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THE SYMMETRY OF LITTLEWOOD--RICHARDSON
COEFFICIENTS: A NEW HIVE MODEL INVOLUTORY

BIJECTION\ast 

I. TERADA\dagger , R. C. KING\ddagger , AND O. AZENHAS\S 

Abstract. Littlewood--Richardson (LR) coefficients c\lambda \mu \nu may be evaluated by means of several
combinatorial models. These include not only the original one, based on the LR rule for enumerating
LR tableaux of skew shape \lambda /\mu and weight \nu , but also one based on the enumeration of LR hives
with boundary edge labels \lambda , \mu , and \nu . Unfortunately, neither of these reveals in any obvious way
the well-known symmetry property c\lambda \mu \nu = c\lambda \nu \mu . Here we introduce a map \sigma (n) on LR hives that

interchanges contributions to c\lambda \mu \nu and c\lambda \nu \mu for any partitions \lambda , \mu , \nu of lengths no greater than n, and
then we prove that it is a bijection, thereby making manifest the required symmetry property. The
map \sigma (n) involves repeated path removals from a given LR hive with boundary edge labels (\lambda , \mu , \nu )
that give rise to a sequence of hives whose left-hand boundary edge labels define a partner LR hive
with boundary edge labels (\lambda , \nu , \mu ). A new feature of our hive model is its realization in terms of
edge labels and rhombus gradients, with the latter playing a key role in defining the action of path
removal operators in a manner designed to preserve the required hive conditions. A consideration
of the detailed properties of the path removal procedures also leads to a wholly combinatorial self-
contained hive based proof that \sigma (n) is an involution.
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1. Introduction and statement of results. Let n be a fixed positive integer,
and let x = (x1, x2, . . . , xn) be a sequence of indeterminates. Then, for each partition
\lambda of length \ell (\lambda ) \leq n and weight | \lambda | , there exists a Schur function s\lambda (x) which is a
homogeneous symmetric polynomial in the xk of total degree | \lambda | . These Schur func-
tions s\lambda (x) for all such \lambda form a linear basis of the ring \Lambda n of symmetric polynomials
in the components of x. It follows that

(1.1) s\mu (x) s\nu (x) =
\sum 
\lambda 

c\lambda \mu \nu s\lambda (x) ,

where the coefficients c\lambda \mu \nu are known as Littlewood--Richardson (LR) coefficients.
These coefficients are independent of n. They are nonnegative integers that may be
evaluated by means of the Littlewood--Richardson rule [LR34] as the number of LR
tableaux of skew shape \lambda /\mu and of weight \nu , where the parts of \nu specify the numbers
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of its entries k for k = 1, 2, . . . , n, with the entries satisfying certain semistandardness
and lattice permutation conditions.

Alternatively, c\lambda \mu \nu is the number of LR n-hives with boundary edge labels specified
by the ordered triple (\lambda , \mu , \nu ) [KT99, Buc00], where each of the three partitions has
n parts through the inclusion if necessary of trailing zeros. Further details of the
hive model may be found in section 2. Put briefly, an LR n-hive is a labeling of the
vertices of an equilateral triangular graph of side length n subdivided by its edges into
n2 elementary triangles of side length 1, as illustrated in the case n = 4 in (2.1) on the
left, with the vertex labels of those pairs of elementary triangles sharing a common
edge satisfying rhombus conditions; see (2.1) on the right.

Here we find it convenient to use an edge representation of an LR hive [KTT06],
whereby each edge is labeled by the label of the vertex at its rightmost end minus the
label of the vertex at its leftmost end. In this setting the boundary edge labels are the
parts of the relevant partitions \lambda , \mu , and \nu . What we call the gradient of a rhombus
formed from two elementary triangles sharing a common edge is the difference between
the sum of the vertex labels at the two ends of this edge and the sum of the remaining
two vertex labels. When expressed in terms of edge labels, the gradient of a rhombus
is the difference between the labelings of either pair of two opposite edges (see (2.8)).

Although logically distinct, the tableau and hive models may be thought of as
being equivalent thanks to the existence of a bijection between LR tableaux and LR
hives described by Fulton in the appendix to [Buc00]; see also [KT99, PV05]. Within
these two models, the set of LR tableaux of shape \lambda /\mu and weight \nu is denoted by
\scrL \scrR (\lambda /\mu , \nu ), and the corresponding set of n-hives is denoted by \scrH (n)(\lambda , \mu , \nu ) for any
fixed n \geq \ell (\lambda ). We then have

(1.2) c\lambda \mu \nu = \#\{ T \in \scrL \scrR (\lambda /\mu , \nu )\} = \#\{ H \in \scrH (n)(\lambda , \mu , \nu )\} .

Unfortunately, although the definition (1.1) makes it immediately clear that c\lambda \mu \nu = c\lambda \nu \mu ,
the same cannot be said of either of the combinatorial formulae in (1.2). Within a
variety of equivalent combinatorial models, people have succeeded in defining bijective
maps between objects with parameters (\lambda , \mu , \nu ) and those with parameters (\lambda , \nu , \mu ),
which we may call LR commutativity bijections, and in some cases showed their invo-
lutive nature (see, e.g., [BSS96, HK06b, PV10, DK05, DK08]). In particular, the in-
volutive tableau switching procedure established by Benkart, Sottile, and Stroomer in
[BSS96] was specialized in their Example 3.6 to give an involutive map on LR tableau
interchanging the inner shape and the weight, proving by combinatorial means the
symmetry c\lambda \mu \nu = c\lambda \nu \mu . Subsequently this map was denoted by Pak and Vallejo in
[PV10] as \rho 1 and was called the first fundamental symmetry map. However, this has
not yet been done for the map originally defined in a tableaux setting by the third
author in [Aze99, Aze00] and described as \rho 3 in [PV10, section 7.1] where it is referred
to as the third fundamental symmetry map, nor has its coincidence with other known
LR commutativity bijections been fully established.

Our aim here is, upon letting \scrH (n) denote the union of the sets \scrH (n)(\lambda , \mu , \nu )
with all possible choices of \lambda , \mu , and \nu , to define such a map \sigma (n) : \scrH (n) \rightarrow \scrH (n)

such that \sigma (n) : \scrH (n)(\lambda , \mu , \nu ) \ni H \mapsto \rightarrow K \in \scrH (n)(\lambda , \nu , \mu ) in the arena of hives, which
corresponds, by way of Fulton's bijection, to the map \rho 3 in the arena of tableaux,
and show that it is involutive, independently of the existing involutiveness results on
other LR commutativity bijections. The main feature of the proof of the bijective
and involutive properties of the map from hives H contributing to c\lambda \mu \nu to those hives

K contributing to c\lambda \nu \mu is the hitherto unnoticed fact that recording the systematic
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reduction to zero of the boundary edge labels of H by a path removal process driven
by what we call the upright rhombus gradients of H yields automatically a hive K
whose boundary edge labels \mu and \nu have been interchanged. This comes about
because of the precise manner in which the upright rhombus gradients in K are
established. More explanation on this point is given in Remark 5.3 in the text. The
issue of coincidence of the map \rho 3 with other LR commutativity bijections will be
deferred to another publication. In particular, the coincidence of \rho 3 with the map \rho 1
based on tableau switching in [BSS96], an approach to whose proof has been proposed
in [Aze08], is being addressed by the third author, and currently a short version of
the paper containing an essential part of the proof is posted in the arXiv [Aze18],
wherein more account is given of the relationship between our own results and those
of others such as [BSS96] and [PV10].

The present paper is organized as follows. In section 2 we recall the notion of
hives, putting emphasis on their edge representation and rhombus gradients which
we actually rely upon, and in section 3 three path removal operators on hives are
introduced. These correspond to the deletion operators on tableaux first introduced
in [Aze99, Aze00]. In section 4 they are shown to preserve the hive properties.

In section 5, we give the precise algorithmic definition of our LR commutativity
map \sigma (n). The procedure allowing us to define \sigma (n) as a map taking any LR n-
hive H \in \scrH (n) to some partner LR n-hive K \in \scrH (n) involves a succession of pairs,
(H(r),K(n - r)) for r = n, n - 1, . . . , 0, where H(r) is an r-hive and K(n - r) is what we
call an r-truncated n-hive. For the initial r = n pair one sets H(n) = H with K(0) an
empty n-truncated n-hive and constructs the final r = 0 pair with K = K(n) and H(0)

the empty 0-hive. The passage from one pair to the next is effected by performing
a sequence of path removals from H(r) to give H(r - 1) and using the data on the
location of the initial and final edges on each path that is removed to build K(n - r+1)

from K(n - r). By this means one evacuates H and builds K. All this is illustrated in
Example 5.4. The main result in this section is then the proof of Theorem 5.5 which
states that for H \in \scrH (n)(\lambda , \mu , \nu ) and K = \sigma (n)H we have K \in \scrH (n)(\lambda , \nu , \mu ).

In section 6 we introduce a path addition operator on hives and define a map \sigma (n),
and we show that for K \in \scrH (n)(\lambda , \nu , \mu ) and H = \sigma (n)K we have H \in \scrH (n)(\lambda , \mu , \nu ).
This section culminates with the proof of Theorem 6.9 stating that the maps \sigma (n) and
\sigma (n) are mutually inverse bijections.

The next section 7 is concerned with the involutory property of \sigma (n). A new type
of path removal operator \psi n enables us to generate from any given n-hive H a new
hive \widehat H = \psi nH, only marginally different from H. However, this difference is enough
to show that \sigma (n) is an involution, by showing first that K = \sigma (n)H and \widehat K = \sigma (n) \widehat H
are related by the action of one of our original path removal operators \phi n, and then
exploiting this in an inductive proof of the involutory property along the lines of an
approach first proposed in a tableaux setting in [Aze00]. The heart of the matter is

the somewhat intricate proof that \widehat K = \phi nK, where \phi n is one of our original path
removal operators. This result emerges as a special case of the key Lemma 7.3 whose
proof involves among other key ingredients the notion of a critical rhombus and three
subsidiary lemmas whose proofs are deferred to Appendix A.

In section 8 we offer some brief concluding remarks.

2. The hive model. It is by now well known that hives, as first introduced by
Knutson and Tao [KT99], with properties described in more detail by Buch [Buc00],
offer an alternative way to determine LR coefficients. As we have said, this comes
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about as a result of the existence of a bijection described by Fulton in the appendix
to [Buc00] between the set of LR n-hives \scrH (n)(\lambda , \mu , \nu ) with boundary specified by
a triple (\lambda , \mu , \nu ) of partitions with \ell (\lambda ), \ell (\mu ), \ell (\nu ) \leq n and the set of LR tableaux

\scrL \scrR (n)(\lambda /\mu , \nu ) of skew shape \lambda /\mu and weight \nu .
In its vertex representation an integer n-hive is a labeling of the vertices of a

planar, equilateral triangular graph of side length n with integers aij for 0 \leq i \leq j \leq n,
as illustrated below on the left in the case n = 4, satisfying the rhombus inequalities
indicated on the right, which are to be applied to each elementary rhombus formed
from the union of any pair of elementary triangles having a common edge whatever
their orientation.

(2.1)

a00

a01

a02

a03

a04

a11

a12

a13

a14

a22

a23

a24

a33

a34

a44

a

bc

d
a b

c

d

a

bc

d

a+ b \geq c+ d

Such an integer n-hive is an LR n-hive and belongs to \scrH (n)(\lambda , \mu , \nu ) if and only if for
k = 1, 2, . . . , n,

(2.2) a00 = 0 ; a0k =

k\sum 
j=1

\mu j ; akn = a0n +

k\sum 
i=1

\nu k ; akk =

k\sum 
i=1

\lambda i .

An LR hive may equally well be specified by means of its edge representation as
introduced by [KTT06] and used in [KTT09, CJM11], whereby each edge between
neighboring vertices labeled a and b is labeled b  - a if the vertex labeled b is to the
right of that labeled a.

Example 2.1. In the case n = 4, \lambda = (8, 6, 5, 4), \mu = (6, 5, 2, 0), and \nu = (5, 4, 1, 0),
a typical LR hive takes the following forms when expressed on the left in terms of
vertex labels and on the right in terms of edge labels.

(2.3)

0

6

11

13

13

8

14

17

18

14

19

22

19

23

23

6

5

2

0

6

3

1
5

3

4

\ttfive 

\ttfour 

\ttone 

\ttzero 

\ttfour 

\tttwo 

\ttzero 

\ttthree 

\ttzero \tttwo 

8 6 5 4

8 5 4

6 5

5

As a matter of convention we sometimes refer to any edge parallel to the left,
right, or lower boundary as being an \alpha -edge, \beta -edge, or \gamma -edge, respectively. It is
to be noted that the sequences of \alpha , \beta , and \gamma boundary edge labels constitute the
partitions \mu , \nu , and \lambda , respectively. In terms of edge labels the LR hive conditions
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are equivalent to the following requirements: all edge labels are nonnegative integers,
while for each elementary triangle we have the triangle conditions

(2.4) \alpha \beta 

\gamma 

\beta \alpha 

\gamma 

\alpha + \beta = \gamma ,

and for each elementary rhombus we have the rhombus conditions

(2.5)
\alpha 

\gamma \prime 

\gamma 

\alpha \prime 
\alpha \prime 

\beta \prime 

\beta 

\alpha 

\beta 

\gamma \prime 

\gamma 

\beta \prime 

\alpha  - \alpha \prime = \gamma  - \gamma \prime \geq 0 \alpha  - \alpha \prime = \beta  - \beta \prime \geq 0 \beta  - \beta \prime = \gamma  - \gamma \prime \geq 0,

where the equalities are a consequence of the triangle condition and, as an aide
m\'emoire, for each pair of parallel edges, that with the larger edge label has been
drawn thicker than the other.

The rhombus inequalities can be encapsulated in the form of the betweenness
conditions specified below.

(2.6) \alpha 

\alpha \prime \prime 

\alpha \prime \beta \prime 

\beta 

\beta \prime \prime 
\gamma \gamma \prime \prime 

\gamma \prime 

\alpha \geq \alpha \prime \geq \alpha \prime \prime \beta \geq \beta \prime \geq \beta \prime \prime \gamma \geq \gamma \prime \geq \gamma \prime \prime 

The implication of these betweenness conditions is that if we separate the edges
into those that are \alpha -edges, \beta -edges, and \gamma -edges they can be seen to form three
interlocking Gelfand--Tsetlin patterns [GT50]. In our Example 2.1 these take the
following form.

(2.7)

6
5

2
0

6
3

1
5

3
4

\ttfive 
\ttfour 

\ttone 
\ttzero 

\ttfour 
\tttwo 

\ttzero 

\ttthree 
\ttzero \tttwo 8 6 5 4

8 5 4

6 5

5

By interlocking, we mean that when superposed, as on the right in (2.3), the edge
labels of each elementary triangle must satisfy the triangle condition (2.4).

Within a hive there are three types of elementary rhombi: right-leaning, upright,
and left-leaning, as displayed in (2.1) and (2.5). We often omit the interior edge and
display them in the form

(2.8) R\alpha 

\gamma \prime 

\gamma 

\alpha \prime U
\alpha \prime 

\beta \prime 

\beta 

\alpha 
L\beta 

\gamma \prime 

\gamma 

\beta \prime 
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where the parameters R, U , and L introduced in these diagrams are not edge labels.
They are referred to as the gradients of the corresponding right-leaning, upright, and
left-leaning rhombi, respectively. Each gradient is defined to be the difference between
parallel edge labels in the relevant rhombus, or, more precisely, for each pair of parallel
edges, one thick and one thin in the above diagrams, the gradient is equal to the thick
edge label minus the thin edge label, so that we have

(2.9) R = \alpha  - \alpha \prime = \gamma  - \gamma \prime , U = \alpha  - \alpha \prime = \beta  - \beta \prime , and L = \beta  - \beta \prime = \gamma  - \gamma \prime .

The hive rhombus inequalities then just take the form

(2.10) R \geq 0 , U \geq 0 , and L \geq 0 .

All this gives rise to a third way of specifying hives, namely, the gradient rep-
resentation, which involves labeling its boundary edges and giving the gradients of
one or another of its three sets of right-leaning, upright, or left-leaning elementary
rhombi. This is illustrated in the case n = 4 by

(2.11)

\mu 1

\mu 2

\mu 3

\mu 4 \nu 1

\nu 2

\nu 3

\nu 4

\lambda 1 \lambda 2 \lambda 3 \lambda 4

R12

R13

R14

R23

R24

R34
\mu 1

\mu 2

\mu 3

\mu 4 \nu 1

\nu 2

\nu 3

\nu 4

\lambda 1 \lambda 2 \lambda 3 \lambda 4

U12

U13

U14

U23

U24

U34 \mu 1

\mu 2

\mu 3

\mu 4 \nu 1

\nu 2

\nu 3

\nu 4

\lambda 1 \lambda 2 \lambda 3 \lambda 4

L12

L13

L14

L23

L24

L34

and exemplified in the case of our running example by the following.

Example 2.2. Rhombus gradient labelings of Example 2.1.

6

5

2

0 5

4

1

0

8 6 5 4

0

2

1

1

0

1 6

5

2

0 5

4

1

0

8 6 5 4

1

1

1

2

2

1
6

5

2

0 5

4

1

0

8 6 5 4

2

1

0

0

1

0

Of all these labeling schemes for LR hives the one that provides the simplest
connection with LR tableaux is that offered by specifying boundary edge labels, \lambda , \mu ,
and \nu , together with the upright rhombus gradients Uij with 1 \leq i < j \leq n. These
labels are themselves constrained by the triangle conditions applied to the elementary
triangles at the base of the hive which take the form

(2.12) \lambda k = (\mu k +

k - 1\sum 
i=1

Uik) + (\nu k  - 
n\sum 

j=k+1

Ukj) for k = 1, 2, . . . , n .

In particular we have

(2.13) \lambda n = \mu n + \nu n +

n - 1\sum 
i=1

Uin

so that \lambda n = 0 if and only if \mu n = \nu n = 0 and Uin = 0 for all i < n.
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3. Path removal operators. For any given r-hive and for each 1 \leq p \leq r, we
refer to the geometric region shown in light grey in the diagram (3.1) below as its pth
diagonal (in the illustration p has been taken to be 5).

(3.1)

\mu p

\lambda p

Then in Definition 3.1 below, we shall introduce three types of path removal
operators denoted by \chi r, \phi r, and \omega r, each of whose actions on an r-hive is to modify
some of its edge labels in a certain way. The set of edges whose labels are modified
by the operator is called its path. The action of these operators has been derived
by translating that of the deletion operators on LR tableaux introduced by the third
author [Aze99, Aze00] by way of Fulton's bijection between LR tableaux and LR
hives in the appendix to [Buc00]. It may be noted that other kinds of path removal
operators along with their paths will be added later.

Definition 3.1. For any given H \in \scrH (r)(\lambda , \mu , \nu ) with r = \ell (\lambda ) we may define
three path removal operators \chi r, \phi r, and \omega r whose action on H is to reduce or increase
edge labels by 1 along a path starting from the edge labeled \lambda r on the base of the hive
and specified as follows:

(i) \chi r: if \nu r > 0, then the path consists of the edges labeled \lambda r and \nu r, with both
edge labels decreased by 1;

(ii) \phi r: if \lambda r  - \mu r  - \nu r > 0 so that Uir > 0 for some i < r, then the path
proceeds up the rth diagonal from the edge labeled \lambda r through upright rhombi
of gradient 0 until it encounters an upright rhombus of positive gradient, at
which point it moves horizontally to the left into the (r  - 1)th diagonal and
proceeds up this diagonal or to the left as before, and so on until it terminates
on the left-hand boundary at the top of the kth diagonal, that is, at the edge
labeled \mu k for some k such that 1 \leq k < r, with all path \alpha - and \gamma -edge labels
being decreased by 1 and all path \beta -edge labels increased by 1;

(iii) \omega r: if \mu r > 0, then the path proceeds directly up the rth diagonal until it
terminates on the left-hand boundary at level r, that is, at the edge labeled
\mu r, with all path edge labels decreased by 1. Such a type (iii) path may be
thought of as a special case of a type (ii) path in which the terminating level
k = r.

