## Invariant factors of a product of matrices over a principal ideal domain and the product of Schur functions

Olga Azenhas, CMUC, University of Coimbra based on a 89 's joint paper with E . Marques de Sá

Tarde de Álgebra dedicada a Eduardo Marques de Sá por ocasião do seu $70^{\circ}$ aniversário

Coimbra, 2-12-2016

## Smith normal form: SNF

- $\mathcal{R}$ a commutative ring with 1 .
- $A$ and $B n \times n$ matrices over $\mathcal{R}$.
$A$ and $B$ are said to be equivalent, $A \sim B$, if $B=P A Q$ for some matrices $P$ and $Q$ in $G L_{n}(\mathcal{R})$,


## Smith normal form: SNF

- $\mathcal{R}$ a commutative ring with 1 .
- $A$ and $B n \times n$ matrices over $\mathcal{R}$.
$A$ and $B$ are said to be equivalent, $A \sim B$, if $B=P A Q$ for some matrices $P$ and $Q$ in $G L_{n}(\mathcal{R})$,


## Definition

$A$ an $n \times n$ matrix over $\mathcal{R}$. If there exist matrices $P, Q \in G L_{n}(\mathcal{R})$ such that

$$
P A Q=: S=\operatorname{diag}\left(d_{1}, d_{1} d_{2}, d_{1} d_{2} d_{3}, \ldots, d_{1} d_{2} \ldots d_{n}\right)
$$

with $d_{i} \in \mathcal{R}$, we then call $S$ a Smith normal form (SNF) of $A$.

## Smith normal form: SNF

- $\mathcal{R}$ a commutative ring with 1 .
- $A$ and $B n \times n$ matrices over $\mathcal{R}$.
$A$ and $B$ are said to be equivalent, $A \sim B$, if $B=P A Q$ for some matrices $P$ and $Q$ in $G L_{n}(\mathcal{R})$,


## Definition

$A$ an $n \times n$ matrix over $\mathcal{R}$. If there exist matrices $P, Q \in G L_{n}(\mathcal{R})$ such that

$$
P A Q=: S=\operatorname{diag}\left(d_{1}, d_{1} d_{2}, d_{1} d_{2} d_{3}, \ldots, d_{1} d_{2} \ldots d_{n}\right)
$$

with $d_{i} \in \mathcal{R}$, we then call $S$ a Smith normal form (SNF) of $A$.

- $\operatorname{det}(A)=u d_{1}^{n} d_{2}^{n-1} \ldots d_{n-1}^{2} d_{n}^{1}$ with $u$ an unity in $\mathcal{R}$.


## Smith normal form: SNF

- $\mathcal{R}$ a commutative ring with 1 .
- $A$ and $B n \times n$ matrices over $\mathcal{R}$.
$A$ and $B$ are said to be equivalent, $A \sim B$, if $B=P A Q$ for some matrices $P$ and $Q$ in $G L_{n}(\mathcal{R})$,


## Definition

$A$ an $n \times n$ matrix over $\mathcal{R}$. If there exist matrices $P, Q \in G L_{n}(\mathcal{R})$ such that

$$
P A Q=: S=\operatorname{diag}\left(d_{1}, d_{1} d_{2}, d_{1} d_{2} d_{3}, \ldots, d_{1} d_{2} \ldots d_{n}\right)
$$

with $d_{i} \in \mathcal{R}$, we then call $S$ a Smith normal form (SNF) of $A$.

- $\operatorname{det}(A)=u d_{1}^{n} d_{2}^{n-1} \ldots d_{n-1}^{2} d_{n}^{1}$ with $u$ an unity in $\mathcal{R}$.
- Observations
- Every diagonal matrix over $\mathcal{R}$ admits such a diagonal reduction if and only if every finitely generated ideal is principal (Bézout ring).
- If every matrix over $\mathcal{R}$ admits such a diagonal reduction, $\mathcal{R}$ is called an elementary divisor ring (El.Div $\subseteq$ Bez).


