| :--- | :--- |
| 1 | 1 |

2. Littlewood-Richardson rule
$\mu=(3,1), \quad \nu=(2,2)$

|  |  | 2 | 2 |
| :---: | :---: | :---: | :---: |
|  |  | 1 | 1 |

- |  | 2 | 2 |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  | 1 |$|$| 1 |
| :--- |

2. Littlewood-Richardson rule

$\mu=(3,1), \quad \nu=(2,2) \quad$|  |  |
| :--- | :--- |
|  | $\square$ |
| 2 | 2 |
| 1 | 1 |

- |  | 2 | 2 |  |
| :--- | :--- | :--- | :--- |$|$|  |  |  |
| :--- | :--- | :--- |
|  |  |  |
|  | 1 | 1 |

| 2 |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
|  | 2 |  |  |  |
|  |  |  | 1 |  |

2. Littlewood-Richardson rule

$\mu=(3,1), \quad \nu=(2,2) \quad \square \quad$| 2 | 2 |
| :--- | :--- |
| 1 | 1 |



- | 2 |  |  |  |
| :--- | :--- | :--- | :--- |
|  | 1 | 2 |  |
|  |  |  | 1 |

2. Littlewood-Richardson rule

$\mu=(3,1), \quad \nu=(2,2) \quad \square \quad$| 2 | 2 |
| :--- | :--- |
| 1 | 1 |



- | 2 |  |  |
| :--- | :--- | :--- |
|  | 1 | 2 |
|  |  |  |
|  |  |  |


2. Littlewood-Richardson rule

$\mu=(3,1), \quad \nu=(2,2) \quad \square \quad$| 2 | 2 |
| :--- | :--- |
| 1 | 1 |



- | 2 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 1 | 2 |  | 2 2 |  |
|  |  |  | 1 |  |  |$\quad$|  |  |
| :--- | :--- |


2. Littlewood-Richardson rule

$\mu=(3,1), \quad \nu=(2,2) \quad \square \quad$| 2 | 2 |
| :--- | :--- |
| 1 | $\square$ |




- | 2 | 2 |  |
| :--- | :--- | :--- |
|  | 1 | 1 |
|  |  |  |

2. Littlewood-Richardson rule

$\mu=(3,1), \quad \nu=(2,2) \quad \square \quad \square \quad$| 2 | 2 |
| :--- | :--- |
| 1 | $\square$ |



2. Littlewood-Richardson rule

$\mu=(3,1), \quad \nu=(2,2) \quad \square \quad$| 2 | 2 |
| :--- | :--- |
| 1 | $\square$ |



- | 2 |  |  |  |
| :--- | :--- | :--- | :--- |
|  | 1 | 2 |  |
|  |  |  | 1 |



- $\left.$| 2 | 2 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 1 | 1 |
|  |  |  |$\quad$| 1 | 2 |
| :--- | :--- |
|  |  | \right\rvert\, | $\|l\|$ |
| :--- |
- invalid tableaux

$\left.$| 1 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | 1 |  |
|  | 2 |  |$\quad 211 \quad$|  | 1 | 2 |
| :--- | :--- | :--- | \right\rvert\, |  |
| :--- |

1221

## Littlewood-Richardson rule

$$
\mu=(3,1), \quad \nu=(2,2)
$$

- |  | 2 | 2 |  |
| :--- | :--- | :--- | :--- |$|$|  |  |  |
| :--- | :--- | :--- |
|  |  |  |
|  | 1 | 1 |


## Littlewood-Richardson rule

$$
\mu=(3,1), \quad \nu=(2,2)
$$

$\square$


## Littlewood-Richardson rule

$$
\mu=(3,1), \quad \nu=(2,2)
$$

- |  | 2 | 2 |  |
| :--- | :--- | :--- | :--- |
|  |  |  | 1 |

| 2 |  |  |  |
| :--- | :--- | :--- | :--- |
|  | 2 |  |  |
|  |  |  | 1 |

- | 2 |  |  |
| :--- | :--- | :--- |
|  | 1 | 2 |
|  |  | 1 |
|  |  |  |


## Littlewood-Richardson rule

$$
\mu=(3,1), \quad \nu=(2,2)
$$



- | 2 |  |  |
| :--- | :--- | :--- |
|  | 1 | 2 |
|  |  | 1 |
|  |  |  |

| 2 | 2 |  |
| :---: | :---: | :--- |
|  | 1 |  |
|  |  | 1 |
|  |  |  |

## Littlewood-Richardson rule

$$
\mu=(3,1), \quad \nu=(2,2)
$$




## Littlewood-Richardson rule

$$
\mu=(3,1), \quad \nu=(2,2)
$$



- | 2 | 2 |  |
| :--- | :--- | :--- |
|  | 1 | 1 |
|  |  |  |


## Littlewood-Richardson rule

$$
\mu=(3,1), \quad \nu=(2,2)
$$




- | 2 | 2 |  |
| :--- | :--- | :--- |
|  | 1 | 1 |
|  |  |  |

| 2 |  |
| :--- | :--- |
| 1 | 2 |
|  | 1 |
|  |  |

## Littlewood-Richardson rule

$$
\mu=(3,1), \quad \nu=(2,2)
$$

| 2 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 2 | 2 |  |  |  |
|  |  |  | 1 | 2 |  |

