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Tarde de Álgebra dedicada a Eduardo Marques de Sá
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Smith normal form: SNF
R a commutative ring with 1.
A and B n × n matrices over R.
A and B are said to be equivalent, A ∼ B, if B = PAQ for some
matrices P and Q in GLn(R),

Definition

A an n× n matrix over R. If there exist matrices P,Q ∈ GLn(R) such that

PAQ =: S = diag(d1, d1d2, d1d2d3, . . . , d1d2 . . . dn)

with di ∈ R, we then call S a Smith normal form (SNF) of A.

det(A) = udn
1 d

n−1
2 . . . d2

n−1d
1
n with u an unity in R.

Observations
I Every diagonal matrix over R admits such a diagonal reduction if and

only if every finitely generated ideal is principal (Bézout ring).

I If every matrix over R admits such a diagonal reduction, R is called an
elementary divisor ring (El .Div ⊆ Bez).
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I If every matrix over R admits such a diagonal reduction, R is called an
elementary divisor ring (El .Div ⊆ Bez).

3 / 23



Smith normal form: SNF
R a commutative ring with 1.
A and B n × n matrices over R.
A and B are said to be equivalent, A ∼ B, if B = PAQ for some
matrices P and Q in GLn(R),

Definition

A an n× n matrix over R. If there exist matrices P,Q ∈ GLn(R) such that

PAQ =: S = diag(d1, d1d2, d1d2d3, . . . , d1d2 . . . dn)

with di ∈ R, we then call S a Smith normal form (SNF) of A.

det(A) = udn
1 d

n−1
2 . . . d2

n−1d
1
n with u an unity in R.

Observations
I Every diagonal matrix over R admits such a diagonal reduction if and

only if every finitely generated ideal is principal (Bézout ring).
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Existence of SNF

R = K a field:

I By elementary row and column operations (Gaussian elimination), we
may compute the SNF of A which is the echelon form

diag(α1, . . . , αr , 0, . . . , 0), αi = 1, r = rank(A).

R = Z.

I The existence of Euclidean’s algorithm guarantees that every
unimodular matrix can be written as a product of elementary matrices.
By elementary row and column operations we may compute the SNF
which is unique up to sign ±1 of diagonal elements.ï

2 0
0 2

ò
,

ï
2 0
0 3

ò
→ S =

ï
1 0
0 6

ò
,−2 + 3 = 1
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Existence of SNF continued

R = Z[x ] is not an Euclidean ring nor a principal ring (Bézout ring). Not
every diagonal matrix has a SNF.

Suppose that the diagonal matrix

A =

ï
2 0
0 x

ò
,

has SNF S = PAQ. Then the only possible SNF is S = diag(1, 2x) since
det(S) = ±2x .

On the other hand, putting x = 2 in S gives SNF diag(1, 4) over Z but
putting x = 2 in A yields SNF diag(2, 2) over Z.
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SNF over a PID

R is a PID: an analogue of the fundamental theorem of arithmetic holds;
any two elements of a PID have a greatest common divisor although it may
not be possible to find it using the Euclidean algorithm; Bézout’s identity is
satisfied.

Examples. K any field; Z the ring of integers; K[x ] the ring of polynomials
in one variable with coefficients in K; K[[x ]] the ring of formal power series
in one variable over a field K, more generally any discrete valuation ring.

Proposition

Over a PID the SNF always exists and is unique up to unit multiples,

S(A) := PAQ = diag(α1, α2, . . . , αn), α1|α2| . . . |αn.

The αi are the invariant factors of A; they are unique up to unit multiples.

For 1 ≤ k ≤ n, we have that α1α2 · · ·αk is equal to the gcd of all k × k minors of
A, with the convention that if all k × k minors are 0, then their gcd is 0.

R-matrices A, B, n × n, A ∼ B, iff S(A) = S(B).
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Gaussian elimination: Elementary row and column
operations

How should one effect the diagonalization on a matrix A over a PID?

If the ring is Euclidean, elementary row and column operations will do
the job.
In general it relies on the theory of determinantal divisors, the
greatest common divisor of all k × k subdeterminats of A.
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Localization

R a PID and p a prime element in R.

F ⊇ R the field of fractions of R. The localization of R with respect to p is

Rp := {a/b ∈ F : (a, b) = 1, p - b}.

Rp is the subring of F generated by R and the inverses in F of all elements
of R that are outside of (p).

