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Preface 
 
The aim of the LOPSTR series is to stimulate and promote international research and 
collaboration on logic-based program development. LOPSTR is open to contributions in 
logic-based program development in any language paradigm. LOPSTR has a reputation 
for being a lively, friendly forum for presenting and discussing work in progress. 
 
The book contains the preliminary proceedings of the LOPSTR09 symposium. Formal 
proceedings are produced only after the symposium so that authors can incorporate 
feedback in the published papers. The proceedings of LOPSTR09 will be published in 
the Lecture Notes in Computer Science series of Springer-Verlag. 
 
LOPSTR09 is held in Coimbra, Portugal. It is co-located with PPDP 2009 (International 
ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming) 
and CSL 2009 (EACSL Annual Conference on Computer Science Logic). Previous 
symposia were held in Valencia, Lyngby, Venice, London, Verona, Uppsala, Madrid, 
Paphos, London, Venice, Manchester, Leuven, Stockholm, Utrecht, Pisa, Louvain-la-
Neuve, and Manchester (two years in row). 
 
From the submitted papers, 16 high quality papers were selected for presentation at the 
conference. These appear in this book. In addition, there is an invited talk by German 
Vidal. The abstract of this talk also appears in this proceedings. 
 
I want to thank the program committee members, Slim Abdennadher, Maria Alpuente 
Frasnedo, Roberto Bagnara, John Gallagher, Robert Glueck, Michael Hanus, Reinhard 
Kahle, Andy King, Michael Leuschel, Fabio Martinelli, Fred Mesnard, Mario Ornaghi, 
German Puebla, Sabina Rossi, Josep Silva, Peter Schneider-Kamp, Tom Schrijvers, Petr 
Stepanek and Wim Vanhoof for their thorough work in evaluating the submitted papers. 
 
I want to thank the organizers,Ana Almeida, Pedro Quaresma and Reinhard Kahle for 
their great job in preparing the conference. 
 
I wish all participants a very fruitful and pleasant meeting. 
Danny De Schreye 
Program Chair 
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Towards Scalable Partial Evaluation of
Declarative Programs?

Germán Vidal

DSIC, Universidad Politécnica de Valencia, Spain
gvidal@dsic.upv.es

Introduction

Partial evaluation is a well-known technique for program specialization [3]. Es-
sentially, given a program and part of its input data—the so-called static data—a
partial evaluator returns a new, residual program which is specialized for the
given data. The residual program is then used for performing the remaining
computations—those that depend on the so-called dynamic data.

There are two main approaches to partial evaluation, depending on the way
termination issues are addressed. On the one hand, online partial evaluators take
decisions on the fly while the constructs of the source code are partially evalu-
ated and the corresponding residual program is built. Offline partial evaluators,
on the other hand, require a binding-time analysis (BTA) to be run before spe-
cialization, which annotates the source code to be specialized. Basically, every
call of the source program is annotated as either unfold (to be executed by the
partial evaluator) or memo (to be executed at run time, i.e., memoized), and
every argument is annotated as static (known at specialization time) or dynamic
(only definitely known at run time). Offline partial evaluators are usually faster
but less accurate than online ones since the BTA phase is performed—and also
termination issues are addressed—using an approximation of the static data.

There are several basic properties of a partial evaluator that can be addressed:

– correctness: is the specialized program equivalent to the original one for the
considered static data?

– accuracy: is the residual program a good specialization of the original pro-
gram for the static data? is it fast enough compared to a hand-written spe-
cialization?

– efficiency: is the partial evaluator fast? does it scale up well to large source
programs?

– predictability: is it possible to determine the achievable run time speedup
before partial evaluation starts?

Here, we are mainly concerned with efficiency issues in offline partial evaluation.

? This work has been partially supported by the Spanish Ministerio de Ciencia e
Innovación under grant TIN2008-06622-C03-02 and by the Generalitat Valenciana
under grant GVPRE/2008/001.



Clearly, there is a trade-off between accuracy and efficiency. For instance,
some accurate BTAs are rather inefficient because the termination analysis and
the algorithm for propagating static information should be interleaved, so that
every time a call is annotated as memo, the termination analysis has to be
re-executed to take into account that some bindings will not be propagated
anymore. Our recent work [1, 4–7] shows that this drawback can be overcome by
using instead a strong termination analysis [2], i.e., an analysis that considers
termination for every possible selection or evaluation strategy. In this case, both
tasks—termination analysis and propagation of static information—can be kept
independent, so that the termination analysis is done once and for all before
the propagation phase, resulting in major efficiency improvements over previous
approaches.

As expected, the accuracy of the resulting scheme is not comparable to that of
previous approaches but can nevertheless be improved in a number of ways, e.g.,
by using the information from a termination analysis for a particular selection
or evaluation strategy—which is only run once—, by means of user provided an-
notations, by adding online annotations, etc. Therefore, although there is ample
room for improving accuracy, we consider our approach a promising framework
for developing scalable partial evaluators for declarative programs. Note that the
underlying techniques are essentially the same no matter the considered declar-
ative programming language. Actually, we have applied similar principles to the
partial evaluation of term rewrite systems, (first-order) functional programs,
logic programs, and functional logic programs.
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Deciding Full Branching Time Logic by
Program Transformation

Alberto Pettorossi1, Maurizio Proietti2, and Valerio Senni1
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Abstract. We present a method based on logic program transforma-
tion, for verifying Computation Tree Logic (CTL∗) properties of finite
state reactive systems. The finite state systems and the CTL∗ properties
we want to verify, are encoded as logic programs on infinite lists. Our
verification method consists of two steps. In the first step we transform
the logic program that encodes the given system and the given property
into a monadic ω-program, that is, a stratified program defining unary
predicates on infinite lists. This transformation is performed by applying
unfold/fold rules that preserve the perfect model of the initial program.
In the second step we verify the property of interest by using a proof
system for monadic ω-programs. This proof system can be encoded as
a logic program which always terminates if the evaluation is performed
by tabled resolution. Our verification algorithm has essentially the same
time complexity of the best algorithms known in the literature.

1 Introduction

The branching time temporal logic CTL∗ is among the most popular temporal
logics that have been proposed for verifying properties of reactive systems [5]. A
finite state reactive system, such as a protocol, a concurrent system, or a digital
circuit, is formally specified as a Kripke structure and the property to be verified
is specified as a CTL∗ formula. Thus, the problem of checking whether or not a
reactive system satisfies a given property is reduced to the problem of checking
whether or not a Kripke structure is a model of a CTL∗ formula.

There is a vast literature on the problem of model checking for the CTL∗ logic
and, in particular, its two fragments: (i) the Computational Tree Logic CTL, and
(ii) the Linear-time Temporal Logic LTL (see [3] for a survey). Most of the known
model checking algorithms for CTL∗ either combine model checking algorithms
for CTL and LTL [3], or use techniques based on translations to automata on
infinite trees [8].

In this paper we extend to CTL∗ a method proposed in [13] for LTL. We
encode the satisfaction relation of a CTL∗ formula ϕ with respect to a Kripke
structure K by means of a stratified logic program PK,ϕ. The program PK,ϕ

belongs to a class of programs, called ω-programs, which define predicates on
infinite lists. Predicates on infinite lists are needed because the definition of the



satisfaction relation is based on the infinite computation paths of K. The seman-
tics of PK,ϕ is provided by its unique perfect model [16] which for ω-programs is
defined in terms of a non-Herbrand interpretation for infinite lists.

Our verification method consists of two steps. In the first step we transform
the program PK,ϕ into a monadic ω-program, that is, a stratified program which
defines unary predicates on infinite lists. This transformation is performed by
applying unfold/fold transformation rules similar to those presented in [7,19,20]
according to a strategy which is a variant of the strategy for the elimination
of multiple occurrences of variables [14]. Similarly to [7,19], the use of those
unfold/fold rules guarantees the preservation of the perfect model of PK,ϕ.

In the second step of our verification method we apply a set of proof rules for
monadic ω-programs which are sound and complete with respect to the perfect
model semantics. Moreover, those rules can be encoded in a straightforward way
as a logic program which always terminates if it is evaluated by using tabled
resolution [2,18].

Our verification method based on very general transformation techniques, has
essentially the same time complexity as the algorithms based on the techniques
presented in [3,8].

The paper is structured as follows. In Section 2 we introduce the class of
ω-programs and we show how to encode the satisfaction relation for any given
Kripke structure and CTL∗ formula as an ω-program. In Section 3 we present our
verification method. In particular, in Section 3.1 we present the transformation
rules and the strategy which allows us to transform an ω-program into a monadic
ω-program. In Section 3.2 we present the proof rules for monadic ω-programs and
the encoding of those proof rules as clauses of a logic program, and in Section 3.3
we study the computational complexity of our verification algorithm. Finally, in
Section 4 we discuss the related work in the area of model checking and logic
programming.

2 Encoding CTL∗ Model Checking as a Logic Program

In this section we describe a method which, given a Kripke structure K and a
CTL∗ state formula ϕ, allows us to construct a logic program PK,ϕ and a formula
Prop such that ϕ is true in K, written K ² ϕ, iff Prop is true in the perfect model
of PK,ϕ, written M(PK,ϕ) ² Prop. Thus, the problem of checking whether or not
K ² ϕ holds, also called the problem of model checking ϕ with respect to K, is
reduced to the problem of testing whether or not M(PK,ϕ) ² Prop holds.

Now we briefly recall the definition of the temporal logic CTL∗ (see [3]
for more details). A Kripke structure is a 4-tuple 〈Σ, s0, ρ, λ〉, where: (i) Σ =
{s0, . . . , sh} is a finite set of states, (ii) s0 ∈ Σ is the initial state, (iii) ρ ⊆ Σ×Σ
is a total transition relation, and (iv) λ : Σ→P(Elem) is a total function that
assigns to every state s ∈ Σ a subset λ(s) of the set Elem of elementary prop-
erties. A computation path of K from a state s is an infinite list [a0, a1, . . .] of
states such that a0 = s and, for every i≥0, (ai, ai+1) ∈ ρ. Given an infinite list
π = [a0, a1, . . .] of states, by πj , for any j≥ 0, we denote the infinite list which
is the suffix [aj , aj+1, . . .] of π.
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Definition 1 (CTL∗ Formulas). Given a set Elem of elementary properties,
a CTL∗ formula ϕ is either a state formula ϕs or a path formula ϕp defined as
follows:

(state formulas) ϕs ::= d | ¬ϕs | ϕs ∧ ϕs | E ϕp

(path formulas) ϕp ::= ϕs | ¬ϕp | ϕp ∧ ϕp | X ϕp | ϕp U ϕp

where d∈Elem.

As the following definition formally specifies, (i) Eϕ holds in a state s if there
exists a computation path starting from s on which ϕ holds, (ii) X ϕ holds on a
computation path π if ϕ holds in the second state of π, and (iii) ϕ1 U ϕ2 holds
on a computation path π if ϕ2 holds in a state s of π and ϕ1 holds in every state
preceding s in π.

Definition 2 (Satisfaction Relation for CTL∗). Let K = 〈Σ, s0, ρ, λ〉 be a
Kripke structure. For any CTL∗ formula ϕ and infinite list π ∈ Σω, the relation
K, π ² ϕ is inductively defined as follows:

K, π ² d iff π = [a0, a1, . . .] and d∈λ(a0)
K, π ² ¬ϕ iff K, π 6² ϕ
K, π ² ϕ1 ∧ ϕ2 iff K, π ² ϕ1 and K, π ² ϕ2

K, π ² E ϕ iff π = [a0, a1, . . .] and there exists a computation path π′

from a0 such that K, π′ ² ϕ
K, π ² X ϕ iff K, π1 ² ϕ
K, π ² ϕ1 U ϕ2 iff there exists i≥0 such that K, πi ² ϕ2

and, for all 0≤j <i, K, πj ² ϕ1.
Given a state formula ϕ, we say that K is a model of ϕ, written K ² ϕ, iff there
exists an infinite list π ∈ Σω such that the first state of π is the initial state s0

of K and K, π ² ϕ holds.

The above definition of the satisfaction relation for CTL∗ formulas is a shorter,
yet equivalent, version of the usual definition given in the literature [3].

In order to encode the satisfaction relation for CTL∗ formulas as a logic
program, in the next section we will introduce a class of logic programs, called
ω-programs. In this class the arguments of predicates may denote infinite lists.

2.1 Syntax and Semantics of ω-Programs
Let us consider a Kripke structure K. Let us also consider a first order lan-
guage Lω given by a set Var of variables, a set Fun of function symbols, and
a set Pred of predicate symbols. We assume that Fun includes: (i) the set Σ
of the states of K, each state being a constant of Lω, (ii) the set Elem of the
elementary properties of K, each elementary property being a constant of Lω,
and (iii) the binary function symbol [ | ] which is the constructor of infinite lists.
Thus, for instance, [H|T ] is an infinite list whose head is H and whose tail is the
infinite list T .

We assume that Lω is a typed language [11] with three basic types: (i) fterm,
which is the type of finite terms, (ii) state, which is the type of states, and
(iii) ilist, which is the type of infinite lists of states. Every function symbol in
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Fun − (Σ ∪ {[ | ]}), with arity n (≥ 0), has type fterm×· · ·×fterm → fterm,
where fterm occurs n times to the left of→. Every function symbol in Σ has type
state. The function symbol [ | ] has type state×ilist→ ilist. A predicate
symbol of arity n (≥0) in Pred has type of the form τ1×· · ·×τn, where τ1, . . . , τn ∈
{fterm, state, ilist}. An ω-program is a logic program constructed as usual
(see, for instance, [11]) from symbols in the typed language Lω. In what follows,
for reasons of simplicity, we will feel free to say ‘program’, instead of ‘ω-program’.

If f is a term or a formula, then by vars(f) we denote the set of variables
occurring in f . By ∀(ϕ) and ∃(ϕ) we denote, respectively, the universal closure
and the existential closure of the formula ϕ.

An interpretation for our typed language Lω, called ω-interpretation, is given
as follows. Let HU be the Herbrand universe constructed from the set Fun−(Σ∪
{[ | ]}) of function symbols and let Σω be the set of the infinite lists of states.
An ω-interpretation I is an interpretation such that: (i) to the types fterm,
state, and ilist, I assigns the sets HU, Σ, and Σω, respectively, (ii) to the
function symbol [ | ], I assigns the function [ | ]I such that, for any state a ∈ Σ
and infinite list [a1, a2, . . .] ∈ Σω, [a|[a1, a2, . . .]]I is the infinite list [a, a1, a2, . . .],
(iii) I is an Herbrand interpretation for all function symbols in Fun−(Σ∪{[ | ]}),
and (iv) to every n-ary predicate p ∈ Pred of type τ1×. . .×τn, I assigns a relation
on D1×· · ·×Dn, where, for i = 1, . . . , n, Di is either HU or Σ or Σω, if τi is either
fterm or state or ilist, respectively. We say that an ω-interpretation I is an
ω-model of a program P iff for every clause γ∈P we have that I ² ∀(γ). Similarly
to the case of logic programs, we can define (locally) stratified ω-programs and
we have that every (locally) stratified ω-program P has a unique perfect ω-model
(or perfect model, for short) which we denote M(P ) [1,16] (in Example 1 below
we present the construction of the perfect model of an ω-program).

Definition 3 (Monadic ω-Programs). A monadic ω-clause is of the form:
p0([s|X0]) ← p1(X1) ∧ . . . ∧ pk(Xk) ∧ ¬pk+1(Xk+1) ∧ . . . ∧ ¬pm(Xm)

where: (i) 0 ≤ k ≤ m, (ii) for i = 0, . . . , m, pi ∈ Pred , (iii) s is a constant of
type state, (iv) X0 is a variable of type ilist, and (v) X1, . . . , Xk, Xk+1, . . . , Xm

are distinct variables of type ilist. A monadic ω-program is a stratified, finite
set of monadic ω-clauses.