The three types of path are illustrated below, where we have used full lines and
wavy lines to distinguish those edges whose labels are decreased and increased, re-
spectively, by 1 under the relevant path removal operation. The action of \chi r and \omega r is
to decrease all path edge labels by 1, whereas the action of \phi r is to decrease the label
of each \alpha - or \gamma -edge on the path by 1 and to increase that of each \beta -edge on the path
by 1. In particular, under this action the edge label \lambda r and one or another of \nu r, \mu k

(with k < r), or \mu r are each reduced by 1 to \lambda r - 1 and \nu r - 1, \mu k - 1, or \mu r - 1, respec-
tively, while the only changes of upright rhombus gradients are those of  - 1 and +1
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immediately above and below the path in each diagonal, with the corresponding
rhombi shaded light and dark grey, respectively.

(3.2)

(i) \chi r:

\nu r

\lambda r

(ii) \phi r:

\mu k

\lambda r

0 >0

0

0 >0>0

0

(iii) \omega r:

\mu r

\lambda r

The removal paths share the following common features: they extend from one
boundary to another; they are generally zig-zag in nature and proceed either up a
diagonal or horizontally leftwards from one diagonal to another; they consist of a
sequence of pairs of edges of triangles, passing from one triangle to the next through
their common edge.

While the structure of the paths is rather simple in cases (i) and (iii), the structure
of the path in case (ii) is more complicated and consists of a sequence of ladders in
each diagonal from the rth to the kth. Each ladder consists of a continuous zig-zag of
\alpha - or \gamma -edges (shown above as solid lines) passing through a sequence of upright
rhombi of gradient 0 that extends up the diagonal from an edge that is either a \gamma -edge
on the base of the hive or the \alpha -edge at the top of an upright rhombus that we call the
foot rhombus (shaded dark grey), to an \alpha -edge that is either on the left-hand boundary
or at the bottom of an upright rhombus that we call the head rhombus (shaded light
grey). The upright rhombi of gradient 0 through which the ladder extends are called
its middle rhombi. A ladder may consist of a single \alpha -edge (possibly accompanied by
a \gamma -edge on the base of the hive), lacking any middle rhombi. The passage between
one diagonal and the next is by way of a \beta -edge common to both a head and a foot
rhombus (shown above and in the diagrams below as a wavy line). If such an
edge is the lth from the top of the diagonal, then its level is said to be l. For example,
in the right-hand diagram the passage from the rightmost diagonal to the next one
on its left takes place at level 6.

(3.3)
ladder and its
middle rhombi

0

0

0

0

foot rhombus

head rhombus

0

0

0

0 ladder

ladder consisting of
a single \alpha -edge

ladder

4. Preservation of the hive conditions. Before using these path removals we
first establish that the action of each of the path removal operators preserves the hive
conditions, as follows.
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Lemma 4.1. Let H be a hive in \scrH (r)(\lambda , \mu , \nu ) with r = \ell (\lambda ). Then the path removal

operators are such that if we set \widehat H = \chi rH, \phi rH, or \omega rH with \nu r > 0, \lambda r - \mu r - \nu r >
0, and \mu r > 0, respectively, then in each case \widehat H is an LR hive.

Proof. First note that if one confirms all triangle conditions and all rhombus
inequalties for \widehat H, and if it can be shown that the two edges initially labeled \mu r and
\nu r still have nonnegative labels in \widehat H, then all \alpha - and \beta -edges have nonnegative labels
by the betweenness of edge labels, and then all \gamma -edges also have nonnegative labels
by the triangle conditions. However, the edge label \mu r is only changed under the
action of \omega r. In this case \mu r > 0 by hypothesis, so that its new value \mu r  - 1 in \widehat H is
nonnegative. Similarly, the edge label \nu r is only changed under the action of \chi r. In
this case \nu r > 0 by hypothesis, so that its new value \nu r  - 1 in \widehat H is again nonnegative.
It therefore remains only to prove the validity of the triangle and rhombus conditions.

It is easy to see that the triangle conditions (2.4) are preserved under any of the

three path removal procedures mapping a hive H to \widehat H by examining the changes to
the edge labels of elementary triangles as illustrated by the following.

(4.1)
0  - 1

 - 1

 - 1 0

 - 1

 - 1 +1

0
0  - 1

 - 1

+1  - 1

0

Turning next to rhombi, we shall show that all their gradients remain nonnegative
under the maps from H to \widehat H. For upright rhombi this is clear since the gradients
remain fixed except in the case of head and foot rhombi, for which, as we have seen,
the gradient decreases and increases by 1, respectively. However, the gradient of each
head rhombus is necessarily positive in H and must therefore remain nonnegative in\widehat H. Thus all upright rhombus gradients of \widehat H are nonnegative, as required.

In the case of a type (i) hive path removal the action of \chi r affects only one
rhombus and does so as shown below.

(4.2)

\lambda r

\nu rL \chi r\mapsto  - \rightarrow 
\lambda r - 1

\nu r - 1L+1

Clearly, the gradient of this rhombus is increased. It follows that all rhombus gradients
remain nonnegative under the action of \chi r.

Similarly, for a hive path removal of type (iii) as illustrated on the right of (3.2)
the only rhombi whose gradients change are those undergoing the following map.

(4.3) R
\omega r\mapsto  - \rightarrow R+1

Thus all rhombus gradients remain nonnegative under the action of \omega r.
The situation is more complicated for type (ii) hive path removals under the

action of \phi r. However, the only right-leaning or left-leaning rhombi that undergo a
reduction in gradient under a type (ii) hive path removal are those subject to the
following transformations.

(4.4) \alpha \prime \alpha R
\phi r\mapsto  - \rightarrow \alpha \prime \alpha  - 1 R - 1 \beta L \beta \prime \phi r\mapsto  - \rightarrow \beta L - 1 \beta \prime +1

To preserve the validity of the corresponding hive condition it is therefore necessary
to show that on the left the initial gradient R = \alpha  - \alpha \prime is positive, and that on the
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right the initial gradient L = \beta  - \beta \prime is also positive. It can be seen from the type (ii)
diagram of (3.2) that the only cases that arise are those of the following types.

(4.5)

\alpha 

\alpha 

\alpha 

\alpha 

\alpha 3

\alpha 2

\alpha 1

\alpha 0

R3

R2

R1

0

0

0 > 0

L\beta 

\beta \prime \prime 

\beta \prime 

\beta \prime \prime \prime 

0 > 0

In the left-hand diagram the parallel edge labels \alpha on the left of the diagram are
identical, since the gradients of the intervening upright rhombi are all zero as indicated
by the 0's appearing on horizontal edges. On the right of the diagram the fact that the
relevant upright rhombi have nonnegative gradients implies that \alpha 1 \geq \alpha 2 \geq \alpha 3 \geq \cdot \cdot \cdot ,
while the positivity of the gradient of the upright rhombus shaded grey ensures from
the betweenness conditions that \alpha \geq \alpha 0 > \alpha 1. Hence \alpha \geq \alpha 0 > \alpha 1 \geq \alpha 2 \geq \alpha 3 \geq \cdot \cdot \cdot 
so that Rk = \alpha  - \alpha k > 0 for all k \geq 1, as required for the right-leaning rhombus
condition to be maintained after the path removal.

In the hexagonal diagram on the right the gradients of the two upright rhombi
specified in the diagram as 0 and > 0 ensure that \beta = \beta \prime \prime and \beta \prime \prime \prime > \beta \prime . In addition
the gradient \beta \prime \prime  - \beta \prime \prime \prime of the upper left-leaning rhombus must be nonnegative. Hence
\beta = \beta \prime \prime \geq \beta \prime \prime \prime > \beta \prime . It follows that L = \beta  - \beta \prime > 0 so that L - 1 \geq 0, as required for
the left-leaning rhombus condition to be maintained under the action of \phi r.

Thus it is confirmed that all rhombus gradients remain nonnegative under the
action of \chi r, \phi r, and \omega r. This completes the proof of Lemma 4.1.

This lemma allows us to produce from an LR hive H \in \scrH (r)(\lambda , \mu , \nu ) a new LR

hive \widetilde H \in \scrH (r - 1)(\widetilde \lambda , \widetilde \mu , \widetilde \nu ). To this end it is convenient to make the following definition.

Definition 4.2. For any given hive H \in \scrH (r)(\lambda , \mu , \nu ) with \ell (\lambda ) \leq r the full
r-hive path removal operator \theta r is defined by

(4.6) \theta r = \kappa r \omega 
\mu r
r \phi \lambda r - \mu r - \nu r

r \chi \nu r
r ,

where \kappa r is an operator whose action is to restrict any LR r-hive H with an empty rth
diagonal to an LR (r - 1)-hive consisting of the leftmost (r - 1) diagonals of H. Here
an empty rth diagonal is one in which all the edge labels within and on its boundary
satisfy the triangle conditions, with the top and bottom edge labels both 0, and with all
upright rhombus gradients also 0. By virtue of (2.13), this is the case if and only if
the bottom edge label is 0. This implies that the lowest right-hand boundary edge label
is also 0.

With this definition we have the following.

Theorem 4.3. For a hive H \in \scrH (r)(\lambda , \mu , \nu ) with \ell (\lambda ) \leq r let \theta rH = \widetilde H. Then we

have \widetilde H \in \scrH (r - 1)(\widetilde \lambda , \widetilde \mu , \widetilde \nu ) with \widetilde \lambda = (\lambda 1, . . . , \lambda r - 1), \widetilde \mu = (\mu 1  - V1r, . . . , \mu r - 1  - Vr - 1,r),
and \widetilde \nu = (\nu 1, . . . , \nu r - 1), where Vkr is the number of type (ii) hive path removals from
H that extend from the boundary edge initially labeled \lambda r to that initially labeled \mu k

for 1 \leq k < r.
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Proof. If \ell (\lambda ) < r, then \lambda r = \mu r = \nu r = 0 and Uir = 0 for i = 1, 2, . . . , r - 1. Thus
\theta r = \kappa r, and there are no path removals, so that Vkr = 0 for all k = 1, 2, . . . , r  - 1
and the effect of the action of \kappa r is simply to remove from each partition \lambda , \mu , and \nu 
a trailing 0. This implies that \widetilde \lambda = \lambda , \widetilde \mu = \mu , \widetilde \nu = \nu , and \theta rH = \widetilde H \in \scrH (r - 1)(\widetilde \lambda , \widetilde \mu , \widetilde \nu ),
as required. For \ell (\lambda ) = r the required result is an easy consequence of the iterated
action of \chi r, \phi r and \omega r, followed by that of \kappa r. First the edge label \nu r is reduced to
0 by the action of \chi \nu r

r . At the same time the edge label \lambda r is reduced to \lambda r  - \nu r. It is
then reduced to \mu r under the action of \phi \lambda r - \mu r - \nu r

r , and finally to 0 under the action
of \omega \mu r

r , under which the edge label \mu r is also reduced to 0. Meanwhile, under the
action of \phi \lambda r - \mu r - \nu r

r the upright rhombus gradients Uir are reduced one by one to 0,
since \lambda r  - \mu r  - \nu r = Ur - 1,r + \cdot \cdot \cdot + U2r + U1r by virtue of (2.12). It follows that the
rth diagonal of the hive is now empty and is then finally removed through the action
of \kappa r, which includes the removal of the trailing zeros from the boundary edge label
partitions. The parameters Vkr give the number of type (ii) hive removal paths that
reach the left-hand boundary edge initially labeled \mu k, thereby reducing this label to
\mu k  - Vkr for k = 1, 2, . . . , r  - 1, as required to complete the proof.

Two further observations are of use in what follows.

Lemma 4.4. In the action of \theta r on H \in \scrH (r)(\lambda , \mu , \nu ) with \ell (\lambda ) = r if a hive path
removal of type (ii) or (iii) follows a path P and reaches the left-hand boundary at
level k, then the next such removal follows a path P \prime lying weakly above the path P in
each diagonal they have in common. In particular P \prime reaches the left-hand boundary
at level k\prime with k\prime \geq k.

Proof. In the case where both P and P \prime are of type (ii) this can be seen by
consideration of the following hive path removal diagrams in which the two successive
removal paths P and P \prime are illustrated. In the left-hand diagram just the path P
is shown with full line edges and with each head rhombus shaded as usual, while in
the right-hand diagram the path P \prime has been added, using double line and wavy line
edges where it does and does not, respectively, coincide with P , now with just each
head rhombus of the path P \prime being shaded.

(4.7) P : k

r

1

0

0

0 1

0

0

0

>0>0

>0

>1>1

>0

0

>0>0

0

P : k

P \prime : k\prime 

r

0

0

0

0

0

0

0

0

0

0

>0

>0>0

>0>0

Each of the head rhombi of P necessarily has a positive gradient before the path
removal, but by way of an example two of them are critical in that they have gradient
precisely 1, which must then be reduced to 0 by the P path removal. This means
that the next path removal P \prime , as illustrated in the diagram on the right, follows the
first path P until it meets the first such critical rhombus. Since this now has gradient
0 the path P \prime must pass up the diagonal through this critical rhombus until it again



INVOLUTORY LR SYMMETRY BIJECTION ON HIVES 2861

meets an upright rhombus of positive gradient. It then proceeds in the usual way,
where it may, as in this example, meet and then follow the path P until it once again
meets a critical rhombus, and so on. It is clear that in this way the path P \prime remains
weakly above P at all stages, and that if P and P \prime meet the left-hand boundary at
levels k and k\prime , respectively, then k\prime \geq k.

In the case where P is of type (ii) but P \prime is of type (iii), then P is as shown on
the left with k < r and P \prime proceeds directly up the rth diagonal, the only diagonal
they have in common, and terminates at level k\prime = r > k. On the other hand if P
is of type (iii) so that k = r, then the same must be true of the next successive path
removal P \prime , so that P and P \prime coincide and k\prime = r = k.

Thus in all cases P \prime lies weakly above P in each diagonal they have in common,
and they terminate at levels k\prime and k, respectively, with k\prime \geq k.

Corollary 4.5. Under the action of \theta r on H \in \scrH (r)(\lambda , \mu , \nu ) with \ell (\lambda ) = r let
Vkr be the number of type (ii) hive path removals reaching the left-hand boundary at
level k for 1 \leq k < r. Then for each such k

(4.8) \mu k \geq \mu k  - Vkr \geq \mu k+1.

Proof. The first inequality is immediate, since Vkr \geq 0. Now let \widetilde H = \phi Nkr
r \chi \nu r

r H,
where Nkr = V1r + \cdot \cdot \cdot +Vkr. In view of (4.6) and Lemma 4.4 this is the intermediate
hive obtained while applying \theta r to H, immediately after all those path removals
produced by the action of \phi r that reach the left-hand boundary at or below level k.
At this stage the left-hand boundary edge label \mu k+1 remains unchanged, while the

label \mu k has been reduced to \mu k  - Vkr. The hive conditions on \widetilde H then imply the
second inequality.

Our second observation is the following.

Lemma 4.6. Under the action of \theta r followed by \theta r - 1 on H \in \scrH (r)(\lambda , \mu , \nu ) with
\ell (\lambda ) = r, let Nkr and Nk - 1,r - 1 be the number of type (ii) hive path removals occurring
in the action of \theta r and \theta r - 1 that reach the left-hand boundary at or below levels k and
k  - 1, respectively. Then

(4.9) Nk - 1,r - 1 \geq Nkr  - Ur - 1,r,

where Ur - 1,r is the upright rhombus gradient at the foot of the rth diagonal of H.

Proof. It should be noted that under the action of \theta r on H the type (ii) hive path
removals may take one or the other of the following two forms, (iia) and (iib).

(4.10)

(iia)

r - 1 r

0

0

+1

 - 1

+1

 - 1

0

0

0  - 1  - 1

(iib)

r - 1 r

0

0

+1

 - 1

+1

 - 1

+1 0

0

+1

 - 1

+1

 - 1

0
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To be precise, the gradient Ur - 1,r of H forces exactly the first Ur - 1,r of the type (ii)
paths removed by \theta r to take the form (iia). If the value of k is such that Nkr \leq Ur - 1,r,
then we immediately have Nk - 1,r - 1 \geq 0 \geq Nkr  - Ur - 1,r as required. In order to
prove the required inequality for all remaining values of k, let P1, P2, . . . , Pc be all
type (iib) paths removed by the action of \theta r on H, and Q1, Q2, . . . , Qd all type (ii)
paths, whether of the form (iia) or (iib), removed by the action of \theta r - 1 on \theta rH, both
numbered in the order of removals, and claim that (a) c \leq d and (b) Qi lies strictly
below Pi for each 1 \leq i \leq c. Once this claim has been shown, one can argue for each
k with Nkr > Ur - 1,r that by Lemma 4.4, among the type (ii) paths removed by \theta r,
those terminating at levels \leq k are the first Ur - 1,r type (iia) paths and the following
Nkr - Ur - 1,r type (iib) paths, and that by the claim each Qi with 1 \leq i \leq Nkr - Ur - 1,r

terminates at a level strictly below the terminating level of Pi, and hence strictly below
level k. The required inequality then follows.

In order to prove the claim, note that the removal of each Pi leaves +1, meaning an
increase by 1, in the gradient of its foot rhombus in each diagonal it enters. Moreover,
by Lemma 4.4, each Pj with j \geq i lies weakly above Pi, and its removal decreases an
upright rhombus gradient only for the head rhombus in each diagonal, lying strictly
above the foot rhombus of Pi in that diagonal. Hence the +1 obtained by the removal
of Pi is not negated by the removal of any Pj with j > i, but rather the effect of these
+1's accumulates in each diagonal until all type (ii) paths are removed by \theta r. The
situation remains unaltered by the removal of any necessary type (iii) paths under
the action of \theta r and any necessary type (i) paths under the action of \theta r - 1. See the
diagram (4.11) for a typical illustration of the situation immediately before the type
(ii) path removals by \theta r - 1 start. For instance, the third upright rhombus from the
bottom containing three +1's has gradient equal to its value before the removal of P3

plus 3 as a result of removing P3, P4, and P5, while the next upright rhombus above
it, containing no +1, maintains the same value of its gradient as it had immediately
before the removal of P6.

(4.11)

+1 due to the removal of P6

+1
"" P3

+1 "" P4

+1 "" P5

+1 "" P1

+1 "" P2

Now entering the phase of type (ii) path removals by \theta r - 1, first note that the
(r - 1)th diagonal at this point embraces a total of at least c upright rhombus gradients
due to the above-mentioned accumulating nature of +1. Hence \theta r - 1 must remove at
least that many type (ii) paths, fulfilling c \leq d, which was part (a) of our claim.

Now consider how the path Q1 proceeds. The +1's left by the removal of P1, due
to the positions of its foot rhombi in consecutive diagonals each of which is located
either precisely to the west of the previous one or further up the diagonal (see (4.10)
on the right), create an inpenetrable barrier for the path Q1, starting from the bottom
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of the (r - 1)th diagonal, to climbing any of the ladders of P1 in diagonals over which
it extends. Thus Q1 stays entirely below P1 in an edge-disjoint manner. The removal
of Q1 decreases the gradient of the head rhombus of each of its ladders, which is
located weakly below the foot rhombus of P1 in that diagonal. Hence the removal of
Q1 leaves intact the +1 left by the removal P2 in each diagonal, or by any Pi with
i \geq 2, even in the extreme case where the head rhombus of Q1, the foot rhombi of
P1, and P2 all coincide, since only the +1 left by the removal of P1 is annihilated.

So upon removal of the next path Q2, again the +1's left by the removal of P2,
due to their placement, serve as an inpenetrable barrier for Q2, which starts again
from the bottom of the (r - 1)th diagonal, to climb any of the ladders of P2, confining
Q2 to the region strictly below P2. The decrease of the upright rhombus gradients by
the removal of Q2 occurs weakly below the foot rhombus of P2 in each diagonal and
hence again keeps the effect of +1 left by the removal of P3 or by any Pi with i \geq 3,
even if the head rhombus of Q2, the foot rhombi of P2, and P3 all coincide.

