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1. Partitions and Young diagrams

@ Fix a positive integer r > 1.
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of length I(1) =r.
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1. Partitions and Young diagrams

@ Fix a positive integer r > 1.

@ 1= (A1,...,4;), with Ay > --- > A, > 0 positive integers, is a partition
of length I(2) =r.

@ Each partition A is identified with a Young (Ferrer) diagram F*
consisting of || = Ay + - -- 4+ A, boxes arranged in r left adjusted rows
of lengths 44 > --- > 1, > 0.

Example
A1=(4,3,2),11=9,/(1) =3
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1. Partitions and Young diagrams

@ Fix a positive integer r > 1.

@ 1= (A1,...,4;), with Ay > --- > A, > 0 positive integers, is a partition
of length I(2) =r.

@ Each partition A is identified with a Young (Ferrer) diagram F*
consisting of || = Ay + - -- 4+ A, boxes arranged in r left adjusted rows
of lengths 44 > --- > 1, > 0.

Example
A1=(4,3,2),11=9,/(1) =3

| X =(3,3,2,1).
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1. Partitions and Young diagrams

@ Fix a positive integer r > 1.

@ 1= (A1,...,4;), with Ay > --- > A, > 0 positive integers, is a partition
of length I(2) =r.

@ Each partition A is identified with a Young (Ferrer) diagram F*
consisting of || = Ay + - -- 4+ A, boxes arranged in r left adjusted rows
of lengths 44 > --- > 1, > 0.

Example
A1=(4,3,2),11=9,/(1) =3

| A =(3,3,21).
Ft = FU = L

v

@ The partition A’ conjugate of 1 is such that F*' is obtained from F* by
interchanging rows and columns.
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2. Young Tableaux
@ Given a partition A with /(1) = r, fix a positive integer n > r.
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2. Young Tableaux
@ Given a partition A with /(1) = r, fix a positive integer n > r.
@ An n-semistandard tableau T of shape A is a filling of the boxes of the
Ferrer diagram F* with elements i in {1, ..., n} which is

» weakly increasing across rows from left to right
» strictly increasing down columns
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@ Given a partition A with /(1) = r, fix a positive integer n > r.
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2. Young Tableaux

@ Given a partition A with /(1) = r, fix a positive integer n > r.
@ An n-semistandard tableau T of shape A is a filling of the boxes of the
Ferrer diagram F* with elements i in {1, ..., n} which is

» weakly increasing across rows from left to right
» strictly increasing down columns

@ T hastype @ = (a1,...,ap) if T has «; entries equal i.
Example
1=(4,3,2),1()=3,n=7

2
4146
T — |5]6

7- semistandard tableau T of shape 1 = (4,3, 2),
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2. Young Tableaux

@ Given a partition A with /(1) = r, fix a positive integer n > r.
@ An n-semistandard tableau T of shape A is a filling of the boxes of the
Ferrer diagram F* with elements i in {1, ..., n} which is

» weakly increasing across rows from left to right
» strictly increasing down columns

@ T hastype @ = (a1,...,ap) if T has «; entries equal i.
Example
1=(4,3,2),1()=3,n=7

2
4146
T — |5]6

7- semistandard tableau T of shape 1 = (4,3,2), « = (0,1,1,3,1,3,0).

v
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2. Young Tableaux

@ Given a partition A with /(1) = r, fix a positive integer n > r.
@ An n-semistandard tableau T of shape A is a filling of the boxes of the
Ferrer diagram F* with elements i in {1, ..., n} which is

» weakly increasing across rows from left to right
» strictly increasing down columns

@ T hastype @ = (a1,...,ap) if T has «; entries equal i.
Example
1=(4,3,2),1()=3,n=7

2|3
4146
T — |5]6

I
»

7- semistandard tableau T of shape 1 = (4,3,2), « = (0,1,1,3,1,3,0).

v

@ Equivalently
T A(L))eZ?:1<i<ri<j<Aat—{1,....n} T(i,j) =Ty
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3. Schur functions

@ Let n be a fixed positive integer and x = (xi,..., X,) a sequence of
variables.
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3. Schur functions

@ Let n be a fixed positive integer and x = (xi,..., X,) a sequence of

variables.
@ The monomial weight of an n-semistandard tableau T of shape A is
the monomial of degree |4, in the variables xi, ..., X,
XT = 1—[ XTij
Tj

where Tj; runs over all the |4| entries of T.