Note that in Definition 3 the predicate symbols p0, p1, . . . , pm are not neces-
sarily distinct and X0 may be one of the variables in {X1, . . . , Xm}.
Example 1. Let r, q, and p be predicates of type ilist. The following set of
clauses is a monadic ω-program P (and, thus, also an ω-program):

p([a|X]) ← p(X) q([a|X]) ← q(X) r([a|X]) ← r(X)
p([b|X]) ← ¬ q(X) q([a|X]) ← ¬ r(X) r([b|X]) ←

q([b|X]) ← q(X)
Program P is stratified by the level mapping ` : Pred → N such that `(p) = 2,
`(q)=1, and `(r)=0. The value of the predicate of an atom under ` is called the
level of that atom. The perfect model M(P ) is constructed by increasing levels
of ground atoms. We start from ground atoms of level 0, that is, ground atoms
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with predicate r. For all w ∈ {a, b}ω, r(w) ∈ M(P ) iff w ∈ a∗b(a + b)ω. Thus,
r(w) 6∈ M(P ) iff w ∈ aω, that is, ¬ r(w) holds in M(P ) iff w ∈ aω. Then we
consider ground atoms of level 1, that is, ground atoms with predicate q. For
all w ∈ {a, b}ω, q(w) ∈ M(P ) iff w ∈ (a + b)∗aω (that is, w has finitely many
occurrences of b). Thus, ¬ q(w) holds in M(P ) iff w ∈ (a∗b)ω (that is, w has
infinitely many occurrences of b). Finally, we consider ground atoms of level 2,
that is, ground atoms with predicate p. For all w ∈ {a, b}ω, p(w) ∈ M(P ) iff
w ∈ (a∗b)(a∗b)ω, that is, p(w) ∈ M(P ) iff w ∈ (a∗b)ω.

2.2 Encoding the CTL∗ Satisfaction Relation as an ω-Program

Given a Kripke structure K and a CTL∗ formula ϕ, we introduce a locally strati-
fied ω-program PK,ϕ which defines, among others, the following three predicates:
(i) the unary predicate path such that path(π) holds iff π is an infinite list repre-
senting a computation path of K, (ii) the binary predicate sat that encodes the
satisfaction relation for CTL∗ formulas, in the sense that for all computation
paths π and CTL∗ formulas ψ, we have that M(PK,ϕ) ² sat(π, ψ) iff K, π ² ψ,
and (iii) the unary predicate prop that encodes the property ϕ to be verified, in
the sense that prop(π) holds iff the first state of π is the initial state s0 of K and
K, π ² ϕ.

When writing terms that encode CTL∗ formulas, such as the second argument
of the predicate sat , we will use the function symbols e, x, and u standing for
the operator symbols E, X, and U, respectively.

Definition 4 (Encoding Program).Given a Kripke structureK=〈Σ, s0, ρ, λ〉
and a CTL∗ formula ϕ, the encoding program PK,ϕ is the following ω-program:

1. prop(X) ← sat([s0|X], ϕ)
2. path(X) ← ¬notpath(X)
3. notpath([S1, S2|X]) ← ¬ tr(S1, S2)
4. notpath([S|X]) ← notpath(X)
5. sat([S|X], F ) ← elem(F, S)
6. sat(X,not(F )) ← ¬ sat(X, F )
7. sat(X, and(F1, F2)) ← sat(X, F1) ∧ sat(X, F2)
8. sat([S|X], e(F )) ← path([S|Y ]) ∧ sat([S|Y ], F )
9. sat([S|X], x(F )) ← sat(X, F )

10. sat(X, u(F1, F2)) ← sat(X, F2)
11. sat([S|X], u(F1, F2)) ← sat([S|X], F1) ∧ sat(X, u(F1, F2))

together with the clauses defining the predicates tr and elem, where:
(1) tr(s1, s2) holds iff (s1, s2)∈ρ, for all states s1, s2∈Σ, and
(2) elem(d, s) holds iff d∈λ(s), for every property d∈Elem and state s∈Σ.

Clause 1 of Definition 4 states that the property ϕ holds for an infinite list
whose first state is s0. Clauses 2–4 stipulate that path(X) holds iff for every pair
(ai, ai+1) of consecutive elements on the infinite list X, we have that (ai, ai+1) ∈
ρ. Indeed, clauses 3 and 4 stipulate that notpath(X) holds iff there exist two
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consecutive elements ai and ai+1 on X such that (ai, ai+1) 6∈ ρ. Clauses 5–
11 define the satisfaction relation sat(X, ϕ) for any infinite list X and CTL∗

formula ϕ. The definition is given by cases on the structure of ϕ.
The program PK,ϕ is locally stratified w.r.t. the stratification function σ

from ground literals to natural numbers defined as follows (here, for any CTL∗

formula ψ, we denote by |ψ| the number of occurrences of function symbols
in ψ): for all states a, a1, a2 ∈Σ, for all infinite lists π ∈Σω, for all elementary
properties d ∈ Elem, and for all CTL∗ formulas ψ, (i) σ(prop(π)) = |ϕ|+1,
(ii) σ(path(π))=2, (iii) σ(notpath(π))=1, (iv) σ(tr(a1, a2))=σ(elem(d, a))=0,
(v) σ(sat(π, ψ))= |ψ|+1, and (vi) for every ground atom A, σ(¬A) = σ(A)+1.

Example 2. Let us consider the set Elem = {a, b, tt} of elementary properties,
where tt is the elementary property which holds in all states, and the Kripke
structure K = 〈{s0, s1, s2}, s0, ρ, λ〉, where ρ is the transition relation {(s0, s0),
(s0, s1), (s1, s1), (s1, s2), (s2, s1)} and λ is the function such that λ(s0) = {a},
λ(s1)={b}, and λ(s2)={a}. Let us also consider the formula ϕ = E¬ (tt U¬ a)∧
E¬ (tt U¬ (tt U b)), which is usually abbreviated as EG a ∧ EGF b, where: (i) F ψ
(eventually ψ) stands for tt U ψ, and (ii) G ψ (always ψ) stands for ¬F¬ψ. The
encoding program PK,ϕ is as follows:

prop(X) ← sat([s0|X], and(e(not(u(tt ,not(a)))), e(not(u(tt ,not(u(tt , b)))))))
path(X) ← ¬notpath(X)
notpath([S1, S2|X]) ← ¬ tr(S1, S2)
notpath([S|X]) ← notpath(X)
tr(s0, s0)← tr(s0, s1)← tr(s1, s1)← tr(s1, s2)← tr(s2, s1)←
elem(a, s0)← elem(b, s1)← elem(a, s2)← elem(tt , S)←

together with clauses 5–11 of Definition 4 defining the predicate sat.

Since K ² ϕ holds iff there exists an infinite list π ∈ Σω such that the
first state of π is the initial state s0 of K and K, π ² ϕ holds (see Defini-
tion 2), we have that the correctness of PK,ϕ can be expressed by stating that
K ² ϕ holds iff M(PK,ϕ) ² ∃X sat([s0|X], ϕ) iff (by clause 1 of Definition 4)
M(PK,ϕ) ² ∃X prop(X). Now, if we denote the statement ∃X prop(X) by Prop,
the correctness of PK,ϕ is stated by the following theorem.

Theorem 1 (Correctness of the Encoding Program). Let PK,ϕ be the
encoding program for a Kripke structure K and a state formula ϕ. Then, K ² ϕ
iff M(PK,ϕ) ² Prop.

3 Transformational CTL∗ Model Checking

In this section we present a technique based on program transformation for check-
ing whether or not, for any given structure K and state formula ϕ, M(PK,ϕ) ²
Prop holds, where PK,ϕ is constructed as indicated in Definition 4 above. Our
technique consists of two steps. In the first step we transform the ω-program PK,ϕ

into a monadic ω-program T such that M(PK,ϕ) ² Prop iff M(T ) ² Prop. In
the second step we check whether or not M(T ) ² Prop holds by using a set of
proof rules for monadic ω-programs.
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3.1 Transformation to Monadic ω-Programs

The first step of our model checking technique is realized by applying specialized
versions of the following transformation rules: definition introduction, instantia-
tion, positive and negative unfolding, clause deletion, positive and negative folding
(see, for instance, [7,19,20]). These rules are applied according to a transforma-
tion strategy which is a variant of the one for eliminating multiple occurrences
of variables [14].

Our strategy starts off from the clause γ1: prop(X) ← sat([s0|X], ϕ) in PK,ϕ

(see clause 1 in Definition 4) and iteratively applies two procedures: (i) the unfold
procedure, and (ii) the define-fold procedure. At each iteration, the set InDefs
of clauses, which is initialized to {γ1}, is transformed into a set Es of monadic
ω-clauses, at the expense of possibly introducing some auxiliary (non-monadic)
clauses which are stored in the set NewDefs. These auxiliary clauses are given as
input to a subsequent iteration. Our strategy terminates when no new auxiliary
clauses are introduced.

The Transformation Strategy.
Input: An ω-program PK,ϕ for a Kripke structure K and a state formula ϕ.
Output: A monadic ω-program T such that M(PK,ϕ) ² Prop iff M(T ) ² Prop.

T := ∅; Defs := {prop(X) ← sat([s0|X], ϕ)}; InDefs := Defs;
while InDefs 6=∅do

unfold(InDefs,Ds);
define-fold(Ds,Defs,NewDefs,Es);
T := T ∪ Es; Defs := Defs ∪NewDefs; InDefs := NewDefs

od;

Let us now introduce some notions needed for presenting the unfold proce-
dure and the define-fold procedure. A conjunction of literals L1 ∧ . . .∧Lm, with
m≥1, is called a block if, for some variable X of type ilist, vars(L1) = · · · =
vars(Lm) = {X}. A block is said to be positive if it contains at least one positive
literal. Otherwise, it is said to be negative. Two blocks B1 and B2 are disjoint if
vars(B1) ∩ vars(B2) = ∅

A definition clause is a (non-monadic) ω-clause of the form p(X) ← B, where
B is a positive block and vars(B) = {X}. A quasi-monadic clause is a clause
of the form p([s|X]) ← B1 ∧ . . . ∧ Bl, where l ≥ 0 and B1, . . . , Bl are pairwise
disjoint blocks. Thus, a monadic ω-clause is a quasi-monadic clause where every
block consists of exactly one literal.

The unfold procedure takes as input a set InDefs of definition clauses and
returns as output a set Ds of quasi-monadic clauses. (Note that, in particular,
clause prop(X) ← sat([s0|X], ϕ) is a definition clause.) The unfold procedure
starts off by instantiating every variable of type ilist occurring in InDefs by
a term of the form [s|Y ], where s is a state in Σ and Y is a new variable of
type ilist, thereby deriving a new set Cs of clauses. Then, the unfold procedure
repeatedly applies as long as possible the positive and negative unfolding rules
starting from the set Cs of instantiated clauses. Finally, the unfold procedure
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deletes clauses that are subsumed by other clauses. By reasoning on the structure
of the program PK,ϕ one can prove that the output of the unfold procedure is a
set Ds of quasi-monadic clauses.

The unfold Procedure.
Input : A set InDefs of definition clauses. Output : A set Ds of quasi-monadic
clauses.

(Instantiation )
let Y be a new variable of type ilist and let s0, . . . , sh be the states of K
Cs := {C{X/[s0|Y ]}, . . . , C{X/[sh|Y ] | C ∈ InDefs and vars(C) = {X}}

(Unfolding )
while there exists a clause C in Cs do

(Case 1. Positive Unfolding )
if (i) C is of the form p([s|Y ])← G1 ∧A∧G2, where A is a positive literal,

and K1 ← B1, . . . , Km ← Bm are all clauses in PK,ϕ such that A is
unifiable with K1, . . . ,Km with most general unifiers ϑ1, . . . , ϑm, and

(ii) for i = 1, . . . , m, A = Kiϑi (that is, A is an instance of Ki)
then Cs := (Cs − {C}) ∪ {p([s|Y ]) ← G1 ∧B1ϑ1 ∧G2, . . . ,

p([s|Y ]) ← G1 ∧Bmϑm ∧G2}
(Case 2. Negative Unfolding )
elseif (i) C is of the form p([s|Y ])← G1∧¬A∧G2 and K1 ← B1, . . . , Km ← Bm

are all clauses in PK,ϕ such that A is unifiable with K1, . . . ,Km with
most general unifiers ϑ1, . . . , ϑm,
(ii) for i = 1, . . . , m, A = Kiϑi (that is, A is an instance of Ki), and
(iii) for i = 1, . . . , m, vars(Bi) ⊆ vars(Ki)

then from G1 ∧¬(B1ϑ1 ∨ . . . ∨ Bmϑm)∧G2 we get an equivalent disjunction
Q1 ∨ . . . ∨ Qr of conjunctions of literals, with r ≥ 0, by first pushing ¬
inside and then pushing ∨ outside;
Cs := (Cs − {C}) ∪ {p([s|Y ]) ← Q1, . . . , p([s|Y ]) ← Qr}

(Case 3. No Unfolding )
else Cs := (Cs − {C}); Ds := Ds ∪ {C}

od;

(Subsumption )
while there exists a clause C1 in Ds of the form p([s|Y ]) ← G1 and a variant of
a clause C2 in Ds−{C1} of the form p([s|Y ]) ← G1∧G2 do Ds := Ds−{C2} od

The define-fold procedure transforms every quasi-monadic clause p([s|X]) ←
B1 ∧ . . .∧Bl in Ds into a monadic ω-clause by applying, for i = 1, . . . , l, to each
block Bi the positive or negative folding rule as follows. If Bi is a positive block,
then the define-unfold procedure introduces a new definition clause N of the
form qi(Yi) ← Bi, where qi is a fresh new predicate symbol and vars(Bi) = {Yi},
unless that clause N already belongs to Defs (modulo the name of the head
predicate). Clause N is added to the set Defs of definition clauses which can
be used for subsequent folding steps. Clause N is also added to the set InDefs
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of definition clauses. (InDefs will be processed in a subsequent execution of the
body of the while loop of the strategy.)

Otherwise, if Bi is a negative block of the form ¬A1 ∧ . . . ∧ ¬Am, the
define-fold procedure introduces m new definition clauses N1: ri(Yi) ← A1 , . . . ,
Nm: ri(Yi) ← Am, where ri is a fresh new predicate symbol and vars(Bi) = {Yi},
unless those clauses already belong to Defs (modulo the name of the head pred-
icate). The definition clauses N1, . . . , Nm are added to Defs and to InDefs.

Finally, we obtain a monadic ω-clause p([s|X]) ← M1 ∧ . . . ∧Ml as follows.
For i = 1, . . . , l, if Bi is a positive block then the we apply the positive folding
rule to Bi using clause N and, thus, the literal Mi is qi(Yi). Otherwise, if Bi is a
negative block, we apply the negative folding rule to Bi using clauses N1, . . . , Nm

and, thus, the literal Mi is ¬ ri(Yi). (Note that X and Yi may be identical.)