## Existence of SNF

- $\mathcal{R}=\mathbb{K}$ a field:
- By elementary row and column operations (Gaussian elimination), we may compute the SNF of $A$ which is the echelon form

$$
\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{r}, 0, \ldots, 0\right), \quad \alpha_{i}=1, \quad r=\operatorname{rank}(A)
$$

- $\mathcal{R}=\mathbb{Z}$.
- The existence of Euclidean's algorithm guarantees that every unimodular matrix can be written as a product of elementary matrices. By elementary row and column operations we may compute the SNF which is unique up to sign $\pm 1$ of diagonal elements.

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right], \quad\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right] \rightarrow S=\left[\begin{array}{ll}
1 & 0 \\
0 & 6
\end{array}\right],-2+3=1
$$

## Existence of SNF continued

- $\mathcal{R}=\mathbb{Z}[x]$ is not an Euclidean ring nor a principal ring (Bézout ring). Not every diagonal matrix has a SNF.
Suppose that the diagonal matrix

$$
A=\left[\begin{array}{cc}
2 & 0 \\
0 & x
\end{array}\right]
$$

has SNF $S=P A Q$. Then the only possible SNF is $S=\operatorname{diag}(1,2 x)$ since $\operatorname{det}(S)= \pm 2 x$.
On the other hand, putting $x=2$ in $S$ gives $\operatorname{SNF} \operatorname{diag}(1,4)$ over $\mathbb{Z}$ but putting $x=2$ in $A$ yields SNF $\operatorname{diag}(2,2)$ over $\mathbb{Z}$.

## SNF over a PID

- $\mathcal{R}$ is a PID: an analogue of the fundamental theorem of arithmetic holds; any two elements of a PID have a greatest common divisor although it may not be possible to find it using the Euclidean algorithm; Bézout's identity is satisfied.
- Examples. $\mathbb{K}$ any field; $\mathbb{Z}$ the ring of integers; $\mathbb{K}[x]$ the ring of polynomials in one variable with coefficients in $\mathbb{K} ; \mathbb{K}[[x]]$ the ring of formal power series in one variable over a field $\mathbb{K}$, more generally any discrete valuation ring.


## Proposition

Over a PID the SNF always exists and is unique up to unit multiples,

$$
S(A):=P A Q=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), \quad \alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{n} .
$$

The $\alpha_{i}$ are the invariant factors of $A$; they are unique up to unit multiples.
For $1 \leq k \leq n$, we have that $\alpha_{1} \alpha_{2} \cdots \alpha_{k}$ is equal to the gcd of all $k \times k$ minors of $A$, with the convention that if all $k \times k$ minors are 0 , then their gcd is 0 .

- $\mathcal{R}$-matrices $A, B, n \times n, A \sim B$, iff $S(A)=S(B)$.


## Gaussian elimination: Elementary row and column operations

- How should one effect the diagonalization on a matrix $A$ over a PID?

If the ring is Euclidean, elementary row and column operations will do the job.
In general it relies on the theory of determinantal divisors, the greatest common divisor of all $k \times k$ subdeterminats of $A$.

## Localization

- $\mathcal{R}$ a PID and $p$ a prime element in $\mathcal{R}$.
- $\mathcal{F} \supseteq \mathcal{R}$ the field of fractions of $\mathcal{R}$. The localization of $\mathcal{R}$ with respect to $p$ is

$$
\mathcal{R}_{p}:=\{a / b \in \mathcal{F}:(a, b)=1, p \nmid b\} .
$$

$\mathcal{R}_{p}$ is the subring of $\mathcal{F}$ generated by $\mathcal{R}$ and the inverses in $\mathcal{F}$ of all elements of $\mathcal{R}$ that are outside of $(p)$.