Proceeding in this manner, one concludes that Qi lies strictly below Pi for all
1 \leq i \leq c as claimed in part (b), which shows the required inequality as anticipated.
This concludes the proof of Lemma 4.6.

5. Path removal map \bfitsigma (\bfitn ) from \bfscrH (\bfitn )(\bfitlambda , \bfitmu , \bfitnu ) to \bfscrH (\bfitn )(\bfitlambda , \bfitnu , \bfitmu ). Armed
with our path removal procedures we are able to exploit them to construct from any
hive H \in \scrH (n)(\lambda , \mu , \nu ) its partner hive K \in \scrH (n)(\lambda , \nu , \mu ). To do so it is only necessary
to evacuate the initial hive H by performing a sequence of path removals that render
it empty and to build the final hive K from the data on the location of the first and
last edges on each path that is removed. In doing so one constructs a sequence of
pairs (H(r),K(n - r)) for each r = n, n - 1, . . . , 0, where H(r) is an r-hive and K(n - r)

is an r-truncated n-hive consisting of the rightmost n  - r diagonals of some n-hive.
These pairs are such that H(n) = H and H(0) is the empty hive, signified here by a
single point, while K(n) = K and K(0) is an empty n-truncated n-hive, signified by a
single boundary line consisting of \beta -edges with labels \mu 1, \mu 2, . . . , \mu r.

Example 5.1. In the case n = 4 the map we are seeking is of the following type
from (H(4),K(0)) to (H(0),K(4)).

\left(         \mu 1

\mu 2

\mu 3

\mu 4 \nu 1

\nu 2

\nu 3

\nu 4

\lambda 1 \lambda 2 \lambda 3 \lambda 4

,

\mu 1

\mu 2

\mu 3

\mu 4

\right)         
\Theta (4)

 - \rightarrow 

\left(         
\cdot ,

\nu 1

\nu 2

\nu 3

\nu 4 \mu 1

\mu 2

\mu 3

\mu 4

\lambda 1 \lambda 2 \lambda 3 \lambda 4

\right)         

Definition 5.2. Given any LR hive H \in \scrH (n)(\lambda , \mu , \nu ), let H(n) = H and let K(0)

be the n-truncated n-hive with edge labels \mu . Then let \Theta (n) := \Theta 1 \cdot \cdot \cdot \Theta n - 1\Theta n denote
the operation which transforms the pair (H(n),K(0)) to the pair \Theta (n)(H(n),K(0)) :=
(H(0),K(n)) through the action of a succession of n operators that produce pairs
(H(r),K(n - r)), with r = n - 1, n - 2, . . . , 0, respectively, as indicated by

(5.1) (H(n),K(0))
\Theta n\mapsto  - \rightarrow (H(n - 1),K(1))

\Theta n - 1\mapsto  - \rightarrow \cdot \cdot \cdot \Theta 2\mapsto  - \rightarrow (H(1),K(n - 1))
\Theta 1\mapsto  - \rightarrow (H(0),K(n)).
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The boundary edge labels of the r-hive H(r) are (\lambda 1, . . . , \lambda r), (\mu 
(r)
1 , . . . , \mu 

(r)
r ), and

(\nu 1, . . . , \nu r), where (\mu 
(r)
1 , . . . , \mu 

(r)
r ) is some new partition, while those of the r-truncated

n-hive K(n - r) with which it is paired are (\lambda r+1, . . . , \lambda n), (\mu 
(r)
1 , . . . , \mu 

(r)
r ) matching by

construction the new labels in H(r), (\nu r+1, . . . \nu n) and (\mu 1, . . . , \mu n), as exemplified in
the case n = 7 and r = 5 by the following.

(5.2)

\mu 
(5)
1

\mu 
(5)
2

\mu 
(5)
3

\mu 
(5)
4

\mu 
(5)
5 \nu 1

\nu 2

\nu 3

\nu 4

\nu 5

\lambda 1 \lambda 2 \lambda 3 \lambda 4 \lambda 5

U12

U13

U14

U15

U23

U24

U25

U34

U35

U45

\nu 6

\nu 7 \mu 1

\mu 2

\mu 3

\mu 4

\mu 5

\mu 6

\mu 7

\mu 
(5)
1

\mu 
(5)
2

\mu 
(5)
3

\mu 
(5)
4

\mu 
(5)
5

\lambda 6 \lambda 7

V16

V17

V26

V27

V36

V37

V46

V47

V56

V57

V67

The operator \Theta r maps the pair (H(r),K(n - r)) to (H(r - 1),K(n - r+1)), where H(r - 1) =
\theta rH

(r) and the action of \theta r serves to define Vkr as in Theorem 4.3. In parallel with
this, K(n - r+1) is obtained from K(n - r) by adding to its left-hand boundary an rth
diagonal of upright rhombi having gradients Vkr, with boundary edge labels \nu r and \lambda r
at its top and bottom, respectively.

Given that the right-hand boundary edge labels of the rth diagonal of K(n - r+1)

are (\mu 
(r)
1 , . . . , \mu 

(r)
r ), it follows from the fact that Vkr = \mu 

(r)
k  - \mu 

(r - 1)
k that the left-hand

boundary edge labels of K(n - r+1) are (\mu 
(r - 1)
1 , . . . , \mu 

(r - 1)
r - 1 ). For example, \Theta 5 maps the

pair (H(5),K(2)) displayed in (5.2) to the pair (H(4),K(3)) given by

(5.3)

\mu 
(4)
1

\mu 
(4)
2

\mu 
(4)
3

\mu 
(4)
4 \nu 1

\nu 2

\nu 3

\nu 4

\lambda 1 \lambda 2 \lambda 3 \lambda 4

\widetilde U12

\widetilde U13

\widetilde U14

\widetilde U23

\widetilde U24\widetilde U34

\nu 5

\nu 6

\nu 7 \mu 1

\mu 2

\mu 3

\mu 4

\mu 5

\mu 6

\mu 7

\mu 
(4)
1

\mu 
(4)
2

\mu 
(4)
3

\mu 
(4)
4

\lambda 5 \lambda 6 \lambda 7

V15

V16

V17

V25

V26

V27

V35

V36

V37

V45

V46

V47

V56

V57

V67

where, as a result of the type (ii) path removals, the upright rhombus gradients Uij of

H(5) have been replaced by \widetilde Uij in H(4).

Following this lengthy definition, it is convenient to present how the action of
\Theta r on the pair (H(r),K(n - r)) can be divided into phases, each of which consists of
applying one type of path removal operators to H(r) possibly multiple times, along
with performing certain path additions on K(n - r), as specified below phase by phase.



INVOLUTORY LR SYMMETRY BIJECTION ON HIVES 2865

Before doing this it is helpful to introduce an operator \zeta r whose action on a trun-
cated hive K(n - r) is to add to the left-hand boundary of K(n - r) an rth diagonal with
upright rhombus gradients all 0, upper boundary edge label 0, and lower boundary

edge label \mu 
(r)
r . Then what might be called Phase 0 of the action of \Theta r is to act on

K(n - r) with \zeta r, as illustrated by the following, where it will be seen that the left-hand

boundary edge labels automatically become (\mu 
(r)
1 , . . . , \mu 

(r)
r - 1).

(5.4)

\nu 6

\nu 7 \mu 1

\mu 2

\mu 3

\mu 4

\mu 5

\mu 6

\mu 7

\mu 
(5)
1

\mu 
(5)
2

\mu 
(5)
3

\mu 
(5)
4

\mu 
(5)
5

\lambda 6 \lambda 7

V16

V17

V26

V27

V36

V37

V46

V47

V56

V57

V67

\zeta 5\mapsto  - \rightarrow 

0

\nu 6

\nu 7 \mu 1

\mu 2

\mu 3

\mu 4

\mu 5

\mu 6

\mu 7

\mu 
(5)
1

\mu 
(5)
2

\mu 
(5)
3

\mu 
(5)
4

\mu 
(5)
5

\lambda 6 \lambda 7

0

0

0

0

V16

V17

V26

V27

V36

V37

V46

V47

V56

V57

V67

Here it might be noted that the label \mu 
(5)
5 added to the the leftmost lower boundary

edge automatically preserves the triangle condition.
Phase 1 then arises if \nu r > 0 in which case \theta r involves \nu r type (i) hive path

removals from H(r) and the same number of hive path additions to \zeta rK
(n - r) as

illustrated by

(5.5)

\mu 
(5)
1

\mu 
(5)
2

\mu 
(5)
3

\mu 
(5)
4

\mu 
(5)
5 \nu 1

\nu 2

\nu 3

\nu 4

\lambda 1 \lambda 2 \lambda 3 \lambda 4

0

\lambda 5 - \nu 5

U12

U13

U14

U15

U23

U24

U25

U34

U35

U45

\nu 5

\nu 6

\nu 7 \mu 1

\mu 2

\mu 3

\mu 4

\mu 5

\mu 6

\mu 7

\mu 
(5)
1

\mu 
(5)
2

\mu 
(5)
3

\mu 
(5)
4

\lambda 6 \lambda 7\nu 5+\mu 
(5)
5

V16

V17

V26

V27

V36

V37

V46

V47

V56

V57

V67

0

0

0

0

in which the label of each boldface edge has been decreased by \nu r on the left and
increased by \nu r on the right, preserving the value 0 of all upright rhombus gradients
in the rth diagonal as well as the triangle conditions.

Phase 2 involves a sequence of \lambda r  - \nu r  - \mu 
(r)
r type (ii) hive path removals from

H(r) and the same number of hive path additions to \zeta rK
(n - r), of which one such

removal and addition is illustrated by
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(5.6)

\mu 
(4)
1

\mu 
(4)
2

\mu 
(5)
3  - 1

\mu 
(5)
4

\mu 
(5)
5 \nu 1

\nu 2

\nu 3

\nu 4

0

\lambda 1 \lambda 2 \lambda 3 \lambda 4 \sigma 5 - 1

0

0

>0 >0

\nu 5

\nu 6

\nu 7 \mu 1

\mu 2

\mu 3

\mu 4

\mu 5

\mu 6

\mu 7

\mu 
(4)
1

\mu 
(4)
2

\mu 
(5)
3  - 1

\mu 
(5)
4

\lambda 6 \lambda 7\tau 5+1

V16

V17

V26

V27

V36

V37

V46

V47

V56

V57

V67

V15

V25

+1

0

where \sigma 5 = \lambda 5  - \nu 5  - V15  - V25 and \tau 5 = \mu 
(5)
5 + \nu 5 + V15 + V25, in which on the right

the label of each boldface \alpha - or \gamma -edge is increased by 1, whereas that of the boldface
\beta -edge, on the lower left boundary, is decreased by 1, again preserving the triangle
conditions but increasing one particular upright rhombus gradient in the rth diagonal.
In this example it has been assumed that the hive path removal illustrated on the
left is the first that terminates at the third edge on the left-hand boundary, thereby

reducing the edge label \mu 
(5)
3 by 1. A further V35  - 1 such path removals reduce this

edge label to \mu 
(4)
3 while increasing the shaded rhombus label on the right to V35. In

Phase 2 this process continues until the upright rhombus gradients in the rightmost
diagonal on the left are all 0 and those in leftmost diagonal on the right are Vk5 for
k = 1, 2, . . . , r  - 1 = 4.

Phase 3 then involves a succession of \mu 
(r)
r type (iii) hive path removals from H(r).

However, no corresponding hive path additions to \zeta rK
(n - r) are required because the

addition of \mu 
(r)
r to the leftmost lower boundary edge label has already taken place in

Phase 0. The first step of Phase 3 is illustrated in our example by the following.

(5.7)

\mu 
(4)
1

\mu 
(4)
2

\mu 
(4)
3

\mu 
(4)
4

\mu 
(5)
5  - 1 \nu 1

\nu 2

\nu 3

\nu 4

0

\lambda 1 \lambda 2 \lambda 3 \lambda 4 \mu 
(5)
5  - 1

0

0

0

0

\nu 5

\nu 6

\nu 7 \mu 1

\mu 2

\mu 3

\mu 4

\mu 5

\mu 6

\mu 7

\mu 
(4)
1

\mu 
(4)
2

\mu 
(4)
3

\mu 
(4)
4

\lambda 5 \lambda 6 \lambda 7

V15

V16

V17

V25

V26

V27

V35

V36

V37

V45

V46

V47

V56

V57

V67

The repetition of this a total of \mu 
(5)
5 times and the removal of the resulting re-

dundant fifth diagonal on the left by means of the action of \kappa 5 then yields (5.3) as
required.

Remark 5.3. Although K = K(n) constructed through \Theta (n) = \Theta 1 \cdot \cdot \cdot \Theta n - 1\Theta n is
yet to be certified as a hive by the important Theorem 5.5 below, we may already see
how the left and right boundary edge labels are interchanged between H and K.
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For the right-hand boundary ofK, its creation starts with its right-hand boundary
bearing \mu as edge labels, and these edge labels persist until the end. So the edge labels
of the right-hand boundary of K are equal to those of the left-hand boundary of H.

For the left-hand boundary of K, note first that, as indicated in Definition 5.2,
the right-hand boundary edge labels of H(r) = \theta r+1 \cdot \cdot \cdot \theta nH are (\nu 1, . . . , \nu r) due to a
repeated application of Theorem 4.3. As recalled above, the operator \chi r is applied
\nu r times to H(r). After the left-hand boundary edge of K at level r is first created
with label 0 by the action of \zeta r on K(n - r), that edge label is increased by 1 at each
application of \chi r to H(r) so that at the end of Phase 1 its value is \nu r, and thereafter
the value persists until the end. This occurs for each r, so eventually the edge labels
of the left-hand boundary of K are equal to those of the right-hand boundary of H.

For the bottom boundary of K, when its rth edge from the left is created by the

action of \zeta r on K(n - r), its label has the initial value \mu 
(r)
r , equal to the uppermost

left-hand boundary edge label of H(r) and hence to the number of times the operator
\omega r will be applied in Phase 3. Then in Phase 1 and Phase 2, this bottom edge label
is incremented each time an operator \chi r or \phi r is applied. Thus, although in actual
Phase 3 no change is made on this bottom edge label, at the end of Phase 3 its
value equals the total number of path removal operators applied to H(r) as part of
\theta r, namely, \lambda r, and that value persists until the end. This occurs with each r, so
eventually the bottom edge labels of K are the same as those of H.

All this has been devised in our effort to transform the tableau map \rho 3 introduced
by the third author into the hive language.

Example 5.4. An exemplification of the map from (H(4),K(0)) to (H(0),K(4)) is

provided by the following. (H(4),K(0))
\Theta 4\mapsto  - \rightarrow (H(3),K(1)):

\zeta 4\mapsto  - \rightarrow 
6

5

2

0 5

4

1

0

8 6 5 4

1

1 2

1 2 1

0 6

5

2

0

0

6

5

2

0

0

0

\phi 4\mapsto  - \rightarrow 
5

5

2

0 5

4

1

0

8 6 5 3

1

1 2

0 1 0

0 6

5

2

0

1

5

5

2

1

0

0

\phi 4\mapsto  - \rightarrow 
5

4

2

0 5

4

1

0

8 6 5 2

1

0 1

1 2 0

0 6

5

2

0

2

5

4

2

1

1

0

\phi 4\mapsto  - \rightarrow 
5

4

1

0 5

4

1

0

8 6 5 1

1

0 0

1 3 0

0 6

5

2

0

3

5

4

1

1

1

1

\phi 4\mapsto  - \rightarrow 
5

4

0

0 5

4

1

0

8 6 5 0

0

1 0

1 3 0

0 6

5

2

0

4

5

4

0

1

1

2

\kappa 4\mapsto  - \rightarrow 
5

4

0 5

4

1

8 6 5

1

1 3

0 6

5

2

0

4

5

4

0

1

1

2

(H(3),K(1))
\Theta 3\mapsto  - \rightarrow (H(2),K(2)):

\zeta 3\mapsto  - \rightarrow 
5

4

0 5

4

1

8 6 5

1

1 3

0

0 6

5

2

0

0 4

5

4

0

1

0

1

2

\chi 3\mapsto  - \rightarrow 
5

4

0 5

4

0

8 6 4

1

1 3

1

0 6

5

2

0

1 4

5

4

0

1

0

1

2

\phi 3\mapsto  - \rightarrow 
4

4

0 5

4

0

8 6 3

1

0 2

1

0 6

5

2

0

2 4

4

4

1

1

0

1

2

\phi 2
3\mapsto  - \rightarrow 

4

2

0 5

4

0

8 6 1

1

0 0

1

0 6

5

2

0

4 4

4

2

1

1

2

1

2

\phi 3\mapsto  - \rightarrow 
4

1

0 5

4

0

8 6 0

0

1 0

1

0 6

5

2

0

5 4

4

1

1

1

3

1

2

\kappa 3\mapsto  - \rightarrow 
4

1 5

4

8 6

1

1

0 6

5

2

0

5 4

4

1

1

1

3

1

2
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(H(2),K(2))
\Theta 2\mapsto  - \rightarrow (H(1),K(3)):

\zeta 2\mapsto  - \rightarrow 
4

1 5

4

8 6

1

0

1

0 6

5

2

0

1 5 4
4

1

1 1

0 3 2

\chi 4
2\mapsto  - \rightarrow 

4

1 5

0

8 2

1

4

1

0 6

5

2

0

5 5 4
4

1

1 1

0 3 2

\phi 2\mapsto  - \rightarrow 
3

1 5

0

8 1

0

4

1

0 6

5

2

0

6 5 4
3

1

1 1

1 3 2

\omega 2\mapsto  - \rightarrow 
3

0 5

0

8 0

0

4

1

0 6

5

2

0

6 5 4
3

1

1 1

1 3 2

\kappa 2\mapsto  - \rightarrow 
3 5

8

4

1

0 6

5

2

0

6 5 4
3

1

1 1

1 3 2

(H(1),K(3))
\Theta 1\mapsto  - \rightarrow (H(0),K(4)):

\zeta 1\mapsto  - \rightarrow 
3 5

8

0

4

1

0 6

5

2

0

3 6 5 4

1

1 1

1 3 2

\chi 5
1\mapsto  - \rightarrow 

3 0

3

5

4

1

0 6

5

2

0

8 6 5 4

1

1 1

1 3 2

\omega 3
1\mapsto  - \rightarrow 

0 0

0

5

4

1

0 6

5

2

0

8 6 5 4

1

1 1

1 3 2

\kappa 1\mapsto  - \rightarrow 

\cdot 
5

4

1

0 6

5

2

0

8 6 5 4

1

1 1

1 3 2

We are now in a position to state and prove the following.

Theorem 5.5. Let n be a positive integer, and let \lambda , \mu , and \nu be partitions such
that \ell (\lambda ) \leq n and \mu , \nu \subseteq \lambda with | \lambda | = | \mu | + | \nu | . For each LR hive H \in \scrH (n)(\lambda , \mu , \nu )
let H(n) = H and let K(0) be an n-truncated n-hive with edge labels \mu . If we let
\Theta (n)(H(n),K(0)) = (H(0),K(n)) as in Definition 5.2, then H(0) = \theta 1\theta 2 \cdot \cdot \cdot \theta nH is an
empty hive and K = K(n) is an LR hive K \in \scrH (n)(\lambda , \nu , \mu ). In such a case we write
K = \sigma (n)H.

Proof. First it should be recognized from (4.6) that the passage from H(r) to
H(r - 1) = \theta rH

(r) involves the action of \kappa r that eliminates an empty rth diagonal.
Repeating this for r = n, . . . , 2, 1 ensures that H(0) = \theta 1\theta 2 \cdot \cdot \cdot \theta nH is the empty hive,
as required. In order to determine the properties of K we adopt the same plan as
described at the beginning of the proof of Lemma 4.1. As we have seen in Remark 5.3,
K = K(n) will have boundary edge labels \lambda , \nu and \mu , of which, in particular, \nu n and
\mu n are nonnegative. In addition it can be seen immediately that each phase of the
action of \Theta r preserves the triangle condition at every stage.