Example
n=7

6]

(2N

[S21E - \V)
| (W

T = XT = x9x2x3%3 x5 X3 X9

7
a(T)=(0,1,1,3,1,3,0)

~
o
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Schur functions continued

@ Given a partition 2 with /(1) < n, the Schur function sp(4, x)
associated with the partition 1 is the homogeneous polynomial of
degree || on the variables x; ..., Xp,

)=2.X

where T runs over all n-semistandard tableaux of shape A.

Example
n=31=(21),14=3

101] [1][1] [1]2] [1]2] [1]3] [1]3] [2]2] [2]3]
2 3 2 3 2 3 3 3




Schur functions continued

@ Given a partition 2 with /(1) < n, the Schur function sp(4, x)
associated with the partition 1 is the homogeneous polynomial of
degree || on the variables x; ..., Xp,

)=2.X

where T runs over all n-semistandard tableaux of shape A.

Example
n=31=(21),14=3

101] [1][1] [1]2] [1]2] [1]3] [1]3] [2]2] [2]3]
2 3 2 3 2 3 3 3

Then

2 2 2 2 2 2
S3(A, X1, X2, X3) = Xy X2 + X7 X3 + X1 X5 + 2X1XoX3 + X1 X3 + X5X3 + XoX3.
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Schur functions continued

@ Given a partition 2 with /(1) < n, the Schur function sp(4, x)
associated with the partition 1 is the homogeneous polynomial of
degree || on the variables x; ..., Xp,

)=2.X

where T runs over all n-semistandard tableaux of shape A.

Example
n=31=(21),14=3

101] [1][1] [1]2] [1]2] [1]3] [1]3] [2]2] [2]3]
2 3 2 3 2 3 3 3

Then
_ 2 2 2 2 2 2
S3(A, X1, X2, X3) = Xy X2 + X7 X3 + X1 X5 + 2X1XoX3 + X1 X3 + X5X3 + XoX3.

n=2, S2(A, X1, X2) = XEX2 + X1 X3.




Schur functions continued

@ Given a partition 2 with /(1) < n, the Schur function s,(4, x)
associated with the partition A is the homogeneous polynomial of
degree || on the variables xy ..., Xp,

sn(1,X) = Z b
T

= ,<h,d)(a7
a weak composition of |4] of length < n
X* = x{"x3% ... X",
K, . is the Kostka number, the number of SSYTs of shape 1 and type
a.
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4. Schur functions are symmetric functions

@ Let C[x] be the ring of polynomials in the variables xi, ..., x,, over C.
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4. Schur functions are symmetric functions

@ Let C[x] be the ring of polynomials in the variables xi, ..., x,, over C.

@ Let S, be the symmetric group of degree n, consisting of all
permutations of {1,...,n}, and n € Sj,. There is a natural action of =
on f(x) € C[x],

ﬂf(X) = f(X,r(1), ceey Xﬂ(n)).
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4. Schur functions are symmetric functions

@ Let C[x] be the ring of polynomials in the variables xi, ..., x,, over C.

@ Let S, be the symmetric group of degree n, consisting of all
permutations of {1,...,n}, and n € Sj,. There is a natural action of =

on f(x) € C[x],
ﬂf(X) = f(X,r(1), ceey Xﬂ(n)).

@ Are Schur functions fixed points of this action?
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4. Schur functions are symmetric functions

@ Let C[x] be the ring of polynomials in the variables xi, ..., x,, over C.

@ Let S, be the symmetric group of degree n, consisting of all
permutations of {1,...,n}, and n € Sj,. There is a natural action of =
on f(x) € C[x],

ﬂf(X) = f(X,r(1), ceey Xﬂ(n)).

@ Are Schur functions fixed points of this action?
@ ltis enough to check for adjacent transpositions (ii+ 1) € Sy,

(i i+ 1)sp(A,x) = sp(4,X).
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4. Schur functions are symmetric functions

Let C[x] be the ring of polynomials in the variables xi, ..., x,, over C.

Let S, be the symmetric group of degree n, consisting of all
permutations of {1,...,n}, and n € Sj,. There is a natural action of =
on f(x) € C[x],

ﬂf(X) = f(X,r(1), ceey Xﬂ(n)).

Are Schur functions fixed points of this action?
It is enough to check for adjacent transpositions (ii + 1) € S,

(i i+ 1)sp(A,x) = sp(4,X).