The define-fold Procedure.
Input : (i) A set Ds of quasi-monadic clauses and (ii) a set Defs of definition
clauses; Output : (i) A set NewDefs of definition clauses and (ii) a set Es of
monadic ω-clauses.
NewDefs := ∅; Es := ∅;
for each clause D ∈ Ds do
if D is a monadic ω-clause then Es := Es ∪ {D} else

let D be of the form p([s|X]) ← B1 ∧ . . . ∧Bl, where B1, . . . , Bl are pairwise
disjoint blocks.
for i = 1, . . . , l do

let Bi = L1 ∧ . . . ∧ Lm and vars(L1) = . . . = vars(Lm) = {Yi}
(Case 1. Positive Define-Fold )

if for some j ∈ {1, . . . , m}, Lj is a positive literal
then if there exists a clause N of the form qi(Yi) ← L1 ∧ . . . ∧ Lm

such that N ∈ Defs ∪ NewDefs and the predicate symbol qi

does not occur in (Defs ∪NewDefs)− {N}
then Mi := qi(Yi)
else NewDefs := NewDefs ∪ {ri(Yi) ← L1 ∧ . . . ∧ Lm}, where

ri is a fresh new predicate symbol;
Mi := ri(Yi)

(Case 2. Negative Define-Fold )
else for j = 1, . . . ,m, let Lj be a negative literal ¬Aj

if there exists a set Ns of clauses of the form {qi(Yi) ← A1, . . . ,
qi(Yi) ← Am} such that Ns ⊆ Defs ∪ NewDefs and qi does
not occur in (Defs ∪NewDefs)−Ns

then Mi := ¬ qi(Yi)
else NewDefs := NewDefs ∪ {ri(Yi) ← A1, . . . , ri(Yi) ← Am},

where ri is a fresh new predicate symbol;
Mi := ¬ ri(Yi)

od;
Es := Es ∪ {H ← M1 ∧ . . . ∧Ml}

od
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The transformation strategy, which from the initial program PK,ϕ produces
the final program T , is correct w.r.t. the perfect model semantics, in the sense
that M(PK,ϕ) ² Prop iff M(T ) ² Prop. This correctness result can be proved
similarly to [7,19]. Note that the instantiation rule we use in the unfold procedure
is not present in [7,19], but its application can be viewed as an unfolding of an ad-
ditional atom ilist(X) defined by the clauses: ilist([s0|Y ]) ←, . . . , ilist([sh|Y ]) ←.

Our transformation strategy terminates for every input program PK,ϕ. The
proof of termination of the unfold procedure is based on the following properties.
(1) The Instantiation and Subsumption steps terminate. (2) The predicates path,
tr, and elem do not depend on themselves in program PK,ϕ. (3) For each clause
in PK,ϕ defining the predicate notpath, either the predicate of the body literal
does not depend on notpath (see clause 3) or the term occurring in the body is
a proper subterm of the term occurring in the head (see clause 4). (4) For each
clause in PK,ϕ whose head is of the form sat(l1, ψ1) and for each literal of the
form sat(l2, ψ2) occurring (positively or negatively) in the body of that clause,
either ψ2 is a proper subterm of ψ1 or ψ1 =ψ2 and l2 is a proper subterm of l1.
(5) The applicability conditions given in the unfold procedure (see Point (ii) of
Case 1 and Case 2) do not allow the unfolding of a clause C if this unfolding
instantiates a variable in C.

The termination of the define-fold procedure is straightforward.
Finally, the proof of termination of the while loop of the transformation

strategy follows from the fact that only a finite number of new clauses can
be introduced by the define-fold procedure. Indeed, every new clause is of the
form newp(X) ← L1 ∧ . . . ∧ Lm, where for i = 1, . . . , m, either (a) Li is an
atom Ai or a negated atom ¬Ai, where Ai belongs to the set {notpath(X)} ∪
{notpath([s|X]) | s ∈ Σ}∪{sat(X, ψ) | ψ is a subformula of ϕ}, or (b) Li belongs
to the set {¬ sat([s|X], e(ψ)) | s ∈ Σ and ψ is a subformula of ϕ}.

Theorem 2 (Correctness and Termination of the Transformation
Strategy). Let PK,ϕ be the encoding program for a Kripke structure K and
a state formula ϕ. The transformation strategy terminates for the input program
PK,ϕ and returns the output program T such that: (i) T is a monadic ω-program
and (ii) M(PK,ϕ) ² Prop iff M(T ) ² Prop.

Example 3. Let us consider program PK,ϕ of Example 2. Our transformation
strategy starts off from the sets T = ∅ and Defs = InDefs = {γ1}, where γ1 is
the following definition clause:

prop(X) ← sat([s0|X], and(e(not(u(tt ,not(a)))), e(not(u(tt ,not(u(tt , b)))))))

In the first execution of the loop body of our strategy we apply the unfold
procedure to the set InDefs. We get the set Ds = {γ2, γ3, γ4} of quasi-monadic
clauses, where:

γ2: prop([s0|X]) ← ¬notpath([s0|Y ]) ∧ ¬ sat(Y, u(tt ,not(a)))∧
¬notpath([s0|Z]) ∧ sat(Z, u(tt , b)) ∧ ¬ sat(Z, u(tt ,not(u(tt , b))))

γ3: prop([s1|X]) ← ¬notpath([s0|Y ]) ∧ ¬ sat(Y, u(tt ,not(a)))∧
¬notpath([s0|Z]) ∧ sat(Z, u(tt , b)) ∧ ¬ sat(Z, u(tt ,not(u(tt , b))))
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γ4: prop([s2|X]) ← ¬notpath([s0|Y ]) ∧ ¬ sat(Y, u(tt ,not(a)))∧
¬notpath([s0|Z]) ∧ sat(Z, u(tt , b)) ∧ ¬ sat(Z, u(tt ,not(u(tt , b))))

Then, by applying the define-fold procedure, we get the set NewDefs ={γ5, γ6, γ7}
of definition clauses and the set Es = {γ′2, γ′3, γ′4} of monadic ω-clauses (note that
the body of each clause in Ds is partitioned into two blocks), where:

γ5: p1(X) ← notpath([s0|X])
γ6: p1(X) ← sat(X,u(tt ,not(a)))
γ7: p2(X) ← ¬notpath([s0|X]) ∧ sat(X, u(tt , b))∧

¬ sat(X, u(tt ,not(u(tt , b))))
γ′2: prop([s0|X]) ← ¬ p1(Y ) ∧ p2(Z)
γ′3: prop([s1|X]) ← ¬ p1(Y ) ∧ p2(Z)
γ′4: prop([s2|X]) ← ¬ p1(Y ) ∧ p2(Z)

Thus, at the end of the first execution of the body of the while loop of our
strategy, we get: T = {γ′2, γ′3, γ′4}, Defs = {γ1} ∪ {γ5, γ6, γ7}, and InDefs =
{γ5, γ6, γ7}. Since InDefs 6= ∅ we execute again the body the while loop. After a
few more executions we get the following monadic ω-program T :

prop([s0|X]) ← ¬ p1(Y ) ∧ p2(Z)
prop([s1|X]) ← ¬ p1(Y ) ∧ p2(Z)
prop([s2|X]) ← ¬ p1(Y ) ∧ p2(Z)
p1([s0|X]) ← p10(X)
p1([s0|X]) ← p11(X)
p1([s1|X]) ←
p1([s2|X]) ←
p2([s0|X]) ← p2(X)
p2([s1|X]) ← ¬ p3(X)
p2([s1|X]) ← p4(X)
p3([s0|X]) ←
p3([s1|X]) ← p9(X)
p3([s1|X]) ← p7(X)
p3([s2|X]) ← p5(X)
p3([s2|X]) ← ¬ p6(X)
p3([s2|X]) ← p7(X)
p4([s1|X]) ← ¬ p3(X)
p4([s1|X]) ← p4(X)
p4([s2|X]) ← p8(X)
p5([s0|X]) ←
p5([s1|X]) ← p9(X)

p5([s2|X]) ←
p6([s0|X]) ← p6(X)
p6([s1|X]) ←
p6([s2|X]) ← p6(X)
p7([s0|X]) ← ¬ p6(X)
p7([s0|X]) ← p7(X)
p7([s1|X]) ← p7(X)
p7([s2|X]) ← ¬ p6(X)
p7([s2|X]) ← p7(X)
p8([s1|X]) ← ¬ p3(X)
p8([s1|X]) ← p4(X)
p9([s0|X]) ←
p9([s1|X]) ← p9(X)
p9([s2|X]) ← p5(X)
p10([s0|X]) ← p10(X)
p10([s1|X]) ← p9(X)
p10([s2|X]) ←
p11([s0|X]) ← p11(X)
p11([s1|X]) ←
p11([s2|X]) ← p11(X)

3.2 A Proof System for Monadic ω-Programs.
Now we present a proof system for checking whether or not M(P ) ² F holds
for any monadic ω-program P and any quantified literal F . Thus, in particular,
we will be able to check whether or not M(T ) ² Prop holds for the monadic
ω-program T derived by the transformation strategy presented in Section 3.1
and the quantified literal Prop which encodes the state formula to be verified
(recall that Prop stands for ∃X prop(X)).
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S1.
P ` true

S2.
P 0 F

P ` ¬F

S3.
P ` F

P ` ∃ (F )
if closed literal(F )

S4.
P ` ∃(F )

P ` ∃(p(X))
if there exists p([s|Y ])←F ∈ P for some s ∈ {s0, . . . , sh}

S5.
P ` ¬∀(p(X))
P ` ∃(¬p(X))

S6.
P ` ∃(F1) P ` ∃(F2)

P ` ∃(F1 ∧ F2)

S7.
P ` F

P ` ∀ (F )
if closed literal(F )

S8.
P ` ∀ (F0) . . . P ` ∀ (Fh)

P ` ∀(p(X))
if { p([s0|Y ])←F0 , . . . , p([sh|Y ])←Fh}⊆P

S9.
P ` ¬∃(p(X))
P ` ∀(¬p(X))

S10.
P ` ∀(F1) P ` ∀(F2)

P ` ∀(F1 ∧ F2)

Fig. 1. Proof system for monadic ω-programs. Σ = {s0, . . . , sh} is the set of
states of the Kripke structure K. For any formula F , closed literal(F ) holds iff
F is either the formula true or the formula ∃ (L), where L is a literal.

Every monadic ω-program P used by the proof system is first rewritten
as follows. (i) Every clause of the form H← is rewritten as H ← true (so
that no clause in P has an empty body), and (ii) for every clause of the form
H ← G, each literal L occurring in G such that vars(H) ∩ vars(L) = ∅ is
replaced by its existential closure ∃(L). (Recall that in the body of a monadic
ω-clause two distinct literals do not share any variable.) For instance, the clause
p([s|X]) ← q(X) ∧ p(Y ) is rewritten as p([s|X]) ← q(X) ∧ ∃Y p(Y ).

The proof rules presented in Figure 1 define a relation ` such that P ` F iff
M(P ) ² F , for every monadic ω-program P and closed formula F , which is of
one of the following forms: true, ∀ (F1 ∧ . . .∧Fk), ∃ (F1 ∧ . . .∧Fk), where k ≥ 1
and for i = 1, . . . k, Fi is either a literal or the existential closure of a literal.

Note that the proof rule S2 is the negation as failure rule, that is, the negated
judgement ‘P 0 F ’ should be interpreted as ‘P ` F cannot be proved by using
the proof rules S1–S10’. This interpretation of P 0 F as (finite or infinite) failure
of P ` F is meaningful because P is stratified and, thus, also the instances of the
proof rules are stratified. The stratification of these instances is induced by the
existence of a mapping µ from formulas to natural numbers such that, for every
rule instance with conclusion P ` F1, (i) if P ` F2 occurs as a premise, then
µ(F1) ≥ µ(F2), and (ii) if P 0 F3 occurs as a premise, then µ(F1) > µ(F3). Thus,
when constructing a proof of P ` F it is never required to show that P 0 F ,
that is, it is never required to show that no proof of P ` F can be constructed.
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Note also that the proof rule S6 is sound because, as already mentioned, the
literals in the body of a monadic ω-clause do not share any variable and, there-
fore, the existential quantifier distributes over the conjunction of those literals.

By induction on the strata of the monadic ω-program P we can show that
the proof rules of Figure 1 are sound and complete for proving that a quantified
literal F is true in the perfect model of P , as stated by the following theorem.

Theorem 3. Let P be a monadic ω-program and F a formula of the form ∃ (L)
or ∀ (L), where L is a literal. Then, P ` F iff M(P ) ² F .

The proof system for monadic ω-programs given in Figure 1 can be encoded
as a logic program, called Demo. Given a monadic ω-program P and a closed
literal F , the program Demo uses the (ground) representations dP e and dF e of
P and F , respectively, which are constructed as follows. Let v be a new constant
symbol. (i) For any variable X, dXe is v, (ii) for any list [s|X], where s is a state
and X is a variable, d[s|X]e is [s|v], (iii) for any unary predicate q and term t,
dq(t)e is (q, dte), (iv) for any atom A, d¬Ae is not(dAe), (v) for any conjunction
F1∧F2, dF1∧F2e is and(dF1e, dF2e), (vi) for any F which is either a literal or a
conjunction, d∃(F )e is exists(dF e) and d∀(F )e is all(dF e), (vii) for any clause C
of the form H←, dCe is the unit clause clause(dHe, true)←, (viii) for any clause
C of the form H ← F , dCe is the unit clause clause(dHe, dF e)←, and, finally,
(ix) for any monadic ω-program P = {C1, . . . , Cn}, dP e is the set of ground unit
clauses {dC1e, . . . , dCne}.

D1. demo(true) ←
D2. demo(not(F )) ← ¬ demo(F )
D3. demo(exists(F )) ← closed literal(F ) ∧ demo(F )
D4. demo(exists((R, v))) ← clause((R, [S|v]), F ) ∧ demo(exists(F ))
D5. demo(exists(not((R, v)))) ← demo(not(all((R, v))))
D6. demo(exists(and(F1, F2))) ← demo(exists(F1)) ∧ demo(exists(F2))
D7. demo(all(F )) ← closed literal(F ) ∧ demo(F )
D8. demo(all((R, v))) ← clause((R, [s0|v]), F0) ∧ demo(all(F0)) ∧ . . . ∧

clause((R, [sh|v]), Fh) ∧ demo(all(Fh))
D9. demo(all(not((R, v)))) ← demo(not(exists((R, v))))
D10. demo(all(and(F1, F2))) ← demo(all(F1)) ∧ demo(all(F2))

Since P is a stratified program, Demo ∪ dP e is a weakly stratified program [15]
and, hence, it has a unique perfect model M(Demo ∪ dP e).

Theorem 4. Let P be a monadic ω-program and F be a formula of the form
∃ (L) or ∀ (L), where L is a literal. Then, P ` F iff M(Demo∪dP e) ² demo(dF e).

Thus, by Theorems 3 and 4 for any monadic ω-program T derived from
PK,ϕ using the transformation strategy described in Section 3.1, we can check
whether or not M(T ) ² Prop holds (and, thus, whether or not K ² ϕ holds)
by using any logic programming system which computes the perfect model of
Demo ∪ dT e. One can use, for instance, a system based on tabled resolution [2,18]
which guarantees the termination of the evaluation of the query demo(dPrope)
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and returns ‘yes’ iff M(Demo ∪ dT e) ² demo(dPrope). Indeed, starting from
demo(dPrope), we can only derive a finite set of queries of the form demo(dF e),
and the tabling mechanism ensures that each query is evaluated at most once.

Example 4. Let T be the monadic ω-program obtained in Example 3 as the out-
put of our transformation strategy. In order to prove that T ` ∃X prop(X), we
compute the encoding dT e of the program T and the encoding exists((prop, v)) of
the property ∃X prop(X). Then, we evaluate the query demo(exists((prop, v)))
w.r.t. the program Demo ∪ dT e by using a system based on tabled resolution and
we obtain the answer ‘yes’. Since T ` ∃X prop(X), we have that M(PK,ϕ) ² Prop
and, thus, we get that the formula ϕ holds in the Kripke structure K (see Ex-
ample 2).

