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Sun-Earth Connection

* Solar wind flow: supersonic and superalfvénic (Ngy, ~ 5 cm3, Vi, ~ 500 km.s?)

* Solar wind plasma and magnetic field move together - “frozen-in” conditions

* Shock must form upstream of the Earth’s magnetic field - Bow Shock

* Solar wind plasma: heated and decelerated through bow shock and denser - Magnetosheath

* Magnetosheath plasma flows around the Earth’s magnetic cavity > Magnetosphere



Dynamics of the outer magnetosphere

Magnetosphere in meridional plane _ _
(b) a) Reconnection between interplanetary

FL (2) and closed Earth’s FL
3 b) Reconnected opened FL (3 and 4)
dragged antisunward (solar wind flow
/\ © and magnetic tension)
> C

c) Inverse reconnection in the far tail

(a)

d) Solar flow of newly closed Earth’s FL
(d) (1) (magnetic tension and E x B drift)
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Dynamics of the inner magnetosphere

* Plasmasphere (1 <R, <6 Rg):

Earth
_ . . . Detached
Geomagnetic field line.  dipole axis Plasma Region Or

rotate with Earth : Plasma Tail - Cold (E ~1 EV) and dense (n ~ 103 Cm—3)
' plasma

- Origin: ionized high atmosphere
- Corotating with Earth

- Asymmetric: extending further on the
duskside

~4 Earth Radii ' ~6 - 7 Earth Radii

Magnetospheric equatorial plane

* Competition between E x B drift and corotation
close to Earth Sl
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lonosphere and thermosphere
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* Upper atmosphere composed of two
coexisting media:

Neutral atmosphere - Thermosphere
lonized atmosphere - lonosphere

— partially ionized plasma

* lonosphere at equilibrium (mostly)
with balance between:

- Production processes
- Loss processes

- Transport (horizontal and vertical)

* Different processes:
- dominant in different ionosphere
regions (D-, E- and F-Region)

- highly dependent on thermosphere
(composition, wind dynamics and
thermodynamics)



Magnetospheric Electrodynamics and
lonospheric closure

Interplanetary
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Magnetopause

» 2 types of ionospheric horizontal currents due to anisotropic
medium (magnetized):

- Pedersen currents flow parallel to the convection electric
field and close mainly the FACs in the low ionosphere

- Hall currents flow perpendicular to the convection electric
field - electrojets flowing antisunward on both auroral zones

e Auroral precipitation are mainly localized at the FL footprint of dayside and nightside
reconnection region - along the auroral oval



Impact of a strong perturbation on the
lonosphere

After Mao etal. (2015)
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* Change of atmospheric composition -
cause strong increase or strong decrease
ionosphere density

- Negative ionosphere storm
— decrease of the neutral density ratio O/N,,
leading to an ion loss rate enhancement

- Positive ionosphere storm

— unpredictable feature especially at mid-
latitudes

— Cause(s) not fully elucidated

* Positive storm can occur before or after
negative storm



TRANSCAR high-latitude ionosphere model
IPIM : IRAP Plasmasphere lonosphere Model

New IPIM model for closed dipolar
(excentric/tilted magnetic field lines)

E.7 |
.E- Drivers — based on the high-latitude TRANSCAR model

7 e.g. Blelly et al. (1996;2005);

Fluid Module
N-T,-T.-V-9-0,

Kinetic Module
Suprathermal * Motivation

Tons
thermal electrons

electrons

- to develop a new model to study the
Planet Indepéndent Module plasmasphere-ionosphere coupling

e.qg. Marchaudon and Blelly (2015)

http://transplanet.irap.omp.eu/

\ J
Solar SW
EUV . . .
Atmosphere Flux couplings - to uniformise the TRANSCAR and IPIM models
N—T—(V)

- to obtain a global ionosphere model



Conjugated ground-based and spacecraft
measurement

* Motivation
- Quantitative study of the M-I-T coupling
- Use as inputs for the IPIM model

Polar cusp
conjunction

magnetosheath

magnetopause
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magnet

Low-altitude

*satellites

CHAMP, Swarm,
FAST, Orsted...

SuperDARN

Incoherent scatter

r ... radar (EISCAT)

' lonosondes



@ SuperDARN : Super Dual Auroral Radar Network

NORTH SOUTH

International network of 35 over-
the-horizon HF radars (1995)

Continuous monitoring of the
ionosphere

Temporal tracking of ionospheric convection
dynamics

Obtaining potential across the polar cap in each
hemisphere

APL MODEL
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French Pl of the Kerguelen
radar since 2008




Major scientific questions:

understand the global Magnetosphere-
lonosphere-Thermosphere (M-I-T) system

M-I-T system response to magnetic storms

Different types of disturbances: CME, CIR, flares

Different types of responses (even for the same type of disturbance!)

