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1 Introduction

Dynamic geometry tools (e.g., Cinderella, Geometer’s Sketchpad, Cabri, Euklei-
des') visualise geometric objects, allow interactive work, and link formal, ax-
iomatic nature of geometry (most often — Euclidean) with its standard models
(e.g., Cartesian model) and corresponding illustrations. These tools are used in
teaching and studying geometry, some of them also for producing digital illus-
trations. The common experience is that dynamic geometry tools significantly
help students to acquire knowledge about geometric objects. However, despite
the fact that geometry is an axiomatic theory, most (if not all) of these tools
concentrate only on concrete models of some geometric constructions and not
on their abstract properties — their properties in deductive terms. The user can
vary some initial objects and parameters and test if some property holds in all
checked cases, but this still does not mean that the given property is valid.

We have extended GCLC, a widely used dynamic geometry package,? with
a module that allows formal, deductive reasoning about constructions made in
the main, drawing module. The built-in theorem prover (GCLCprover in the
following text), is based on the area method [1,2,6]. It produces proofs that are
human-readable (in BTEX form), and with a justification for each proof step.
It is also possible, via a conversion tool, to reason about constructions made
with Eukleides [7,9]. Hence, the prover can be used in conjunction with other
dynamic geometry tools, which demonstrates the flexibility of the developed de-
duction module. Closely linked to the mentioned tools is GeoThms — a web
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GCLC (originally a tool for producing geometrical illustrations for ITEX, hence its
name — Geometrical Constructions — ETgX Converter) [3,4] provides support for
a range of geometrical constructions, isometric transformations, parametric curves,
but also for symbolic expressions, and program loops. The basic idea behind GCLC
is that constructions are formal procedures, rather than drawings. Thus, producing
illustrations is based on “describing figures” rather than of “drawing figures”.
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tool that integrates dynamic geometry tools, geometry theorem provers, and a
repository of geometry theorems and proofs. This integrated framework for con-
structive geometry, provides an environment suitable for new ways of studying
and teaching geometry at different levels.

2 GCLCprover

Automated theorem proving in geometry has two major lines of research: syn-
thetic proof style and algebraic proof style (see, for instance, [5] for a survey).
Algebraic proof style methods are based on reducing geometric properties to
algebraic properties expressed in terms of Cartesian coordinates. These methods
are usually very efficient, but the proofs they produce do not reflect the geo-
metric nature of the problem and they give only a yes/no conclusion. Synthetic
methods attempt to automate traditional geometry proof methods.

The area method. This method (in the core of the prover built into GCLC) is a
synthetic method providing traditional (not coordinate-based), human-readable
proofs [1,2,6]. The proofs are expressed in terms of higher-level geometric lem-
mas and expression simplifications. The main idea of the method is to express
hypotheses of a theorem using a set of constructive statements, each of them
introducing a new point, and to express a conclusion by an equality of expres-
sions in geometric quantities (e.g., signed area of a triangle), without referring
to Cartesian coordinates. The proof is then based on eliminating (in reverse
order) the points introduced before, using for that purpose a set of appropri-
ate lemmas. After eliminating all introduced points, the current goal becomes
an equality between two expressions in quantities over independent points. If it
is trivially true, then the original conjecture was proved valid, if it is trivially
false, then the conjecture was proved invalid, otherwise, the conjecture has been
neither proved nor disproved. In all stages, different simplifications are applied
to the current goal. Some steps require proving some lemmas (giving proofs on
different levels).

Geometrical quantities. In our implementation of the area method, we deal
with the following basic geometric quantities: ratio of directed segments ( g=g),
signed area (Sapc — signed area of a triangle ABC') and Pythagoras difference
(Papc = AB% + CB? — AC?) (for details see [8]). The conjecture is built from
these geometric quantities (over points already introduced within the current
construction), eventually combined together by standard arithmetic operators.
A wide range of geometric conjectures can be simply stated in that way.

Properties of the area method. The procedure based on the area methods is
terminating, sound, and complete: it can prove any geometry theorem expressed
in terms of geometric quantities, and involving only points introduced by using
a specific set of constructions (see below). Therefore, the procedure is a decision
procedure for the described fragment of geometry. This fragment can be defined
as axiomatic quantifier-free theory with the set of axioms equal to the set of all
simplification and elimination rules (taken as not-oriented equalities). It can be
easily shown that this theory is a sub-theory of Euclidean geometry augmented



by the theory of real numbers. The method does not have any branching, which
makes it very efficient for many non-trivial geometry theorems. The method can
transform a conjecture given as a geometry quantity of a degree d, involving n
constructed points, to a quantity not involving constructed points, and with a
degree at most 5d3°" [1], while this number is usually much less, and not reached,
also thanks to the used simplification steps.