Kia = Kia , With & = (ii + 1)a?
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5. Bender-Knuth involution on semistandard tableaux

@ Bender-Knuth involution is a bijection £ : T — Q, on the set of
semistandard tableaux of shape 4, such that the numbers of i’s and
(i + 1)’s are swapped when passing from T to Q with all other
multiplicities staying the same.
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5. Bender-Knuth involution on semistandard tableaux

@ Bender-Knuth involution is a bijection £ : T — Q, on the set of
semistandard tableaux of shape 4, such that the numbers of i’s and
(i + 1)’s are swapped when passing from T to Q with all other
multiplicities staying the same.

Example
A= (11,5,2)

—_
—_
—_
—_
N

2]2]2]3]3]4]
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5. Bender-Knuth involution on semistandard tableaux

@ Bender-Knuth involution is a bijection £ : T — Q, on the set of
semistandard tableaux of shape 4, such that the numbers of i’s and
(i + 1)’s are swapped when passing from T to Q with all other
multiplicities staying the same

Example
A= (11,5,2)

—_
—_
—_
—_
N

2]2]2]3]3]4]

33 —

&3

v

» each column of T contains either an i, i + 1 pair; exactly one of i, i + 1;
or neither.

» the numbers in such pairs are called fixed and the other occurrences of
i'sori+ 1’s are free.

» if in a row one has k free i's followed by ¢ free i 4+ 1’s then replace them
by ¢ free i’s followed by k free i + 1’s.
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5. Bender-Knuth involution on semistandard tableaux

@ Bender-Knuth involution is a bijection £ : T — Q, on the set of
semistandard tableaux of shape A, such that the numbers of i’s and

(i+ 1)’s are swapped when passing from T to Q with all other
multiplicities staying the same.

Example

1= (11,5,2)

1[1[1[1]2]2]2]2]3]3]4] 1[1[1[1]2]2]2]3]3]3][4]
2(2]3[3][3 2(2(2[2]3

3(3 —, |3]3

&23
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5. Bender-Knuth involution on semistandard tableaux

@ Bender-Knuth involution is a bijection £ : T — Q, on the set of
semistandard tableaux of shape A, such that the numbers of i’s and
(i+ 1)’s are swapped when passing from T to Q with all other

multiplicities staying the same.

Example
A= (11,5,2)

1]1(1(1]2

2|2]2]3]3]4]

2(213]3]3

3|3

N | —

N | —

2]2[3]3]3]4]

w
w
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5. Bender-Knuth involution on semistandard tableaux

@ Bender-Knuth involution is a bijection £ : T — Q, on the set of
semistandard tableaux of shape A, such that the numbers of i’s and
(i+ 1)’s are swapped when passing from T to Q with all other
multiplicities staying the same.

Example
1= (11,5,2)
1[1[1[1]2]2]2]2]3]3]4] 1[1[1[1]2]2]2]3]3]3][4]
2(2]3[3][3 2l2]2]2]3
3(3 - |3]3

T A LB 7 A = Q A1 S

X' = X{X3X3X, X™ = X{ X3 X5 %, )
Corollary

@ Kipg = Kiqo, With g any permutation of a.
@ The Schur function s,(4, x) is a homogeneous symmetric function in
X‘] s e ey Xn.
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6. The ring of symmetric functions

@ Given A with £(2) < n,

a a permutation of A.
The ring of symmetric functions on variables the x; ..., x, is the
vector space

A=Cm,.

@ For each k > 0, let A be the vector space generated by
{m, : || = k}. The Schur functions s, with || = k, on the variables
X1,...,Xn, form a basis of the vector space AX.

@ The Schur functions s, on the variables xi, ..., X, form an additive
basis of the ring A.
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7. Complete homogeneous symmetric functions and
elementary symmetric functions
@ row partition A = (m), (1) =1

Example
m=3,n=3
T - [1[2]2] @ = [1[1]8]

T = X1 XoXo x9 = X1 X1 X3.