As far as the gradients of elementary rhombi are concerned, all the upright rhom-
bus gradients Vkr are nonnegative as they count the number of certain type (ii) hive
path removals. As can be seen from the following diagram,

(5.8)

\mu 
(r - 1)
k

\mu 
(r)
k

\mu 
(r)
k+1Lkr

Vkr
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the left-leaning rhombus gradients Lkr are also nonnegative since

(5.9) Lkr = \mu 
(r - 1)
k  - \mu 

(r)
k+1 = \mu 

(r)
k  - Vkr  - \mu 

(r)
k+1 \geq 0,

where the final step is a consequence of Corollary 4.5. Similarly, as can be seen from
the following pair of diagrams,

(5.10)

\nu r - 1

\nu r

Rkr

V1,r - 1

V1,r

V2,r - 1

V2,r

\cdot \cdot \cdot 

\cdot \cdot \cdot 

Vk - 1,r - 1

\cdot \cdot \cdot 

Vk,r

\nu r - 1

\nu r

Ur - 1,r

the right-leaning rhombus gradients Rkr are also nonnegative since

(5.11) Rkr = (\nu r - 1 +

k - 1\sum 
i=1

Vi,r - 1) - (\nu r +

k\sum 
i=1

Vir) \geq Ur - 1,r +Nk - 1,r - 1  - Nkr \geq 0 ,

where use has been made first of the hive condition \nu r - 1  - Ur - 1,r \geq \nu r that applies
to the subdiagram of H(r) that appears on the right and then of Lemma 4.6.

Thus all elementary rhombus gradients of K are nonnegative, and together with
the triangle conditions and the nonnegativity of \nu n and \mu n mentioned earlier, this
completes the proof that K is an LR hive. The boundary edge labels then ensure
that K \in \scrH (n)(\lambda , \nu , \mu ).

6. Creation of a hive by path additions and a proof of bijectivity. Having
used a path removal procedure to provide a map from any H \in \scrH (n)(\lambda , \mu , \nu ) to some
K \in \scrH (n)(\lambda , \nu , \mu ) we now wish to point out that a path addition procedure may be
used to provide a map from any K \in \scrH (n)(\lambda , \nu , \mu ) to some H \in \scrH (n)(\lambda , \mu , \nu ). The aim
is to show that these two maps are mutually inverse to one another, thereby proving
that each is a bijection.

Our approach is to move successively from an (r  - 1)-hive H(r - 1) to an r-hive
H(r) under a procedure dictated by the rth diagonal of K. In doing so it is necessary
to exploit first a new operator \kappa r whose action is to add to H(r - 1) an empty rth
diagonal consisting of a sequence of upright rhombi all of gradient 0, with its upper
and lower boundary edge labels 0, and with its remaining new edges given the unique
labels that preserve the triangle conditions. At this point it will be appropriate to
verify that if H \prime is any LR (r  - 1)-hive, then H \prime \prime = \kappa rH

\prime is also an LR r-hive. It is
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only necessary to confirm that all the new left- and right-leaning rhombi in H \prime \prime have
gradients \geq 0. The new right-leaning rhombi lie across the border of the (r  - 1)th
and the rth diagonals. Their right-hand edges have label 0 by construction, and their
left-hand edges have nonnegative labels as part of the LR hive H \prime , so their gradients
are \geq 0. The new left-leaning rhombi sit in the rth diagonal. If the edge labels on
the right-hand boundary of H \prime are (\nu 1, . . . , \nu r - 1), then these constitute a partition
since H \prime is a hive and by construction those on the right-hand boundary of H \prime \prime are
(\nu 1, . . . , \nu r - 1, \nu r) with \nu r = 0. The kth left-leaning rhombus from the top therefore
has left-hand edge label \nu k and right-hand edge label \nu k+1, so its gradient is \nu k - \nu k+1

which is \geq 0 for all k = 1, . . . , r  - 1, thereby confirming that H \prime \prime is a hive.
Then we require the following.

Definition 6.1. For any given H \in \scrH (r)(\lambda , \mu , \nu ) with \ell (\lambda ) \leq r we define three
path addition operators \chi r, \phi k, and \omega r whose action on H is to increase or reduce
edge labels by 1 along paths specified as follows:

(i) \chi r: the path consists of the boundary edges labeled \nu r and \lambda r, with each of
these labels being increased by 1;

(ii) \phi k: for any k < r the path proceeds down the kth diagonal from the edge
labeled \mu k through upright rhombi of gradient 0 until it encounters an upright
rhombus of positive gradient, at which point it moves horizontally to the right
into the (k+1)th diagonal and proceeds down this diagonal or to the right as
before, and so on until it either meets the base of the hive and then moves
to the right or meets the right-hand boundary and then moves down the rth
diagonal regardless of its upright rhombus gradients until, in both cases, it
terminates at the edge labeled \lambda r, with all path \alpha - and \gamma -edge labels being
increased by 1 and all path \beta -edge labels decreased by 1;

(iii) \omega r: the path proceeds directly down the rth diagonal until it terminates at the
base at the edge labeled \lambda r, with all path edge labels increased by 1.

These three types of path addition are illustrated below. In each case every \alpha - or
\gamma -edge label is increased by 1 and every solid \beta -edge label is decreased by 1. In the
case of \chi r and \omega r the path additions are confined to the rightmost rth diagonal. On
the other hand the path addition route ascribed to the action of \phi k with 1 \leq k < r
consists of a sequence of ladders through upright rhombi of gradient 0 in each diagonal
from the kth to the rth, with the passage from each diagonal to the next taking place
through a solid \beta -edge.

(6.1)

(i) \chi r:

\nu r

\lambda r

(ii) \phi k:

\mu k

\lambda r

0

>0 0

0

>0 >0

(iii) \omega r:

\mu r

\lambda r

It might be noted here that there are two distinct manners in which type (ii) paths
may terminate. They are illustrated below, with the figures (iia) and (iib) applying to
cases in which the path addition meets the base hive boundary first and the right-hand
hive boundary first, respectively.
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(6.2)

(iia) \phi k:

\mu k

\nu r - 1

\nu r

\lambda j \lambda r

0

>0 0

0 U

(iib) \phi k:

\mu k

\lambda r

0

>0 0

0

>0 >0 U

Remark 6.2. Just as \kappa r is the inverse of \kappa r, whose action is specified in Defi-
nition 4.2, so the path addition operators \chi r and \omega r are the inverses of \chi r and \omega r

introduced in Definition 3.1 with their action exemplified in the diagrams of (3.2).
Moreover, if the action of \phi r on an r-hive H removes a path P terminating at level
k, then applying \phi k to \phi rH recovers H, since the foot rhombus of each ladder of
P , left with positive gradient after the removal of P , and the middle rhombi of each
ladder of P , left with gradient 0, direct the action of \phi k so as to trace P backward,
restoring each edge label and upright rhombus gradient to their original values in H.
On the other hand, the opposite cancelation \phi r(\phi kH

\prime ) = H \prime may not hold in general
since, in the definition of the operator \phi k, any upright rhombus gradient test for the
added path P \prime to descend the rth diagonal has been omitted in order to ensure that
P \prime extends to the foot of this diagonal. Hence the path P removed by the action of
\phi r may encounter an upright rhombus of gradient > 0 in the rth diagonal below the
entry point of P \prime , causing P to leave the rth diagonal earlier than expected. This will
occur in the case of the example illustrated in (iib) if U is positive. However, our use
of the operators \phi k is only through the operator \theta r defined in Theorem 6.3, in which
case \phi r(\phi kH

\prime ) = H \prime also holds: see Lemmas 6.5 and 6.8.

We then claim the validity of the following.

Theorem 6.3. Let n be a positive integer, and let \lambda , \mu , and \nu be partitions such
that \ell (\lambda ) \leq n and \mu , \nu \subseteq \lambda with | \lambda | = | \mu | + | \nu | . For each LR hive K \in \scrH (n)(\lambda , \nu , \mu )
with upright rhombus gradients Vij for 1 \leq i < j \leq n let

\theta r = \chi \nu r
r \phi 

V1,r

1 \phi 
V2r

2 \cdot \cdot \cdot \phi Vr - 1,r

r - 1 \omega 
\mu (r)
r

r \kappa r ,(6.3)

where \mu 
(r)
r = \mu r  - Vr,n  - Vr,n - 1  - \cdot \cdot \cdot  - Vr,r+1, and let

H(r)(K) = \theta r \cdot \cdot \cdot \theta 2 \theta 1 H(0)(6.4)

for r = 1, 2, . . . , n with H(0) being an empty hive. Then H(K) := H(n)(K) \in 
\scrH (n)(\lambda , \mu , \nu ), and we write H(K) = \sigma (n)K.

Proof. It is convenient to set \lambda (r) = (\lambda 1, \lambda 2, . . . , \lambda r), \nu 
(r) = (\nu 1, \nu 2, . . . , \nu r) and to

remind ourselves of the notation already used in connection with K whereby \mu (r) =

(\mu 
(r)
1 , \mu 

(r)
2 , . . . , \mu 

(r)
r ) with \mu 

(r)
k = \mu k - Vk,n - Vk,n - 1 - \cdot \cdot \cdot  - Vk,r+1 for k = 1, 2, . . . , r. This

allows us to define K(r) \in \scrH (r)(\lambda (r), \nu (r), \mu (r)) to be the subhive of K \in \scrH (n)(\lambda , \nu , \mu )
consisting of its leftmost r diagonals for r = 1, 2, . . . , n. Thus K(r) is essentially the

complement of the truncated hive K(n - r) in K = K(n). We then claim first that
H(r)(K) is a triangular array of side length r with boundary edge labels \lambda (r), \mu (r),
and \nu (r) for r = 1, 2, . . . , n. This may be proved by induction. In the case r = 1 we
have
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K(1) =
\nu 1 \mu 

(1)
1

\lambda 1

and H(1)(K) = \chi \nu 1
1 \omega 

\mu 
(1)
1

1 \kappa 1 H
(0) so that the map from H(0) to H(1)(K) proceeds as

shown below:

(6.5) H(0) = \cdot \kappa 1\mapsto  - \rightarrow 
0 0

0

\omega 
\mu 
(1)
1

1\mapsto  - \rightarrow 
\mu 
(1)
1

0

\mu 
(1)
1

\chi \nu 1
1\mapsto  - \rightarrow 

\mu 
(1)
1

\nu 1

\lambda 1

= H(1)(K),

where in the final step use has been made of the fact that \mu 
(1)
1 + \nu 1 = \lambda 1, as implied

by the hive condition on K. This demonstrates that H(1)(K) has edge labels (\lambda 1),

(\mu 
(1)
1 ), and (\nu 1) as required.
By the induction hypothesis H(r - 1)(K) is a triangular array of side length r  - 1

with boundary edge labels \lambda (r - 1), \mu (r - 1), and \nu (r - 1). The passage from H(r - 1)(K) to
H(r)(K) = \theta rH

(r - 1)(K), as determined by the rth diagonal of K, is then illustrated
by the following.

(6.6)

K(r)

\nu 1

\nu 2

\cdot \cdot 
\cdot 

\nu r - 1

\nu r \mu 
(r)
1

\mu 
(r)
2

\cdot \cdot \cdot 

\mu 
(r)
r - 1

\mu 
(r)
r

\lambda 1 \lambda 2 \cdot \cdot \cdot \lambda r - 1 \lambda r

V1r

V2r
\cdot \cdot \cdot 

Vr - 1,r

H
(r)

(iii)
(K)

\mu 
(r - 1)
1

\mu 
(r - 1)
2

\cdot \cdot 
\cdot 

\mu 
(r - 1)
r - 1

\mu 
(r)
r \nu 1

\nu 2

\cdot \cdot \cdot 

\nu r - 1

0

\lambda 1 \lambda 2 \cdot \cdot \cdot \lambda r - 1 \mu 
(r)
r

0

0

0

\cdot \cdot \cdot 

H
(r)

(ii)
(K)

\mu 
(r)
1

\mu 
(r)
2

\cdot \cdot 
\cdot 

\mu 
(r)
r - 1

\mu 
(r)
r \nu 1

\nu 2

\cdot \cdot \cdot 

\nu r - 1

0

\lambda 1 \lambda 2 \cdot \cdot \cdot \lambda r - 1 \lambda r - \nu r

0

0 \widetilde Ur - 1,r

H
(r)

(i)
(K)

\mu 
(r)
1

\mu 
(r)
2

\cdot \cdot 
\cdot 

\mu 
(r)
r - 1

\mu 
(r)
r \nu 1

\nu 2

\cdot \cdot \cdot 

\nu r - 1

\nu r

\lambda 1 \lambda 2 \cdot \cdot \cdot \lambda r - 1 \lambda r

\widetilde U1,r

\widetilde U2,r

\cdot \cdot \cdot 

\widetilde Ur - 1,r

The hive conditions on K(r) imply that

(6.7) \mu 
(r)
k = \mu 

(r - 1)
k + Vkr for k = 1, 2, . . . , r  - 1 and

r - 1\sum 
k=1

Vkr = \lambda r  - \nu r  - \mu (r)
r .
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In the above display (6.6) H
(r)

(iii)
(K) has been formed by adding to H(r - 1)(K) an rth

diagonal of upright rhombi all of gradient 0 and then applying all \mu 
(r)
r type (iii) path

addition operators. Then H
(r)

(ii)
(K) is obtained by applying Vkr type (ii) path addition

operators successively in the order k = r - 1, . . . , 2, 1. Just one type (ii) path addition
has been shown for illustrative purposes. For each k the Vkr added paths increase

the kth left-hand boundary edge label from \mu 
(r - 1)
k to \mu 

(r - 1)
k + Vkr = \mu 

(r)
k , where use

has been made of the first identity in (6.7). Moreover, each of these path additions
extends as far as the foot of the rth diagonal, adding precisely 1 both to the rth
lower boundary edge and to one or another of the upright rhombus gradients in this
diagonal. It follows that on completing this type (ii) action the rth lower boundary

edge becomes \mu 
(r)
r + V1r + V2r + \cdot \cdot \cdot + Vr - 1,r = \lambda r  - \nu r, as shown, where use has been

made of the second identity of (6.7). Finally, the application of all \nu r type (i) path
addition operators adds \nu r to the two edges meeting at the lower right-hand corner

of H
(r)

(ii)
(K), thereby yielding H

(r)

(i)
(K) with boundary edge labels as shown in the last

diagram of (6.6). It can be seen from this that H(r)(K) = H
(r)

(i)
(K) has boundary

edge labels specified by \lambda (r), \mu (r), and \nu (r), as required.
It remains to show that H(r)(K) satisfies all necessary hive conditions and is thus

\in \scrH (r)(\lambda (r), \mu (r), \nu (r)), for which again we use the same method as in the proof of

Lemma 4.1. The nonnegativity of \mu 
(r)
r and \nu 

(r)
r = \nu r follows immediately from that of

all edge labels in K. As far as elementary triangles are concerned the path additions
give rise to the following possibilities.

(6.8)
+1

+1

+1

+1

+1  - 1
+1

+1

 - 1 +1

It is clear that the triangle conditions are preserved in every case, and that it is only
\beta -edge labels that may be reduced in value. If we can confirm the rhombus gradient
conditions, then these labels remain nonnegative since they must then all be \geq \nu r \geq 0.

It is helpful to proceed by way of an analogue of Lemma 4.4.

Lemma 6.4. During the action of \theta r on H(r - 1)(K) let a hive path addition of
type (ii) follow a path P starting from the left-hand boundary at level k < r; then the
next such path addition, starting from the left-hand boundary at level k\prime \leq k by the
definition (6.3) of \theta r, follows a path P \prime lying weakly below the path P in each diagonal
from the kth to the rth.

Proof. The argument is similar to the one used in the proof of Lemma 4.4 except
for the direction in which the paths proceed and the exchanged roles of head and
foot rhombi in guiding the paths, and so we omit the details. To derive the conclu-
sion of Lemma 6.4, it is sufficient to apply this argument, diagonal by diagonal, until
each added path meets either the bottom or the right-hand boundary, since after-
wards the definition directs the path to just proceed in a zig-zag manner along that
boundary.

Before analyzing other rhombus gradients, let us settle the issue, just mentioned
above, that was raised in the Remark 6.2, namely, that of the upright rhombus gra-
dients in the rth diagonal below the point of entry of each type (iib) path, since we
will need it more than once.
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Lemma 6.5. Consider an application of \phi k to an r-hive H \prime as occurs in the course
of the action of \theta r. If the added path is of type (iib), then all the upright rhombi in
the rth diagonal of H \prime through which P \prime descends necessarily have gradient 0.

Proof. Focusing on the transformation of the rth diagonal during the action of
\theta r, the gradients of the upright rhombi are initially 0 when created by \kappa r and remain
intact through actions of \omega r. Then, by the definition of \theta r, operators \phi k are applied
in the weakly decreasing order of the starting level k, and Lemma 6.4 ensures that
each path is added weakly below its predecessor, accompanied by an increase of an
upright rhombus gradient in the rth diagonal only immediately above its first \alpha -edge
in the rth diagonal. Hence at the time of each type (iib) path addition, the upright
rhombi below its first \alpha -edge in the rth diagonal retain gradients 0, since all previous
increments have occured above it.

Returning to the proof of Theorem 6.3, the only path addition configurations that
give rise to a reduction in a rhombus gradient are those shown below.

(6.9)

+1  - 1

+1

+1 +1
 - 1

+1

+1

+1

U  - \rightarrow U - 1 R  - \rightarrow R - 1 L  - \rightarrow L - 1 L  - \rightarrow L - 1

The leftmost configuration only arises in a situation where the transition is from
an upright rhombus gradient U > 0 to U  - 1, as can be seen from (6.1). Thus all
upright rhombus gradients remain nonnegative after all possible path additions.

The second configuration in (6.9) always appears as part of a ladder of one of the
three types with some m \geq 1.

(6.10)

\alpha 1

\alpha 2

\alpha m

\alpha 

r  - 1 r

0

0

0

0

R1

R2

\cdot \cdot \cdot 

Rm

\alpha 1

\alpha 2

\alpha m

\alpha 

k  - 1 k

0

0

0

0

R1

R2

\cdot \cdot \cdot 

Rm

\alpha 0

\alpha 1

\alpha 2

\alpha m

\alpha 

d - 1 d

U - 1 0

0

0

0

R1

R2

\cdot \cdot \cdot 

Rm

In all three cases the hive conditions on H(r - 1)(K) imply that \alpha m \geq \cdot \cdot \cdot \geq \alpha 2 \geq 
\alpha 1. Moreover, each addition path ladder passes through upright rhombi of gradient 0,
which due to Lemma 6.5 is true even if d = r in the third diagram. This implies that

in each case Rm = \alpha m  - \alpha . Then in the first case on the left, for which \alpha 1 = \mu 
(r - 1)
r - 1 ,
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under the addition of \mu 
(r)
r paths of the type shown, the edge label \alpha increases from 0

to its maximum value \mu 
(r)
r . It follows that Rm \geq \alpha 1  - \alpha \geq \mu 

(r - 1)
r - 1  - \mu 

(r)
r \geq 0, where

the last step is a consequence of the hive conditions on K. Thus all right-leaning
rhombi in this situation remain of nonnegative gradient.

Similarly in the next case, for which \alpha 1 = \mu 
(r - 1)
k - 1 , under the addition of Vkr =

\mu 
(r)
k  - \mu 

(r - 1)
k paths of the type shown, the edge label \alpha increases from \mu 

(r - 1)
k to its

maximum value \mu 
(r)
k . Hence Rm = \alpha m  - \alpha \geq \alpha 1  - \alpha \geq \mu 

(r - 1)
k - 1  - \mu 

(r)
k \geq 0, where once

again the last step is a consequence of the hive conditions on K. Hence, once again
all right-leaning rhombi in this situation remain of nonnegative gradient.