Primitive steps. Our theorem prover is a sort of rational reconstruction of
the area method. The proofs are built from primitive steps: elimination steps
and simplification steps. Simplifications are made explicit and based on rewrite
rules. We divide simplification steps into two groups: (i) algebraic simplifica-
tions — apply simplification rewrite rules (not directly related to geometry, but
to the properties of reals ) such as: 2 +0 — @, ¥ + 3 — %, ete; (ii) ge-
ometric simplifications — apply simplification rewrite rules, directly related to
geometric quantities such as: Pyap — 0, Sapc — Spca. All simplifications and
elimination lemmas are proved in full details in [8].

Integration. It is often the case that an application providing different func-
tionalities is built around a theorem prover. In GCLC, we have faced the chal-
lenging problem of integrating a theorem prover into well-developed tool with
well defined set of functionalities, and we have succeeded in building a system
where the prover is tightly integrated. This means that one can use the prover to
reason about a GCLC construction (i.e., about objects introduced in it), without
adapting it for the deduction process — the user only needs to add the conclusion
he/she wants to prove. GCLC and GCLCprover share (only) the parsing module,
which is responsible for processing the input file and passing to GCLCprover the
construction steps performed. These steps are internally transformed into prim-
itive constructions of the area method, and in some cases, some auxiliary points
are introduced. The constructions accepted by GCLCprover are: construction of
a line given two points; an intersection of two lines; the midpoint of a segment; a
segment bisector; a line passing through a given point, perpendicular to a given
line; a foot from a point to a given line; a line passing through a given point,
parallel to a given line; an image of a point in a given translation; an image of
a point in a given scaling transformation; a random point on a given line.

3 GeoThms

GeoThms is a framework that links dynamic geometry tools (GCLC, Eukleides),
geometry theorem provers (GCLCprover), and a repository of geometry prob-
lems (geoDB). GeoThms provides a Web workbench in the field of constructive
problems in Euclidean geometry. Its tight integration with dynamic geometry
software and automatic theorem provers (GCLC, Eukleides, and GCLCprover,
for the moment) and its repository of theorems, figures and proofs, gives the
user the possibility to easily browse through the list of geometric problems,
their statements (both in natural-language form and as GCLC/Eukleies code),
illustrations and proofs, and also to interactively use the drawing and proving
programs.



4 Implementation and Experiences

The GCLCprover was implemented in C++ (having around 7000 lines of code)
and is very efficient. The theorem prover produces proofs in I#TEX form and a re-
port about the proving process: whether the conjecture was proved or disproved,
data about CPU time spent, and the number of proof steps performed (in several
categories). At the beginning of the proof, auxiliary points are defined. For each
proof step, there is a justification, and (optionally) its semantics counterpart
(not used in the proof itself, but it can be used for testing conjectures). The
prover can prove many complex geometric problems in milliseconds, producing
short and readable proofs.® Results shown in Table 1 were obtained on a PC
Intel Pentiun-1V, 3.2GHz, 1GB RAM. Let us consider, as a simple example, the
Midpoint’s theorem, which can be expressed and proved within GCLC. The proof
produced in 0.002s is very small and readable (see Figure 1).

|Theorem |elimination steps| geometric steps|algebraic steps|time (sec)|
Ceva 3 6 23 0.001
Gauss line 14 51 234 0.029
Midpoint 8 19 45 0.002
Thales 6 18 34 0.001
Menelaus 5 9 39 0.002
Pappus’ Hexagon 24 65 269 0.040
Areas of Parallelograms 62 152 582 0.190

Table 1. Experimental results

GeoThms is implemented in MySQL and PHP and uses WTEX (and some
other auxiliary tools) to format the output and show data in a web-page.

GCLC is available from: http://wuw.matf .bg.ac.yu/~ janicic/gclc/,and
GeoThms is accessible from: http://hilbert.mat.uc.pt/ geothms.

5 Future Work and Conclusion

The GCLCprover and GeoThms are parts of an integrated framework for con-
structive geometry, providing an environment suitable for studying and teaching
geometry. In this system, the axiomatic nature of geometric objects is tightly
linked to their standard representation (in Cartesian plane) and the formal rea-
soning is linked to human intuition. We believe that such a system brings new
dimension in teaching and studying geometry. This system, and the GEX tool*
(new version is currently under development) are, to our knowledge, the only
dynamic geometry tools with automated deduction modules (however, unlike
GCLCprover, the GEX prover implements an algebraic proof method).

We are planning to extend the prover with support for additional sets of
constructions and additional heuristics, and to use the prover for run-time con-
trol of correct geometric constructions. We are also considering implementing

3 Some theorems need more then 10000 steps to be proved.
4 GEX tool: http://woody.cs.wichita.edu/gex/7-10/gex.html
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Fig. 1. Midpoint’s Theorem: the GCLC code with the conjecture (AB|| A1 B1, expressed
as Sa,B,4=S4, B, B) (left), the corresponding illustration and a part of the proof (right)

(and linking to dynamic geometry tools) other methods for automated prov-
ing of geometry theorems. Regarding GeoThms, we are planning to work on
further integration of the visualisation tools and proving tools, and on further
functionalities for interactive work.
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