Invariant factors of a product of matrices over a principal ideal domain and the product of Schur functions

Olga Azenhas, CMUC, University of Coimbra

based on a 89's joint paper with E. Marques de Sá

Tarde de Álgebra dedicada a Eduardo Marques de Sá por ocasião do seu 70º aniversário Coimbra, 2-12-2016

- \mathcal{R} a commutative ring with 1.
- A and B $n \times n$ matrices over \mathcal{R} .

A and B are said to be equivalent, $A \sim B$, if B = PAQ for some matrices P and Q in $GL_n(\mathcal{R})$,

- \mathcal{R} a commutative ring with 1.
- A and B n × n matrices over R.
 A and B are said to be equivalent, A ~ B, if B = PAQ for some matrices P and Q in GL_n(R),

Definition

A an $n \times n$ matrix over \mathcal{R} . If there exist matrices $P, Q \in GL_n(\mathcal{R})$ such that

$$PAQ =: S = diag(d_1, d_1d_2, d_1d_2d_3, \ldots, d_1d_2 \ldots d_n)$$

with $d_i \in \mathcal{R}$, we then call S a Smith normal form (SNF) of A.

- \mathcal{R} a commutative ring with 1.
- A and B n × n matrices over R.
 A and B are said to be equivalent, A ~ B, if B = PAQ for some matrices P and Q in GL_n(R),

Definition

A an $n \times n$ matrix over \mathcal{R} . If there exist matrices $P, Q \in GL_n(\mathcal{R})$ such that

$$PAQ =: S = diag(d_1, d_1d_2, d_1d_2d_3, \ldots, d_1d_2 \ldots d_n)$$

with $d_i \in \mathcal{R}$, we then call S a Smith normal form (SNF) of A.

• $det(A) = ud_1^n d_2^{n-1} \dots d_{n-1}^2 d_n^1$ with u an unity in \mathcal{R} .

- \mathcal{R} a commutative ring with 1.
- A and B n × n matrices over R.
 A and B are said to be equivalent, A ~ B, if B = PAQ for some matrices P and Q in GL_n(R),

Definition

A an $n \times n$ matrix over \mathcal{R} . If there exist matrices $P, Q \in GL_n(\mathcal{R})$ such that

$$PAQ =: S = diag(d_1, d_1d_2, d_1d_2d_3, \dots, d_1d_2\dots d_n)$$

with $d_i \in \mathcal{R}$, we then call S a Smith normal form (SNF) of A.

- $det(A) = ud_1^n d_2^{n-1} \dots d_{n-1}^2 d_n^1$ with u an unity in \mathcal{R} .
- Observations
 - Every diagonal matrix over R admits such a diagonal reduction if and only if every finitely generated ideal is principal (Bézout ring).
 - ▶ If every matrix over \mathcal{R} admits such a diagonal reduction, \mathcal{R} is called an elementary divisor ring (*EI*.*Div* \subseteq *Bez*).

Existence of SNF

- $\mathcal{R} = \mathbb{K}$ a field:
 - By elementary row and column operations (Gaussian elimination), we may compute the SNF of A which is the echelon form

$$diag(\alpha_1,\ldots,\alpha_r,0,\ldots,0), \qquad \alpha_i=1, \quad r=rank(A).$$

• $\mathcal{R} = \mathbb{Z}$.

The existence of Euclidean's algorithm guarantees that every unimodular matrix can be written as a product of elementary matrices. By elementary row and column operations we may compute the SNF which is unique up to sign ±1 of diagonal elements.

$$\left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right], \qquad \qquad \left[\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array}\right] \rightarrow S = \left[\begin{array}{cc} 1 & 0 \\ 0 & 6 \end{array}\right], -2 + 3 = 1$$

Existence of SNF continued

R = ℤ[x] is not an Euclidean ring nor a principal ring (Bézout ring). Not every diagonal matrix has a SNF.