- $p$ is the unique prime in $\mathcal{R}_{p}$ up to multiples of units
- $f \neq 0 \in \mathcal{R}_{p}$ is an unit iff $a, b \in \mathcal{R}$ and relatively prime with $p$.
- $f \neq 0 \in \mathcal{R}_{p}$ then $f=\mu p^{\nu}$ with $\mu$ an $\mathcal{R}_{p}$ unit and $\nu$ a non negative integer.
- $f=0:=p^{\infty}$.
- $\mathcal{R}_{p}$ is a PID and an Euclidean domain whose proper ideals are $(p) \supset\left(p^{2}\right) \supset\left(p^{3}\right) \supset \ldots$.
$\mathcal{R}_{p}$ is a discrete valuation ring with valuation defined by $\nu \geq 0$.
- Examples. $\mathbb{Z}_{p}=\{n / m: n, m \in \mathbb{Z}: p \nmid m\}$, for any $p$ prime integer. The ring $K[[x]]$ of formal power series.


## SNF over $\mathcal{R}_{p}$

## Proposition

If $A$ is $\mathcal{R}_{p}$-matrix, its SNF is

$$
S_{p}(A):=\operatorname{diag}\left(p^{\nu_{1}}, \ldots, p^{\nu_{r}}, 0, \ldots, 0\right),
$$

for some integers $0 \leq \nu_{1} \leq \nu_{2} \cdots \leq \nu_{r}, r$ the rank of $A$. Moreover the group of unimodular matrices over $\mathcal{R}_{p}$ is generated by the elementary matrices and $S_{p}(A)$ may be obtained by Gaussian elimination.

## Corollary

$S_{p}\left(A^{t}\right)=S_{p}(A)$ and $A \sim_{p} A^{t}$.

- If $A$ is $\mathcal{R}$-matrix with $\mathcal{R}$ invariant factors $\alpha_{1}\left|\alpha_{2}\right| \ldots$ the $p$ powers contained in $\alpha_{1}, \alpha_{2}, \ldots$ constitute the $\mathcal{R}_{p}$-invariant factors of $A$ as a matrix over the extended $\mathcal{R}_{p}$,

$$
A \sim_{p} S_{p}(A)
$$

## Local global principle

Fix a complete set $\mathcal{P}$ of non associated primes of $\mathcal{R}$.

## Proposition

Let $A, B$ over $\mathcal{R}$.

- $S(A)=\prod_{p \in \mathcal{P}} S_{p}(A)$.
- $A \sim B$ iff $A \sim_{p} B$ for all $p \in \mathcal{P}$.
- $(|A|,|B|)=1$ then $S(A B)=S(A) S(B)$.


## Invariant factors of a product of matrices over a PID

- Which $\alpha=\left(\alpha_{i}\right), \beta=\left(\beta_{i}\right), \gamma=\left(\gamma_{i}\right)$ in $\mathcal{R}^{n}$ can be invariant factors of $n \times n$ non-singular $\mathcal{R}$-matrices $A, B$ and $C$ if $C=A B$ ?


## Localization of a matrix product

A matrix product over $\mathcal{R}$ is localizable in the following sense: we wish to construct matrices $A, B$ and $C=A B$ over $\mathcal{R}$ with given invariant factors. First we work out in $\mathcal{R}_{p}$, for $p \in \mathcal{P}$, then we stick together our local constructs and obtain a product $A B=C$ inside $\mathcal{R}$ with the desired invariant factors.

## Localization of a matrix product

A matrix product over $\mathcal{R}$ is localizable in the following sense: we wish to construct matrices $A, B$ and $C=A B$ over $\mathcal{R}$ with given invariant factors. First we work out in $\mathcal{R}_{p}$, for $p \in \mathcal{P}$, then we stick together our local constructs and obtain a product $A B=C$ inside $\mathcal{R}$ with the desired invariant factors.