X
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7. Complete homogeneous symmetric functions and
elementary symmetric functions
@ row partition A = (m), (1) = 1

Example
m=3,n=3
T - ]2]2] q = [1]1]3]
xT = X1 XX x9 = X1 X1 X3.

hs(x1, X2, X3) = Xf+xg+x§+x12X3 —i—x12xz + X4 x§+x1 x§+x1 XoX3 +X§X3 —i—xzx§
v
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7. Complete homogeneous symmetric functions and
elementary symmetric functions
@ row partition A = (m), (1) = 1

Example
m=3,n=3
T _ Q =
xT = X1 XX x9 = X1 X1 X3.
hs(x1, X2, X3) = x13+x23+xg+x12x3+x12x2+x1 x§+x1 x§+x1 x2x3+x§x3+x2x§

@ The m!" complete homogeneous symmetric function, in the variables

X1,...,Xn, is the sum of all monomials of degree m in the variables
)(1, [N ,)(n
hm(X1,. .., Xn) == Sp((M), X1,...,Xn) = Z Xiy Xig « « - X,

1<iy<-<im<n
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continued

@ column partiton A = (1,1,...,1) = (1")

Example
m=3,n=4
3]

T = xT = X1X3X4.

e3(X1, X2, X3, X4) = X1X2X3 + X1X2X4 + X1 X3X4 -+ X2X3X4
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continued

@ column partiton A = (1,1,...,1) = (1")

Example
m=3,n=4

T = XT:X1X3X4.

e3(X1, X2, X3, X4) = X1X2X3 + X1X2X4 + X1X3Xq + X2X3X4

@ The mt" elementary symmetric function, in the variables x, ..., Xn, is
the sum of all monomials x;, ... x;, for all strictly increasing sequences
1<if<ib<---<ip<n

em(Xt,-...Xn) :=Sp(1™), X1, ..., Xn) = Z Xiy Xip - « - Xir,

1<ij<-<im<n
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8. The (classical) Jacobi-Trudi determinant formulas

@ Let A be a partition with (1) = r < n.
@ The original definition of Schur function (and that Schur originally

used)
|Xj/li+n_l|r><l’
Sn(/l,X): |Xn—i|
o rxr
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8. The (classical) Jacobi-Trudi determinant formulas

@ Let A be a partition with (1) = r < n.
@ The original definition of Schur function (and that Schur originally

used)
|)(Al%in I|rxr
sn(4,x) = X
j rxr

@ The Schur function sp(4, x) can be expressed as a determinant in
terms of complete symmetric functions and elementary symmetric

functions
> Sp(4,x) = |h/1/.,,-+,-(x)|rxr, h-formula
ha, (x) hi—1(X)  hag2(x) o (X)) P (X)
hi(x) (X)) hga(X) o (X)) harra(X)
= hga(x)  hgpa(X) hy(x) oo - r+2(X) ha,—r13(x)
hapr1(X)  hprr2(X)  Pagera(x) ooy 41(X) hy, (x)

where we set hy =1, hy =0, k < 0.
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8. The (classical) Jacobi-Trudi determinant formulas

@ Let A be a partition with (1) = r < n.
@ The original definition of Schur function (and that Schur originally

used)
|X/L+n I|r><r
sn(4,x) = X
j rxr

@ The Schur function sp(4, x) can be expressed as a determinant in
terms of complete symmetric functions and elementary symmetric

functions
> Sp(4,x) = |h/1/.,,-+,-(x)|rxr, h-formula
ha, (x) hi—1(X)  hag2(x) o (X)) P (X)
hi(x) (X)) hga(X) o (X)) harra(X)
= hga(x)  hgpa(X) hy(x) oo - r+2(X) ha,—r13(x)
hapr1(X)  hprr2(X)  Pagera(x) ooy 41(X) hy, (x)

where we set hy =1, hy =0, k < 0.
> Sp(4,x) = |eﬂf,,-+,-(x)|,11m1, e-formula,
where we setey =1, e =0,k > n. 5100



Jacobi-Trudi continued

o n=2,x=(x1,x2),1=(2,1)
» h-formula

hy  ho

Iy ()1 = | h1‘ = ha(x)h(x) - hs(x).1

= (X2 + X5 + x1x2)(x1 + x2) — (6 + xExa + x1 X2 + x3)

=3+ 2xx2 +2x132 + 33 = (03 + xBxo + x1 X8 + x5) = xBxp + X1 XZ.
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Jacobi-Trudi continued
oeNnN=2Xx= (X1,X2), A= (2,1)
» h-formula
hy  ho

|h/1j,j+,'(X)| = hs by = hg(X)h1(X)—h3(X).1

= (6 + X5 + x1x2) (X1 + x2) = (X + XXz + X1X3 + X3)

= X3+ 2x1x8 +2x1%5 + x5 — (X5 + X2xo + x1x5 + X3) = XEx2 + X1 X5.