- What is the history of the system?

- What is the respective role of each region?

- What are the response times of each region?

- How is the perturbation propagating?

-> What external and / or internal parameters are involved?

- What asymmetries of response between hemispheres to be expected?



Study of a magnetic storm caused by a Corotating
Interaction Region (CIR)

Cszzf':,?::’ . * Fast solar wind overtaking ambient solar wind

ambient - Corotating Interaction Region

 Compression zone: increase in IMF magnitude
and solar wind speed

* Fast solar wind region located right after the
Stream Interface (SI) > High Speed Stream (HSS)

* Capable of generating a moderate magnetic
storm in the magnetosphere

— Grandin et al. (2015) statistically studied the impact of High Speed Stream (HSS) on the
high latitude ionosphere with ionosonde data



HSS effect on the ionosphere-
thermosphere system

lonospheric effect of a CIR / HSS on the ionosphere

Statistical study based on the Sodankyld ionosonde

— decrease in the density of the F2 region at equinox and at Summer
solstice between 12 and 23 MLT

Region F2 peak as seen with Sodankyld ionosonde (Fi)
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 Motivation

- to use the high latitude TRANSCAR model to understand the mechanism responsible for

the decay of the F region in the high latitude ionosphere during an HSS event occurring in
Summer solstice in NH (July 2008) - Strong optimization of TRANSCAR inputs needed!



TRANSCAR inputs optimization: convection as seen
by SuperDARN and EISCAT

Use of SuperDARN convection maps as
TRANSCAR input (Ruohoniemi and Baker, 1998)

TSun

12 Jul 2008

02:30 UT

-

Intensification of convection a few hours after SI

Good overall correspondence between
SuperDARN and EISCAT measurements

= ~ossour = necessity to add a supplementary convection
¥ . spot around the maximum of the event
(MLAT =75 ° - MLT = 4)

without
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Time [ UT ]



TRANSCAR inputs optimization: thermospheric
density as seen by CHAMP and EISCAT
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Use of the empirical thermosphere model NRLMSISE-00 (Picone et al., 2000)

Exospheric temperature deduced from EISCAT and thermospheric density deduced from
CHAMP - large increases centered on maximum disturbance (a few hours after the Sl)

Adjustment of the NRLMSISE-00 model to reproduce these observations
— addition of an exospheric temperature perturbation of almost 200K and a very important
decay (factor 3) of the atomic oxygen density



TRANSCAR Runs at Tromsg and Sodankyla
during 3 days around the HSS
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Excellent agreement between modeling and observations (ionosondes Sodankyla and
Tromsg and EISCAT-Troms@) for foF2 (electron density max in Region F) and foE (density

max in Region E)

- only made possible with convection and thermosphere optimization previously

exposed



Altitude [ km |

TRANSCAR Run at Tromsg : detailed comparison
with EISCAT measurements
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Again: excellent agreement between modeling and observation

Decrease of the ionospheric electron density due to the decay of the F2 region
(dominated by O) in favor of a F1 region (dominated by NO*) = negative storm
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Conclusions

TRANSCAR made it possible to understand the cause of the decay of F2 region
after the HSS impact - transition from F2 region to F1 region

Change F2 - F1 due to a sharp and rapid decrease in the atomic oxygen density
of the thermosphere related to the impact of HSS (E-field increase)

Counter-intuitive: thermosphere essential and rapid cause of the ionosphere
modification

Statistical thermosphere model (NRLMSIS-00) not adapted to the simulation of a
magnetic storm

Perspectives
Mid-latitude and southern hemisphere modeling of the same event

Spatial propagation of this event remains unclear - use of indices o (see next
slides)

Development of a dynamical thermosphere model (internship started in January
2018)

Systematize this type of study for different solar perturbations



Developments of new magnetic indices: «

Network of a stations in 2000
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e Motivation

- to develop new indices with better spatio-
temporal resolution

- Network as dense as possible (subauroral
zones) and variable with time (Intermagnet)
— follow activity wrt magnetic longitudes

- time resolution: 15 min
— but adaptable to user needs - 30, 60, 90
min ...

- simpler, more reliable algorithm and physical
scale (in nT) = ideal for real-time and
prediction

e.g. Chambodut et al. (2015)



Interests of @ magnetic indices

- to follow rapid temporal variations of magnetic activity

- to detect the onset of a magnetic storm

- to compare the activity between hemispheres

- to discriminate activity in Magnetic Local Time (MLT)
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Improvement and sectorization
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Statistical studies of o,
magnetic indices for different
types of events (quiet, CIR,
CME), taking into account tilt
of magnetic dipole, local time

—> variability according to MLT
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