In the third case, the labeling is taken to be that immediately after any one of
the actions of some \phi k. The fact that the path addition has moved from the (d - 1)th
to the dth diagonal implies that the shaded upright rhombus had an initial gradient
U = \alpha 1  - (\alpha 0  - 1) > 0 with an initial hive condition \alpha 0  - 1 \geq \alpha  - 1. It follows that
after the path addition Rm = \alpha m  - \alpha \geq \alpha 1  - \alpha 0 \geq 0, as required to show that all
right-leaning rhombi remain of nonnegative gradient.

Returning to (6.9) it is necessary to consider the reduction of gradients of left-
leaning rhombi. The third configuration in (6.9) appears at the top of a ladder either
(1) as in the third diagram of (6.10) with m \geq 1 or (2) at the end of a type (iia) path
as in (6.2). For case (1) consider the following diagram with the edge and gradient
labels specified before the path addition.

(6.11)

\beta \prime 

\beta 

\beta \prime \prime 

\beta \prime \prime 

0U

L

In this situation, by hypothesis, the shaded upright rhombus has gradient U = \beta  - \beta \prime >
0 and the white upright rhombus has gradient 0, which is again true even if the white
rhombus lies in the rth diagonal, due to Lemma 6.5. Advantage has been taken of the
zero gradient of the white upright rhombus to equate the pair of edge labels labeled
\beta \prime \prime . The hive conditions before the path addition also imply that \beta \prime \geq \beta \prime \prime from which
it follows that L = \beta  - \beta \prime \prime > 0. After the path addition the rhombus gradient L is
reduced to L - 1, which remains \geq 0.

The only remaining left-leaning rhombi whose gradients may be reduced under
path additions are those lying at the bottom right-hand corner as exemplified below,
namely, the third configuration in (6.9) in case (2) and the fourth configuration in
(6.9) that applies in the case of each type (i) path addition.

(6.12)

\beta 

\nu r - 1

0

U

L \beta 

\nu r - 1

\nu r

U

L

On the left we have L = \beta = \nu r - 1  - U and on the right L = \beta  - \nu r = \nu r - 1  - \nu r  - U .
Without knowing whether L remains \geq 0 after the path addition, or some of the
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edge labels, we can continue applying path addition operators as prescribed by K,
since their action is well defined on any triangular array of edge labels satisfying the
triangle conditions as well as the nonnegativity of all upright rhombus gradients, and
this action produces another such array. In doing so, we can still use Lemma 6.4 since
both its statement and its proof only refer to the upright rhombus gradients, from
which it follows that, once a type (iia) path addition occurs, all remaining type (ii)

path additions are of type (iia). Then U increases steadily from 0 to, say, \widetilde Ur - 1,r under

all path additions of the type (iia), with no further changes under path additions of
type (i). Therefore all we require for L to remain nonnegative is that the final value\widetilde Ur - 1,r \leq \nu r - 1  - \nu r.

In the case r = 1 there is no left-leaning rhombus, while for r = 2 we have

H(2)(K) = \theta 2H
(1)(K) = \chi \nu 2

2 \phi 
V12

1 \omega 
\mu 
(2)
2

2 \kappa 2H
(1)(K) from which it can be seen that\widetilde U12 = V12 \leq \nu 1  - \nu 2, as required, where the final step is a consequence of the hive

conditions on K. To then prove that \widetilde Ur - 1,r \leq \nu r - 1  - \nu r for r \geq 3 we first make the
following observation regarding the sequential action of \theta r - 1 and \theta r on H(r - 2)(K)
that yields H(r)(K) = \theta r \theta r - 1H

(r - 2)(K).

Lemma 6.6. For r \geq 3 let Pi for i = 1, 2, . . . , \lambda r and Qi for i = 1, 2 . . . , \lambda r - 1 be
the paths added by the operations \theta ri and \theta r - 1,i, respectively, lying in the ith positions
counted from left to right in the following expansions of \theta r - 1 and \theta r:

(6.13)

\theta r - 1 =

\nu r - 1\underbrace{}  \underbrace{}  
\chi r - 1 \cdot \cdot \cdot \chi r - 1

V1,r - 1\underbrace{}  \underbrace{}  
\phi 1 \cdot \cdot \cdot \phi 1 \cdot \cdot \cdot 

Vr - 2,r - 1\underbrace{}  \underbrace{}  
\phi r - 2 \cdot \cdot \cdot \phi r - 2

\mu 
(r - 1)
r - 1\underbrace{}  \underbrace{}  

\omega r - 1 \cdot \cdot \cdot \omega r - 1 \kappa r - 1,

\theta r =

\nu r\underbrace{}  \underbrace{}  
\chi r \cdot \cdot \cdot \chi r

V1r\underbrace{}  \underbrace{}  
\phi 1 \cdot \cdot \cdot \phi 1

V2r\underbrace{}  \underbrace{}  
\phi 2 \cdot \cdot \cdot \phi 2 \cdot \cdot \cdot 

Vr - 1,r\underbrace{}  \underbrace{}  
\phi r - 1 \cdot \cdot \cdot \phi r - 1

\mu (r)
r\underbrace{}  \underbrace{}  

\omega r \cdot \cdot \cdot \omega r \kappa r,

i= 1, \cdot \cdot \cdot , \nu r, \cdot \cdot \cdot , \nu r - 1, \nu r - 1+1, \cdot \cdot \cdot , \nu r+
r - 1\sum 
j=1

Vjr\underbrace{}  \underbrace{}  .
Then for each i above the final brace, that is, such that \nu r - 1 < i \leq \nu r +

\sum r - 1
j=1 Vjr, the

paths Pi and Qi are both of type (ii) and the path Pi lies strictly above Qi.

Proof. Here the vertical alignment is designed to reflect not only that \lambda r \leq \lambda r - 1

and \nu r \leq \nu r - 1 but also that \nu r +
\sum r - 1

j=1 Vj,r \leq \nu r - 1 +
\sum r - 2

j=1 Vj,r - 1, with the latter
a consequence of the hive condition Rr - 1,r \geq 0 in K. It follows that the paths

Pi and Qi are both of type (ii) if and only if \nu r - 1 + 1 \leq i \leq \nu r +
\sum r - 1

j=1 Vjr, as
illustrated above in (6.13). For fixed i in this range, let Pi and Qi start on the left-
hand boundary at levels k and l, respectively, so that \theta r,i = \phi k and \theta r - 1,i = \phi l.

However, \nu r +
\sum k

j=1 Vj,r \leq \nu r - 1 +
\sum k - 1

j=1 Vj,r - 1, by virtue of the nonnegativity of the

right-leaning rhombus gradient Rkr in K. This implies that the list of operators \phi k
in the expansion of \theta r extends no further to the right than the rightmost position of
\phi k - 1 in the expansion of \theta r - 1. It follows that l \leq k  - 1 < k, so that the path Qi

passes from the lth diagonal to the (r  - 1)th diagonal leaving an upright rhombus
of positive gradient immediately above it in each diagonal from the (l + 1)th to the
(r  - 1)th, necessarily including the kth, as illustrated below.
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(6.14) Qi : l

Pi : k

r - 1 r

0

0

0

0

0

0

0

0

0

0

0

0

0

0

To show that Pi lies strictly above Qi it only remains to show that the positivity
condition on all the shaded upright rhombus gradients associated with the addition of
Qi remains valid up until the subsequent addition of Pi. This can be accomplished as
follows. We consider first the case i = m where m = \nu r +

\sum r - 1
j=1 Vjr, corresponding to

the first type (ii) path addition, and then proceed in the order of decreasing indices,
following the argument very similar to the one given in the proof of Lemma 4.6
regarding the accumulation of +1's creating inpenetrable barriers, with the roles of
head and foot rhombi exchanged (namely, in the current case the accumulation occurs
in the head rhombi), so we omit further details.

We are now in a position to prove the following.

Lemma 6.7. For r \geq 3 let the action of \theta r on H(r - 1)(K) = \theta r - 1H
(r - 2)(K) yield

H(r)(K) with the bottommost upright rhombus in the rth diagonal having gradient\widetilde Ur - 1,r. Then \widetilde Ur - 1,r \leq \nu r - 1  - \nu r.

Proof. For r \geq 3 we can exploit Lemma 6.6. Given any pair of addition paths
Pi and Qi with Qi necessarily extending as far as the (r  - 1)th diagonal, the fact
that Pi lies strictly above Qi means that Pi enters the rth diagonal above its lowest
upright rhombus and therefore makes no contribution to \widetilde Ur - 1,r. The only possible

contributions to \widetilde Ur - 1,r are those that might arise from the type (ii) path additions Pi

that are not paired with a corresponding type (ii) path addition Qi. It then follows
immediately from the vertical alignment of the expansions of \theta r and \theta r - 1 in (6.13)

that \widetilde Ur - 1,r \leq \nu r - 1  - \nu r, as required.

Returning yet again to the proof of Theorem 6.3, we now know that \widetilde Ur - 1,r \leq 
\nu r - 1  - \nu r for all r \geq 2, as required to prove that all hive conditions are satis-
fied by H(r)(K) = \theta rH

(r - 1)(K) under the induction hypothesis that H(r - 1)(K) \in 
\scrH (r)(\lambda (r - 1), \mu (r - 1), \nu (r - 1)). Since we have already established that H(r)(K) has the
appropriate boundary edge labels, including the nonnegativity of the topmost left-
hand and the bottommost right-hand boundary edge labels, and also that it satisfies
all triangle conditions, it follows that H(r)(K) \in \scrH (r)(\lambda (r), \mu (r), \nu (r)).

This completes the induction argument, and applying this result in the case r = n
we conclude that H(K) := H(n)(K) \in \scrH (n)(\lambda (n), \mu (n), \nu (n)) = \scrH (n)(\lambda , \mu , \nu ), thereby
proving the validity of Theorem 6.3.
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With Lemma 6.5 at hand, we can now fill in the piece that was missing in Re-
mark 6.2 which said that the type (ii) path additions, in the context in which we use
them, and the type (ii) path removals are mutually inverse operators.

Lemma 6.8. Consider an application of \phi k to an r-hive H \prime as occurs in the course
of the action of \theta r. If the operator \phi r is applied to such \phi kH

\prime , then this recovers H \prime .

Proof. The middle rhombi of all ladders of the path, say, P \prime , added by the action
of \phi k on H \prime are left with gradient 0, including the ones in the rth diagonal if P \prime is of
type (iib), due to Lemma 6.5, and the head rhombi of all ladders of P \prime with positive
gradients. Hence the path removed by the action of \phi r on \phi kH

\prime traces P \prime backwards
guided by those rhombi, canceling the effects of the addition of P \prime on edge labels and
recovering H \prime .

The relationship between our path removal and path addition operations allows
us to establish the bijective nature of the maps we have encountered in Theorems 5.5
and 6.3 with their domains extended as in the following.

Theorem 6.9. For fixed positive integer n, let \scrH (n) be the union of \scrH (n)(\lambda , \mu , \nu )
for all partitions \lambda , \mu , and \nu such that \ell (\lambda ) \leq n, and with \mu , \nu \subseteq \lambda and | \lambda | =
| \mu | + | \nu | . Let \sigma (n) : \scrH (n) \rightarrow \scrH (n) be such that for each H \in \scrH (n)(\lambda , \mu , \nu ) we have
\sigma (n) : H \mapsto \rightarrow K \in \scrH (n)(\lambda , \nu , \mu ) with K = \sigma (n)H, as defined in Theorem 5.5. Similarly,
let \sigma (n) : \scrH (n) \rightarrow \scrH (n) be such that for each K \in \scrH (n)(\lambda , \nu , \mu ) we have \sigma (n) : K \mapsto \rightarrow 
H(K) \in \scrH (n)(\lambda , \mu , \nu ) with H(K) = \sigma (n)K, as defined in Theorem 6.3. Then the
maps \sigma (n) and \sigma (n) are mutually inverse bijections.

Proof. It follows from Theorems 5.5 and 6.3 that

(6.15) H(K) = \theta n \cdot \cdot \cdot \theta 2\theta 1H(0) = \theta n \cdot \cdot \cdot \theta 2\theta 1 \theta 1\theta 2 \cdot \cdot \cdot \theta nH

with

(6.16) \theta r = \chi \nu r
r \phi 

V1r

1 \phi 
V2r

2 \cdot \cdot \cdot \phi Vr - 1,r

r - 1 \omega 
\mu (r)
r

r \kappa r

and

\theta r = \kappa r \omega 
\mu (r)
r

r \phi 
\lambda r - \mu (r)

r  - \nu r
r \chi \nu r

r = \kappa r \omega 
\mu (r)
r

r \phi V1r+V2r+\cdot \cdot \cdot +Vr - 1,r
r \chi \nu r

r

= \kappa r \omega 
\mu (r)
r

r \phi Vr - 1,r
r \cdot \cdot \cdot \phi V2r

r \phi V1r
r \chi \nu r

r ,(6.17)

where the exponents \nu r, \mu 
(r)
r and Vkr for k = 1, 2, . . . , r  - 1 are all taken from K,

and use has been made of the hive conditions on K that ensure that \lambda r  - \mu 
(r)
r  - \nu r =

V1r+\cdot \cdot \cdot +Vr - 1,r. The final form of \theta r reflects the fact that its action onH(r) to produce
H(r - 1) involves \nu r type (i) path removals, followed successively by V1r, V2r, . . . , Vr - 1,r

type (ii) path removals terminating at levels 1, 2, . . . , r - 1, respectively, and then \mu 
(r)
r

type (iii) path removals. As noted in the Remark 6.2, not only are \kappa r, \omega r, and \chi r the
mutual inverses of \kappa r, \omega r, and \chi r, respectively, but also if the action of \phi r removes
a path terminating at level k, then applying \phi k restores that path; that is to say,
their actions mutually cancel. Since successive type (ii) paths removed by \phi Vkr

r are

weakly above one another and successive type (ii) paths added by \phi 
Vkr

k are weakly

below one another, the operator \phi 
Vkr

k \phi Vkr
r involves Vkr nested pairs of operators \phi k\phi r
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whose actions cancel. This is true for k = r - 1, . . . , 2, 1 as well as for the pairs \kappa r \kappa r,
\omega r \omega r, and \chi r \chi r. It follows that

(6.18) \theta r\theta rH
(r) = \chi \nu r

r \phi 
V1r

1 \cdot \cdot \cdot \phi Vr - 1,r

r - 1 \omega 
\mu (r)
r

r \kappa r \kappa r \omega 
\mu (r)
r

r \phi Vr - 1,r
r \cdot \cdot \cdot \phi V1r

r \chi \nu r
r H

(r) = H(r).

Since this occurs for each r, we have \theta n \cdot \cdot \cdot \theta 1H(0) = \theta n \cdot \cdot \cdot \theta 1\theta 1 \cdot \cdot \cdot \theta nH = H, that is
to say, H(K) = H. From this we see that for any n-hive H we have \sigma (n) \sigma (n)H = H.

Similarly, if one starts with K \in \scrH (n)(\lambda , \nu , \mu ) and creates H(K) = \sigma (n)K \in 
\scrH (n)(\lambda , \mu , \nu ) through a sequence of path additions determined by K, then the action
of \sigma (n) on H(K) consists of reversing the order of the path additions and applying
their inverses in the form of corresponding path removals. More precisely, to deal
with the cancelation of \theta r\theta r in

(6.19) \theta r\theta rH
\prime = \kappa r \omega 

\mu (r)
r

r \phi Vr - 1,r
r \cdot \cdot \cdot \phi V1r

r \chi \nu r
r \chi \nu r

r \phi 
V1r

1 \cdot \cdot \cdot \phi Vr - 1,r

r - 1 \omega 
\mu (r)
r

r \kappa rH
\prime ,

where H \prime = H(r - 1)(K), there is first an easy cancelation of \chi \nu r
r \chi \nu r

r , after which we
apply Lemma 6.8 to cancel pairs \phi r \phi k one by one, Vkr times for k = 1, 2, . . . , r  - 1.
This amount to canceling all type (ii) path removal and type (ii) path addition opera-

tors, and finally there are two more easy cancelations of \omega 
\mu (r)
r

r \omega 
\mu (r)
r

r and \kappa r \kappa r. In this
process the cancelation of \phi r \phi k implies that the path generated by this particular
action of \phi r terminates at level k. Hence each exponent Vkr of \phi k in the expression
for \theta r, originally taken from K, is also equal to the number of those type (ii) paths
terminating at level k, removed during the action of \theta r as part of \sigma (n) applied to
H(K). By this means one necessarily arrives back at K \in \scrH (n)(\lambda , \nu , \mu ) as a record
of the boundary edges of the sequence of path removals. That is to say, this time, if
H(K) = \sigma (n)K, then K = \sigma (n)

\bigl( 
H(K)

\bigr) 
so that \sigma (n)\sigma (n)K = K for all K \in \scrH (n).

It follows that \sigma (n) and \sigma (n) are mutually inverse maps and that both are bijec-
tive.

We shall show in Theorem 7.10, our main result, that the bijection \sigma (n) is an
involution. Hence the results of the action of \sigma (n) involving path addition operators
and that of \sigma (n) involving path removal operators are identical.

7. Hive based proof of the involutive property. Our next task is to prove
that the map \sigma (n) is an involution. To do this we proceed by way of a sequence of
lemmas, in connection with which we need to introduce two new types, (iv) and (v),
of path removal operations on hives.

Definition 7.1. Given any hive H \in \scrH (r)(\lambda , \mu , \nu ) we define path removal oper-
ators \psi r and \xi kr whose action on H is to decrease or increase edge labels by 1 along
paths as follows:

(iv) \psi r: provided that Uir > 0 for some i < r and k = min\{ i | Uir > 0\} the path
proceeds downwards along the rth diagonal from the edge labeled \nu k along a
zig-zag route to the edge labeled \lambda r with all path edge labels being decreased
by 1.

(v) \xi kr: the path proceeds from the edge labeled \nu k along the route that would be
followed by either a type (ii) or a type (iii) path from level k in diagonal r to
the left-hand boundary at level j \leq r with all \alpha - and \gamma -edge labels on the path
decreased by 1 and all \beta -edge labels on the path increased by 1.

Such paths are illustrated below, where certain upright rhombus labels have been
indicated as being > 0, 0, or \geq 0 immediately before path removal. In case (iv) we
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have Ukr = U with U > 0, while case (v) has been exemplified in two cases depending
upon whether or not there exists Uir > 0 for some i < k.

(7.1)

(iv) \psi r:
\mu r

\nu k

\lambda r

\beta 

0

0

0

0

U

\geq 0
\geq 0

(va) \xi kr:
\mu j

\mu r

\nu k

\lambda r

\geq 0

0

0

>0 >0

\geq 0
\geq 0

\geq 0
\geq 0

(vb) \xi kr:
\mu r

\nu k

\lambda r

0

0

0

0

\geq 0
\geq 0
\geq 0

In all three cases the specified changes of \pm 1 in edge labels ensure that the hive
triangle conditions are satisfied, while in the case of path removals generated by \xi kr
the hive rhombus conditions are also satisfied since the paths of type (va) and (vb)
follow, respectively, the routes determined by the type (ii) and type (iii) rules of
Definition 3.1. In the case (va) the fact that Uir > 0 for some i < k is sufficient
to ensure that initially all path \alpha - and \gamma -edge labels, including \mu j , are positive and
therefore remain nonnegative after the path removal. To ensure this in the case (vb)
it is necessary and sufficient that \mu r > 0, and this will always be found to be the case
in what follows.

In case (iv) prior to the path removal generated by \psi r the condition Ukr = U > 0
ensures that \nu k > 0 and \lambda r > 0. The initial hive conditions then ensure that all \alpha -
and \gamma -edges on the path have labels \geq \mu r+U > 0, and \geq \lambda r > 0, respectively, so that
they also remain \geq 0 after the path removal. That the rhombus hive conditions are
preserved can be seen from the following display of all the types of rhombi whose edge
labels are affected by the path removal, in the second case of which we necessarily
have U > 0.

(7.2)
R U U L L

R \mapsto \rightarrow R+1 U \mapsto \rightarrow U - 1 U \mapsto \rightarrow U L \mapsto \rightarrow L+1 L \mapsto \rightarrow L

Thus each of the path removals of Definition 7.1 preserves the hive conditions.
As an immediate consequence of this we have the following.