» e-formula

€ €

e e | — ex(x)e1(x) — 0.1

e —j+i(X)|

= (x1x2)(x1 + x2) = X2x2 + X1 X5.
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Jacobi-Trudi continued
oeNnN=2Xx= (X1,X2),/1: (2,1)
» h-formula
hy  ho

h3 h1 = hg(X)h1(X)—h3(X).1

[hyy-ji(X)|

= (6 + X5 + x1x2) (X1 + x2) = (X + XXz + X1X3 + X3)

= X3+ 2x1x8 +2x1%5 + x5 — (X5 + X2xo + x1x5 + X3) = XEx2 + X1 X5.

» e-formula
€ €
|e/11{_j+,'(x)| e e = eg(x)e1 (X) -0.1
= (x1x2)(x1 + x2) = X2x2 + X1 X5.
Example

101 [1]2]

n=21=(21), =3,
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Jacobi-Trudi continued
oeNnN=2Xx= (X1,X2),/1: (2,1)
» h-formula
hy  ho

|h,1j,j+,'(X)| = hs by = hg(X)h1(X)—h3(X).1

= (6 + X5 + x1x2) (X1 + x2) = (X + XXz + X1X3 + X3)

= X3+ 2x1x8 +2x1%5 + x5 — (X5 + X2xo + x1x5 + X3) = XEx2 + X1 X5.

» e-formula
€ €
|e/11{_j+,'(x)| e e = eg(x)e1 (X) -0.1
= (x1x2)(x1 + x2) = X2x2 + X1 X5.
Example

1]1] 2]

n=21=(21), =3,

sz(/l,x):x12XQ+x1 x22: xT.
2-semistandard tableaux T of shape 1
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9. The plane integer lattice

@ The plane integer lattice is the set of integer points Z? equipped with
the usual component wise order relation

(a,b) < (c,d)ea<c, b<d.
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@ The plane integer lattice is the set of integer points Z? equipped with
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9. The plane integer lattice

@ The plane integer lattice is the set of integer points Z? equipped with
the usual component wise order relation

(a,b)<(c,d)esac<c, b<d.

o
A

[
O

49/100



9. The plane integer lattice

@ The plane integer lattice is the set of integer points Z? equipped with
the usual component wise order relation

(a,b)<(c,d)esac<c, b<d.

o
A

[
O
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9. The plane integer lattice

@ The plane integer lattice is the set of integer points Z? equipped with
the usual component wise order relation

(a,b)<(c,d)esac<c, b<d.

o
A

[
O

A<B<C, A<D

B, D are not comparable
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9. The plane integer lattice

@ The plane integer lattice is the set of integer points Z? equipped with
the usual component wise order relation

(a,b)<(c,d)esac<c, b<d.

o
A

[
O

A<B<C, A<D

B, D are not comparable

C, D are not comparable
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9. The plane integer lattice

@ The plane integer lattice is the set of integer points Z? equipped with
the usual component wise order relation

(a,b)<(c,d)esac<c, b<d.

o
AP
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9. The plane integer lattice

@ The plane integer lattice is the set of integer points Z? equipped with
the usual component wise order relation

(a,b)<(c,d)esac<c, b<d.

Fan
AP

AN~

(m

BAD=A
CAD=E
CvD=F
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9. The plane integer lattice

@ The plane integer lattice is the set of integer points Z? equipped with
the usual component wise order relation

(a,b)<(c,d)esac<c, b<d.

Fan
AP

AN~

(m

BAD=A
CAD=E
CvD=F

@ The plane of integer points Z2 is a lattice with the relation <.
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10. Lattice paths

@ A lattice path from u to v, with u < v, is a sequence of adjacent points
in the integer lattice, i.e. a sequence of unit horizontal (East) and
vertical (North) steps in the positive direction, starting in u and ending
inv.

Example
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10. Lattice paths

@ A lattice path from u to v, with u < v, is a sequence of adjacent points
in the integer lattice, i.e. a sequence of unit horizontal (East) and
vertical (North) steps in the positive direction, starting in u and ending
inv.