3.3 Complexity of the Verification Technique

We will measure the time complexity of our verification technique as: (i) the
number of applications of transformation rules in Step 1 and (ii) the number of
closed literals that are evaluated when executing the Demo program in Step 2.

Let us first consider Step 1 and let us measure the number of new predicate
symbols, that is, the number of distinct blocks that can be generated during the
define-fold procedure. Let B = L1 ∧ . . . ∧ Lm be a block. Since the literals in B
cannot be further unfolded, we have that, for i = 1, . . . ,m, either (a) Li is the
atom Ai or the negated atom ¬Ai, where Ai belongs to the set {notpath(X)} ∪
{notpath([s|X]) | s ∈ Σ} ∪ {sat(X, ψ) | ψ is a subformula of ϕ}, or (b) Li

belongs to the set {¬ sat([s|X], e(ψ)) | s ∈ Σ and ψ is a subformula of ϕ}. We
have also the following properties of B: (i) there is at most one atom in B of
the form notpath([s|X]), and (ii) if in B there are two occurrences of terms of
the form [s1|X] and [s2|X], then s1 = s2. By these properties the number of
distinct blocks and, thus, the number of new predicate symbols is O(|Σ| · 2|ϕ|).
Moreover, the size of each block is O(|ϕ|), which is also the number of clauses
introduced in the set InDefs for each new predicate symbol.

For each clause in InDefs, our transformation strategy performs one execu-
tion of the loop body, which starts off by applying the unfold procedure. This
procedure applies the instantiation rule which generates |Σ| clauses and, then,
makes O(|ϕ|) unfolding steps for each instantiated clause. The total number
of unfolding steps for each new predicate is, thus, O(|Σ| · |ϕ|2), which is also
the number of the derived clauses. Since there are O(|ϕ|2) clauses with same
head, the number of subsumption steps is O(|Σ| · |ϕ|4) for each new predicate
symbol. Thus, the total number of transformation rule applications in the un-
fold procedure is O(|Σ| · |ϕ|4). If we consider all new predicates symbols, we
get O(|Σ|2 · |ϕ|4 · 2|ϕ|) applications of transformation rules.

The define-fold procedure performs at most one folding and one definition
introduction for each block occurring in the body of a clause. The number of
blocks in the body of a clause is O(|ϕ|) because each block has been introduced
by unfolding an atom of the form sat(X, e(ψ)), where e(ψ) is a subformula of ϕ.
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The number of folding steps is, thus, O(|Σ|2 · |ϕ|5 ·2|ϕ|), while the number of def-
inition introductions is equal to the number of predicate symbols. Therefore, the
total number of applications of transformation rules in Step 1 of our verification
technique is O(|Σ|2 · |ϕ|5 · 2|ϕ|).

In Step 2, a logic programming system which uses tabled resolution evaluates
every closed literal at most once. The proof of a closed literal requires O(|Σ|2 ·
2|ϕ|) applications of proof rules. Therefore, we may conclude that the time com-
plexity of our verification algorithm is O(|Σ|2) · 2O(|ϕ|).

In [8] an algorithm for CTL∗ model checking is provided whose time com-
plexity is O(|Σ| + |ρ|) · 2O(|ϕ|). Note that, since ρ is a total binary relation, we
have |Σ| ≤ |ρ| ≤ |Σ|2. Thus, in the case where |ρ|= |Σ|2, the time complexity of
our algorithm is the same of the best known algorithm for CTL∗ model check-
ing. The case where the Kripke structure K represents a deterministic transition
system and, thus, |ρ| = |Σ| is quite unfrequent in practice.

4 Related Work and Concluding Remarks

Various logic programming techniques and tools have been developed for model
checking. In particular, tabled resolution has been shown to be quite effec-
tive for implementing a modal µ-calculus model checker for CCS value pass-
ing programs [17]. Techniques based on logic programming, constraint solving,
abstract interpretation, and program transformation have been proposed for
performing CTL model checking of finite and infinite state systems (see, for in-
stance, [4,6,10,12]). In this paper we have extended to CTL∗ model checking the
transformational approach which was proposed for LTL model checking in [13].

The main contributions of this work are the following. (i) We have proposed a
method for specifying CTL∗ properties of reactive systems based on ω-programs,
that is, logic programs acting on infinite lists. This method is a proper exten-
sion of the methods for specifying CTL or LTL properties, because CTL and
LTL are fragments of CTL∗. (ii) We have introduced the subclass of monadic
ω-programs for which the truth in the perfect model is decidable. This subclass
of programs properly extends the class of linear recursive ω-programs introduced
in [13] and also the proof system presented here extends the one in [13]. (iii) Fi-
nally, we have shown that we can transform, by applying semantics preserving
unfold/fold rules, the logic programming specification of a CTL∗ property into
a monadic ω-program. The transformation strategy presented in this paper is
more elaborated than the one considered in [13] for the case of LTL properties.
However, the worst case time complexity of the two strategies is the same.

Our transformation strategy can be understood as a specialization of the En-
coding Program (see Definition 4) w.r.t. a given Kripke structure K and a given
CTL∗ formula ϕ. However, it should be noted that this program specialization
could not be achieved by using partial deduction techniques (see [9] for a brief
survey). Indeed, our transformation strategy performs folding steps that cannot
be realized by partial deduction.

Our two step verification approach bears some similarities with the automata-
theoretic approach to CTL∗ model checking, where the specification of a fi-
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nite state system and a CTL∗ formula are translated into alternating tree au-
tomata [8]. The automata-theoretic approach is quite appealing because many
useful techniques are available in the field of automata theory. However, we
believe that also our approach has its advantages because of the following fea-
tures. (1) The specification of properties of reactive systems, the transformation
of specifications into a monadic ω-programs, and the proofs of properties of
monadic ω-programs are all expressed within the single framework of logic pro-
gramming, while in the automata-theoretic approach one has to translate the
temporal logic formalism into the automata-theoretic formalism. (2) The trans-
lation of a specification into a monadic ω-program can be performed by using
semantics preserving transformation rules, thereby avoiding the burden of prov-
ing the correctness of the translation by ad-hoc methods. (3) Finally, due its
generality, we believe that our approach can easily be extended to the case of
infinite state systems.

Issues that can be investigated in the future include: (i) the relationship be-
tween monadic ω-programs and alternating tree automata, (ii) the applicability
of our transformational approach to other logics, such as the monadic second or-
der logic of successors, and (iii) the experimental evaluation of the efficiency of
our transformational approach by considering various test cases and comparing
its performance in practice w.r.t. that of other model checking techniques.
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Abstract. Proving termination of, or generating efficient control for
Constraint Handling Rules (CHR) programs requires information about
the kinds of constraints that can show up in the CHR constraint store.
In contrast to Logic Programming (LP), there are not many tools avail-
able for deriving such information for CHR. Hence, instead of building
analyses for CHR from scratch, we define a transformation from CHR to
Prolog and reuse existing analysis tools for Prolog.
The proposed transformation has been implemented and combined with
PolyTypes 1.3, a type analyser for Prolog, resulting in an accurate de-
scription of the types of CHR programs. Moreover, the transformation
is not limited to type analysis. It can be used to prove any property of
the constraints showing up in constraint stores, using tools for Prolog.
Keywords: Constraint Handling Rules, Program Transformation.

1 Introduction

Proving termination of, or generating efficient control for Constraint Handling
Rules (CHR) programs requires information about the kinds of constraints that
can show up in the CHR constraint store. In particular, type information is
useful in this context. When used as a basis for determining the possible calls
to the program, it leads to compiler optimizations [9], more precise termination
conditions [4, 7] and more refined interpretations for proving termination [1].

In Logic Programming (LP), many tools are available for performing such
analyses [2, 5, 10]. Hence, instead of building analyses for CHR from scratch, it
is interesting to explore whether one can define transformations from CHR to
Prolog and reuse existing analysis tools for Prolog to obtain properties about
the constraints that are in the CHR constraint store during computations.

One approach would be to build a faithful CHR meta-interpreter in Prolog
and to analyse this meta-interpreter or to transform the CHR program into a
Prolog meta-program and to analyse the meta-program. A difficulty with this
approach is capturing the “fire-once” policy of CHR which prescribes that a
rule cannot be applied twice to the same set of constraints. This policy prevents
the infinite application of propagation rules, that add constraints to the store
without removing any. The approach in [8] has a problem with this.
? Supported by I.W.T. - Flanders (Belgium).

?? Post-Doctoral Researcher of F.W.O. - Flanders (Belgium).



Fortunately, it often suffices to have an over-approximation of the constraints
that can show up in the constraint store. In that case, one does not need a meta-
interpreter or transformation that rigorously preserves the run-time behaviour
of the CHR program and one can simply ignore the “fire-once” policy. This
sometimes results in the presence of constraints in the approximated store that
cannot be present at run-time, e.g., because some rule needs different occurrences
of the same constraint before it can fire. But this is not too much of a problem,
if only because one is typically interested in a whole class of queries (initial
constraint stores), and queries in the class can have multiple occurrences of
constraints, hence rules that need multiple occurrences can fire anyway.

For CHR, several direct approaches were developed [3, 9], mainly based on
approaches developed for LP. To the best of our knowledge, no transformational
approaches have been attempted. However, the transformation discussed here is
founded on the termination preserving transformation discussed in [8].

The paper is organised as follows. In the next section we introduce CHR syn-
tax and the abstract CHR semantics. Then in Section 3, we discuss a transfor-
mation of CHR, executed under the abstract CHR semantics, to Prolog. Section
4, discusses the application of our transformation to type analysis of CHR, using
PolyTypes 1.3 (based on [2]) on the transformed programs. Finally in Section 5,
we conclude the paper.

2 Preliminaries

2.1 CHR Syntax

CHR is intended as a programming language for implementing constraint solvers.
To implement these solvers, a user can define CHR rules which rewrite conjunc-
tions of constraints. The constraints of a CHR program are special first-order
predicates c(t1, . . . , tn) on terms, like the atoms of an LP program. There are two
kinds of constraints defined in a CHR program: CHR constraints are user-defined
and solved by the CHR program. Built-in constraints are pre-defined and solved
by an underlying constraint theory, CT , defined in the host-language. We con-
sider Prolog, thus definite LP with a left-to-right selection rule, as host-language.
We assume the reader to be familiar with Prolog syntax and semantics.

A CHR program, P , is a finite set of CHR rules, defining the transitions of the
program. To provide the analyser with information about the built-ins one can
add some Prolog clauses that capture their essential properties. In CHR, there
are three different kinds of rules. Simplification rules replace CHR constraints
by new CHR and built-in constraints. On the presence of CHR constraints, prop-
agation rules only add new CHR and built-in constraints. Finally, simpagation
rules replace CHR constraints by new CHR and built-in constraints, given the
presence of other CHR constraints.

Let Hk, Hr and C denote conjunctions of CHR constraints and let G and B
denote conjunctions of built-in constraints. Then, a simplification rule takes the
form, R @ Hr ⇔ G | B,C, a propagation rule the form, R @ Hk ⇒ G | B,C, and
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a simpagation rule the form, R @ Hk \Hr ⇔ G | B,C. Like in Prolog syntax,
we write a conjunction of constraints as a sequence of conjuncts separated by
commas. Rules are named by adding “rulename @” in front of the rule.

Example 1 (Merge-sort). The program below implements the merge-sort algo-
rithm. The query mergesort(L), with L a list of natural numbers of length exactly
2n , yields a tree-representation of the order, which then is rewritten into a sorted
list of elements.

R1 @ msort([])⇔ true.
R2 @ msort([L|Ls]) ⇔ r(0, L),msort(Ls).
R3 @ r(D,L1), r(D,L2)⇔ leq(L1, L2) | r(s(D), L1), a(L1, L2).
R4 @ a(L1, L2) \ a(L1, L3)⇔ leq(L2, L3) | a(L2, L3).

The first two rules decompose a list of elements, while adding new r/2 constraints
to the store. The constraints r(D,L) represent trees of depth D (initially 0) and
root value L. The third and fourth rule perform the actual merge-sorting. The
third rule joins two trees of equal depth. It replaces both trees by a new tree of
incremented depth, where the largest root becomes a child node of the smallest
hence the branch is ordered. Note that the initial list needs to have a length that
is a power of 2 to ensure that one ends with a single tree. The order in a branch
is represented by a/2 constraints. Finally, the fourth rule merge-sorts different
branches of a tree into a single branch, i.e., an ordered list of elements. �

2.2 The abstract CHR Semantics

In general, CHR is defined as a state transition system. In its simplest form,
called the abstract semantics, it defines a state as a conjunction of constraints,
called the constraint store. In it, there may be multiple identical constraints.

Definition 1 (CHR state). A CHR state S is a conjunction of built-in and
CHR constraints. An initial state or query is a finite conjunction of constraints.
In a final state or answer, either the built-in constraints are inconsistent (failed
state) or no more transitions are possible. �

The rules of a CHR program determine the possible transitions between
constraint stores. Since the abstract semantics ignores the fire-once policy, we
have that all three kinds of rules are essentially simplification rules. Consider for
example the propagation rule, R @ Hk ⇒ B,C. Given the abstract CHR seman-
tics, it is equivalent to the simplification rule, R @ Hk ⇔ Hk, B,C. Similarly, a
simpagation rule, R @ Hk \Hr ⇔ B,C, can be represented as a simplification
rule, R @ Hk, Hr ⇔ Hk, B,C.

The transition relation relates consecutive CHR states on the presence of
applicable CHR rules. The built-ins are non-deterministically solved by the CT .

Definition 2 (Transition relation). Let θ denote a substitution corresponding
to the bindings generated when resolving built-in constraints. Let σ denote a
matching substitution of the variables in the head and an answer substitution of
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the variables appearing in the guard but not in the head. The transition relation,
→, between CHR states, given a constraint theory CT for the built-ins and a
CHR program P for the CHR constraints, is defined as follows.

1. Solve transition:
if S = b ∧ S′ and CT |= bθ then S → S′θ

2. Simplification:
given a fresh variant of a rule in P : Hr ⇔ G | B,C
if S = H ′r ∧ S′ and CT |= (H ′r = Hrσ) ∧Gσ then S → (B ∧ C ∧ S′)σ

We assume built-ins not to introduce new CHR constraints and thus solving these
can only generate binding for variables. If built-in constraints cannot be solved
by the CT , the CHR program fails. �

Note that by adding variable bindings to the constraint store (solving built-
ins), a guard can become true. Also note that the selection of an answer substi-
tution for the local variables in the guard is a committed choice.

3 Transforming CHR to Prolog

In Section 2.2, we discussed the representation of the three kinds of CHR rules
into simplification rules, thus safely over-approximating the contents of the con-
straint store with respect to the original theoretical CHR semantics. This choice
was motivated in the Introduction. We assume this transformation to take place
prior to the transformation to Prolog that we discuss in this section.

3.1 Representing the CHR constraint store in Prolog

The CHR constraint store is a (commutative) conjunction of constraints. To
represent it in Prolog, we fix some order and represent it as a list, called the
storelist. The code that handles the firing of a rule will cope with the fact that the
storelist is equivalent to any of its permutations. That there are n! permutations
for an n-element store is of no concern as the transformed program will be
analysed, not executed.

Thus, for a constraint store S = constr1∧constr2∧. . .∧constrn, we obtain as
a possible storelist representation R = [constr1, constr2, . . . , constrn]. Note that
according to the abstract CHR semantics, a CHR query is an initial constraint
store. Its representation by a storelist in Prolog is therefore identical to that of
any other constraint store.