1

Suppose that the diagonal matrix

$$\mathsf{A} = \left[\begin{array}{cc} 2 & 0 \\ 0 & x \end{array} \right],$$

has SNF S = PAQ. Then the only possible SNF is S = diag(1, 2x) since $det(S) = \pm 2x$.

On the other hand, putting x = 2 in S gives SNF diag(1, 4) over \mathbb{Z} but putting x = 2 in A yields SNF diag(2, 2) over \mathbb{Z} .

SNF over a PID

- \mathcal{R} is a PID: an analogue of the fundamental theorem of arithmetic holds; any two elements of a PID have a greatest common divisor although it may not be possible to find it using the Euclidean algorithm; Bézout's identity is satisfied.
- Examples. K any field; Z the ring of integers; K[x] the ring of polynomials in one variable with coefficients in K; K[[x]] the ring of formal power series in one variable over a field K, more generally any discrete valuation ring.

Proposition

Over a PID the SNF always exists and is unique up to unit multiples,

$$S(A) := PAQ = diag(\alpha_1, \alpha_2, \dots, \alpha_n), \quad \alpha_1 |\alpha_2| \dots |\alpha_n.$$

The α_i are the invariant factors of A; they are unique up to unit multiples.

For $1 \le k \le n$, we have that $\alpha_1 \alpha_2 \cdots \alpha_k$ is equal to the gcd of all $k \times k$ minors of A, with the convention that if all $k \times k$ minors are 0, then their gcd is 0.

• \mathcal{R} -matrices A, B, $n \times n$, $A \sim B$, iff S(A) = S(B).

Gaussian elimination: Elementary row and column operations

• How should one effect the diagonalization on a matrix A over a PID?

If the ring is Euclidean, elementary row and column operations will do the job.

In general it relies on the theory of determinantal divisors, the greatest common divisor of all $k \times k$ subdeterminats of A.

Localization

- \mathcal{R} a PID and p a prime element in \mathcal{R} .
- $\mathcal{F} \supseteq \mathcal{R}$ the field of fractions of \mathcal{R} . The localization of \mathcal{R} with respect to p is

$$\mathcal{R}_p := \{a/b \in \mathcal{F} : (a, b) = 1, p \nmid b\}.$$

 \mathcal{R}_p is the subring of \mathcal{F} generated by \mathcal{R} and the inverses in \mathcal{F} of all elements of \mathcal{R} that are outside of (p).

- p is the unique prime in \mathcal{R}_p up to multiples of units
- $f \neq 0 \in \mathcal{R}_p$ is an unit iff $a, b \in \mathcal{R}$ and relatively prime with p.
- $f \neq 0 \in \mathcal{R}_p$ then $f = \mu p^{\nu}$ with μ an \mathcal{R}_p unit and ν a non negative integer.
- $f = 0 := p^{\infty}$.
- \mathcal{R}_p is a PID and an Euclidean domain whose proper ideals are $(p) \supset (p^2) \supset (p^3) \supset \ldots$. \mathcal{R}_p is a discrete valuation ring with valuation defined by $\nu \ge 0$.
- Examples. $\mathbb{Z}_p = \{n/m : n, m \in \mathbb{Z} : p \nmid m\}$, for any p prime integer. The ring K[[x]] of formal power series.

SNF over \mathcal{R}_p

Proposition

If A is \mathcal{R}_p -matrix, its SNF is

$$S_p(A) := diag(p^{
u_1}, \dots, p^{
u_r}, 0, \dots, 0),$$

for some integers $0 \le \nu_1 \le \nu_2 \cdots \le \nu_r$, r the rank of A. Moreover the group of unimodular matrices over \mathcal{R}_p is generated by the elementary matrices and $S_p(A)$ may be obtained by Gaussian elimination.

Corollary

$$S_p(A^t) = S_p(A)$$
 and $A \sim_p A^t$.

 If A is *R*-matrix with *R* invariant factors α₁|α₂|... the p powers contained in α₁, α₂,... constitute the *R_p*-invariant factors of A as a matrix over the extended *R_p*,

$$A \sim_p S_p(A)$$

Local global principle

Fix a complete set \mathcal{P} of non associated primes of \mathcal{R} .