- | 2 |  |  |  |
| :--- | :--- | :--- | :--- |
|  | 1 | 2 |  |
|  |  |  | 1 |



- $s_{\mu} s_{\nu}=s_{53}+s_{521}+s_{431}+s_{422}+s_{4211}+s_{332}+s_{3221}$

$$
\mu=(3,1), \quad \nu=(2,1)
$$

$$
\mu=(3,1), \quad \nu=(2,1) \quad \square \quad \begin{aligned}
& \square \\
& \square
\end{aligned} \quad \begin{array}{|l|l}
\hline 2 & \\
\hline 1 & 1 \\
\hline
\end{array}
$$

$$
\mu=(3,1), \quad \nu=(2,1) \quad \begin{aligned}
& \square \\
& \square
\end{aligned} \quad \begin{array}{|l|l|}
\hline 2 & \\
\hline 1 & 1 \\
\hline
\end{array}
$$

- |  | 2 |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  | 1 | 1 |

$$
\mu=(3,1), \quad \nu=(2,1) \quad \square \quad \begin{aligned}
& \square \\
& \hline
\end{aligned} \quad \begin{aligned}
& \hline \\
& \hline 1
\end{aligned}
$$

- |  | 2 |  |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |

| 2 |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  | 1 |

$$
\mu=(3,1), \quad \nu=(2,1) \quad \square \quad \begin{array}{|l|l}
\hline 2 & \\
\hline 1 & 1 \\
\hline
\end{array}
$$



$$
\mu=(3,1), \quad \nu=(2,1) \quad \square \quad \begin{array}{lll}
\hline & \square & \begin{array}{ll}
2 & \\
1 & 1
\end{array} \\
\hline
\end{array}
$$



$$
\mu=(3,1), \quad \nu=(2,1) \quad \square \quad \begin{array}{lll}
\hline 2 & \\
1 & \square \\
\hline
\end{array}
$$



- | $\mid 12$ |
| :--- | :--- |
| $\square \quad 1$ |



$$
\mu=(3,1), \quad \nu=(2,1) \quad \square \quad \begin{aligned}
& \square \\
& \hline
\end{aligned} \quad \begin{array}{ll}
\hline 2 & \\
1 & 1 \\
\hline
\end{array}
$$



$$
\begin{gathered}
\mu=(3,1), \quad \nu=(2,1) \quad \square \square
\end{gathered} \begin{aligned}
& \frac{2}{2} \\
& 1 / 1
\end{aligned}
$$



- | 2 |  |  |
| :--- | :--- | :--- |
|  | 1 | 1 |
|  |  |  |

$$
\begin{gathered}
\mu=(3,1), \quad \nu=(2,1) \quad \square \square
\end{gathered} \begin{aligned}
& \frac{2}{2} \\
& 1 / 1
\end{aligned}
$$




- | 2 |  |  |
| :--- | :--- | :--- |
|  | 1 | 1 |
|  |  |  |



$$
\mu=(3,1), \quad \nu=(2,1) \quad \begin{array}{|l|l|l|}
\hline & & \begin{array}{|l|l}
\hline 2 & \\
\hline 1 & \\
\hline
\end{array} \\
\hline
\end{array}
$$




- | 2 |  |  |
| :--- | :--- | :--- |
|  | 1 | 1 |
|  |  |  |



$$
\begin{aligned}
& \mu=(3,1), \quad \nu=(2,1)
\end{aligned}
$$

- |  | 1 | 2 |
| :--- | :--- | :--- |
|  |  | 1 |



- $s_{\mu} s_{\nu}=s_{52}+s_{511}+s_{43}+2 s_{421}+s_{4111}+s_{331}+s_{322}+s_{3211}$

$$
\begin{aligned}
& \mu=(3,1), \quad \nu=(2,1)
\end{aligned}
$$

|  | 1 | 2 |
| :--- | :--- | :--- |
|  |  | 1 |



- $s_{\mu} s_{\nu}=s_{52}+s_{511}+s_{43}+2 s_{421}+s_{4111}+s_{331}+s_{322}+s_{3211}$
- $c_{\mu \nu}^{421}=2$

$$
\begin{aligned}
& \mu=(3,1), \quad \nu=(2,1)
\end{aligned}
$$

|  | 1 | 2 |  |
| :--- | :--- | :--- | :--- |
|  |  |  | 1 |



- $s_{\mu} s_{\nu}=s_{52}+s_{511}+s_{43}+2 s_{421}+s_{4111}+s_{331}+s_{322}+s_{3211}$
- $c_{\mu \nu}^{421}=2$