3.2 Representing CHR rules in Prolog

A CHR rule defines transitions between constraint stores. Which transitions
are applicable for a constraint store, is determined by the presence of matching
constraints for the heads of rules such that the guards of these rules are entailed.
Multiple rules can be simultaneously applicable, in which case CHR commits to
a particular choice. The following example illustrates this.
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Example 2 (Non-determinism in CHR). The following CHR program is executed
with a query, a ∧ b.

R1 @ a⇔ c. R2 @ b⇔ d. R3 @ a, d⇔ a, a, b.

The program may or may not terminate for the initial query, depending on which
rules are applied. If the first rule is applied, then the program terminates im-
mediately. If the second and third rule are applied repeatedly, then the program
runs forever. �

To model possible constraint stores that can exist during execution of a
CHR program, it suffices to represent the non-determinism of CHR by search in
Prolog. This is achieved by transforming every CHR rule to a Prolog clause of the
rule/2 predicate. The clause describes the relationship between the store before
and after rule application. To perform the matching between the store and the
head of the rule, it is checked whether the storelist starts with the constraints
in the rule head. Thus, a CHR rule of the form:

H1, . . . ,Hn ⇔ G1, . . . , Gk | B1, . . . , Bl, C1, . . . , Cm.

becomes a Prolog clause:

rule([H1, . . . ,Hn|R], [C1, . . . , Cm, B1, . . . , Bl|R]) :- G1, . . . , Gk.

Here, H1, . . . ,Hn are head constraints. Built-in guards and bodies are repre-
sented respectively by G1, . . . , Gk and B1, . . . , Bl. The CHR body constraints are
represented by C1, . . . , Cm. Note that the head of the CHR rule is represented
as a list with a variable as tail. This tail binds with the unused constraints in the
current store. When the guards succeed, the new store consists of these unused
constraints extended with the new constraints from the body.

As the CHR program has no rules for the built-in predicates, we need to add
to the translation, rules that process them. For each built-in predicate p/n, there
is therefore a clause rule([p(X1, . . . , Xn)|R], R) :- p(X1, . . . , Xn).

3.3 Representing the abstract semantics of CHR in Prolog

The operational semantics of CHR programs is already largely represented by
the rule clauses. Matching of constraints in the store with heads of the rules is
done by unification with the storelist. The resulting store is contained in the
second argument of the rule clause. We only have to call rules repeatedly.

goal(S) :- perm(S, PS), rule(PS,NS), goal(NS).
goal( ).

Note that we must permute the storelist – the call perm(P, PS) – to bring
the matching constraints to the front. Also note that whenever the program
cannot call any of the rule/2 clauses, it will end up in a refutation, represent-
ing termination in CHR. In fact, any call to goal/1 can result in a refutation.
Nevertheless, no further approximations of the contents of the CHR constraint
store result from this. Finally, notice that CHR queries are represented by a call
to goal/1 with a storelist representation of the CHR query as argument.
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Example 3 (Transforming merge-sort). We revisit merge-sort from Example 1
and transform every rule into its clausal form. First, we represent all rules by
simplification rules. This is already the case for the first three rules. The fourth
rule on the other hand is a simpagation rule and is transformed into

R4 @ a(L1, L2), a(L1, L3)⇔ leq(L2, L3) | a(L1, L2), a(L2, L3).

Next, the CHR program is transformed into the following Prolog program.

goal(S) :- perm(S, PS), rule(PS,NS), goal(NS).
goal( ).

rule([msort([])|R], R).
rule([msort([L|List])|R], [r(0, L),msort(List)|R]).
rule([r(D,L1), r(D,L2)|R], [r(s(D), L1), a(L1, L2)|R]) :- leq(L1, L2).
rule([a(L1, L2), a(L1, L3)|R], [a(L1, L2), a(L2, L3)|R] :- leq(L2, L3).

A query for the transformed program is of the form goal([mergesort(L)]), where
L is a list of natural numbers as in Example 1. �

3.4 Transformation Summary

To transform CHR states to Prolog queries, we introduce a mapping, α : S → Q,
from a constraint store, S, to a Prolog query, Q, of the form goal(R). Here, R
is the storelist representation of S, as defined in Subsection 3.1. We define also
the inverse of α as γ = α−1.

We introduce an operator, C2P , transforming a CHR program, P , to a Prolog
program, ℘, and define it as follows.

Definition 3 (C2P ). A CHR program P is transformed into the following Pro-
log program ℘ = C2P (P ).

• The Prolog program ℘ contains following clauses:

goal(S):- perm(L, [X|P ]):- del(X, [Y |T ], [Y |R]):-
perm(S, PS), del(X,L,L1), del(X,T,R).
rule(PS,NS), perm(L1, P ). del(X, [X|T ], T ).
goal(NS). perm([], []).

goal( ).

• The Prolog program ℘ contains for every rule,
H1, . . . ,Hn ⇔ G1, . . . , Gk | B1, . . . , Bl, C1, . . . , Cm.

in P , where B1, . . . , Bl are added built-in constraints and C1, . . . , Cm are
added CHR constraints, the following clause:

rule([H1, . . . ,Hn|R], [C1, . . . , Cm, B1, . . . , Bl|R]) :- G1, . . . , Gk.
• The Prolog program ℘ contains for every built-in predicate p/n in P , a clause:

rule([p(X1, . . . , Xn)|R], R) :- p(X1, . . . , Xn). �
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We connect the CHR program, P , and its corresponding Prolog program, ℘,
using α. We show that if a transition exists between two CHR states S and S′,
that there must exist a corresponding derivation in the transformed program.
This derivation, however, is, in contrast to the CHR transition, no single-step
operation. Between a call to goal/1 and a next call to goal/1, one needs to resolve
the calls to perm/2 and rule/2, implementing the CHR transition.

Theorem 1 (Connecting ℘ and P ). There exist the following relation between
a transformed CHR program, ℘ = C2P (P ), and the original CHR program, P :

Q
℘

// Q′

γ

��
S

α

OO

P
// S′

Here, Q and Q′ are Prolog queries and S and S′ CHR states. The vertical ar-
rows represent mappings of α and γ. The horizontal arrows represent a CHR
transition in P and a derivation in the transformed program ℘. �

This relation establishes that the analysis of properties of constraints, part of
the CHR constraint store, can take place on its transformed program C2P (P ) as
well. After all, for every two consecutive CHR states, consecutive calls to goal/1
with storelist representations of these states exist. Stating the inverse is not true.
For the transformed program, a refutation exists for every call to goal/1.

4 Application of the transformation to type analysis

We apply our transformation to type analysis of merge-sort from Example 1.
First, we represent all rules by simplification rules, as was done in Example 3.
Then, we transform the program to a Prolog program according to Definition 3:

goal(S):- perm(L, [X|P ]):- del(X, [Y |T ], [Y |R]):-
perm(S, PS), del(X,L,L1), del(X,T,R).
rule(PS,NS), perm(L1, P ). del(X, [X|T ], T ).
goal(NS). perm([], []).

goal( ).

leq(s(X), s(Y )) :- leq(X,Y ). leq(0, X).

rule([msort([])|T ], T ).
rule([msort([L|List])|T ], [r(0, L),msort(List)|T ]).
rule([r(D,L1), r(D,L2)|T ], [r(s(D), L1), a(L1, L2)|T ]) :- leq(L1, L2).
rule([a(L1, L2), a(L1, L3)|T ], [a(L1, L2), a(L2, L3)|T ]) :- leq(L2, L3).

Notice that we have added a definition for the built-in leq/2 for the sake of the
analysis. Performing a type analysis on the transformed program with PolyTypes
1.3, yields the following result:
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Type definitions: Signatures:
t5→ msort(t26); a(t34, t34); r(t28, t34) goal(t35)
t26→ []; [t34|t26] perm(t35, t35)
t28→ 0; s(t28) rule(t35, t35)
t34→ 0; s(t34) del(t5, t35, t35)
t35→ []; [t5|t35] leq(t34, t34)

For the analysis of types in CHR, we are only interested in the types present
in the storelist of the transformed program. This is given by the signature for
goal/1. It expresses that the type of its argument, the storelist, is t35. That is,
a list of elements of type t5. Thus, terms of the form msort(t26), a(t34, t34) or
r(t28, t34). Hence PolyTypes 1.3 correctly derives the types of the constraints
that can occur in the storelist and thus in the constraint store.

One could also add a query to the program. Adding a query can only in-
crease the type inferred by the PolyTypes analysis. For example, adding the
CHR query msort(l(s(s(s(0))), l(s(s(0)), n))), which translates into the Prolog
query goal([msort(l(s(s(s(0))), l(s(s(0)), n)))]) will extend t26, as the argument
of msort in the query uses different list constructors than those in the msort-
rules. Actually, the obtained type is then a grave overestimation of the actual
content of the constraint store as no CHR rule can fire on the query. Here a call
type analysis [6] would give more precise results.

Instead of specifying an initial query, one could also specify the type of the
initial query, i.e. specifying that a call has the type t35 and specifying an initial
type for t5, e.g. t5 → msort(t26). Translating these types into input for Poly-
Types, the tool will then extend the types and obtain the same types as the ones
shown above.

The transformation to Prolog has been implemented1 according to Definition
3. Although the transformation has been shown here in the context of a type
analysis, it can also be used to derive other properties of the elements of the CHR
constraint store, e.g. groundness information, mode informations, call types, etc.

5 Conclusion

We have presented a transformation from CHR programs to Prolog programs
that respects the abstract CHR semantics. The transformed program describes
transitions between storelists. Analysing it with respect to the storelist yields an
overestimate of the CHR constraint store.

This way existing tools for LP can be used to analyse the contents of the CHR
constraint store. We have demonstrated this in the context of a type analysis,
using the tool PolyTypes 1.3 and obtained accurate type descriptions for the
constraints of a CHR program.

PolyTypes 1.3 does not take query information into account. There are how-
ever other tools which do so, such as the one in [5] for deriving call types. We have
demonstrated that given a CHR query specification, there is a straightforward

1 Available at http://www.cs.kuleuven.be/∼paolo/c2p/index.html
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representation into a Prolog query specification for the transformed program.
Essentially such a representation from CHR to Prolog corresponds to making
the constraint store explicit as a list, enumerating the constraints in the store.

Our transformation does not prioritise on the rules to apply first. In most
practical implementations, there is however some kind of a selection rule, e.g.
based on rule orderings. In the context of termination this information is es-
sential to prove termination of certain programs. Future work will therefore be
directed towards a better understanding of this problem. We will also apply
our transformation to groundness and call type analysis. Together with type
analysis, these are the main sources of information for termination analysis.
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Abstract. We show how to combine the two most powerful approaches
for automated termination analysis of logic programs (LPs): the direct
approach which operates directly on LPs and the transformational ap-
proach which transforms LPs to term rewrite systems (TRSs) and tries
to prove termination of the resulting TRSs. To this end, we adapt the
well-known dependency pair framework from TRSs to LPs. With the
resulting method, one can combine arbitrary termination techniques for
LPs in a completely modular way and one can use both direct and trans-
formational techniques for different parts of the same LP.

1 Introduction

When comparing the direct and the transformational approach for termination of
LPs, there are the following advantages and disadvantages. The direct approach
is more efficient (since it avoids the transformation to TRSs) and in addition
to the TRS techniques that have been adapted to LPs [13, 15], it can also use
numerous other techniques that are specific to LPs. The transformational ap-
proach has the advantage that it can use all existing termination techniques for
TRSs, not just the ones that have already been adapted to LPs.

Two of the leading tools for termination of LPs are Polytool [14] (implement-
ing the direct approach and including the adapted TRS techniques from [13,
15]) and AProVE [7] (implementing the transformational approach of [17]). In
the annual International Termination Competition,4 AProVE was the most pow-
erful tool for termination analysis of LPs (it solved 246 out of 349 examples),
but Polytool obtained a close second place (solving 238 examples). Nevertheless,
there are several examples where one tool succeeds, whereas the other does not.

This shows that both the direct and the transformational approach have their
benefits. Thus, one should combine these approaches in a modular way. In other
words, for one and the same LP, it should be possible to prove termination of
some parts with the direct approach and of other parts with the transformational

? Supported by FWO/2006/09: Termination analysis: Crossing paradigm borders and
by the Deutsche Forschungsgemeinschaft (DFG), grant GI 274/5-2.

4 http://www.termination-portal.org/wiki/Termination Competition



approach. The resulting method would improve over both approaches and can
also prove termination of LPs that cannot be handled by one approach alone.

In this paper, we solve that problem. We build upon [15], where the well-
known dependency pair (DP) method from term rewriting [2] was adapted in
order to apply it to LPs directly. However, [15] only adapted the most basic
parts of the method and moreover, it only adapted the classical variant of the
DP method instead of the more powerful recent DP framework [6, 8, 9] which
can combine different TRS termination techniques in a completely flexible way.

After providing the necessary preliminaries on LPs in Sect. 2, in Sect. 3 we
adapt the DP framework to the LP setting which results in the new dependency
triple (DT) framework. Compared to [15], the advantage is that now arbitrary
termination techniques based on DTs can be applied in any combination and
any order. In Sect. 4, we present three termination techniques within the DT
framework. In particular, we also develop a new technique which can transform
parts of the original LP termination problem into TRS termination problems.
Then one can apply TRS techniques and tools to solve these subproblems.

We implemented our contributions in the tool Polytool and coupled it with
AProVE which is called on those subproblems which were converted to TRSs. Our
experimental evaluation in Sect. 5 shows that this combination clearly improves
over both Polytool or AProVE alone, both concerning efficiency and power.

2 Preliminaries on Logic Programming

We briefly recapitulate needed notations. More details on logic programming can
be found in [1], for example. A signature is a pair (Σ,∆) where Σ and ∆ are finite
sets of function and predicate symbols and T (Σ,V) resp. A(Σ,∆,V) denote the
sets of all terms resp. atoms over the signature (Σ,∆) and the variables V. We
always assume that Σ contains at least one constant of arity 0. A clause c is
a formula H ← B1, . . . , Bk with k ≥ 0 and H,Bi ∈ A(Σ,∆,V). A finite set of
clauses P is a (definite) logic program. A clause with empty body is a fact and
a clause with empty head is a query. We usually omit “←” in queries and just
write “B1, . . . , Bk”. The empty query is denoted �.

For a substitution δ : V → T (Σ,V), we often write tδ instead of δ(t), where t
can be any expression (e.g., a term, atom, clause, etc.). If δ is a variable renaming
(i.e., a one-to-one correspondence on V), then tδ is a variant of t. We write δσ to
denote that the application of δ is followed by the application of σ. A substitution
δ is a unifier of two expressions s and t iff sδ = tδ. To simplify the presentation,
in this paper we restrict ourselves to ordinary unification with occur check. We
call δ the most general unifier (mgu) of s and t iff δ is a unifier of s and t and
for all unifiers σ of s and t, there is a substitution µ such that σ = δµ.

Let Q be a query A1, . . . , Am, let c be a clause H ← B1, . . . , Bk. Then Q′

is a resolvent of Q and c using δ (denoted Q `c,δ Q′) if δ = mgu(A1, H), and
Q′ = (B1, . . . , Bk, A2, . . . , Am)δ. A derivation of a program P and a query Q is
a possibly infinite sequence Q0, Q1, . . . of queries with Q0 = Q where for all i, we
haveQi `ci,δi Qi+1 for some substitution δi and some renamed-apart variant ci of
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a clause of P. For a derivation Q0, . . . , Qn as above, we also write Q0 `nP,δ0...δn−1

Qn or Q0 `nP Qn, and we also write Qi `P Qi+1 for Qi `ci,δi Qi+1. A LP P is
terminating for the query Q if all derivations of P and Q are finite. The answer
set Answer(P, Q) for a LP P and a query Q is the set of all substitutions δ such
that Q `nP,δ � for some n ∈ N. For a set of atomic queries S ⊆ A(Σ,∆,V), we
define the call set Call(P,S) = {A1 | Q `nP A1, . . . , Am, Q ∈ S, n ∈ N}.