I p is the unique prime in Rp up to multiples of units
I f 6= 0 ∈ Rp is an unit iff a, b ∈ R and relatively prime with p.
I f 6= 0 ∈ Rp then f = µpν with µ an Rp unit and ν a non negative

integer.
I f = 0 := p∞.

Rp is a PID and an Euclidean domain whose proper ideals are
(p) ⊃ (p2) ⊃ (p3) ⊃ . . . .
Rp is a discrete valuation ring with valuation defined by ν ≥ 0.

Examples. Zp = {n/m : n,m ∈ Z : p - m}, for any p prime integer. The ring
K [[x ]] of formal power series.
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SNF over Rp

Proposition

If A is Rp-matrix, its SNF is

Sp(A) := diag(pν1 , . . . , pνr , 0, . . . , 0),

for some integers 0 ≤ ν1 ≤ ν2 · · · ≤ νr , r the rank of A. Moreover the group of
unimodular matrices over Rp is generated by the elementary matrices and Sp(A)
may be obtained by Gaussian elimination.

Corollary

Sp(At) = Sp(A) and A ∼p At .

If A is R-matrix with R invariant factors α1|α2| . . . the p powers contained
in α1, α2, . . . constitute the Rp-invariant factors of A as a matrix over the
extended Rp,

A ∼p Sp(A)

11 / 23



Local global principle

Fix a complete set P of non associated primes of R.

Proposition

Let A, B over R.

S(A) =
∏
p∈P

Sp(A).

A ∼ B iff A ∼p B for all p ∈ P.

(|A|, |B|) = 1 then S(AB) = S(A)S(B).
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Invariant factors of a product of matrices over a PID

Which α = (αi ), β = (βi ), γ = (γi ) in Rn can be invariant factors of n × n
non-singular R-matrices A, B and C if C = AB?

13 / 23



Localization of a matrix product

A matrix product over R is localizable in the following sense: we wish to
construct matrices A,B and C = AB over R with given invariant factors. First we
work out in Rp, for p ∈ P, then we stick together our local constructs and obtain
a product AB = C inside R with the desired invariant factors.

Theorem

(A. and Marques de Sá, 90) Let α1, . . . , αn, β1, . . . , βn, and γ1, . . . , γn, be 3n
elements of R, such that αi |αi+1, βi |βi+1 and γi |γi+1, for i = 1, . . . , n − 1. The
following conditions are pairwise equivalent:

(a) There exist n × n matrices over R, say A, B and C with invariant factors
(αi ), (βi ) and γi ) resp. such that AB = C .

(b) For each prime p ∈ P, there exist n × n matrices over Rp say Ap, Bp and Cp

with Rp-invariant factors (αi ), (βi ) and (γi ) resp. such that ApBp = Cp.

(c) For each prime p ∈ P, there exist n × n matrices over R say Āp, B̄p and C̄p

whose R-invariant factors are the powers of p contained in (αi ), (βi ) and γi )
resp. such that ĀpB̄p = C̄p.
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Matrix localization continued
R.C. Thompson, 1985, shows (a)⇔ (c), that is, the product is localizable inside
of R. We work in the extended Rp. We prove (b)⇒ (c) and (c)⇒ (a).

Lemma

(R.C.Thompson, 82) Given n × n matrices A, B and C = AB over Rp, we may
assume that:

(i) A is upper triangular with p powers along the diagonal,

(ii) B is diagonal with p-powers along the diagonal,

(iii) C is upper triangular with p-powers along the diagonal.

(b)⇒ (c) Let µj ∈ R be a least common multiple of the denominators of the
entries in the j-th column of A. Define dj := µ1µ2 · · ·µj and the Rp-unimodular
matrix

∆ := diag(d1, d2, . . . , dn).

Put Ā := ∆−1A∆, B̄ := B, and C̄ := ∆−1C∆; R-matrices and ĀB̄ = C̄ .
The det(Ā) is a power of p thus the R-invariant factors of Ā are powers of p.
Similarly for C̄ the R- invariant factors of C̄ are powers of p.