Example
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10. Lattice paths

@ A lattice path from u to v, with u < v, is a sequence of adjacent points
in the integer lattice, i.e. a sequence of unit horizontal (East) and
vertical (North) steps in the positive direction, starting in u and ending
inv.

Example
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10. Lattice paths

@ A lattice path from u to v, with u < v, is a sequence of adjacent points
in the integer lattice, i.e. a sequence of unit horizontal (East) and
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10. Lattice paths

@ A lattice path from u to v, with u < v, is a sequence of adjacent points
in the integer lattice, i.e. a sequence of unit horizontal (East) and
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inv.
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10. Lattice paths

@ A lattice path from u to v, with u < v, is a sequence of adjacent points
in the integer lattice, i.e. a sequence of unit horizontal (East) and
vertical (North) steps in the positive direction, starting in u and ending
inv.

Example
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10. Lattice paths

@ A lattice path from u to v, with u < v, is a sequence of adjacent points
in the integer lattice, i.e. a sequence of unit horizontal (East) and
vertical (North) steps in the positive direction, starting in u and ending
inv.

Example

e Given u,v € Z2, P(u, v) is the set of all lattice paths from u to v.
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10. Lattice paths

@ A lattice path from u to v, with u < v, is a sequence of adjacent points
in the integer lattice, i.e. a sequence of unit horizontal (East) and
vertical (North) steps in the positive direction, starting in u and ending
inv.

Example

e Given u,v € Z2, P(u, v) is the set of all lattice paths from u to v.
o

#P(U, V) = #P(O, vV — U) = Vi~ l‘: _1_21/12 ~ ), u=(uy,u2)<v=_v1,v2).

P(u,v) =0, u,vnotcomparable.
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(continued)

@ Two lattice paths are nonintersecting if they do not have any (lattice)
point in common.

Example

ik
.




(continued)

@ Two lattice paths are nonintersecting if they do not have any (lattice)

point in common.

Example

l_r

i}

oe /4




11. Weighted paths

@ To each horizontal edge a in Z? one assignes a weight w(a).
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11. Weighted paths

@ To each horizontal edge a in Z? one assignes a weight w(a).

Example

wh((i=1,)); (i.))) = X we((i = 1.J); (i.1)) = Xt
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@ The weight w(P) of a lattice path P is

w(P) = [] w(a).

a horizontal step € P

Example
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@ The weight w(P) of a lattice path P is

w(P) = 1_[ w(a).

a horizontal step € P

Example

Wh(P) = X2X3X5X§ We(P) = X2X4X7X9X{0
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12. Weight-preserving bijection between tableaux and
non intersecting lattice paths

Example
n=6,1=(5,3,2)

| Ol

66
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12. Weight-preserving bijection between tableaux and
non intersecting lattice paths

Example
n=6,1=(5,3,2)

| Ol

66
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12. Weight-preserving bijection between tableaux and
non intersecting lattice paths

Example
n=6,1=(5,3,2)

I

66| 21

N
w
(6]
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12. Weight-preserving bijection between tableaux and
non intersecting lattice paths

Example
n=6,1=(5,3,2)

66| 21

N
w
(6]
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12. Weight-preserving bijection between tableaux and
non intersecting lattice paths

Example
n=6,1=(53,2)

AN
g~ |w
(o2}

v
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12. Weight-preserving bijection between tableaux and
non intersecting lattice paths

Example
n=6,1=(53,2)

AN
g~ |w
(o2}

XT = xoX2X2XEX3 P = (Py, P2, P3)

77/100



12. Weight-preserving bijection between tableaux and
non intersecting lattice paths

Example
n=6,1=(53,2)

XT = xoX2X2XEX3 P = (P, P2, P3)
Wh(P) = Wh(P1)Wh(P2)Wh(P3)
= X2X3X5X62.X3X4X6.X4X5
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(continued)
Example
n=6,1=(53,2)

5|6[6]

AW

7- = —>

@ Given a n-semistandard tableau of length r < n, the map
T — (P1,P2,...,Pr),

where (P4, Pa,. .., P;) is an r-tuple of nonintersecting lattice paths:
» isthrow of T — P;from u; = (=i, 1) to v, = (4 —i,n),i=1,...,r,
whose heights of horizontal steps are the entries in the i-th row.
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(continued)
Example
n=6,1=(5,3,2)

6l6]

AW
alf~|w
|01

T = —> Ny

XT:xzxgxfxgxg Q=(Q1,02,Q:3,Q4,Qs)