## Theorem

(A. and Marques de Sá, 90) Let $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n}$, and $\gamma_{1}, \ldots, \gamma_{n}$, be $3 n$ elements of $\mathcal{R}$, such that $\alpha_{i}\left|\alpha_{i+1}, \beta_{i}\right| \beta_{i+1}$ and $\gamma_{i} \mid \gamma_{i+1}$, for $i=1, \ldots, n-1$. The following conditions are pairwise equivalent:
(a) There exist $n \times n$ matrices over $\mathcal{R}$, say $A, B$ and $C$ with invariant factors $\left(\alpha_{i}\right),\left(\beta_{i}\right)$ and $\left.\gamma_{i}\right)$ resp. such that $A B=C$.
(b) For each prime $p \in \mathcal{P}$, there exist $n \times n$ matrices over $\mathcal{R}_{p}$ say $A_{p}, B_{p}$ and $C_{p}$ with $\mathcal{R}_{p}$-invariant factors $\left(\alpha_{i}\right),\left(\beta_{i}\right)$ and $\left(\gamma_{i}\right)$ resp. such that $A_{p} B_{p}=C_{p}$.
(c) For each prime $p \in \mathcal{P}$, there exist $n \times n$ matrices over $\mathcal{R}$ say $\bar{A}_{p}, \bar{B}_{p}$ and $\bar{C}_{p}$ whose $\mathcal{R}$-invariant factors are the powers of $p$ contained in $\left(\alpha_{i}\right),\left(\beta_{i}\right)$ and $\left.\gamma_{i}\right)$ resp. such that $\bar{A}_{p} \bar{B}_{p}=\bar{C}_{p}$.

## Matrix localization continued

R.C. Thompson, 1985 , shows $(a) \Leftrightarrow(c)$, that is, the product is localizable inside of $\mathcal{R}$. We work in the extended $\mathcal{R}_{p}$. We prove $(b) \Rightarrow(c)$ and $(c) \Rightarrow(a)$.

## Lemma

(R.C.Thompson, 82) Given $n \times n$ matrices $A, B$ and $C=A B$ over $\mathcal{R}_{p}$, we may assume that:
(i) A is upper triangular with $p$ powers along the diagonal,
(ii) $B$ is diagonal with p-powers along the diagonal,
(iii) $C$ is upper triangular with p-powers along the diagonal.
(b) $\Rightarrow(c)$ Let $\mu_{j} \in \mathcal{R}$ be a least common multiple of the denominators of the entries in the $j$-th column of $A$. Define $d_{j}:=\mu_{1} \mu_{2} \cdots \mu_{j}$ and the $\mathcal{R}_{p}$-unimodular matrix

$$
\Delta:=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right) .
$$

Put $\bar{A}:=\Delta^{-1} A \Delta, \bar{B}:=B$, and $\bar{C}:=\Delta^{-1} C \Delta ; \mathcal{R}$-matrices and $\bar{A} \bar{B}=\bar{C}$.
The $\operatorname{det}(\bar{A})$ is a power of $p$ thus the $\mathcal{R}$-invariant factors of $\bar{A}$ are powers of $p$. Similarly for $\bar{C}$ the $\mathcal{R}$ - invariant factors of $\bar{C}$ are powers of $p$.
This proves (c) because $\bar{A} \sim_{p} A$ and $\bar{B} \sim_{p} B$ and $\bar{C} \sim_{p} C$.

## Matrix localization continued

$$
(c) \Rightarrow(a)
$$

## Lemma

(Commutation property) Let $X_{1}, X_{2}, \ldots, X_{t}$ be any $n \times n$ matrices over $\mathcal{R}$. Given $\sigma \in \mathfrak{S}_{t}$, there exist $\mathcal{R}$-matrices $X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{t}^{\prime} \mathcal{R}$-equivalent to $X_{1}, X_{2}, \ldots, X_{t}$ respectively such that

$$
X_{1} X_{2} \ldots X_{t}=X_{\sigma(1)}^{\prime} X_{\sigma(2)}^{\prime} \ldots X_{\sigma(t)}^{\prime}
$$

$t=2$

$$
\begin{gathered}
X_{1}^{t} \sim X_{1}, \quad X_{2}^{t} \sim X_{2}, \quad X_{1} X_{2} \sim\left(X_{1} X_{2}\right)^{t} \\
X_{1} X_{2}=U\left(X_{1} X_{2}\right)^{t} V=U X_{2}^{t} X_{1}^{t} V=\left(U U_{2} X_{2} V_{2}\right)\left(U_{1} X_{1} V_{1} V\right)=X_{2}^{\prime} X_{1}^{\prime},
\end{gathered}
$$

for some $\mathcal{R}$-unimodular matrices $U, U_{1}, U_{2}, V, V_{1}, V_{2}$.