## Littlewood-Richardson rule

- $c_{\mu \nu}^{\lambda}$ is the number of tableaux with shape $\lambda / \mu$ and content $\nu$ satisfying
- If one reads the labeled entries in reverse reading order, that is, from right to left across rows taken in turn from bottom to top,
at any stage, the number of $i$ 's encountered is at least as large as the number of $(i+1)$ 's encountered, $\# 1^{\prime} s \geq \# 2^{\prime} s \ldots$.


$$
v=(5,3,2)
$$

## 3. Integer Hives (99)

- Knutson-Tao (99)
- An $n$-integer hive is a triangular graph made of
$\binom{n+1}{2}+\binom{n}{2}=n^{2}$ unitary triangles and $\binom{n+2}{2}$ vertices with non-negative edge labels satisfying a set of conditions given by linear inequalities called hive conditions
$n=5$



## (Edge) Hive conditions

- Two distinct types of elementary triangles with non-negative integer edge labelling

$\sigma+\tau=\rho$

$\sigma+\tau=\rho$


## (Edge) Hive conditions continued

- Three distinct types of rhombi with non-negative integer edge labelling


$$
\begin{aligned}
\alpha & \geq \gamma \\
\beta & \geq \delta \\
\alpha+\delta & =\beta+\gamma
\end{aligned}
$$

Hive conditions continued


$$
\begin{aligned}
\alpha & \geq \gamma \\
\beta & \geq \delta \\
\alpha+\delta & =\beta+\gamma
\end{aligned}
$$

## Hive boundary conditions

- overlapping pairs of rhombi: edge labels along any line parallel to north-west, north-east and southern boundaries are weakly decreasing in the north-east, south-east and easterly directions.



## Knutson-Tao Hives 99

- The Littlewood-Richardson coefficients $c_{\mu \nu}^{\lambda}$ is the number of Hives with boundary $\mu, \nu$ and $\lambda$.

4. Horn conjecture (62)

## 4. Horn conjecture (62)

- There exist $n \times n$ Hermitian matrices $A, B$ and $C$, with integer eigenvalues arranged in weakly decreasing order $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$, $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$ and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ respectively, such that $C=A+B$ if and only if $\mu, \nu$ and $\lambda$ satisfy a certain huge system of linear inequalities.


## Horn inequalities

- Let $N=\{1,2, \ldots, n\}$, then for fixed $d$, with $1 \leq d \leq n$, let $I=\left\{i_{1}, i_{2}, \ldots, i_{d}\right\} \subseteq N$.


## Horn inequalities

- Let $N=\{1,2, \ldots, n\}$, then for fixed $d$, with $1 \leq d \leq n$, let $I=\left\{i_{1}, i_{2}, \ldots, i_{d}\right\} \subseteq N$.
- Let $I, J, K \subseteq N$ with $\# I=\# J=\# K=d$ and ordered decreasingly. One defines the partitions

$$
\begin{aligned}
\alpha(I) & =I-(d, \ldots, 2,1) \\
\beta(J) & =J-(d, \ldots, 2,1) \\
\gamma(K) & =K-(d, \ldots, 2,1)
\end{aligned}
$$

## Horn inequalities

- Let $N=\{1,2, \ldots, n\}$, then for fixed $d$, with $1 \leq d \leq n$, let $I=\left\{i_{1}, i_{2}, \ldots, i_{d}\right\} \subseteq N$.
- Let $I, J, K \subseteq N$ with $\# I=\# J=\# K=d$ and ordered decreasingly. One defines the partitions

$$
\begin{aligned}
\alpha(I) & =I-(d, \ldots, 2,1) \\
\beta(J) & =J-(d, \ldots, 2,1) \\
\gamma(K) & =K-(d, \ldots, 2,1)
\end{aligned}
$$

- Let $T_{d}^{n}$ be the set of all triples $(I, J, K)$ with $I, J, K \subseteq N$ and $\# I=\# J=\# K=d$ such that $c_{\alpha(I), \beta(J)}^{\gamma(K)}>0$.