We (Q)=wWe (Q1)We (Q2)We (Q3)We (Q4)We (Q5)=X2X3X4.X3X5X6.X5 X6 X6 X6
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(continued)
Example
n=6,1=(53,2)

66|

|01

AW
alf~|w

T = —>

XT:xzxgxfxgxg Q=(Q1,Q2,Q3,Q4,Q5)

We (Q)=wWe (Q1)We (Q2)We (Q3)We (Q4)We (Q5)=X2X3X4.X3X5X6.X5 X6 X6 X6

cqumniofT—>P,-fromu,-:(—i+1,i—1)to(/l,’.—i+1,n—/l;+i—1)
100

8




13. Complete and elementary homogeneous symmetric
functions are weight generating functions of lattice paths

between two points
Example
ui = (=i, 1), vj = (4 - j,n)

It
o,
1

vj
| ..

[l Jin] —
_—

Aj—j+i

hy—jri(X1s ... s Xn) =

2

Xiy Xiy « o« Xipy = GFh(P(Ui, V]))

1<y <<im<n

P € P(ui, v))
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13. Complete and elementary homogeneous symmetric
functions are weight generating functions of lattice paths
between two points

Example

uj = (=i,1), vj = (4 = j.n)

Vj
| ..
It
o,
1

el T — P e P(uv)
———

Aj—j+i
hﬂj_j+;(x1 yeees Xn) = Z Xiy X « - - Xjpy = GFh(P(Ui, Vj))

1<ii<-<im<n

e/llf,_j+,~(x1 pocog Xn) = > Xiy Xy « « - Xjpy = GFe(P(Ui, V]))

<iy<-<ip<
1<ij<-+<im<n 83/10(



7. The (classical) Jacobi-Trudi determinant formulas

@ [Ny—jri(X)lexr, h-formula

ha(x)  hapa(x) haga(x) .o ha—r(X) g (X)

hua(x) () haga(X) o (X)) Barg2(X)

= hyta(x)  ha(x) (X)) o arg2(X) hy-rra(X)
haer1(X) Migrr—2(X)  Magr—a(X) ... M a(x) My (X)

where we set hp =1, hy = 0, k < 0.
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7. The (classical) Jacobi-Trudi determinant formulas

@ [Ny—jri(X)lexr, h-formula

h/11( ) h,12_1(X) h/la (X)
ha,4+1(x) ha, (x) has-1(x)
h/h +2(X) h/12+1 (X) h/ls (X)

hﬂ1+r—1(X) iyt r-2(x) h/13+f—3(x)

where we set hp =1, hy = 0, k < 0.

® ley—j+i(X)lyxy. e-formula,
where we seteg =1, e =0, k > n.

h/lr—1_r(x) h/lr_r+1 (X)
Ma-ri1(X) Mo —rya(X)
h/lr—1_r+2(X) h/lr_r+3(X)

P () By ()
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13. The Lindstrom-Gessel-Viennot involution
m=r, A4

IGFP(Ui. V))lmxm = % sgn(o) TT[L, GF(P(ui. Vir(i))

€Sy
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13. The Lindstrom-Gessel-Viennot involution
m=r, A4

IGFP(Ui. V))lmxm = % sgn(o) TT[L, GF(P(ui. Vir(i))

€Sy

P(U, VO-) ={P= (P1,..., Pm) P e P(U,’, Va-(,')), 1<i<m}
= P(U1, Vo-(1)) X X P(Um, Vo-(m))
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13. The Lindstrom-Gessel-Viennot involution
m=r, A4

IGFP(Ui. V))lmxm = % sgn(o) TT[L, GF(P(ui. Vir(i))

€Sy

P(U, Vo) =P = (P1.... Pm) : Pi € P(Ui, Vo)), 1 <7< m)
— P(Uh V(T(1)) XX P(Umv Vo‘(m))

w(P) = l_[ w(P)
i=1

GF(P(uve))= D, w(P)=[]GF(P(uivey)).

PeP(u,vy) i=1
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13. The Lindstrom-Gessel-Viennot involution
m=r, A4

IGFP(Ui. V))lmxm = % sgn(o) TT[L, GF(P(ui. Vir(i))

€Sy

P(U,ve) =P = (Pi,.... Pm) : Py € P(Ui,Vio(y), 1< < m)
m
w(P) = ﬂ w(P;)
i=1

GF(P(uve))= D, w(P)=[]GF(P(uivey)).