## Matrix localization continued

$$
(c) \Rightarrow(a)
$$

Let $p_{1}, \ldots, p_{m}$ be the distinct primes of $\alpha_{i}$ 's, $\beta_{i}$ 's and $\gamma_{i}$ 's. For each $k \in\{1, \ldots, m\}$, let $\bar{A}_{p_{k}}, \bar{B}_{p_{k}}, \bar{C}_{p_{k}}$ be the $\mathcal{R}$-matrices whose $\mathcal{R}$-invariant factors are the powers of $p_{k}$ contained in $\left(\alpha_{i}\right),\left(\beta_{i}\right)$ and $\left.\gamma_{i}\right)$ resp. such that $\bar{A}_{p_{k}} \bar{B}_{p_{k}}=\bar{C}_{p_{k}}$.

- Put $\bar{A}_{k}:=\bar{A}_{p_{k}}, \bar{B}_{k}:=\bar{B}_{p_{k}}, \bar{C}_{k}:=\bar{C}_{p_{k}}$.
- Define $C:=C_{1} C_{2} \cdots C_{m}=A_{1} B_{1} A_{2} B_{2} \cdots A_{m} B_{m}$.
- By the commutation property, for each $k$ there exist $\mathcal{R}$-matrices $A_{k}^{\prime}, B_{k}^{\prime}$ equivalent to $A_{k}, B_{k}$ respect. such that

$$
C=A_{1}^{\prime} A_{2}^{\prime} \cdots A_{m}^{\prime} B_{1}^{\prime} B_{2}^{\prime} \cdots B_{m}^{\prime} .
$$

- Define $A:=A_{1}^{\prime} A_{2}^{\prime} \cdots A_{m}^{\prime}$ and $B:=B_{1}^{\prime} B_{2}^{\prime} \cdots B_{m}^{\prime}$. Therefore, over the ring $\mathcal{R}$, $A, B$, and $C$ have invariant factors $\left(\alpha_{i}\right),\left(\beta_{i}\right)$ and $\left(\gamma_{i}\right)$ respect.


## Invariant factors of a product of matrices over $\mathcal{R}_{p}$

- Which $\alpha=\left(\alpha_{i}\right), \beta=\left(\beta_{i}\right), \gamma=\left(\gamma_{i}\right)$ in $\mathcal{R}_{p}^{n}$ can be invariant factors of $n \times n$ non-singular $\mathcal{R}_{p}$-matrices $A, B$ and $C$ if $C=A B$ ?


## Proposition

Let $A$ be an $n \times n$ nonsingular $\mathcal{R}_{p}$. There exist a partition $a=\left(a_{1}, \ldots, a_{n}\right)$ such that

$$
S_{p}(A)=\operatorname{diag}\left(p^{\alpha_{1}}, p^{\alpha_{2}}, \ldots, p^{\alpha_{n}}\right) .
$$

The sequence $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of exponents by decreasing order in the SNF of $A$ is called the invariant partition of $A$.

- Which $\alpha=\left(\alpha_{i}\right), \beta=\left(\beta_{i}\right), \gamma=\left(\gamma_{i}\right)$ partitions of length $\leq n$, can be invariant partitions of $n \times n$ non-singular $\mathcal{R}_{p}$-matrices $A, B$ and $C$ if $C=A B$ ?


## Schur polynomials

Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a sequence of indeterminates. For each partition $\gamma$ of $\ell(\gamma) \leq n$, there exists a Schur function $s_{\gamma}(x)$ which is a homogeneous symmetric polynomial in $x$ of total degree $|\gamma|$. These Schur functions $s_{\gamma}(x)$ for all such $\gamma$ form a linear basis of the ring $\Lambda_{n}$ of symmetric polynomials in $x$. It follows that

$$
s_{\alpha}(x) s_{\beta}(x)=\sum_{\gamma} c_{\alpha \beta}^{\gamma} s_{\gamma}(x)
$$

where the $c_{\alpha \beta}^{\gamma}$ are non-negative integers called Littlewood-Richardson coefficients.