Example 1. The following LP P uses “s2m” to create a matrix M of variables
for fixed numbers X and Y of rows and columns. Afterwards, it uses “subs mat”
to replace each variable in the matrix by the constant “a”.

goal(X,Y,Msu)← s2m(X,Y,M), subs mat(M,Msu).
s2m(0, Y, [ ]). s2m(s(X), Y, [R|Rs])← s2`(Y,R), s2m(X,Y,Rs).
s2`(0, [ ]). s2`(s(Y ), [C|Cs])← s2`(Y,Cs).
subs mat([ ], [ ]). subs mat([R|Rs], [SR|SRs])← subs row(R,SR), subs mat(Rs,SRs).
subs row([ ], [ ]). subs row([E|R], [a|SR])← subs row(R,SR).

For example, for suitable substitutions δ0 and δ1 we have goal(s(0), s(0),Msu)
`δ0,P s2m(s(0), s(0),M), subs mat(M,Msu) `8

δ1,P �. So Answer(P, goal(s(0),
s(0),Msu)) contains δ = δ0δ1, where δ(Msu) = [[a]].

We want to prove termination of this program for the set of queries S =
{goal(t1, t2, t3) | t1 and t2 are ground terms }. Here, we obtain

Call(P,S) ⊆ S ∪ {{s2m(t1, t2, t3) | t1 and t2 ground} ∪ {s2`(t1, t2) | t1 ground}
∪ {subs row(t1, t2) | t1 ∈ List} ∪ {subs mat(t1, t2) | t1 ∈ List}

where List is the smallest set with [ ] ∈ List and [t1 | t2] ∈ List if t2 ∈ List .

3 Dependency Triple Framework

As mentioned before, we already adapted the basic DP method to the LP setting
in [15]. The advantage of [15] over previous direct approaches for LP termination
is that (a) it can use different well-founded orders for different “loops” of the
LP and (b) it uses a constraint-based approach to search for arbitrary suitable
well-founded orders (instead of only choosing from a fixed set of orders based
on a given small set of norms). Most other direct approaches have only one of
the features (a) or (b). Nevertheless, [15] has the disadvantage that it does not
permit the combination of arbitrary termination techniques in a flexible and
modular way. Therefore, we now adapt the recent DP framework [6, 8, 9] to the
LP setting. Def. 2 adapts the notion of dependency pairs [2] from TRSs to LPs.5

Definition 2 (Dependency Triple). A dependency triple (DT) is a clause
H ← I,B where H and B are atoms and I is a list of atoms. For a LP P, the
set of its dependency triples is DT (P) = {H ← I,B | H ← I,B, . . . ∈ P}.
5 While Def. 2 is essentially from [15], the rest of this section contains new concepts

that are needed for a flexible and general framework.
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Example 3. The dependency triples DT (P) of the program in Ex. 1 are:

goal(X,Y,Msu)← s2m(X,Y,M). (1)

goal(X,Y,Msu)← s2m(X,Y,M), subs mat(M,Msu). (2)

s2m(s(X), Y, [R|Rs])← s2`(Y,R). (3)

s2m(s(X), Y, [R|Rs])← s2`(Y,R), s2m(X,Y,Rs). (4)

s2`(s(Y ), [C|Cs])← s2`(Y,Cs). (5)

subs mat([R|Rs], [SR|SRs])← subs row(R,SR). (6)

subs mat([R|Rs], [SR|SRs])← subs row(R,SR), subs mat(Rs,SRs). (7)

subs row([E|R], [a|SR])← subs row(R,SR). (8)

Intuitively, a dependency triple H ← I,B states that a call that is an in-
stance of H can be followed by a call that is an instance of B if the corresponding
instance of I can be proven. To use DTs for termination analysis, one has to show
that there are no infinite “chains” of such calls. The following definition corre-
sponds to the standard definition of chains from the TRS setting [2]. Usually, D
stands for the set of DTs, P is the program under consideration, and C stands
for Call(P,S) where S is the set of queries to be analyzed for termination.

Definition 4 (Chain). Let D and P be sets of clauses and let C be a set of
atoms. A (possibly infinite) list (H0 ← I0, B0), (H1 ← I1, B1), . . . of variants
from D is a (D, C,P)-chain iff there are substitutions θi, σi and an A ∈ C such
that θ0 = mgu(A,H0) and for all i, we have σi ∈ Answer(P, Iiθi), θi+1 =
mgu(Biθiσi, Hi+1), and Biθiσi ∈ C.6

Example 5. For P and S from Ex. 1, the list (2), (7) is a (DT (P),Call(P,S),P)-
chain. To see this, consider θ0 = {X/s(0), Y/s(0)}, σ0 = {M/[[C]]}, and θ1 =
{R/[C],Rs/[ ],Msu/[SR,SRs]}. Then, for A = goal(s(0), s(0),Msu) ∈ S, we
have H0θ0 = goal(X,Y,Msu)θ0 = Aθ0. Furthermore, we have σ0 ∈ Answer(P,
s2m(X,Y,M)θ0) = Answer(P, s2m(s(0), s(0),M)) and θ1 = mgu(B0θ0σ0, H1) =
mgu(subs mat([[C]],Msu), subs mat([R|Rs], [SR|SRs])).

Thm. 6 shows that termination is equivalent to absence of infinite chains.

Theorem 6 (Termination Criterion). A LP P is terminating for a set of
atomic queries S iff there is no infinite (DT (P),Call(P,S),P)-chain.

Proof. For the “if”-direction, let there be an infinite derivation Q0, Q1, . . . with
Q0 ∈ S and Qi `ci,δi

Qi+1. The clause ci ∈ P has the form Hi ← A1
i , . . . , A

ki
i .

Let j1 > 0 be the minimal index such that the first atom A′j1 in Qj1 starts
an infinite derivation. Such a j1 always exists as shown in [17, Lemma 3.5]. As
we started from an atomic query, there must be some m0 such that A′j1 =

6 If C = Call(P,S), then the condition “Biθiσi ∈ C” is always satisfied due to the
definition of “Call”. But our goal is to formulate the concept of “chains” as general
as possible (i.e., also for cases where C is an arbitrary set). Then this condition can
be helpful in order to obtain as few chains as possible.
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Am0
0 δ0δ1 . . . δj1−1. Then “H0 ← A1

0, . . . , A
m0−1
0 , Am0

0 ” is the first DT in our
(DT (P),Call(P,S),P)-chain where θ0 = δ0 and σ0 = δ1 . . . δj1−1. As Q0 `j1P Qj1
and Am0

0 θ0σ0 = A′j1 is the first atom in Qj1 , we have Am0
0 θ0σ0 ∈ Call(P,S).

We repeat this construction and let j2 be the minimal index with j2 > j1
such that the first atom A′j2 in Qj2 starts an infinite derivation. As the first atom
of Qj1 already started an infinite derivation, there must be some mj1 such that
A′j2 = A

mj1
j1

δj1 . . . δj2−1. Then “Hj1 ← A1
j1
, . . . , A

mj1−1
j1

, A
mj1
j1

” is the second DT
in our (DT (P),Call(P,S),P)-chain where θ1 = mgu(Am0

0 θ0σ0, Hj1) = δj1 and
σ1 = δj1+1 . . . δj2−1. As Q0 `j2P Qj2 and Amj1

j1
θ1σ1 = A′j2 is the first atom in Qj2 ,

we have Amj1
j1

θ1σ1 ∈ Call(P,S). By repeating this construction infinitely many
times, we obtain an infinite (DT (P),Call(P,S),P)-chain.

For the “only if”-direction, assume that (H0 ← I0, B0), (H1 ← I1, B1), . . .
is an infinite (DT (P),Call(P,S),P)-chain. Thus, there are substitutions θi,
σi and an A ∈ Call(P,S) such that θ0 = mgu(A,H0) and for all i, we have
σi ∈ Answer(P, Iiθi) and θi+1 = mgu(Biθiσi, Hi+1). Due to the construction
of DT (P), there is a clause c0 ∈ P with c0 = H0 ← I0, B0, R0 for a list of
atoms R0 and the first step in our derivation is A `c0,θ0 I0θ0, B0θ0, R0θ0. From
σ0 ∈ Answer(P, I0θ0) we obtain the derivation I0θ0 `n0

P,σ0
� and consequently,

I0θ0, B0θ0, R0θ0 `n0
P,σ0

B0θ0σ0, R0θ0σ0 for some n0 ∈ N. Hence, A `n0+1
P,θ0σ0

B0θ0σ0, R0θ0σ0. As θ1 = mgu(B0θ0σ0, H1) and as there is a clause c1 = H1 ←
I1, B1, R1 ∈ P, we continue the derivation with B0θ0σ0, R0θ0σ0 `c1,θ1 I1θ1, B1θ1,
R1θ1, R0θ0σ0θ1. Due to σ1 ∈ Answer(P, I1θ1) we continue with I1θ1, B1θ1, R1θ1,
R0θ0σ0θ1 `n1

P,σ1
B1θ1σ1, R1θ1σ1, R0θ0σ0θ1σ1 for some n1 ∈ N.

By repeating this, we obtain an infinite derivation A `n0+1
P,θ0σ0

B0θ0σ0, R0θ0σ0

`n1+1
P,θ1,σ1

B1θ1σ1, R1θ1σ1, R0θ0σ0θ1σ1 `n2+1
P,θ2σ2

B2θ2σ2, . . . `n2+1
P,θ3σ3

. . . Thus, the
LP P is not terminating for A. From A ∈ Call(P,S) we know there is a Q ∈ S
such that Q `nP A, . . . Hence, P is also not terminating for Q ∈ S. ut

Termination techniques are now called DT processors and they operate on
so-called DT problems and try to prove absence of infinite chains.

Definition 7 (DT Problem). A DT problem is a triple (D, C,P) where D
and P are finite sets of clauses and C is a set of atoms. A DT problem (D, C,P)
is terminating iff there is no infinite (D, C,P)-chain.

A DT processor Proc takes a DT problem as input and returns a set of DT
problems which have to be solved instead. Proc is sound if for all non-terminating
DT problems (D, C,P), there is also a non-terminating DT problem in Proc( (D,
C,P) ). So if Proc( (D, C,P) ) = ∅, then termination of (D, C,P) is proved.

Termination proofs now start with the initial DT problem (DT (P),Call(P,
S),P) whose termination is equivalent to the termination of the LP P for the
queries S, cf. Thm. 6. Then sound DT processors are applied repeatedly until
all DT problems have been simplified to ∅.
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4 Dependency Triple Processors

In Sect. 4.1 and 4.2, we adapt two of the most important DP processors from
term rewriting [2, 6, 8, 9] to the LP setting. In Sect. 4.3 we present a new DT
processor to convert DT problems to DP problems.

4.1 Dependency Graph Processor

The first processor decomposes a DT problem into subproblems. Here, one con-
structs a dependency graph to determine which DTs follow each other in chains.

Definition 8 (Dependency Graph). For a DT problem (D, C,P), the nodes
of the (D, C,P)-dependency graph are the clauses of D and there is an arc from
a clause c to a clause d iff “c, d” is a (D, C,P)-chain.

Example 9. For the initial DT problem (DT (P),Call(P,S),P) of the program
in Ex. 1, we obtain the following dependency graph.

(1) //

))TTTTTTTTTTT (3) // (5)
SS

(2) //

))TTTTTTTTTTT (6) // (8)
SS

(4)

aaBBB ��
(7)

aaBBB ��

As in the TRS setting, the dependency graph is not computable in general.
For TRSs, several techniques were developed to over-approximate dependency
graphs automatically, cf. e.g. [2, 9]. Def. 10 adapts the estimation of [2].7 This
estimation ignores the intermediate atoms I in a DT H ← I,B.

Definition 10 (Estimated Dependency Graph). For a DT problem (D, C,
P), the nodes of the estimated (D, C,P)-dependency graph are the clauses of
D and there is an arc from Hi ← Ii, Bi to Hj ← Ij , Bj, iff Bi unifies with a
variant of Hj and there are atoms Ai, Aj ∈ C such that Ai unifies with a variant
of Hi and Aj unifies with a variant of Hj.

For the program of Ex. 1, the estimated dependency graph is identical to the
real dependency graph in Ex. 9.

Example 11. To illustrate their difference, consider the LP P ′ with the clauses
p ← q(a), p and q(b). We consider the set of queries S ′ = {p} and obtain
Call(P ′,S ′) = {p, q(a)}. There are two DTs p← q(a) and p← q(a), p. In the es-
timated dependency graph for the initial DT problem (DT (P ′),Call(P ′,S ′),P ′),
there is an arc from the second DT to itself. But this arc is missing in the real
dependency graph because of the unsatisfiable body atom q(a).

The following lemma proves the “soundness” of estimated dependency graphs.
7 The advantage of a general concept of dependency graphs like Def. 8 is that this

permits the introduction of better estimations in the future without having to change
the rest of the framework. However, a general concept like Def. 8 was missing in [15],
which only featured a variant of the estimated dependency graph from Def. 10.
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Lemma 12. The estimated (D, C,P)-dependency graph over-approximates the
real (D, C,P)-dependency graph, i.e., whenever there is an arc from c to d in the
real graph, then there is also such an arc in the estimated graph.

Proof. Assume that there is an arc from the clause Hi ← Ii, Bi to Hj ← Ij , Bj
in the real dependency graph. Then by Def. 4, there are substitutions σi and θi
such that θi+1 is a unifier of Biθiσi and Hj . As we can assume Hj and Bi to be
variable disjoint, θiσiθi+1 is a unifier of Bi and Hj . Def. 4 also implies that for
all DTs H ← I,B in a (D, C,P)-chain, there is an atom from C unifying with
H. Hence, this also holds for Hi and Hj . ut

A set D′ 6= ∅ of DTs is a cycle if for all c, d ∈ D′, there is a non-empty
path from c to d traversing only DTs of D′. A cycle D′ is a strongly connected
component (SCC) ifD′ is not a proper subset of another cycle. So the dependency
graph in Ex. 9 has the SCCs D1 = {(4)}, D2 = {(5)}, D3 = {(7)}, D4 = {(8)}.
The following processor allows us to prove termination separately for each SCC.

Theorem 13 (Dependency Graph Processor). We define Proc( (D, C,P) )
= {(D1, C,P), . . . , (Dn, C,P)}, where D1, . . . ,Dn are the SCCs of the (estimated)
(D, C,P)-dependency graph. Then Proc is sound.

Proof. Let there be an infinite (D, C,P)-chain. This infinite chain corresponds
to an infinite path in the dependency graph (resp. in the estimated graph, by
Lemma 12). Since D is finite, the path must be contained entirely in some SCC
Di. Thus, (Di, C,P) is non-terminating. ut

Example 14. For the program of Ex. 1, the above processor transforms the initial
DT problem (DT (P),Call(P,S),P) to (D1,Call(P,S),P), (D2,Call(P,S),P),
(D3,Call(P,S),P), and (D4,Call(P,S),P). So the original termination problem
is split up into four subproblems which can now be solved independently.