Proposition

Let A, B over \mathcal{R} .

•
$$S(A) = \prod_{p \in \mathcal{P}} S_p(A).$$

•
$$A \sim B$$
 iff $A \sim_p B$ for all $p \in \mathcal{P}$.

• (|A|, |B|) = 1 then S(AB) = S(A)S(B).

Invariant factors of a product of matrices over a PID

Which α = (α_i), β = (β_i), γ = (γ_i) in Rⁿ can be invariant factors of n × n non-singular R-matrices A, B and C if C = AB?

Localization of a matrix product

A matrix product over \mathcal{R} is *localizable* in the following sense: we wish to construct matrices A, B and C = AB over \mathcal{R} with given invariant factors. First we work out in \mathcal{R}_p , for $p \in \mathcal{P}$, then we stick together our local constructs and obtain a product AB = C inside \mathcal{R} with the desired invariant factors.

Localization of a matrix product

A matrix product over \mathcal{R} is *localizable* in the following sense: we wish to construct matrices A,B and C = AB over \mathcal{R} with given invariant factors. First we work out in \mathcal{R}_p , for $p \in \mathcal{P}$, then we stick together our local constructs and obtain a product AB = C inside \mathcal{R} with the desired invariant factors.

Theorem

(A. and Marques de Sá, 90) Let $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n$, and $\gamma_1, \ldots, \gamma_n$, be 3n elements of \mathcal{R} , such that $\alpha_i | \alpha_{i+1}, \beta_i | \beta_{i+1}$ and $\gamma_i | \gamma_{i+1}$, for $i = 1, \ldots, n-1$. The following conditions are pairwise equivalent:

(a) There exist $n \times n$ matrices over \mathcal{R} , say A, B and C with invariant factors $(\alpha_i), (\beta_i)$ and $\gamma_i)$ resp. such that AB = C.

(b) For each prime $p \in \mathcal{P}$, there exist $n \times n$ matrices over \mathcal{R}_p say A_p , B_p and C_p with \mathcal{R}_p -invariant factors (α_i) , (β_i) and (γ_i) resp. such that $A_pB_p = C_p$.

(c) For each prime $p \in \mathcal{P}$, there exist $n \times n$ matrices over \mathcal{R} say \bar{A}_p , \bar{B}_p and \bar{C}_p whose \mathcal{R} -invariant factors are the powers of p contained in (α_i) , (β_i) and γ_i) resp. such that $\bar{A}_p \bar{B}_p = \bar{C}_p$.

Matrix localization continued

R.C. Thompson, 1985, shows $(a) \Leftrightarrow (c)$, that is, the product is localizable inside of \mathcal{R} . We work in the extended \mathcal{R}_p . We prove $(b) \Rightarrow (c)$ and $(c) \Rightarrow (a)$.

Lemma

(R.C.Thompson, 82) Given $n \times n$ matrices A, B and C = AB over \mathcal{R}_p , we may assume that:

(i) A is upper triangular with p powers along the diagonal,

(ii) B is diagonal with p-powers along the diagonal,

(iii) C is upper triangular with p-powers along the diagonal.

 $(b) \Rightarrow (c)$ Let $\mu_j \in \mathcal{R}$ be a least common multiple of the denominators of the entries in the *j*-th column of *A*. Define $d_j := \mu_1 \mu_2 \cdots \mu_j$ and the \mathcal{R}_p -unimodular matrix

$$\Delta := diag(d_1, d_2, \ldots, d_n).$$

Put $\overline{A} := \Delta^{-1}A\Delta$, $\overline{B} := B$, and $\overline{C} := \Delta^{-1}C\Delta$; \mathcal{R} -matrices and $\overline{A}\overline{B} = \overline{C}$. The $det(\overline{A})$ is a power of p thus the \mathcal{R} -invariant factors of \overline{A} are powers of p. Similarly for \overline{C} the \mathcal{R} - invariant factors of \overline{C} are powers of p. This proves (c) because $\overline{A} \sim_p A$ and $\overline{B} \sim_p B$ and $\overline{C} \sim_p C$.