- What does $c_{\alpha \beta}^{\gamma}$ count?


## Theorem

The Littlewood-Richardson (LR) rule (D.E. Littlewood and A. Richardson, M. P-Schützenberger, G. Thomas).

$$
c_{\alpha \beta}^{\gamma}=\#\{\text { ballot SSYT of shape } \gamma / \alpha \text { and content } \beta\} .
$$



## Invariant factors of a product of matrices over $\mathcal{R}_{p}$

- Which $\alpha, \beta, \gamma$ partitions of length $\leq n$ can be invariant partitions of $\mathcal{R}_{p}$-matrices $A, B$ and $C$ if $C=A B$ ?
(P. Hall, J.A. Green 1956, T. Klein, 1968)


## Theorem

Fora any discrete valuation ring $\mathcal{R}\left(\mathcal{R}_{p}\right)$ a triple $(\alpha, \beta, \gamma)$ of partitions of length $\leq n$ occurs as invariant factors of $A, B$ and $C=A B$ if and only if $c_{\alpha, \beta}^{\gamma}=c_{\bar{\alpha}, \bar{\beta}}^{\bar{\gamma}}>0$.

## Theorem

(Klein's Theorem, 68) Suppose that $c_{\alpha, \beta}^{\gamma}=c_{\bar{\alpha}, \bar{\beta}}^{\bar{\gamma}}>0$ and let $T=\left(\bar{\alpha}^{0}, \bar{\alpha}^{1}, \ldots, \bar{\alpha}^{t}\right)$ be an $L R$ tableau of skew shape $\bar{\gamma} / \bar{\alpha}$ and content $\bar{\beta}$. Then there exist $n \times n$ nonsingular $\mathcal{R}_{p}$-matrices $A_{0}, B_{1}, \ldots, B_{t}$ such that
(i) For each $r=0,1, \ldots, t$, the matrix $A_{r}:=A_{0} B_{1} B_{2} \cdots B_{r}$ has invariant fact $\alpha^{r}$.
(ii) The matrix $B:=B_{1} B_{2} \cdots B_{t}$ has invariant partition $\beta=\left(\beta_{1}, \ldots, \beta_{t}\right)$.
(iii) For each $r \in\{1, \ldots, t\}, B_{r}$ has invariant factor $(1, \ldots, 1)$ of length $\beta_{r}$.

## Our contribution, 1990

- We explicitly provide a matrix proof of Klein's theorem:

We explicitly construct an $\mathcal{R}_{p}$-matrix realization of a given LR tableau $T$.
We give a simple matrix proof that each $\mathcal{R}_{p}$-matrix triple $(A, B, C=A B)$ gives rise to an unique $L R$ tableau despite the various factorizations of the matrix $B$ as aforesaid $B=B_{1} B_{2} \cdots B_{t}$.
(1) O. Azenhas, E. Marques de Sá, Matrix realizations of Littlewood-Richardson sequences, Linear and Multilinear Algebra, 27 (1990) 229242.
(2) L. J. Gerstein, A local approach to matrix equivalence, LAA, 16,221-232, 1977.
(3) I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464491.
(9) T. Klein, The multiplication of Schur functions and extensions of $p$-modules, Journal of the London Mathematical Society, 43:280-284, 1968.
(3) D. E. Littlewood and A. R. Richardson, Group characters and algebra, Philos. Trans. London Ser. A 233:99-141, 1934.
(0) D. Lorenzini, Elementary divisor domains and Bézout domains, J. Algebra 371 (2012), 609619.
(1) R. Stanley, Smith normal form in Combinatorics, arXiv:1602.00166v2 [math.CO] 2 Apr 2016.
(8) R. C. Thompson, An inequality for invariant factors, Proceedings of the American Mathematical Society, 86:9-11, 1982.
(0) R. C. Thompson, Smith invariants of a product of integral matrices, in Linear Algebra and its Role in Systems Theory, Contemporary Mathematics, 47:401-435, AMS, 1985.