PeP(u,vy) i=1

= Z sgn(o)w(P)

0€Sm, PeP(u,vy)
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Example

émi;f?
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Example

* ° r2 ° 51 .
xWF\ANM

LGV involution

(P1,P2,P3)€P(U,Va-) (P;,Pé,Pg)EP(U,V,m-)
o= (13) n=(23)(13)
sgn(rn) = —sign(o)

@ The LGV-involution is a weight -preserving but sign-reversing
involution on the set of all those m-tuples that are intersecting.
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@ By the LGV involution all the intersecting m-tuples of paths will cancel
and only the nonintersecting will survive. The associated permutation
for such m-tuples is the identity. These m -paths correspond exactly
to the n-semistandard tableaux of shape 4

IGFP(U, )lmxm = %, sgn(c) [Ty GF(P(uis V(i)

€Sy

= Y sgn(o)w(P)
0€Sm, PeP(u,v,)
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@ By the LGV involution all the intersecting m-tuples of paths will cancel
and only the nonintersecting will survive. The associated permutation
for such m-tuples is the identity. These m -paths correspond exactly
to the n-semistandard tableaux of shape 4

IGFP(U, )lmxm = %, sgn(c) [Ty GF(P(uis V(i)

€Sy

= > sgn(o)w(P)
0€Sm, PeP(u,v,)

= ) w(P)

nonintersecting m-tuple P € P(u, v)
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By the LGV involution all the intersecting m-tuples of paths will cancel
and only the nonintersecting will survive. The associated permutation
for such m-tuples is the identity. These m -paths correspond exactly
to the n-semistandard tableaux of shape 4

IGFP(U, )lmxm = %, sgn(c) [Ty GF(P(uis V(i)

€Sy

= Y sgn(o)w(P)
0€Sm, PeP(u,v,)

= ) w(P)

nonintersecting m-tuple P € P(u, v)

= > xT

n-semistandard tableau T of shape A

= sn(4, X)
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Example
U1:(—1,1), V1=(1,2), U2=(—2,1), V2=(—1,2)

o (P1 ,P2)€]P(u1 V1 )X]P(UQ,V2)

I A A B

X2Xp + X1X5

[N S O U o (5 S O B




Example
U1:(—1,1), V1=(1,2), U2=(—2,1), V2=(—1,2)

o (P1 ,P2)€]P(u1 V1 )XP(UZ,V2)

X2Xp + X1X5

150 D 5 R o S O

(X1 + X2) (X2 + X1 X2 + X5) = X2Xz + X1 X5 +:3:8xp4x1 133
()] (P1,P2)€]P(U1,V2)XP(U2,V1)




Example
U1:(—1,1), V1=(1,2), U2=(—2,1), V2=(—1,2)

o (P1 ,PZ)E]P(M Vi )XP(UQ,V2)

X2Xp + X1X5
I IR O B O A S O I

(X1 + X2) (X2 + X1 X2 + X5) = X2Xz + X1 X5 +:3:8xp4x1 133
o (P1 ,Pz)G]P(U1 ,V2)XP(U2,V1 )

150 D A 0 I A O I

3xxp+xq X

o2 4o

X




Jacobi-Trudi continued

o n=2,x=(x1,x),1=(2,1)
» h-formula

he o

g = | 12T | = om0 - ()

= (& 4+ x5 + x1x2) (X1 + X2) — (X3 + X2x2 + X1 x5 + X3)

2 2 2 2 2 2
= X2+ 2x1x5 +2x1%5 + x5 — (X5 + Xx2 + X1 x5 + X3) = XEx2 + X1 %5.
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Jacobi-Trudi continued

o n=2,x=(x1,x),1=(2,1)
» h-formula

he o

g = | 12T | = om0 - ()

= (& 4+ x5 + x1x2) (X1 + X2) — (X3 + X2x2 + X1 x5 + X3)

2 2 2 2 2 2
= X2+ 2x1x5 +2x1%5 + x5 — (X5 + Xx2 + X1 x5 + X3) = XEx2 + X1 %5.

» e-formula

€ €

e e | — ex(x)e1(x) — 0.1

e —j+i(X)|

= (x1x2)(x1 + x2) = X2x2 + X1 X5.
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