This proves (c) because Ā ∼p A and B̄ ∼p B and C̄ ∼p C .
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Matrix localization continued

(c)⇒ (a)

Lemma

(Commutation property) Let X1,X2, . . . ,Xt be any n × n matrices over R. Given
σ ∈ St , there exist R-matrices X ′1,X

′
2, . . . ,X

′
t R-equivalent to X1,X2, . . . ,Xt

respectively such that

X1X2 . . .Xt = X ′σ(1)X
′
σ(2) . . .X

′
σ(t).

t = 2
X t

1 ∼ X1, X t
2 ∼ X2, X1X2 ∼ (X1X2)t

X1X2 = U(X1X2)tV = UX t
2X

t
1V = (UU2X2V2)(U1X1V1V ) = X ′2X

′
1,

for some R-unimodular matrices U,U1, U2, V ,V1, V2.
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Matrix localization continued

(c)⇒ (a)
Let p1, . . . , pm be the distinct primes of αi ’s, βi ’s and γi ’s. For each
k ∈ {1, . . . ,m}, let Āpk , B̄pk , C̄pk be the R-matrices whose R-invariant factors
are the powers of pk contained in (αi ), (βi ) and γi ) resp. such that Āpk B̄pk = C̄pk .

Put Āk := Āpk , B̄k := B̄pk , C̄k := C̄pk .

Define C := C1C2 · · ·Cm = A1B1A2B2 · · ·AmBm.

By the commutation property, for each k there exist R-matrices A′k , B
′
k

equivalent to Ak , Bk respect. such that

C = A′1A
′
2 · · ·A′mB ′1B ′2 · · ·B ′m.

Define A := A′1A
′
2 · · ·A′m and B := B ′1B

′
2 · · ·B ′m. Therefore, over the ring R,

A,B, and C have invariant factors (αi ), (βi ) and (γi ) respect.
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Invariant factors of a product of matrices over Rp

Which α = (αi ), β = (βi ), γ = (γi ) in Rn
p can be invariant factors of n × n

non-singular Rp-matrices A, B and C if C = AB?

Proposition

Let A be an n × n nonsingular Rp. There exist a partition a = (a1, . . . , an) such
that

Sp(A) = diag(pα1 , pα2 , . . . , pαn).

The sequence α = (α1, . . . , αn) of exponents by decreasing order in the SNF of A
is called the invariant partition of A.

Which α = (αi ), β = (βi ), γ = (γi ) partitions of length ≤ n, can be
invariant partitions of n × n non-singular Rp-matrices A, B and C if
C = AB?
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Schur polynomials
Let x = (x1, x2, . . . , xn) be a sequence of indeterminates. For each partition γ of
`(γ) ≤ n, there exists a Schur function sγ(x) which is a homogeneous symmetric
polynomial in x of total degree |γ|. These Schur functions sγ(x) for all such γ
form a linear basis of the ring Λn of symmetric polynomials in x . It follows that

sα(x) sβ(x) =
∑
γ

cγαβ sγ(x),

where the cγαβ are non-negative integers called Littlewood–Richardson coefficients.

What does cγαβ count?

Theorem

The Littlewood-Richardson (LR) rule (D.E. Littlewood and A. Richardson, M.
P-Schützenberger, G. Thomas).

cγαβ = #{ballot SSYT of shape γ/α and content β}.

U =

1 2
1 3

1 2 is not ballot, T =

1 1
1 2

2 3 112132, is ballot
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Invariant factors of a product of matrices over Rp

Which α, β, γ partitions of length ≤ n can be invariant partitions of
Rp-matrices A, B and C if C = AB?

(P. Hall, J.A. Green 1956, T. Klein, 1968)

Theorem

Fora any discrete valuation ring R (Rp) a triple (α, β, γ) of partitions of length
≤ n occurs as invariant factors of A, B and C = AB if and only if
cγα,β = c γ̄

ᾱ,β̄
> 0.

Theorem

(Klein’s Theorem, 68) Suppose that cγα,β = c γ̄
ᾱ,β̄

> 0 and let T = (ᾱ0, ᾱ1, . . . , ᾱt)

be an LR tableau of skew shape γ̄/ᾱ and content β̄. Then there exist n × n
nonsingular Rp-matrices A0,B1, . . . ,Bt such that
(i) For each r = 0, 1, . . . , t, the matrix Ar := A0B1B2 · · ·Br has invariant fact αr .
(ii) The matrix B := B1B2 · · ·Bt has invariant partition β = (β1, . . . , βt).
(iii) For each r ∈ {1, . . . , t}, Br has invariant factor (1, . . . , 1) of length βr .
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Our contribution, 1990

We explicitly provide a matrix proof of Klein’s theorem:
We explicitly construct an Rp-matrix realization of a given LR
tableau T .
We give a simple matrix proof that each Rp-matrix triple
(A,B,C = AB) gives rise to an unique LR tableau despite the various
factorizations of the matrix B as aforesaid B = B1B2 · · ·Bt .
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