Lemma 7.2. For i = 1, 2, . . . , n let \epsilon i = (0, . . . , 0, 1, 0, . . . , 0) with the single entry
1 in the ith position. Let H \in \scrH (n)(\lambda , \mu , \nu ) with \ell (\lambda ) = n be such that Uin > 0 for
some i < n. Then \psi nH \in \scrH (n)(\lambda  - \epsilon n, \mu , \nu  - \epsilon k) where k = min\{ i | Uin > 0\} .

We are now in a position to state what turns out to be a crucial lemma en route
to Lemma 7.9 and our involution Theorem 7.10.

Lemma 7.3. Let H \in \scrH (n)(\lambda , \mu , \nu ) with \ell (\lambda ) = n be such that Uin > 0 for some

i < n, with k = min\{ i | Uin > 0 \} , and let \widehat H = \psi nH. Setting H(n) = H and\widehat H(n) = \widehat H, let the action of \sigma (n) yield K = K(n) and \widehat K = \widehat K(n) by way of the chains

(H(n),K(0))
\Theta n\mapsto  - \rightarrow (H(n - 1),K(1))

\Theta n - 1\mapsto  - \rightarrow (H(n - 2),K(2))
\Theta n - 2\mapsto  - \rightarrow \cdot \cdot \cdot \Theta 1\mapsto  - \rightarrow (H(0),K(n))

and

( \widehat H(n), \widehat K(0))
\Theta n\mapsto  - \rightarrow ( \widehat H(n - 1), \widehat K(1))

\Theta n - 1\mapsto  - \rightarrow ( \widehat H(n - 2), \widehat K(2))
\Theta n - 2\mapsto  - \rightarrow \cdot \cdot \cdot \Theta 1\mapsto  - \rightarrow ( \widehat H(0), \widehat K(n)) .
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Then

(7.3) \phi nK
(r) = \widehat K(r) for r = 1, 2, . . . , n ,

where the action of \phi n on the truncated hive K(r) is exactly the same as its action
would be on a hive except that it terminates on reaching the lower left-hand boundary
of K(r).

In particular, we have \phi nK = \widehat K. That is to say, we have \sigma (n)\psi nH = \phi n \sigma 
(n)H,

namely, the following diagram commutes.

(7.4)

H K

\widehat H \widehat K

\sigma (n)

\sigma (n)

\psi n \phi n

Proof. The action of \Theta r involves applying \theta r to H(r) and \widehat H(r) to create H(r - 1)

and \widehat H(r - 1), while recording information on the relevant path removals in K(n - r+1)

and \widehat K(n - r+1), respectively, for each r = n, n  - 1, . . . , 1. We divide this sequence
of actions according to the following four regions of the values of r, namely, r = n,
n > r > k (vacuous if k = n - 1), r = k, and r < k (vacuous if k = 1). Lemmas 7.4,
7.5, and 7.7 deal with the cases r = n, n > r > k, and r = k, respectively, and the
remaining case r < k follows easily. First we state the three lemmas.

Lemma 7.4. Let n be a positive integer, H an n-hive such that Uin > 0 for some
i < n, with k = min\{ i | Uin > 0 \} , and \widehat H = \psi nH.

Then, the removals by the actions of \theta n on H and \widehat H involve the following.\left\{             

Type (i) paths: the same number of them from both H and \widehat H;

type (ii) paths: one more of them from H than from \widehat H; more precisely,

the same type (ii) paths P1 = \widehat P1, . . . , Pc - 1 = \widehat Pc - 1 from both H and \widehat H and
one extra type (ii) path Pc from H entering the (n - 1)th diagonal at level k;

type (iii) paths: the same number of them from both H and \widehat H.

Moreover, the (n  - 1)-hive \theta nH differs from \theta n \widehat H by the removal of one type
(v) path, which is actually the (n  - 1)-hive part of Pc, so that we have \theta nH =

\xi k,n - 1 (\theta n \widehat H).

Lemma 7.5. Let k and r be integers satisfying 1 \leq k < r. Let H and \widehat H be r-hives
such that H = \xi kr \widehat H, and D the path removed by the action of \xi kr on \widehat H. We call
D the path of difference. Let j denote the level at which D ends on the left-hand
boundary of the r-hive.

Then, the removals by the actions of \theta r on H and \widehat H involve the following.\left\{                   

Type (i) paths: the same number of them from both H and \widehat H; and
type (ii) and (iii) paths: the same number of them (counted together) from both H

and \widehat H. More precisely, let P1, . . . , Pm and \widehat P1, . . . , \widehat Pm be such paths in the order
of removal, respectively. Then, for some 1 \leq c \leq m, the following hold.
P1 = \widehat P1, . . . , Pc - 1 = \widehat Pc - 1.\widehat Pc ends at level j, while Pc ends at some level j\prime < j on the left-hand boundary.
For each a > c, Pa and \widehat Pa both end at the same level on the left-hand boundary.
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Moreover, the (r  - 1)-hive \theta rH differs from \theta r \widehat H by the removal of a type (v)
path, say, D\prime , starting at level k\prime = k on the right-hand boundary, that is to say,
\theta rH = \xi k,r - 1(\theta r \widehat H), and the new path of difference D\prime terminates on the left-hand
boundary at some level j\prime < j.

Remark 7.6. The paths Pa and \widehat Pa with a < c, as well as Pc, are type (ii) paths.\widehat Pc is a type (iii) path if j = r (in which case, so are all Pa and \widehat Pa with a > c), while

it is a type (ii) path if j < r (in which case, for a > c the paths Pa and \widehat Pa are, in
general, type (ii) paths for c < a \leq d and type (iii) paths for d < a \leq m for some d
such that c < d \leq m).

Lemma 7.7. Let k be a positive integer. Let H and \widehat H be k-hives such that H =
\xi kk \widehat H, D the path of difference between H and \widehat H, and j the level at which D ends on
the left-hand boundary of the k-hive.

Then, the removals by the action of \theta k on H and \widehat H involve the following.\left\{         
Type (i) paths: one more of them from H than from \widehat H; and

type (ii) and (iii) paths: one more of them from \widehat H than from H; more precisely,

one extra path \widehat P0 from \widehat H, ending at level j, from \widehat H,
then the same paths P1 = \widehat P1, . . . , Pm = \widehat Pm from both H and \widehat H.

Moreover, the (k  - 1)-hives \theta kH and \theta k \widehat H are identical. There is no longer any
path of difference.

Remark 7.8. \widehat P0 is a type (iii) path if j = k (in which case, so are all Pa and \widehat Pa

with a \geq 1), while it is a type (ii) path if j < k (in which case, for a > 0 the paths Pa

and \widehat Pa are, in general, type (ii) paths for 0 < a \leq d and type (iii) paths for d < a \leq m
for some d such that 0 < d \leq m).

We defer the proofs of these three highly technical lemmas to Appendix A. As-
suming their validity for all values of n, r, and k, the proof of Lemma 7.3 can be built
upon them as follows.

Proof of Lemma 7.3. Let H = H(n) and \psi nH = \widehat H = \widehat H(n) be as in Lemma 7.3.
Then Lemma 7.4 shows that \theta nH = H(n - 1) and \theta n \widehat H = \widehat H(n - 1) are related by
H(n - 1) = \xi k,n - 1

\widehat H(n - 1), where k is the smallest value for which Ukn > 0. For

this value of k, Lemma 7.5 can be applied successively to H(r) and \widehat H(r) for r =
n - 1, n - 2, . . . , k+1, showing in each case that \theta rH

(r) = H(r - 1) and \theta r \widehat H(r) = \widehat H(r - 1)

are related by H(r - 1) = \xi k,r - 1
\widehat H(r - 1), thereby maintaining at each stage the value

of k as the starting level of the path of difference. The final case r = k + 1 yields
the relationship H(k) = \xi kk \widehat H(k). Then Lemma 7.7 shows that \theta kH

(k) = H(k - 1) and
\theta k \widehat H(k) = \widehat H(k - 1) coincide, and from then on applications of \theta k - 1, . . . , \theta 1 produce

identical hives H(k - 2) = \widehat H(k - 2), . . . , H(0) = \widehat H(0).
For later use, let D(r), n  - 1 \geq r \geq k, denote the type (v) path removed by \xi kr

from \widehat H(r) to give H(r), and jr its terminating level on the left-hand boundary.
Now turn attention to how their partner hives K and \widehat K are related. Since the

bottom and left-hand boundary edge labels of H and \widehat H are the parts of \lambda , \mu , and
\lambda  - \epsilon n, \mu , respectively, they are also, by construction, the bottom and right-hand
boundary edge labels of K and \widehat K. Hence those of \widehat K coincide with those of \phi nK,
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and so, in order to show \phi nK
(n - r+1) = \widehat K(n - r+1), it is sufficient to show that the

upright rhombus gradients of \widehat K(n - r+1) coincide with those of \phi nK
(n - r+1). We shall

do this inductively with r = n, n - 1, . . . , 1.
By Lemma 7.4, the terminating level jn - 1 of the path D(n - 1) is equal to the

terminating level of the extra and final type (ii) path Pc removed from H. Since

the gradients Vin of K(1) and \widehat K(1) are, by definition, the number of type (ii) path

removals terminating at level i through applications of \theta n to H and \widehat H, respectively,
the only difference between them resides in Vjn - 1,n whose value in K(1) is greater than

that in \widehat K(1) by 1, and Vin = 0 for all i > jn - 1 in both K(1) and \widehat K(1). Hence, if one
applies \phi n to K(1), then the removed path climbs the nth diagonal up to level jn - 1,
where it exits the nth diagonal, decreasing Vjn - 1,n by 1. Thus the upright rhombus

gradients of \widehat K(1) coincide with those of \phi nK
(1), and we have \phi nK

(1) = \widehat K(1). The
last type (ii) path Pc removed under the action of \theta n on H(n) and the path removed
under the action of \phi n on K(1) are exemplified in (7.5) below, where for typographical
simplicity we have represented jn - 1 and Vjn - 1,n by j and V , respectively.

(7.5)

Pc : j

k

n

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

j

n

\ast 
\ast 
\ast 
\ast 
\ast 
\ast 
\ast 
\ast 

V

0

0

0

0

Next, assume that k < n - 1. Lemma 7.5 applied in the case r = n - 1 to H(n - 1)

and \widehat H(n - 1), with D = D(n - 1) and j = jn - 1, implies that there exists c such that\widehat H(n - 1) affords one extra path removal of \widehat Pc ending at level jn - 1, H
(n - 1) affords one

extra path removal of Pc ending at level j\prime = jn - 2 < jn - 1, and for each a \not = c the

paths Pa and \widehat Pa end at the same level.
Hence the only difference of upright rhombus gradients in the (n - 1)th diagonal

in K(2) and \widehat K(2) is that, if we put Vjn - 2,n - 1 = A \geq 1, Vjn - 1,n - 1 = B \geq 0 in K(2),

then Vjn - 2,n - 1 = A  - 1, Vjn - 1,n - 1 = B + 1 in \widehat K(2), where Vjn - 1,n - 1 materializes

only if jn - 1 < n - 1. Moreover, by Lemma 4.4, Pa = \widehat Pa with a < c all end at levels

\leq jn - 2, being weakly lower than Pc, and Pa and \widehat Pa with a > c, ending at the same

level for each such a, all end at levels \geq jn - 1, being weakly higher than \widehat Pc. Hence

Vx,n - 1 = 0 for all jn - 2 < x < jn - 1 in both K and \widehat K. Thus, if we extend the path
removal by \phi n from K(1) into the (n - 1)th diagonal, the path enters the diagonal at
level j = jn - 1, accompanied if jn - 1 < n - 1 by an increment of Vjn - 1,n - 1 from B to
B+1, climbs the diagonal and exits at level j\prime = jn - 2, decreasing Vjn - 2,n - 1 from A to

A - 1. Hence the agreement of \phi nK and \widehat K extends down to the (n - 1)th diagonal,

giving \phi nK
(2) = \widehat K(2). All this is illustrated in (7.6) below.



2884 I. TERADA, R. C. KING, AND O. AZENHAS

(7.6)

\widehat Pc :j

k

Pc :j
\prime 

n - 1

0

0

0
1

0

0

0

j\prime 

j

n - 1 n

A - 1
0

0

B+1

\ast 
\ast 
\ast 
\ast 
\ast 
\ast 
\ast 
\ast 
V+1

0

0

0

0

The same argument can then be repeated down to the (k+1)th diagonal, letting
the path removed by \phi n move between diagonals at levels jn - 2, . . . , jk+1 and exit the

(k + 1)th diagonal at level jk, and extending the agreement of \phi nK and \widehat K down to

the (k + 1)th diagonal: \phi nK
(n - k) = \widehat K(n - k).

Now, by Lemma 7.7 applied to H(k), \widehat H(k), and D = D(k) ending at level j = jk,
H(k) affords one extra type (ii) or (iii) path removal, ending at level jk, giving a
difference in the values of Vxk only with x = jk, taking a value in K(n - k+1) greater
than that in \widehat K(n - k+1) by 1. Moreover, we have Vxk = 0 in K for all x < jk since
the extra path is the first type (ii) or (iii) path removed from H(k). Hence the path
removed by \phi n from K, entering the kth diagonal at level jk and increasing Vjk,k by
1 if jk < k, climbs the kth diagonal to the top and terminates with its arrival on the
left-hand boundary of the n-hive at level k without changing any other Vxk. Hence
we have \phi nK

(n - k+1) = \widehat K(n - k+1).
Since the path removals from H(k - 1) and \widehat H(k - 1), . . . , H(1) and \widehat H(1) all coincide,

the upright rhombus gradients of K and \widehat K in their remaining k  - 1 diagonals also
coincide. Hence we have \phi nK

(r) = \widehat K(r) for all r > n  - k + 1 also, in particular
\phi nK = \widehat K.

We offer the following diagram as an illustration of a succession of difference paths
D(r) starting at level k and their end points jr for r = n - 1, n - 2, . . . , k.

(7.7)

jk

jr

jn - 2

jn - 1

k

k r n - 1 n

The corresponding illustration of the path removal action of \phi n on K to give \widehat K takes
the following form.
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(7.8)
k

jk

jr

jn - 2

jn - 1

k r n - 1 n

We may now exploit the final part of Lemma 7.3, namely, the commutativity of
(7.4), in the proof of the following.

Lemma 7.9. For any n and any LR n-hive H, we have

(7.9) \theta n (\sigma 
(n))2H = (\sigma (n - 1))2 \theta nH.

Proof. Our goal can be expressed as the commutativity of the outer rectangle in
the following diagram.

(7.10)

H K L

H(n - 1) K(n - 1) L(n - 1)

\sigma (n) \sigma (n)

\sigma (n - 1) \sigma (n - 1)

\theta n \eta n \theta n

Here H is any given LR n-hive, say, in \scrH (n)(\lambda , \mu , \nu ), K = \sigma (n)H, and L = \sigma (n)K =
(\sigma (n))2H, so that by construction K \in \scrH (n)(\lambda , \nu , \mu ) and L \in \scrH (n)(\lambda , \mu , \nu ). On the
lower side of the rectangle we have used the notation H(n - 1) = \theta nH and L(n - 1) =
\theta n L as in section 5 and, moreover, we have inserted a central vertical arrow repre-
senting the action of an operator which we denote by \eta n taking any n-hive, in this
case K, to its (n - 1)-hive part K(n - 1), for which we are following the notation used
in the proof of Theorem 6.3.

Then the proof of the commutativity of the left-hand rectangle is straightforward
and can be seen as follows. For each 1 \leq j < k \leq n, the upright rhombus gradient
Vjk of \sigma (n)H = K is, by definition, the number of level-j-terminating type (ii) paths
removed by \theta k during the process

(7.11) H = H(n) \theta n\mapsto  - \rightarrow H(n - 1) \theta n - 1\mapsto  - \rightarrow H(n - 2) \theta n - 2\mapsto  - \rightarrow \cdot \cdot \cdot \theta 2\mapsto  - \rightarrow H(1) \theta 1\mapsto  - \rightarrow H(0)\underbrace{}  \underbrace{}  
(\ast )

.

To determine the upright rhombus gradients of \sigma (n - 1)H(n - 1) the corresponding pro-
cess is exactly what is marked with (\ast ) in (7.11), with removals of exactly the same
paths, and so the upright rhombus gradients of \sigma (n - 1)H(n - 1) are nothing but those
Vjk in the (n - 1)-hive part of K, namely, K(n - 1). Moreover, as explained in Defini-

tion 5.2, the left-hand boundary edges of H(n - 1) and the lower left boundary edges
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of K(1) share the same labels, and the latter labels remain in K in those positions
giving the right-hand boundary edge labels of K(n - 1). Thus K(n - 1) coincides with

\sigma (n - 1)H(n - 1) both in its boundary edge labels and upright rhombus gradients, and
hence in its entirety. Hence we will be finished as soon as the right-hand rectangle is
also shown to be commutative.

We turn now to the commutativity of the right-hand rectangle in (7.10). Cor-
responding to the definition of \theta n in the form \kappa n \omega 

\mu n
n \phi \lambda n - \mu n - \nu n

n \chi \nu n
n appropriate to

its action on any hive in \scrH (n)(\lambda , \mu , \nu ), it is convenient, as we shall see in the next
paragraphs, to express the operator \eta n in the form \kappa n \chi 

\mu n
n \psi \lambda n - \mu n - \nu n

n \omega \nu n
n appropriate

to its action on any hive in \scrH (n)(\lambda , \nu , \mu ). Indeed, the type (iii) action of \omega \nu n
n on K

reduces by \nu n each of the edge labels along a zig-zag down the nth diagonal with the
top and bottom edge labels reduced from \nu n and \lambda n to 0 and \lambda n  - \nu n, respectively;
the type (iv) action of \psi \lambda n - \mu n - \nu n

n then reduces to 0 all upright rhombus gradients in
the nth diagonal, as well as reducing the bottom edge label from \lambda n  - \nu n to \mu n while
reducing the right-hand boundary edges from \mu = \mu (n) to (\mu (n - 1), \mu n); the type (i)
action of \chi \mu n

n reduces the two boundary edge labels of the triangle at the foot of the
nth diagonal from \mu n to 0, allowing finally the action of \kappa n to remove the now empty
nth diagonal, altogether fulfilling the action of \eta n on K to give K(n - 1).

This enables subdividing the right-hand rectangle in (7.10) as in (7.12) below,
in which K \prime ,K \prime \prime ,K \prime \prime \prime (resp., L\prime , L\prime \prime , L\prime \prime \prime ) are defined to be the results of successively
applying the operators represented by the vertical arrows to K (resp., L), and K\dagger ,

L\dagger , and \widetilde L are shorthand notations for K(n - 1), L(n - 1), and L
(n - 1), respectively.