## Horn inequalities continued

- $\mu, \nu, \lambda$ are said to satisfy the Horn inequalities if

$$
\begin{aligned}
& \sum_{k=1}^{n} \lambda_{k}=\sum_{i=1}^{n} \mu_{i}+\sum_{j=1}^{n} \nu_{j} \\
& \sum_{k \in K} \lambda_{k} \leq \sum_{i \in I} \mu_{i}+\sum_{j \in J} \nu_{j}
\end{aligned}
$$

for all triples $(I, J, K) \in T_{d}^{n}$ with $d=1, \ldots, n-1$.

- Not all of Horn's inequalities are essential. The essential inequalities are those for which $(I, J, K)$ satisfy $c_{\alpha(I), \beta(J)}^{\gamma(K)}=1$.


## Horn inequalities and Littlewood-Richardson coefficients

- $c_{\mu, \nu}^{\lambda}>0$ if and only if the Horn inequalities are satisfied

$$
\begin{aligned}
& \sum_{k=1}^{n} \lambda_{k}=\sum_{i=1}^{n} \mu_{i}+\sum_{j=1}^{n} \nu_{j} \\
& \sum_{k \in K} \lambda_{k} \leq \sum_{i \in I} \mu_{i}+\sum_{j \in J} \nu_{j}
\end{aligned}
$$

for all triples $(I, J, K) \in T_{d}^{n}$ with $d=1, \ldots, n-1$.

Where do Horn inequalities come from?

- Impose on a $n$-hive a puzzle of size $n$.


## 5. Knutson-Tao-Woodward Puzzles (04)

- A puzzle of size $n$ is a tiling of an equilateral triangle of side length $n$ with puzzle pieces each of unit side length.
- Puzzle pieces may be rotated in any orientation but not reflected, and wherever two pieces share an edge, the numbers on the edge must agree.


## 5. Knutson-Tao-Woodward Puzzles (04)

- A puzzle of size $n$ is a tiling of an equilateral triangle of side length $n$ with puzzle pieces each of unit side length.
- Puzzle pieces may be rotated in any orientation but not reflected, and wherever two pieces share an edge, the numbers on the edge must agree.



## Partitions and 01-strings

- Fix positive integers $0<d<n$ and consider a $d \times(n-d)$ rectangle.


## Partitions and 01-strings

- Fix positive integers $0<d<n$ and consider a $d \times(n-d)$ rectangle.
- $d=4 n=10$



## Puzzle rule

- (Knutson-Tao-Woodward) $c_{\mu \nu}^{\lambda}$ is the number of puzzles with $\mu, \nu$ and $\lambda$ appearing as 01 -strings along the boundary.



## Horn triples and puzzles

- $(I, J, K)$ is Horn triple if it specifies the positions of the 0 's on the boundary of any puzzle. It is essential if the puzzle with these boundary 0's edges is unique.


## Example

- $I=\{1,3\}, J=\{1,4\}, K=\{2,4\}$ is a Horn triple since $I, J$, and $K$ specify the positions of the 0 's on the boundary of the puzzle



## Example continued

- $I=\{1,3\}, J=\{1,4\}, K=\{2,4\}$ is a Horn triple. Superimpose the puzzle, with pink edges specified by those sets $I, J, K$, on a hive of size 5 and explore the hive conditions


$$
\begin{gathered}
\lambda_{2}+\lambda_{4}=x+y+w+u \leq \mu_{1}+y+w+u \leq \mu_{1}+z+y+v_{4} \\
\leq \mu_{1}+z+y+v_{4}=\mu_{1}+q+v_{4} \leq \mu_{1}+r+v_{4} \\
\leq \mu_{1}+\mu_{3}+s+v_{4} \leq \mu_{1}+\mu_{3}+v_{1}+v_{4}
\end{gathered}
$$

## Sources

- A. Horn, Pacific J. Math. 121962 225-241
- Robert C. Thompson, 401-435, Contemp. Math., 47, Amer. Math. Soc., Providence, RI, 1985.
- O. Azenhas, E. Marques de Sá, Linear and Multilinear Algebra 27 (1990), no. 4, 229-242.
- A. A. Klyachko, Selecta Math. (N.S.) 4 (1998), no. 3, 419-445
- W. Fulton, Séminaire Bourbaki. Vol. 1997/98. Astérisque No. 252 (1998), Exp. No. 845, 5, 255-269.
- A. Knutson, T. Tao, J. Amer. Math. Soc. 12 (1999)
- A. P. Santana, J. F. Queiró, and E. Marques de Sá, Linear and Multilinear Algebra 46 (1999), no. 1-2, 1-23
- W. Fulton, Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 3, 209-249
- A. S. Buch, Enseign. Math. (2) 46 (2000), no. 1-2, 43-60.
- A. Knutson, T. Tao and C. Woodward, Amer. Math. Soc. 17 (2004) 1948
- Ronald C. King, C. Tollu, F. Toumazet, J. Combin. Theory, Series A,116 (2009), 314-333.