Matrix localization continued

$$(c) \Rightarrow (a)$$

Lemma

(Commutation property) Let X_1, X_2, \ldots, X_t be any $n \times n$ matrices over \mathcal{R} . Given $\sigma \in \mathfrak{S}_t$, there exist \mathcal{R} -matrices X'_1, X'_2, \ldots, X'_t \mathcal{R} -equivalent to X_1, X_2, \ldots, X_t respectively such that

$$X_1X_2\ldots X_t = X'_{\sigma(1)}X'_{\sigma(2)}\ldots X'_{\sigma(t)}.$$

t = 2

$$X_1^t \sim X_1, \quad X_2^t \sim X_2, \quad X_1 X_2 \sim (X_1 X_2)^t$$

 $X_1X_2 = U(X_1X_2)^t V = UX_2^t X_1^t V = (UU_2X_2V_2)(U_1X_1V_1V) = X_2'X_1',$

for some \mathcal{R} -unimodular matrices U, U_1, U_2, V, V_1, V_2 .

Matrix localization continued

 $(c) \Rightarrow (a)$ Let p_1, \ldots, p_m be the distinct primes of α_i 's, β_i 's and γ_i 's. For each $k \in \{1, \ldots, m\}$, let \bar{A}_{p_k} , \bar{B}_{p_k} , \bar{C}_{p_k} be the \mathcal{R} -matrices whose \mathcal{R} -invariant factors are the powers of p_k contained in (α_i) , (β_i) and γ_i) resp. such that $\bar{A}_{p_k}\bar{B}_{p_k} = \bar{C}_{p_k}$.

- Put $\bar{A}_k := \bar{A}_{p_k}$, $\bar{B}_k := \bar{B}_{p_k}$, $\bar{C}_k := \bar{C}_{p_k}$.
- Define $C := C_1 C_2 \cdots C_m = A_1 B_1 A_2 B_2 \cdots A_m B_m$.
- By the commutation property, for each k there exist \mathcal{R} -matrices A'_k , B'_k equivalent to A_k , B_k respect. such that

$$C = A'_1 A'_2 \cdots A'_m B'_1 B'_2 \cdots B'_m.$$

• Define $A := A'_1 A'_2 \cdots A'_m$ and $B := B'_1 B'_2 \cdots B'_m$. Therefore, over the ring \mathcal{R} , A, B, and C have invariant factors $(\alpha_i), (\beta_i)$ and (γ_i) respect.

Invariant factors of a product of matrices over \mathcal{R}_p

Which α = (α_i), β = (β_i), γ = (γ_i) in Rⁿ_p can be invariant factors of n × n non-singular R_p-matrices A, B and C if C = AB?

Proposition

Let A be an $n \times n$ nonsingular \mathcal{R}_p . There exist a partition $a = (a_1, \ldots, a_n)$ such that

$$S_p(A) = diag(p^{\alpha_1}, p^{\alpha_2}, \dots, p^{\alpha_n}).$$

The sequence $\alpha = (\alpha_1, \ldots, \alpha_n)$ of exponents by decreasing order in the SNF of A is called the invariant partition of A.

Which α = (α_i), β = (β_i), γ = (γ_i) partitions of length ≤ n, can be invariant partitions of n × n non-singular R_p-matrices A, B and C if C = AB?