(7.12)

KK\dagger 
\nu \dagger 

\nu n

\lambda \dagger \lambda n

\mu \ast \cdot \cdot \cdot 

\ast L L\dagger 
\mu \dagger 

\mu n

\lambda n\lambda \dagger 

\nu 
\ast \cdot \cdot \cdot 

\ast 

K \prime 
K\dagger 

0

\nu \dagger 

\lambda \dagger \lambda n - \nu n

\mu \ast \cdot \cdot \cdot 

\ast L\prime 
L\dagger 

\mu \dagger 

\mu n

\lambda \dagger \lambda n - \nu n

\nu \dagger 

0

\ast \cdot \cdot \cdot 

\ast 

K \prime \prime 
K\dagger 

\nu \dagger 

0

\lambda \dagger \mu n

\widetilde \mu 
\mu n

0\cdot \cdot \cdot 

0 L\prime \prime \widetilde L\widetilde \mu \mu n

\lambda \dagger \lambda n - \nu n

\nu \dagger 

0

0\cdot \cdot \cdot 

0

K \prime \prime \prime 

K\dagger 
\nu \dagger 

0

\lambda \dagger 0

\widetilde \mu 
0

0\cdot \cdot \cdot 

0

L\prime \prime \prime 

\widetilde L\widetilde \mu 0

\lambda \dagger 0

\nu \dagger 

0

0\cdot \cdot \cdot 

0
K(n - 1)

K\dagger 
\nu \dagger \widetilde \mu 

\lambda \dagger 

L(n - 1)

\widetilde L\widetilde \mu \nu \dagger 

\lambda \dagger 

1

2

iteration of (7.4)

3

4

\sigma (n)

\sigma (n)

\sigma (n)

\sigma (n)

\sigma (n - 1)

\omega \nu n
n

\psi \lambda n - \mu n - \nu n
n

\chi \mu n
n

\kappa n

\chi \nu n
n

\phi \lambda n - \mu n - \nu n
n

\omega \mu n
n

\kappa n

For the rectangle marked with 1 in (7.12), the coincidence between the upright
rhombus gradients of K and K \prime implies that all type (ii) path removals coincide
between the actions of \sigma (n) on K and K \prime , resulting in the coincidence between the
upright rhombus gradients of \sigma (n)(K) and \sigma (n)(K \prime ). So the difference of \sigma (n)(K) and
\sigma (n)(K \prime ) resides only in their boundary edge labels. However, since K \in \scrH (n)(\lambda , \nu , \mu )
and K \prime \in \scrH (n)(\lambda  - \nu n\epsilon n, \nu  - \nu n\epsilon n, \mu ), then \sigma (n)K \in \scrH (n)(\lambda , \mu , \nu ) and \sigma (n)K \prime \in \scrH (n)(\lambda  - 
\nu n\epsilon n, \mu , \nu  - \nu n\epsilon n), showing that \sigma (n)K \prime = \chi \nu n

n (\sigma (n)K) = L\prime , as required to confirm the
commutativity of the rectangle marked 1 . A similar argument applies to the rectangle
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marked 3 , and crucially, the rectangle 2 is also commutative by virtue of the final
part of Lemma 7.3, namely, the commutativity of (7.4), applied \lambda n - \mu n - \nu n times. Note
that both K \prime \prime \prime and L\prime \prime \prime have empty nth diagonals. Finally, since in the action of \sigma (n)

on K \prime \prime \prime the \theta n part simply removes the empty nth diagonal and produces an empty
nth diagonal of L\prime \prime \prime , it is essentially an action of \sigma (n - 1) on \kappa nK

\prime \prime \prime = K(n - 1) to produce

the (n - 1)-hive part of L\prime \prime \prime ; in other words we have \sigma (n - 1)K(n - 1) = \kappa nL
\prime \prime \prime = L(n - 1),

thereby confirming the commutativity of rectangle marked 4 .
Thus we have seen that both rectangles in (7.10) are commutative, and hence we

have the equality of operators \theta n(\sigma 
(n))2 = (\sigma (n - 1))2\theta n.

As a consequence of this we have the following.

Theorem 7.10. For all n \in \BbbN and all n-hives H we have

(7.13) (\sigma (n))2H = H .

Proof. We proceed by induction with respect to n. First it should be noted that
in the case n = 1 we have

(7.14)
\mu 1 \nu 1

\lambda 1

\sigma (1)
\nu 1 \mu 1

\lambda 1

\sigma (1) \mu 1 \nu 1

\lambda 1

so that (\sigma (1))2H = H for all 1-hives H.
Next assume that n \geq 2 and that, by the induction hypothesis, the effect of apply-

ing (\sigma (n - 1))2 to any (n - 1)-hive amounts to applying the identity map to that hive.
By Lemma 7.9 we have, for any n-hive H, the equality \theta n(\sigma 

(n))2H = (\sigma (n - 1))2\theta nH,
and by the induction hypothesis the right-hand side is equal to \theta nH. This means that
the two n-hives (\sigma (n))2H and H are mapped to the same (n - 1)-hive, say, \widetilde H, by \theta n.
The remaining question is whether one can derive the equality (\sigma (n))2H = H from
this information.

For this, it is crucial to note that both (\sigma (n))2H and H have the same boundary
edge labels, say, \lambda , \mu , and \nu , by virtue of the definition of \sigma (n). Now set L = (\sigma (n))2H,
and consider the action of \Theta n on (H,K(0)) and (L,K(0)), where K(0) is the unique n-
truncated n-hive with edge labels \mu (see Definition 5.2 and the preceding paragraphs).

The result of the action can be expressed as (\theta nH,K
(1)
H ) and (\theta nL,K

(1)
L ), where

\theta nH = \theta nL = \widetilde H as we have seen, and by construction both K
(1)
H and K

(1)
L are

(n - 1)-truncated n-hives consisting of a single diagonal having lower and upper edge
labels \lambda n and \nu n, outer right-hand edge labels \mu , as determined by K(0), and the inner
left-hand boundary edge labels, say, \widetilde \mu , as determined by the left-hand boundary edge
labels of \widetilde H. These boundary edge labels are sufficient to determine an (n  - 1)-

truncated n-hive completely. It follows that K
(1)
H = K

(1)
L , so that both components

of \Theta n(H,K
(0)) and \Theta n(L,K

(0)) coincide.
We know that H and L can be recovered from \Theta n(H,K

(0)) and \Theta n(L,K
(0)),

namely, from (\theta nH,K
(1)
H ) and (\theta nL,K

(1)
L ) through applications of the path addition

operator \theta n to \theta nH and \theta nL, making use of the (n  - 1)-truncated n-hives K
(1)
H and

K
(1)
L , respectively. Hence the equality \Theta n(H,K

(0)) = \Theta n(L,K
(0)) implies that H =

L. That is to say, H = L = (\sigma (n))2H, thereby completing the induction argument
and ensuring the validity of (7.13) for all n-hives H.
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8. Concluding remarks. We have given a direct combinatorial proof of the
bijective and involutive nature of a procedure first introduced by Azenhas [Aze99,
Aze00] as a means of establishing combinatorially the symmetry of LR coefficients
within the context of a tableaux based model. Our model was based on the use of LR
hives, on which we defined a commutativity operator denoted by \sigma (n). It transforms a
given LR hive H \in \scrH (n)(\lambda , \mu , \nu ) to a new LR hiveK \in \scrH (n)(\lambda , \nu , \mu ) by the application
of what we called path removals from H, working from right to left, with each path
starting from the base of the hive, and recording within K the level reached by each
path, as exemplifed in Example 5.4.

The choice of a hive as opposed to a tableaux model was made in part for pedagog-
ical reasons and the wish to expose the power and flexibility of hives, complete with
alternative vertex, edge, or rhombus gradient presentations, to a wider readership.
Alternative proofs of bijectivity and involutivity can be constructed purely within a
tableaux model setting, and this has been done in a lengthy arXiv paper [AKT16]
which sets the two models alongside one another and illustrates the way that the
interplay between the two types of model has benefited both approaches.

Appendix A. We now supply the proofs of the three technical Lemmas 7.4, 7.5,
and 7.7 used in the proof of Lemma 7.3.

Proof of Lemma 7.4. The last statement of the lemma compares the (n - 1)-hives

\theta nH and \theta n \widehat H. With that in mind, let \swarrow denote the (n - 1)-hive region, and start by

noting that H| \swarrow = \widehat H| \swarrow since \widehat H is obtained from H through the action of \psi n which
just removes a type (iv) path extending down the nth diagonal of H from level k to
its base, causing no change in the (n - 1)-hive region.

Since k < n, the lowermost right-hand boundary edge labels of H and \widehat H are
equal, and so are the number of type (i) paths removed from them. Let H0 and \widehat H0

denote the result of all type (i) path removals. These leave H0| \swarrow = \widehat H0| \swarrow .

Now the difference in upright rhombus gradients of H0 and \widehat H0 resides in the
values of Ukn only: that of H0 being greater than that of \widehat H0 by 1. Hence the type (ii)

path removals from H0 and \widehat H0 proceed in the same manner until all the gradients Uxn

with x > k have been reduced to 0 and the gradients Ukn of H0 and \widehat H0 have been
reduced to 1 and 0, respectively, by removals of paths P1 = \widehat P1, . . . , Pc - 1 = \widehat Pc - 1,

say. Let Hc - 1 and \widehat Hc - 1 be the resulting hives. We still have Hc - 1| \swarrow = \widehat Hc - 1| \swarrow .

Then there are no more type (ii) paths to remove from \widehat Hc - 1, but there is one more
such path, Pc, to remove from Hc - 1. This enters the (n  - 1)th diagonal at level k
and reaches the left-hand boundary at level j \leq n  - 1 as exemplified by the solid
path shown on the left in (7.5) above. Its removal yields Hc = \phi nHc - 1, and we have

Hc| \swarrow = \xi k,n - 1( \widehat Hc - 1| \swarrow ), where \xi k,n - 1 removes Pc| \swarrow , which is of type (va) or (vb)
depending on whether j < n - 1 or j = n - 1. Since the labels of the topmost left-hand
boundary edges of H and \widehat H are equal and unaffected by all the above, there remain
the same number of type (iii) path removals from Hc and \widehat Hc - 1, which again do not
affect the (n - 1)-hive region. Discarding the now empty nth diagonal under the action

of \kappa n leaves the results \theta nH and \theta n \widehat H that are still related by \theta nH = \xi k,n - 1(\theta n \widehat H),
in which \xi k,n - 1 removes Pc| \swarrow reaching the left-hand boundary at level j \leq n - 1.

We now proceed to the proof of Lemma 7.5. We employ some sublemmas, and
even definitions, in its proof.

Proof of Lemma 7.5. By hypothesis, the r-hives H = \xi kr \widehat H and \widehat H differ only by
way of a path of difference D entering the rth diagonal at level k < r and exiting
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on the left-hand boundary at level j < r. Let H \in \scrH (r)(\lambda , \mu , \nu ), so that \widehat H \in 
\scrH (r)(\lambda , \mu  - \epsilon j , \nu + \epsilon k). Since k < r, both H and \widehat H have edge labels

\nu r

\lambda r

at their bottom right corner, so that, in both cases, the number of type (i) path
removals is \nu r and the number of type (ii) and (iii) path removals put together is

\lambda r  - \nu r. Set m = \lambda r  - \nu r, and let H0 = \chi \nu r
r H, \widehat H0 = \chi \nu r

r
\widehat H. Type (i) path removals

do not change any upright rhombus gradients, so we have H0 = \xi kr \widehat H0, in which \xi kr
removes D. We denote the paths generated by the type (ii) and (iii) removals from

H0 and \widehat H0, respectively, by P1, . . . , Pm and \widehat P1, . . . , \widehat Pm. For each 1 \leq a \leq m, let Ha

and \widehat Ha denote the result of removals of P1, . . . , Pa from H0 and \widehat P1, . . . , \widehat Pa from \widehat H0,
respectively.

Now take any one of the paths \widehat P1, . . . , \widehat Pm, say, \widehat Pa, and consider how it may
intersect D in the sense of having an edge in common. Due to the form taken by
a type (ii) or type (iii) path, \widehat Pa, its coincidence with D, if there is any, necessarily
starts at the northwest edge of the foot rhombus of a ladder of D in some diagonal,
with \widehat Pa entering the foot rhombus by way of its southeast edge and crossing to its
northwest edge along the connecting \gamma -edge.

Recall that, thanks to Lemma 4.4, the paths \widehat P1, . . . , \widehat Pm lie weakly above one
another. The sequence \widehat P1, . . . , \widehat Pm can then be divided into sections \widehat P1, . . . , \widehat Pc1 - 1;\widehat Pc1 , . . . ,

\widehat Pc2 - 1; \widehat Pc2 , . . . ,
\widehat Pc3 - 1; . . . . . . ; \widehat PcN , . . . ,

\widehat Pm, with some indices 1 \leq c1 < c2 <
c3 < \cdot \cdot \cdot < cN \leq m (we do have N \geq 1; see the next paragraph for its reason), in

such a way that the paths \widehat P1, . . . , \widehat Pc1 - 1 do not intersect D at all, each of the paths\widehat Pc1 , . . . ,
\widehat Pc2 - 1 first intersects D in the p1th diagonal, each of the paths \widehat Pc2 , . . . ,

\widehat Pc3 - 1

first intersects D in the p2th diagonal, and so on, with 1 \leq p1 < p2 < \cdot \cdot \cdot < pN \leq r.
We first show that N \geq 1.

Lemma A.1. In the situation of Lemma 7.5, at least one of the paths \widehat P1, . . . , \widehat Pm

intersects D.

Proof. Recalling that the path of differenceD starts at level k, denote the gradient
Ukr of \widehat H by X \geq 0; then that of H is X + 1. The behavior of the paths P1, . . . and\widehat P1, . . . in the rth diagonal, including the levels at which they leave the rth diagonal,
is the same until, say, in Hc - 1 and \widehat Hc - 1, all the gradients Uxr with x > k are reduced
to 0 and moreover the gradient Ukr = X +1 of H is reduced to 1 in Hc - 1 and that of\widehat H to 0 in \widehat Hc - 1. At this point we say that this upright rhombus is critical. Since all
upright rhombus gradients in the rth diagonal are to be reduced to 0 through type
(ii) path removals in the course of the action of \theta r, there is at least one more type
(ii) path removal, namely, that of Pc, involved in the application of \theta r to H. We saw
above that the number of type (ii) and (iii) path removals under the action of \theta r is

the same for H and \widehat H, so that there is also at least one more path removal, namely,
that of \widehat Pc, from \widehat H, which may be of type (ii) or (iii), whose path necessarily passes
through the critical upright rhombus of gradient 0 and intersects D at its lowest edge
in the rth diagonal.

Remark A.2. Since the rth diagonal is the rightmost diagonal, the c in the proof
of Lemma A.1 is cN in the notation introduced above its statement. Also we have
pN = r.



2890 I. TERADA, R. C. KING, AND O. AZENHAS

Now we introduce some terminology for use in the inductive proof of Lemma 7.5.

Definition A.3. Let \Omega be a trapezoidal region in the shape of a hive having the
following boundaries: the left and the lower right boundaries consisting of \alpha -edges,
the upper right boundary consisting of \beta -edges, and the bottom boundary consisting
of \gamma -edges. Such a region will be called admissible. The lower right boundary may
degenerate to a point, in which case the shape becomes triangular. The left boundary
is called the terminating boundary, and the rest of the boundary is called the starting
boundary.

Let e be an edge on the starting boundary of \Omega . A prepath in \Omega with starting
edge e is a sequence of edges e0, e1, e2, . . . , el in \Omega such that (a) e0 = e; (b) el is on
the terminating boundary; (c) if ei - 1 is either a \beta - or \gamma -edge, then ei is the \alpha -edge
sharing an upward-pointing elementary triangle with ei - 1; (d) if ei - 1 is an \alpha -edge not
on the terminating boundary, then ei is either the (d1) \gamma - or (d2) \beta -edge sharing a
downward-pointing elementary triangle with ei - 1.

If P and Q are nonempty prepaths in \Omega , we say that P is strictly above Q, or
equivalently Q is strictly below P , if either (1) they share at least one diagonal and
in each such diagonal the edges of P lie above those of Q or (2) the diagonals over
which P extends are strictly above those over which Q extends.

Let E\Omega be a labeling of all edges of \Omega with integers satisfying the triangle conditions
and the nonnegativity of upright rhombus gradients. Such an edge labeling will be called
admissible. We denote by H| \Omega the restriction of the edge labeling of a hive H to \Omega ,
which is always admissible. A prepath (ei)

l
i=0 in \Omega is said to be a path in E\Omega if,

for any i such that ei - 1 satisfies the condition (d) above, the option (d1) or (d2) is
taken according to whether the upright rhombus having ei - 1 as its southeast edge has
gradient = 0 or > 0. Note that the shape of \Omega is such that, whenever the situtation
(d) occurs, the above-mentioned upright rhombus is contained in \Omega . For each edge
e on the starting boundary of \Omega , there is a unique path in E\Omega with starting edge e.
Restrictions of type (ii), (iii), or (v) paths in H to \Omega are examples of paths in H| \Omega .

To remove a path P from E\Omega (from H| \Omega in our typical use) is to create a new
edge labeling of \Omega out of E\Omega by decreasing the label of each \alpha - and \gamma -edge in P by
1 and increasing the label of each \beta -edge in P by 1 (and keeping all remaining edge
labels). The resulting edge labeling will be denoted by \phi eE\Omega , where e is the starting
edge of P . It is easy to see that applying \phi e preserves admissibility.

The following lemma encapsulates an easy argument used repeatedly below.

Lemma A.4. Let \Omega be an admissible region, and E\Omega an admissible labeling of the
edges of \Omega . Let P, P \prime be paths in E\Omega with starting edges e, e\prime , respectively. Assume
that P \prime lies strictly below P . Then P is also a path in \phi e\prime E\Omega , P

\prime is also a path in
\phi eE\Omega , and \phi e \phi e\prime E\Omega = \phi e\prime \phi eE\Omega holds.

Remark A.5. In our usage of this lemma, E\Omega is the restriction of a hive H to \Omega 
and \phi e(H| \Omega ), \phi e\prime (H| \Omega ), \phi e \phi e\prime (H| \Omega ), and \phi e\prime \phi e(H| \Omega ) are all known to be restrictions
of hives to \Omega .

Proof. Recall that a path starting from e must follow P (see below on the left)
so long as the middle rhombi of each ladder of P (shaded light grey) have gradients
0 and the head rhombus of each ladder of P (shaded grey) has gradient > 0. These
shaded rhombi are here called the guiding rhombi for P . Since P \prime lies strictly below
P , as exemplified below on the right by dotted edges in the case where P \prime is closest
to P , the removal of P \prime , whose impact on upright rhombus gradients is shown by +1
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and  - 1 below on the right, does not affect the gradient of any of the guiding rhombi
for P . Hence P is also a path in \phi e\prime E\Omega .

(A.1)

e

P

e

P

e\prime 

P \prime 

 - 1 - 1

 - 1

+1+1

+1

On the other hand, first look at the guiding rhombi for P \prime (see below on the
left). Since P lies strictly above P \prime , the gradient of a guiding rhombus for P \prime can
change upon removal of P only if it is a head rhombus of P \prime and at the same time
a foot rhombus of P . In such a case, the removal of P \prime increases its gradient, only
strengthening its positivity. Hence P \prime is also a path in \phi eE\Omega .

(A.2)

e\prime 

P \prime 

e

P

 - 1 - 1

 - 1

+1+1

+1

e\prime 

P \prime 

Thus \phi e changes the edge labels of the same set of edges whether it is applied to E\Omega 

or \phi e\prime E\Omega , and the same is true for \phi e\prime whether it is applied to E\Omega or \phi eE\Omega . Hence
we have \phi e \phi e\prime E\Omega = \phi e\prime \phi eE\Omega .

We shall now return to the proof of Lemma 7.5 by induction on the number N
occurring in our sequences c1, . . . , cN and p1, . . . , pN , which we call the number of
critical rhombi, whose implication will be clarified below. We start with the initial
step of the induction.

Lemma A.6. In the situation of Lemma 7.5, if N = 1, namely, if exactly one
critical rhombus emerges during the removals of P1, . . . , Pm from H and \widehat P1, . . . , \widehat Pm

from \widehat H, then the conclusions of Lemma 7.5 hold.

Proof. For simplicity, set c = c1 = cN and p = p1 = pN = r.
By the definition of c1, none of the paths \widehat P1, . . . , \widehat Pc - 1 intersect D, and since they

start below D they all pass strictly below D. Then one can first apply Lemma A.4 to
the action of \xi kr and \phi r on the r-hive \widehat H0, namely, by taking \Omega to be the whole r-hive
region, e to be the right-hand boundary edge of level k, and e\prime to be the rightmost
bottom edge. Since \xi kr \widehat H0 = H0 and \phi r \widehat H0 = \widehat H1, Lemma A.4 shows not only the
commutativity \xi kr\phi r \widehat H0 = \phi r\xi kr \widehat H0, that is to say, \xi kr \widehat H1 = \phi rH0 = H1, but also that
the operator \xi kr removes the same path, D, from \widehat H0 and \widehat H1, and that the operator
\phi r removes the same path from \widehat H0 and H0, namely, \widehat P1 = P1. Then one can iterate
to have \widehat Pa = Pa for all a \leq c - 1 and \xi kr \widehat Hc - 1 = Hc - 1 in which \xi kr still removes D.
In the picture (A.3) below, the path D is shown by a sequence of solid edges.
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The assumptions c = c1 and p1 = r imply that the next path \widehat Pc, to be removed
from \widehat Hc - 1, climbs the rth diagonal following the double edges and intersects
D after traversing its foot rhombus at level k by way of the \gamma -edge crossing it, marked
with in (A.3), to its northwest edge. This implies that \widehat Hc - 1 has Ukr = 0.