4.2 Reduction Pair Processor

The next processor uses a reduction pair (%,�) and requires that all DTs are
weakly or strictly decreasing. Then the strictly decreasing DTs can be removed
from the current DT problem. A reduction pair (%,�) consists of a quasi-order %
on atoms and terms (i.e., a reflexive and transitive relation) and a well-founded
order � (i.e., there is no infinite sequence t0 � t1 � . . .). Moreover, % and �
have to be compatible (i.e., t1 % t2 � t3 implies t1 � t3).8

Example 15. We often use reduction pairs built from norms and level map-
pings [3]. A norm is a mapping ‖ · ‖ : T (Σ,V) → N. A level mapping is a
mapping | · | : A(Σ,∆,V) → N. Consider the reduction pair (%,�) induced9

8 In contrast to “reduction pairs” in rewriting, we do not require % and � to be closed
under substitutions. But for automation, we usually choose relations % and � that
result from polynomial interpretations which are closed under substitutions.

9 So for terms t1, t2 we define t1 (%)t2 iff ‖t1‖ (≥)‖t2‖ and for atoms A1, A2 we define
A1 (%)A2 iff |A1| (≥) |A2|.
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by the norm ‖X‖ = 0 for all variables X, ‖ [ ] ‖ = 0, ‖s(t)‖ = ‖ [s | t] ‖ =
1+‖t‖ and the level mapping |s2m(t1, t2, t3)| = |s2`(t1, t2)| = |subs mat(t1, t2)| =
|subs row(t1, t2)| = ‖t1‖. Then subs mat([[C]], [SR | SRs]) � subs mat([ ],SRs),
as |subs mat([[C]], [SR | SRs])| = ‖[[C]]‖ =1 and |subs mat([ ],SRs)| = ‖ [ ] ‖ =0.

Now we can define when a DT H ← I,B is decreasing. Roughly, we require
that Hσ � Bσ must hold for every substitution σ. However, we do not have
to regard all substitutions, but we may restrict ourselves to such substitutions
where all variables of H and B on positions that are “taken into account” by %
and � are instantiated by ground terms.10 Formally, a reduction pair (%,�) is
rigid on a term or atom t if we have t ≈ tδ for all substitutions δ. Here, we define
s ≈ t iff s % t and t % s. A reduction pair (%,�) is rigid on a set of terms or
atoms if it is rigid on all its elements. Now for a DT H ← I,B to be decreasing,
we only require that Hσ � Bσ holds for all σ where (%,�) is rigid on Hσ.

Example 16. The reduction pair from Ex. 15 is rigid on the atom A = s2m([[C]],
[SR |SRs]), since |Aδ| = 1 holds for every substitution δ. Moreover, if σ(Rs) ∈
List , then the reduction pair is also rigid on subs mat([R | Rs], [SR | SRs])σ.
For every such σ, we have subs mat([R | Rs], [SR |SRs])σ � subs mat(Rs,SRs)σ.

We refine the notion of “decreasing” DTs H ← I,B further. Instead of only
considering H and B, one should also take the intermediate body atoms I into
account. To approximate their semantics, we use interargument relations. An
interargument relation for a predicate p is a relation IRp = {p(t1, . . . , tn) | ti ∈
T (Σ,V) ∧ ϕp(t1, . . . , tn)}, where (1) ϕp(t1, . . . , tn) is a formula of an arbitrary
Boolean combination of inequalities, and (2) each inequality in ϕp is either si %
sj or si � sj , where si, sj are constructed from t1, . . . , tn by applying function
symbols of P. IRp is valid iff p(t1, . . . , tn) `mP � implies p(t1, . . . , tn) ∈ IRp for
every p(t1, . . . , tn) ∈ A(Σ,∆,V).

Definition 17 (Decreasing DTs). Let (%,�) be a reduction pair, and R =
{IRp1 , . . . , IRpk

} be a set of valid interargument relations based on (%,�). Let
c = H ← p1(t1), . . . , pk(tk), B be a DT. Here, the ti are tuples of terms.

The DT c is weakly decreasing (denoted (%,R) |= c) if Hσ % Bσ holds for
any substitution σ where (%,�) is rigid on Hσ and where p1(t1)σ ∈ IRp1 , . . . ,
pk(tk)σ ∈ IRpk

. Analogously, c is strictly decreasing (denoted (�,R) |= c) if
Hσ � Bσ holds for any such σ.

Example 18. Recall the reduction pair from Ex. 15 and the remarks about its
rigidity in Ex. 16. When considering a set R of trivial valid interargument re-
lations like IRsubs row = {subs row(t1, t2) | t1, t2 ∈ T (Σ,V)}, then the DT (7) is
strictly decreasing. Similarly, (�,R) |= (4), (�,R) |= (5), and (�,R) |= (8).

We can now formulate our second DT processor. To automate it, we refer to
[15] for a description of how to synthesize valid interargument relations and how
to find reduction pairs automatically that make DTs decreasing.
10 This suffices, because we require (%,�) to be rigid on C in Thm. 19. Thus, % and
� do not take positions into account where atoms from Call(P,S) have variables.
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Theorem 19 (Reduction Pair Processor). Let (%,�) be a reduction pair
and let R be a set of valid interargument relations. Then Proc is sound.

Proc( (D, C,P) ) =


{(D \ D�, C,P)}, if
• (%,�) is rigid on C and
• there is D� ⊆ D with D� 6= ∅ such that (�,R) |= c

for all c ∈ D� and (%,R) |= c for all c ∈ D \ D�
{(D, C,P)}, otherwise

Proof. If Proc( (D, C,P) ) = {(D, C,P)}, then Proc is trivially sound. Now we
consider the case Proc( (D, C,P) ) = {(D\D�, C,P)}. Assume that (D\D�, C,P)
is terminating while (D, C,P) is non-terminating. Then there is an infinite (D, C,
P)-chain (H0 ← I0, B0), (H1 ← I1, B1), . . . where at least one clause from
D� appears infinitely often. There are A ∈ C and substitutions θi, σi such
that θ0 = mgu(A,H0) and for all i, we have σi ∈ Answer(P, Iiθi), θi+1 =
mgu(Biθiσi, Hi+1), and Biθiσi ∈ C. We obtain

Hiθi
≈ Hiθiσiθi+1 (by rigidity, as Hiθi = Bi−1θi−1σi−1θi

and Bi−1θi−1σi−1 ∈ C)
% Biθiσiθi+1 (since (%,R) |= ci where ci is Hi ← Ii, Bi,

as (%,�) is also rigid on any instance of Hiθi,
and since σi ∈ Answer(P, Iiθi) implies Iiθiσiθi+1 `nP �
and R are valid interargument relations)

= Hi+1θi+1 (since θi+1 = mgu(Biθiσi, Hi+1))
≈ Hi+1θi+1σi+1θi+2 (by rigidity, as Hi+1θi+1 = Biθiσiθi+1 and Biθiσi ∈ C)
% Bi+1θi+1σi+1θi+2 (since (%,R) |= ci+1 where ci+1 is Hi+1 ← Ii+1, Bi+1)
= . . .

Here, infinitely many %-steps are “strict” (i.e., we can replace infinitely many
%-steps by �-steps). This contradicts the well-foundedness of �. ut

So in our example, we apply the reduction pair processor to all 4 DT problems
in Ex. 14. While we could use different reduction pairs for the different DT
problems,11 Ex. 18 showed that all their DTs are strictly decreasing for the
reduction pair from Ex. 15. This reduction pair is indeed rigid on Call(P,S).
Hence, the reduction pair processor transforms all 4 remaining DT problems to
(∅,Call(P,S),P), which in turn is transformed to ∅ by the dependency graph
processor. Thus, termination of the LP in Ex. 1 is proved.

4.3 Modular Transformation Processor to Term Rewriting

The previous two DT processors considerably improve over [15] due to their
increased modularity.12 In addition, one could easily adapt more techniques from
11 Using different reduction pairs for different DT problems resulting from one and the

same LP is for instance necessary for programs like the Ackermann function, cf. [15].
12 In [15] these two processors were part of a fixed procedure, whereas now they can

be applied to any DT problem at any time during the termination proof.
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the DP framework (i.e., from the TRS setting) to the DT framework (i.e., to the
LP setting). However, we now introduce a new DT processor which allows us to
apply any TRS termination technique immediately to LPs (i.e., without having
to adapt the TRS technique). It transforms a DT problem for LPs into a DP
problem for TRSs.

Example 20. The following program P from [11] is part of the Termination Prob-
lem Data Base (TPDB) used in the International Termination Competition.
Typically, cnf’s first argument is a Boolean formula (where the function symbols
n, a, o stand for the Boolean connectives) and the second is a variable which
will be instantiated to an equivalent formula in conjunctive normal form. To this
end, cnf uses the predicate tr which holds if its second argument results from its
first one by a standard transformation step towards conjunctive normal form.

cnf(X,Y )← tr(X,Z), cnf(Z, Y ). cnf(X,X).
tr(n(n(X)), X). tr(o(X1, Y ), o(X2, Y ))← tr(X1, X2).
tr(n(a(X,Y )), o(n(X), n(Y ))). tr(o(X,Y 1), o(X,Y 2))← tr(Y 1, Y 2).
tr(n(o(X,Y )), a(n(X), n(Y ))). tr(a(X1, Y ), a(X2, Y ))← tr(X1, X2).
tr(o(X, a(Y, Z)), a(o(X,Y ), o(X,Z))). tr(a(X,Y 1), a(X,Y 2))← tr(Y 1, Y 2).
tr(o(a(X,Y ), Z), a(o(X,Z), o(Y,Z))). tr(n(X1), n(X2))← tr(X1, X2).

Consider the queries S = {cnf(t1, t2) | t1 is ground} ∪ {tr(t1, t2) | t1 is ground}.
By applying the dependency graph processor to the initial DT problem, we
obtain two new DT problems. The first is (D1,Call(P,S),P) where D1 contains
all recursive tr-clauses. This DT problem can easily be solved by the reduction
pair processor. The other resulting DT problem is

({cnf(X,Y )← tr(X,Z), cnf(Z, Y )},Call(P,S),P). (9)

To make this DT strictly decreasing, one needs a reduction pair (%,�) where
t1 � t2 holds whenever tr(t1, t2) is satisfied. This is impossible with the orders �
in current direct LP termination tools. In contrast, it would easily be possible if
one uses other orders like the recursive path order [5] which is well established
in term rewriting. This motivates the new processor presented in this section.

To transform DT to DP problems, we adapt the existing transformation from
logic programs P to TRSs RP from [17]. Here, two new n-ary function symbols
pin and pout are introduced for each n-ary predicate p:

• Each fact p(s) of the LP is transformed to the rewrite rule pin(s)→ pout(s).
• Each clause c of the form p(s)← p1(s1), . . . , pk(sk) is transformed into the

following rewrite rules:
pin(s) → uc,1(p1in

(s1),V(s))
uc,1(p1out(s1),V(s)) → uc,2(p2in(s2),V(s) ∪ V(s1))

. . .
uc,k(pkout

(sk),V(s) ∪ V(s1) ∪ . . . ∪ V(sk−1)) → pout(s)

Here, the uc,i are new function symbols and V(s) are the variables in s.
Moreover, if V(s) = {x1, . . . , xn}, then “uc,1(p1in(s1),V(s))” abbreviates
the term uc,1(p1in

(s1), x1, . . . , xn), etc.
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So the fact tr(n(n(X)), X) is transformed to trin(n(n(X)), X) → trout(n(n(X)),
X) and the clause cnf(X,Y )← tr(X,Z), cnf(Z, Y ) is transformed to

cnfin(X,Y )→ u1(trin(X,Z), X, Y ) (10)
u1(trout(X,Z), X, Y )→ u2(cnfin(Z, Y ), X, Y, Z) (11)

u2(cnfout(Z, Y ), X, Y, Z)→ cnfout(X,Y ) (12)

To formulate the connection between a LP and its corresponding TRS, the
sets of queries that should be analyzed for termination have to be represented
by an argument filter π where π(f) ⊆ {1, . . . , n} for every n-ary f ∈ Σ ∪ ∆.
We extend π to terms and atoms by defining π(x) = x if x is a variable and
π(f(t1, . . . , tn)) = f(π(ti1), . . . , π(tik)) if π(f) = {i1, . . . , ik} with i1 < . . . < ik.

Argument filters specify those positions which have to be instantiated with
ground terms. In Ex. 20, we wanted to prove termination for the set S of all
queries cnf(t1, t2) or tr(t1, t2) where t1 is ground. These queries are described
by the filter with π(cnf) = π(tr) = {1}. Hence, we can also represent S as S =
{A | A ∈ A(Σ,∆,V), π(A) is ground}. Thm. 21 shows that instead of proving
termination of a LP P for a set of queries S, it suffices to prove termination
of the corresponding TRS RP for a corresponding set of terms S ′. As shown
in [17], here we have to regard a variant of term rewriting called infinitary
constructor rewriting, where variables in rewrite rules may only be instantiated
by constructor terms,13 which however may be infinite. This is needed since LPs
use unification, whereas TRSs use matching for their evaluation.

Theorem 21 (Soundness of the Transformation [17]). Let RP be the TRS
resulting from transforming a LP P over a signature (Σ,∆). Let π be an argu-
ment filter with π(pin) = π(p) for all p ∈ ∆. Let S = {A | A ∈ A(Σ,∆,V),
π(A) is finite and ground } and S ′ = {pin(t) | p(t) ∈ S}. If the TRS RP termi-
nates for all terms in S ′, then the LP P terminates for all queries in S.

The DP framework for termination of term rewriting can also be used for
infinitary constructor rewriting, cf. [17]. To this end, for each defined symbol f ,
one introduces a fresh tuple symbol f ] of the same arity. For a term t = g(t)
with defined root symbol g, let t] denote g](t). Then the set of dependency pairs
for a TRS R is DP (R) = {`] → t] | `→ r ∈ R, t is a subterm of r with defined
root symbol}. For instance, the rules (10) - (12) give rise to the following DPs.

cnf]in(X,Y )→ tr]in(X,Z) (13)

cnf]in(X,Y )→ u]1(trin(X,Z), X, Y ) (14)

u]1(trout(X,Z), X, Y )→ cnf]in(Z, Y ) (15)

u]1(trout(X,Z), X, Y )→ u]2(cnfin(Z, Y ), X, Y, Z) (16)

Termination problems are now represented as DP problems (D,R, π) where
D andR are TRSs (here, D is usually a set of DPs) and π is an argument filter. A
13 As usual, the symbols on root positions of left-hand sides of rewrite rules are called

defined symbols and all remaining function symbols are constructors. A constructor
term is a term built only from constructors and variables.

11



list s1 → t1, s2 → t2, . . . of variants from D is a (D,R, π)-chain iff for all i, there
are substitutions σi such that tiσi rewrites to si+1σi+1 and such that π(siσi),
π(tiσi), and π(q) are finite and ground, for all terms q in the reduction from tiσi
and si+1σi+1. (D,R, π) is terminating iff there is no infinite (D,R, π)-chain.

Example 22. For instance, “(14), (15)” is a chain for the argument filter π with

π(cnf]in) = π(trin) = {1} and π(u]1) = π(trout) = {1, 2}. To see this, consider the

substitution σ = {X/n(n(a)), Z/a}. Now u]1(trin(X,Z), X, Y )σ reduces in one

step to u]1(trout(X,Z), X, Y )σ and all instantiated left- and right-hand sides of
(14) and (15) are ground after filtering them with π.

To prove termination of a TRS R for all terms S ′ in Thm. 21, now it suffices
to show termination of the initial DP problem (DP (R),R, π). Here, one has to
make sure that π(DP (RP)) and π(RP) satisfy the variable condition, i.e., that
V(π(r)) ⊆ V(π(`)) holds for all `→ r ∈ DP (R)∪R. If this does not hold, then π
has to be refined (by filtering away more argument positions) until the variable
condition is fulfilled. This leads to the following corollary from [17].