Schur polynomials

Let $x = (x_1, x_2, ..., x_n)$ be a sequence of indeterminates. For each partition γ of $\ell(\gamma) \leq n$, there exists a Schur function $s_{\gamma}(x)$ which is a homogeneous symmetric polynomial in x of total degree $|\gamma|$. These Schur functions $s_{\gamma}(x)$ for all such γ form a linear basis of the ring Λ_n of symmetric polynomials in x. It follows that

$$s_{lpha}(x) \ s_{eta}(x) = \sum_{\gamma} \ c_{lphaeta}^{\gamma} \ s_{\gamma}(x),$$

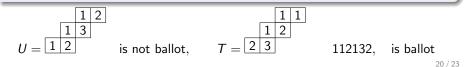
where the $c_{\alpha\beta}^{\gamma}$ are *non-negative integers* called Littlewood–Richardson coefficients.

• What does $c^{\gamma}_{\alpha\beta}$ count?

Theorem

The Littlewood-Richardson (LR) rule (D.E. Littlewood and A. Richardson, M. P-Schützenberger, G. Thomas).

 $c_{\alpha\beta}^{\gamma} = #\{ \text{ballot SSYT of shape } \gamma/\alpha \text{ and content } \beta \}.$



Invariant factors of a product of matrices over \mathcal{R}_p

 Which α, β, γ partitions of length ≤ n can be invariant partitions of *R_p*-matrices A, B and C if C = AB?

(P. Hall, J.A. Green 1956, T. Klein, 1968)

Theorem

Fora any discrete valuation ring \mathcal{R} (\mathcal{R}_p) a triple (α, β, γ) of partitions of length \leq n occurs as invariant factors of A, B and C = AB if and only if $c_{\alpha,\beta}^{\gamma} = c_{\bar{\alpha},\bar{\beta}}^{\bar{\gamma}} > 0.$

Theorem

(Klein's Theorem, 68) Suppose that $c_{\alpha,\beta}^{\gamma} = c_{\overline{\alpha},\overline{\beta}}^{\overline{\gamma}} > 0$ and let $T = (\overline{\alpha}^0, \overline{\alpha}^1, \dots, \overline{\alpha}^t)$ be an LR tableau of skew shape $\overline{\gamma}/\overline{\alpha}$ and content $\overline{\beta}$. Then there exist $n \times n$ nonsingular \mathcal{R}_p -matrices A_0, B_1, \dots, B_t such that (i) For each $r = 0, 1, \dots, t$, the matrix $A_r := A_0 B_1 B_2 \cdots B_r$ has invariant fact α^r . (ii) The matrix $B := B_1 B_2 \cdots B_t$ has invariant partition $\beta = (\beta_1, \dots, \beta_t)$. (iii) For each $r \in \{1, \dots, t\}$, B_r has invariant factor $(1, \dots, 1)$ of length β_r .

Our contribution, 1990

 We explicitly provide a matrix proof of Klein's theorem: We explicitly construct an R_p-matrix realization of a given LR tableau T.

We give a simple matrix proof that each \mathcal{R}_p -matrix triple (A, B, C = AB) gives rise to an unique LR tableau despite the various factorizations of the matrix B as aforesaid $B = B_1 B_2 \cdots B_t$.

- O. Azenhas, E. Marques de Sá, Matrix realizations of Littlewood-Richardson sequences, Linear and Multilinear Algebra, 27 (1990) 229 242.
- L. J. Gerstein, A local approach to matrix equivalence, LAA, 16,221–232, 1977.
- I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464491.
- T. Klein, The multiplication of Schur functions and extensions of *p*-modules, Journal of the London Mathematical Society, 43:280-284, 1968.
- D. E. Littlewood and A. R. Richardson, Group characters and algebra, Philos. Trans. London Ser. A 233:99-141, 1934.
- D. Lorenzini, Elementary divisor domains and Bézout domains, J. Algebra 371 (2012), 609619.
- R. Stanley, Smith normal form in Combinatorics, arXiv:1602.00166v2 [math.CO] 2 Apr 2016.
- R. C. Thompson, An inequality for invariant factors, Proceedings of the American Mathematical Society, 86:9-11, 1982.
- R. C. Thompson, Smith invariants of a product of integral matrices, in Linear Algebra and its Role in Systems Theory, Contemporary Mathematics, 47:401-435, AMS, 1985.