After this, \widehat Pc follows the path D and reaches the left-hand boundary at level
j by virtue of the uniqueness of the path in \widehat Hc - 1| \nwarrow with a given starting edge,
where \nwarrow denotes the region above the line passing through the northwest edge of
the aforementioned upright rhombus. In (A.3), the region is enclosed by a dashed
trapezium with rounded corners.

Then Hc - 1 = \xi kr \widehat Hc - 1 has Ukr = 0 + 1 > 0. Hence the path Pc, to be removed
from Hc - 1, follows the edges but enters the (r  - 1)th diagonal at level k as
exemplified by the wavy edges in (A.3). Let D\prime denote this path of the
(r  - 1)-hive, starting from the right-hand boundary edge at level k. In Hc - 1, the
foot rhombi of the ladders of D have positive gradients, being greater than those in\widehat Hc - 1 by 1, serving as an inpenetrable barrier to climbing the ladders of D. So Pc,
and accordingly D\prime , stay strictly below D and end on the left-hand boundary at some
level j\prime < j.

The gradient Ukr = 1 of Hc - 1 is the smallest value to block the path Pc from

climing the ladder of D, and in \widehat Hc - 1 its value Ukr = 0 allows the path \widehat Pc into the
ladder, by a slim difference of 1. The rhombus with gradient Ukr thus produces a
bifurcation of the path into the and paths followed by Pc and \widehat Pc,
respectively, and so is said to be critical for the removals of Pc and \widehat Pc. Thereafter,
due to their removals, this rhombus has gradient 0 in both hives and is said to be
postcritical. Also the difference along D| \nwarrow has been resolved, while new differences
have been introduced along the path D\prime .

(A.3)

\widehat Pc :j

k

l
Pc :j

\prime 

r

0

0

0

1

0

0

0

\nwarrow 

Since Ukr = 0 in both Hc and \widehat Hc, as well as all Uxr with x > k, both Pc+1

and \widehat Pc+1 reach the northwest edge of the postcritical rhombus without changing the

gradients of that rhombus. So the situation persists, and all Pa and \widehat Pa with a > c
come to the northwest edge of the postcritical rhombus. By Lemma 4.4, the paths\widehat Pa| \nwarrow with a > c run weakly above \widehat Pc| \nwarrow = D| \nwarrow and so strictly above Pc| \nwarrow = D\prime | \nwarrow .

Hence, by applying Lemma A.4 to \widehat Hc| \nwarrow and its paths \widehat Pc+1| \nwarrow and D\prime | \nwarrow , then to
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\widehat Hc+1 and its paths \widehat Pc+2| \nwarrow and D\prime | \nwarrow , and so on, we have Pa| \nwarrow = \widehat Pa| \nwarrow (so that

Pa = \widehat Pa) for all a > c and that Hm| \nwarrow and \widehat Hm| \nwarrow are related by the removal of D\prime | \nwarrow .
The difference in the label of the starting edge of D\prime , namely, the southwest edge of
the postcritical rhombus which is the only edge of D\prime not included in D\prime | \nwarrow , is also

maintained through the removals of Pa and \widehat Pa with a > c since none of them contains
that edge. Discarding the empty rth diagonal in the end, we see that \theta rH = \kappa rHm

is related to \theta r \widehat H = \kappa r \widehat Hm by \xi k,r - 1 which removes the path D\prime .

Continuing with the proof of Lemma 7.5, we come to the heart of the matter,
namely, the inductive step on the number N of critical rhombi.

Lemma A.7. In the situation of Lemma 7.5, assume that N > 1, so that the
removals of P1, . . . , Pm and \widehat P1, . . . , \widehat Pm involve encounters with at least two critical
rhombi. Assuming under the inductive hypothesis that Lemma 7.5 has been proved for
all cases with the number of critical rhombi strictly less than N , then the conclusions
of Lemma 7.5 hold for the present case involving N critical rhombi.

Proof. Let c = c1 and p = p1 for simplicity, and let f denote the level of the foot
rhombus of the ladder of D in the pth diagonal. The solid edges in the diagram
(A.4) below show the part of D up to entering the pth diagonal, and the dotted

edges show the remaining part of D. (The distinction is made since, as we shall
see below, the difference of edge labels along the part persists after the removal
of Pc and \widehat Pc, but that along the part resolves by the removal of Pc and \widehat Pc.)
By a repeated application of Lemma A.4 to the whole r-hive, the paths P1, . . . , Pc - 1

coincide with \widehat P1, . . . , \widehat Pc - 1 respectively, and hence all run strictly below D, and we

have Hc - 1 = \xi kr \widehat Hc - 1 in which \xi kr still removes D.

Now, by assumption, the path \widehat Pc, to be removed from \widehat Hc - 1, runs below D up
to the (p + 1)th diagonal, but in the pth diagonal it approaches and intersects D,
after crossing its foot rhombus (whose gradient Ufp must have been 0), in the manner
discussed in the second paragraph of the proof of Lemma 7.5. Having intersected the
path D in a common edge, the uniqueness of a path with a given starting edge implies
that thereafter it must follow D to its end at level j. In (A.4), the part of \widehat Pc up to
this foot rhombus is shown with dotted double edges, and the \gamma -edge crossing
this rhombus with a line of crosses , and the portion coincident with D is shown
with dotted edges. On the other hand, the path Pc, to be removed from Hc - 1,

initially coincident with \widehat Pc along the edges, finds the same gradient Ufp to be
1 instead of 0, with the difference arising from D, and the path Pc therefore passes
leftwards below this rhombus, decreasing its gradient to 0, and proceeds along what
is exemplified by the wavy edges in (A.4), to end on the left-hand boundary
at some level j\prime < j, for the same reason as before regarding an inpenetrable barrier
below D.

Thus, the upright rhombus carrying the gradient Ufp, marked in (A.4) by placing
the symbols 0 above 1 as before, causes a bifurcation and hence is critical for the
removals of Pc and \widehat Pc. After this pair of removals, it carries a common gradient 0
and is postcritical.

Now consider Hc and \widehat Hc. Let F and F \prime denote the lines passing the southeast
and northwest edges, respectively, of the above-mentioned upright rhombus, and let
\searrow and \nwarrow denote the regions weakly below the line F (the part enclosed by a triangle
with rounded corners in (A.4)) and weakly above the line F \prime (the part enclosed by
a dashed trapezium with rounded corners in the same diagram), respectively. Even

though Hc| \searrow and \widehat Hc| \searrow are (r - f)-hives in themselves, we designate their diagonals,
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edge levels, and gradients using the measurement parameters specified within their
parent r-hives Hc and \widehat Hc. Bearing this in mind, it is important to note that D| \searrow 
starts at level k and reaches the line F at level p+1, as part of the migration pattern
of a type (v) path from the (p+ 1)th to the pth diagonal.

(A.4)

\widehat Pc :j

f

k

Pc :j
\prime 

p r

0

1

F

\searrow 

F \prime \nwarrow 

Restricting attention to the region \searrow weakly below F in the prospect of using
the induction hypothesis to apply the present Lemma 7.5 to Hc| \searrow and \widehat Hc| \searrow , we
start with the following picture where we represent both of the two nonintersecting
paths D| \searrow and Pc| \searrow = \widehat Pc| \searrow by means of solid edges , which reach the left-hand
boundary F of this region at levels p+ 1 and p, respectively.

(A.5)
k : D| \searrow 

p
p+1

p r
\widehat Pc| \searrow = Pc| \searrow 

F

Maintaining our specification of diagonals, edges, and rhombus gradients as dic-
tated by our original hives, as well as our path numbering, we consider the application
of \theta r to Hc| \searrow and \widehat Hc| \searrow with Hc| \searrow = \xi kr \widehat Hc| \searrow and path of difference D| \searrow starting
at level k and ending at level p+ 1. Taking into account the fact that the lowermost
right-hand edge label of both Hc| \searrow and \widehat Hc| \searrow is 0, there are no type (i) path removals.

Having already removed c pairs of type (ii) paths from H and \widehat H, and accordingly

from H| \searrow and \widehat H| \searrow , the paths consecutively removed from Hc| \searrow and \widehat Hc| \searrow by the

action of \theta r are Pc+1| \searrow , . . . , Pm| \searrow and \widehat Pc+1| \searrow , . . . , \widehat Pm| \searrow , respectively. Recalling our
original notation c = c1 < c2 < \cdot \cdot \cdot < cN and p = p1 < p2 < \cdot \cdot \cdot < pN with our
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assumption N \geq 2, note that the paths \widehat Pa with a < c2 do not intersect any ladder
of D below the line F . Hence the number of critical rhombi encountered during the
actions of \theta r on Hc| \searrow and \widehat Hc| \searrow is N  - 1, which allows the use of the present lemma

to Hc| \searrow and \widehat Hc| \searrow by the induction hypothesis.
Thus, among the m - c pairs of paths being removed, for some d with c < d \leq m

we have: Pa| \searrow = \widehat Pa| \searrow for c < a < d, while \widehat Pd| \searrow ends at level j = p + 1 on the
left-hand boundary F , and Pd| \searrow ends at some level j\prime < p+ 1 on F . However, Pc| \searrow 
ends as shown above in (A.5) at level p on F . Since Pa| \searrow lies weakly above Pc| \searrow for

all a > c, including a = d, it follows that j\prime = p. Hence all paths Pa| \searrow = \widehat Pa| \searrow for
c < a < d and Pd| \searrow end on F at level p. The inductive application of Lemma 7.5

also tells us that for each a > d, Pa| \searrow and \widehat Pa| \searrow end at the same level, say, ja, on F ,

with ja \geq p+ 1 since \widehat Pa| \searrow lies weakly above \widehat Pd| \searrow .
Just as we identified c with c1 and p with p1, we shall write d and q for c2 and

p2, respectively, in terms of which we have the following illustration of the manner
in which the paths Pd| \searrow and \widehat Pd| \searrow are squeezed (weakly) between the two solid lines

representing Pc| \searrow and D| \searrow .

(A.6) Pd| \searrow : p

\widehat Pd| \searrow : p+1

k : D| \searrow 

g

p q r
Pd, \widehat Pd

0

1

F

Here the paths Pd| \searrow and \widehat Pd| \searrow , initially represented by a double dotted line,
bifurcate in diagonal q at some level g with the critical upright rhombus gradient Ugq

equal to 1 in Hd - 1| \searrow and 0 in \widehat Hd - 1| \searrow , with the difference due to D| \searrow . As a result,
Pd| \searrow passes leftwards along the wavy edge path to meet F at level p, while\widehat Pd| \searrow crosses the critical rhombus and intersects D| \searrow , thereafter following the dotted
solid edge portion of D| \searrow to meet F at level p+ 1.

The final conclusion from the application of Lemma 7.5 to Hc| \searrow and \widehat Hc| \searrow is that

we have \theta rHc| \searrow = \xi kr(\theta r \widehat Hc| \searrow ) with a path of difference E\prime that will eventually be
identified with D\prime | \searrow . For the moment we just point out that the portion of the path
of difference from the p2 = qth diagonal to the p1 = pth diagonal is that portion of
the path \widehat Pd| \searrow with d = c2, that is represented in (A.6) by means of edges.

We next consider the continuation of each of the paths Pa| \searrow and \widehat Pa| \searrow , namely,

Pa and \widehat Pa, as they cross from F to F \prime in Ha - 1 and \widehat Ha - 1, respectively, for all a > c.
The outcome is illustrated below in (A.7).
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(A.7)
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0 P
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\widehat Pd \widehat Pd

p
+
1

f

F \prime 

F

0
Pd

p

Pd
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+
1

f

F \prime 

F

X+1
X

p

P
a , \widehat P

a
P
a , \widehat P

a

p
+
1

f

c < a < d a = d d < a \leq m

For a = c + 1, . . . , d  - 1 we have Pa| \searrow = \widehat Pa| \searrow , meeting F at level p and both
continuing across the postcritical rhombus with Ufp = 0, remaining at level p, as
shown in the diagram on the left. For a = d the path Pd| \searrow again meets F at level p
and continues in the same way, as shown in the lower portion of the diagram in the
middle, while the path \widehat Pa| \searrow meets F as we have seen at level p+1, moves to the left

neighboring \beta -edge since Uf,p+1 > 0 (this gradient was positive in \widehat H as evidenced by

the route of D, generated by the action of \xi kr on \widehat H, passing below it, and removals
of \widehat P1, . . . , \widehat Pd - 1 have not changed this gradient), and passes along the upper edges of
the postcritical rhombus to level p as shown in the upper portion of the diagram in
the middle. The removal of \widehat Pd changes Ufp from 0 to 1, rendering it what we call

post-postcritical. Finally, for each a = d+ 1, . . . ,m, both Pa| \searrow and \widehat Pa| \searrow meet F at
the same level ja \geq p+ 1, and each of these solid edge paths crosses from F to
F \prime weakly above the post-postcritical rhombus, whose gradients Ufp will take values

in X in Ha and X + 1 in \widehat Ha for some X \geq 0. In the diagram on the right we have
illustrated this case a > d in the extreme situation where the extension of Pa| \searrow and\widehat Pa| \searrow follows that of Pd| \searrow , thereby each contributing 1 to X, rather than the more
generic situation where it lies above that of Pd| \searrow and does not affect the value of X.

Concentrating on the difference of edge labels occurring in the strip flanked by F
and F \prime , first note that each of the pairs Pa and \widehat Pa crosses this strip together without
altering any differences except in the cases a = c and a = d. The transformation of
the path of difference in this strip is illustrated below in (A.8). Initially the difference
occurs along the path D (represented by in the left-hand diagram), and this

persists through removals of all Pa and \widehat Pa with a < c. Then (see (A.4)) the path \widehat Pc,
unlike Pc, traverses the \gamma -edge across the critical rhombus, introducing a difference
in its edge labeling (represented by in the middle diagram), and the northwest

edge of that rhombus, eliminating the difference there; whereas the path Pc, unlike \widehat Pc,
passes to the southwest edge of that rhombus and the \alpha -edge to its left, introducing
differences there (represented by in the middle diagram). Again removals of Pa
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and \widehat Pa with c < a < d do not change anything. Then (see (A.7)) the path \widehat Pd, unlike
Pd, reaches the postcritical rhombus tracing D, which eliminates the differences of
the labels of the two edges, while \widehat Pd, unlike Pd, traverses that rhombus from
its southeast edge, introducing a difference in its labeling (represented by in the
right-hand diagram) and eliminating the difference represented by . Recalling

that the post-postcritical rhombus has positive gradient in \widehat Ha with a \geq d, we now
see that the path of difference E\prime in the region weakly below F successfully extends
to the region between F and F \prime in the manner required for a type (v) path removal

under the action of \xi kr on \widehat Hm to give Hm.

(A.8)

F \prime 

F

p - 
1

p

p
+
1

F \prime 

F

p - 
1

p

p
+
1

F \prime 

F

p - 
1

p

p
+
1

Transformation of the path of difference
between Ha and \widehat Ha in the F -F \prime strip

a < c

removals

of Pc, \widehat Pc

c \leq a < d

removals

of Pd, \widehat Pd

d \leq a

Finally we look at the region \nwarrow weakly above the line F \prime . As we saw (way)

above, removing the initial path of difference D from \widehat Hc - 1 gives Hc - 1, and in this

northwestern trapezium we have D| \nwarrow = \widehat Pc| \nwarrow . Since, by definition, removing \widehat Pc from\widehat Hc - 1 gives \widehat Hc, the coincidence D| \nwarrow = \widehat Pc| \nwarrow leads to the coincidence of Hc - 1 and\widehat Hc in the northwestern trapezium. Since removing Pc| \nwarrow from Hc - 1| \nwarrow gives Hc| \nwarrow 
by definition, it also means that Pc| \nwarrow is the new difference path whose removal from\widehat Hc| \nwarrow gives Hc| \nwarrow . Note that the differences along the old path of difference D| \nwarrow have
been resolved. Therefore, if we denote by e\prime the \alpha -edge lying on F \prime neighboring the
northwest edge of the postcritical rhombus to its left, we have Hc| \nwarrow = \phi e\prime \widehat Hc| \nwarrow . Now

for each of c < a \leq m, the path \widehat Pa| \nwarrow , lying weakly above \widehat Pc| \nwarrow = D| \nwarrow , lies strictly
above Pc| \nwarrow . Hence, by applying the commutativity Lemma A.4 repeatedly to the

region, we have \widehat Pa| \nwarrow = Pa| \nwarrow for all such a, and Hm| \nwarrow = \phi e\prime \widehat Hm| \nwarrow , where in this
operation \phi e\prime removes Pc| \nwarrow .

We can now combine this with what we already have on the region \searrow and the
strip between F and F \prime and verify that the paths Pa and \widehat Pa coincide entirely for each
a < c, while \widehat Pc ends at level j where D ends, whereas Pc, running strictly below \widehat Pc

in \nwarrow , ends at some level j\prime < j, and for each a > c the paths Pa and \widehat Pa end at the
same level. Moreover, the concatenation of E\prime , that is, the path of difference arising
from the induction hypothesis applied to the region \searrow and the southwest edge of the
post-postcritical rhombus, continues as a path in \theta r \widehat H = \kappa r( \widehat Hm) to e\prime (note that the
assumption N \leq 2 implies p = p1 < p2 \leq r, placing the post-postcritical rhombus in
the (r  - 1)-hive region) and hence to Pc| \nwarrow . In each section it has been verified that

removing this path gives the difference between the (r - 1)-hive parts of Hm and \widehat Hm,

namely, \theta rH and \theta r \widehat H. This implies inter alia that E\prime may indeed be identified with
D\prime | \searrow .
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By unfolding what is implied in the above inductive description, using the notation
c1 < c2 < \cdot \cdot \cdot < cN and p1 < p2 < \cdot \cdot \cdot < pN , we see that the final path of difference
D\prime , removed from \theta r \widehat H by \xi k,r - 1 to yield \theta rH, is obtained by pasting the part of
Pc1 from the southwest edge of the first critical rhombus in the p1th diagonal to the
left-hand boundary, the part of Pc2 from the southwest edge of the second critical
rhombus in the p2th diagonal to the southeast edge of the first critical rhombus in the
p1th diagonal, and so on, up to the part of PcN from the southwest edge of the final
critical rhombus in the pN th (= rth) diagonal to the southeast edge of the (N  - 1)th
critical rhombus in the pN - 1th diagonal.

This completes the proof of Lemma A.7.

The proof of Lemma 7.5 is now complete by induction on the number N of
encounters with critical rhombi, due to Lemma A.6 which solves the case N = 1 and
Lemma A.7 which takes care of the inductive step.

To complete the proof of Lemma 7.3 we now offer a proof of Lemma 7.7.

Proof of Lemma 7.7. Upon application of \theta k, the hiveH affords one extra type (i)

path removal compared with \widehat H due to the difference of +1 created on the lowermost
right boundary edge label by applying \xi kk. Let us denote the result of removing the
common type (i) paths from H and \widehat H by H(0) and \widehat H(0), respectively. By removing
the additional type (i) path from H(0) and denoting the resulting hive by H(1), the

difference of H(1) from \widehat H(0) is described by a path, say, \widetilde D, obtained by changing the
initial edge of D, namely, the lowermost right boundary edge, to the rightmost bottom
edge. In other words we have H(1) = \phi k \widehat H(0), in which operation \phi k removes \widetilde D. Thus
the first type (ii) path removed from \widehat H(0) is \widetilde D, whose removal results in the same

hive as H(1). Thereafter all pairs of path removals coincide, yielding \theta kH = \theta k \widehat H.
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