Corollary 23 (Transformation Technique [17]). Let RP ,P, π be as in
Thm. 21, where π(pin) = π(p]in) = π(p) for all p ∈ ∆. Let π(DP (RP)) and
π(RP) satisfy the variable condition and let S = {A | A ∈ A(Σ,∆,V), π(A) is
finite and ground}. If the DP problem (DP (RP),RP , π) is terminating, then the
LP P terminates for all queries in S.

Note that Thm. 21 and Cor. 23 are applied right at the beginning of the
termination proof. So here one immediately transforms the full LP into a TRS (or
a DP problem) and performs the whole termination proof on the TRS level. The
disadvantage is that LP-specific techniques cannot be used anymore. It would
be better to only apply this transformation for those parts of the termination
proof where it is necessary and to perform most of the proof on the LP level.

This is achieved by the following new transformation processor within our
DT framework. Now one can first apply other DT processors like the ones from
Sect. 4.1 and 4.2 (or other LP termination techniques). Only for those subprob-
lems where a solution cannot be found, one uses the following DT processor.

Theorem 24 (DT Transformation Processor). Let (D, C,P) be a DT prob-
lem and let π be an argument filter with π(pin) = π(p]in) = π(p) for all predicates
p such that C ⊆ {A | A ∈ A(Σ,∆,V), π(A) is finite and ground} and such that
π(DP (RD)) and π(RP) satisfy the variable condition. Then Proc is sound.

Proc( (D, C,P) ) =
{

∅, if (DP (RD),RP , π) is a terminating DP problem
{(D, C,P)}, otherwise

Proof. If Proc( (D, C,P) ) = {(D, C,P)}, then soundness is trivial. Now let
Proc( (D, C,P) ) = ∅. Assume there is an infinite (D, C,P)-chain (H0 ← I0, B0),
(H1 ← I1, B1), . . . Similar to the proof of Thm. 6, we have

A `H0←I0,B0, θ0 I0θ0, B0θ0 `n0
P,σ0

B0θ0σ0 `H1←I1,B1, θ1 I1θ1, B1θ1 `n1
P,σ1

B0θ1σ1 . . .

12



For every atom p(t1, . . . , tn), let p(t1, . . . , tn) be the term pin(t1, . . . , tn). Then by
the results on the correspondence between LPs and TRSs from [17] (in particular
[17, Lemma 3.4]), we can conclude

Aθ0σ0 ( ε→RD◦
> ε→ ∗RP )

+
B0θ0σ0, B0θ0σ0θ1σ1 ( ε→RD◦

> ε→ ∗RP )
+
B1θ0σ0θ1σ1, . . .

Here,→R denotes the rewrite relation of a TRS R, ε→ resp. >ε→ denote reductions
on resp. below the root position and→∗ resp.→+ denote zero or more resp. one
or more reduction steps. This implies

A
]
θ0σ0 (

ε→DP (RD)◦
> ε→ ∗RP )

+
B0

]
θ0σ0, B0

]
θ0σ0θ1σ1 (

ε→DP (RD)◦
> ε→ ∗RP )

+
B1

]
θ0σ0θ1σ1,

etc. Let σ be the infinite substitution θ0σ0θ1σ1θ2σ2 . . . where all remaining vari-
ables in σ’s range can w.l.o.g. be replaced by ground terms. Then we have

A
]
σ ( ε→DP (RD)◦

> ε→ ∗RP )
+

B0
]
σ ( ε→DP (RD)◦

> ε→ ∗RP )
+

B1
]
σ . . . , (17)

which gives rise to an infinite (DP (RD),RP , π)-chain. To see this, note that
π(A) and all π(Biθiσi) are finite and ground by the definition of chains of DTs.
Hence, this also holds for π(A

]
σ) and all π(Bi

]
σ). Moreover, since π(DP (RD))

and π(RP) satisfy the variable condition, all terms occurring in the reduction
(17) are finite and ground when filtering them with π. ut

Example 25. We continue the termination proof of Ex. 20. Since the remaining
DT problem (9) could not be solved by direct termination tools, we apply the
DT processor of Thm. 24. Here, RD = {(10), (11), (12)} and hence, we obtain
the DP problem ({(13), . . . , (16)},RP , π) where π(cnf) = π(tr) = {1}. On the
other function symbols, π is defined as in Ex. 22 in order to fulfill the variable
condition. This DP problem can easily be proved terminating by existing TRS
techniques and tools, e.g., by using a recursive path order.

5 Experiments and Conclusion

We have introduced a new DT framework for termination analysis of LPs. It
permits to split termination problems into subproblems, to use different orders
for the termination proof of different subproblems, and to transform subproblems
into termination problems for TRSs in order to apply existing TRS tools. In
particular, it subsumes and improves upon recent direct and transformational
approaches for LP termination analysis like [15, 17].

To evaluate our contributions, we performed extensive experiments compar-
ing our new approach with the most powerful current direct and transformational
tools for LP termination: Polytool [14] and AProVE [7].14 The International Ter-
mination Competition showed that direct termination tools like Polytool and
14 In [17], Polytool and AProVE were compared with three other representative tools for

LP termination analysis: TerminWeb [4], cTI [12], and TALP [16]. Here, TerminWeb
and cTI use a direct approach whereas TALP uses a transformational approach. In
the experiments of [17], it turned out that Polytool and AProVE were considerably
more powerful than the other three tools.
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transformational tools like AProVE have comparable power, cf. Sect. 1. Never-
theless, there exist examples where one tool is successful, whereas the other fails.

For example, AProVE fails on the LP from Ex. 1. The reason is that by
Cor. 23, it has to represent Call(P,S) by an argument filtering π which satisfies
the variable condition. However, in this example there is no such argument fil-
tering π where (DP (RP),P, π) is terminating. In contrast, Polytool represents
Call(P,S) by type graphs [10] and easily shows termination of this example.

On the other hand, Polytool fails on the LP from Ex. 20. Here, one needs
orders like the recursive path order that are not available in direct termination
tools. Indeed, other powerful direct termination tools such as TerminWeb [4]
and cTI [12] fail on this example, too. The transformational tool TALP [16] fails
on this program as well, as it does not use recursive path orders. In contrast,
AProVE easily proves termination using a suitable recursive path order.

The results of this paper combine the advantages of direct and transforma-
tional approaches. We implemented our new approach in a new version of Poly-
tool. Whenever the transformation processor of Thm. 24 is used, it calls AProVE
on the resulting DP problem. Thus, we call our implementation “PolyAProVE”.

In our experiments, we applied the two existing tools Polytool and AProVE as
well as our new tool PolyAProVE to a set of 298 LPs. This set includes all LP ex-
amples of the TPDB that is used in the International Termination Competition.
However, to eliminate the influence of the translation from Prolog to pure logic
programs, we removed all examples that use non-trivial built-in predicates or
that are not definite logic programs after ignoring the cut operator. This yields
the same set of examples that was used in the experimental evaluation of [17].
In addition to this set we considered two more examples: the LP of Ex. 1 and
the combination of Examples 1 and 20. For all examples, we used a time limit
of 60 seconds corresponding to the standard setting of the competition.

Below, we give the results and the overall time (in seconds) required to run
the tools on all 298 examples.

PolyAProVE AProVE Polytool
Successes 237 232 218
Failures 58 58 73
Timeouts 3 8 7
Total Runtime 762.3 2227.2 588.8
Avg. Time 2.6 7.5 2.0

Our experiments show that PolyAProVE solves all examples that can be solved
by Polytool or AProVE (including both LPs from Ex. 1 and 20). PolyAProVE
also solves all examples from this collection that can be handled by any of the
three other tools TerminWeb, cTI, and TALP. Moreover, it also succeeds on LPs
whose termination could not be proved by any tool up to now. For example,
it proves termination of the LP consisting of the clauses of both Ex. 1 and 20
together, whereas all other five tools fail. Another main advantage of PolyAProVE
compared to powerful purely transformational tools like AProVE is a substantial
increase in efficiency. PolyAProVE needs only about one third (34%) of the total
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runtime of AProVE. The reason is that many examples can already be handled
by the direct techniques introduced in this paper. The transformation to term
rewriting, which incurs a significant runtime penalty, is only used if the other
DT processors fail. Thus, the performance of PolyAProVE is much closer to that
of direct tools like Polytool than to that of transformational tools like AProVE.

For details on our experiments and to access our collection of examples, we
refer to http://aprove.informatik.rwth-aachen.de/eval/PolyAProVE/.
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Analysis of Logic Programs. In Proc. RTA ’00, LNCS 1833, pp. 270–273, 2000.

17. P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated Ter-
mination Proofs for Logic Programs by Term Rewriting. ACM Transactions
on Computational Logic, 2009. To appear. Short version appeared in Proc.
LOPSTR ’06, LNCS 4407, pp. 177–193, 2007.

15



Improving the Termination Analysis of
Narrowing in Left-Linear Constructor Systems?
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1 Motivation

Narrowing [11] extends rewriting in order to deal with terms containing logic
variables by replacing pattern-matching with unification. It has been widely used
in different contexts, ranging from theorem proving (e.g., protocol verification)
to language design (e.g., it forms the basis of functional logic languages).

Recently, [9, 12] introduced a termination analysis for narrowing which is
roughly based on the following process:3 First, following [1, 4], logic variables
are replaced with a fresh function, called gen, which can be seen as a data
generator that can be non-deterministically reduced to any ground (constructor)
term. Then, an argument filtering is used to filter away occurrences of gen in
the considered computations so that the termination of narrowing reduces to a
problem of termination of rewriting. Finally, termination is analyzed using the
dependency pair framework [7] for proving the termination of rewriting over the
filtered terms.

Intuitively speaking, argument filterings map every function symbol to a
subset of its argument positions, i.e., given a function symbol f of arity n, π(f)
returns a subset of {1, . . . , n} so that the arguments whose position is not in the
set are filtered away. Consider, for instance, the following rewrite system R:

leq(zero, y)→ true leq(succ(x), succ(y))→ leq(x, y)
leq(succ(x), zero)→ false

which defines the less-or-equal relation on natural numbers built from zero and
succ. The set of dependency pairs DP(R) of a rewrite system R contains a rule
f](s1, . . . , sn) → g](t1, . . . , tm) for every rule f(s1, . . . , sn) → r ∈ R such that
g(t1, . . . , tm) is a subterm of r rooted by a defined function and f], g] are (fresh)
tuple symbols associated to the defined functions f and g, usually denoted by cap-
ital letters in the examples. In our case, the associated set of dependency pairs,
DP(R), contains the following single rule: LEQ(succ(x), succ(y))→ LEQ(x, y).

Assume now that we want to analyze the termination of narrowing for the
terms of the form leq(t, x), where t is a ground constructor term of the form
? This work has been partially supported by the MICINN under grant TIN2008-06622-

C03-02 and by the Generalitat Valenciana under grant GVPRE/2008/001.
3 The termination analysis of logic programs of [10] follows a similar pattern but logic

variables are replaced with infinite terms (the net effect, though, is similar).



succ(. . . (zero) . . .) and x is a logic variable. For this purpose, one should first
define an argument filtering π that filters away the second argument of leq, e.g.,
π(leq) = {1}, since it will be replaced by an occurrence of gen. Then, one can
analyze the termination of the standard [7] DP problem (π(DP(R)), π(R)), in
order to analyze the termination of narrowing for leq(t, x), where

π(DP(R)) =
{

LEQ(succ(x))→ LEQ(x)
}

π(R) =

 leq(zero)→ true
leq(succ(x))→ false
leq(succ(x))→ leq(x)


Trivially, this DP problem is finite because the only possible source of non-
termination is the dependency pair LEQ(succ(x)) → LEQ(x), but it is straight-
forward to find an order “>” such that LEQ(succ(x)) > LEQ(x).

In general, however, π(DP(R)∪R) may contain extra variables, i.e., variables
that appear in the right-hand side of a rule but not in its left-hand side. Consider,
e.g., the following rewrite system Radd and termination of add(t, x):

add(zero, y)→ y add(succ(x), y)→ succ(add(x, y))

Given an argument filtering with π(add) = π(succ) = {1} and π(zero) = ∅,
we produce the following filtered DP problem (π(DP(Radd)), π(Radd)) (here,
we assume the same argument filtering for the defined function add and its
associated tuple symbol ADD):({

ADD(succ(x))→ ADD(x)
}
,

{
add(zero)→ y

add(succ(x))→ succ(add(x))

})
In this case, termination cannot be proved since rules containing extra variables
(like add(zero)→ y ∈ π(Radd)) are not terminating by definition.

However, this is unnecessarily restrictive in our context since narrowing can
only instantiate extra variables to constructor terms (when unifying a function
call with some left-hand side) and, thus, only instantiation of these extra vari-
ables to infinite terms can introduce an infinite computation.4

In order to overcome this problem, we can find two different approaches in
the literature. On the one hand, [10] requires π(DP(R) ∪R) to be free of extra
variables. For this purpose, argument filterings are refined until the condition
holds. Basically, an argument filtering π′ is a refinement of another argument
filtering π if it filters away the same or more arguments, i.e., π′(f) ⊆ π(f) for every
symbol f. The main drawback of this approach, besides losing some accuracy due
to the refinement of the argument filtering, is that it cannot be generally applied
to arbitrary rewrite systems. Consider, for instance, a collapsing rule, i.e., a rule
of the form f(x, y) → y, together with the argument filtering π(f) = {1}. The
filtered rule f(x) → y contains an extra variable, y, and no refinement of π will
be able to eliminate it.5

4 A similar situation occurs in [10] where extra variables coming from the translation
of a logic program can only be bound to constructor terms.

5 This is not a limitation of [10] since the considered rewrite systems that are produced
from the translation of logic programs never have collapsing rules.



On the other hand, [12] considers an alternative approach that is based on
replacing all extra variables by a fresh constant symbol, ⊥, and then requiring
the argument filtering to fulfill some additional conditions that basically amount
to saying that the occurrences of ⊥ play no role in the considered derivations.

In this work, we go one step further and consider that ⊥ might be a defined
function. Therefore, we get stronger results (compared to [9, 12]) in some cases,
namely when the extra variables of the filtered system should take some value
for the narrowing derivation to proceed. Loosely speaking, our aim is to consider
⊥ as a terminating restriction of gen and identify the conditions under which
this restriction is safe. For this purpose, we introduce a transformation of the
initial rewrite system that allows us to introduce, in some cases, an appropriate
definition for ⊥.

2 Improving the Termination Analysis of Narrowing

We assume familiarity with basic concepts of term rewriting. The notations not
defined in the paper can be found in [3] and [8]. A signature F is a set of function
symbols. We often write f/n ∈ F to denote that the arity of function f is n. Given
a set of variables V with F ∩V = ∅, we denote the domain of terms by T (F ,V).
Given a TRS R over a signature F , the defined symbols D are the root symbols
of the left-hand sides of the rules and the constructors are C = F \ D. The
root symbol of a term t is denoted by root(t). Given a set S, PosS(t) denotes
the set of positions of a term t that are rooted by function symbols or variables
in S. Var(t) denotes the set of variables appearing in t. A term t is ground if
Var(t) = ∅. We write T (F) as a shorthand for the set of ground terms T (F ,∅).

The narrowing principle [11] mainly extends term rewriting by replacing
pattern matching with unification, so that terms containing logic variables can
also be reduced by non-deterministically instantiating these variables. Formally,
given a TRSR and two terms s, t ∈ T (F ,V), we have that s ;R t is a narrowing
step iff there exist a non-variable position p of s, a variant R = (l→ r) of a rule
in R, a substitution σ = mgu(s|p, l) which is the most general unifier of s|p and l,
and t = (s[r]p)σ. We often write s ;p,R,θ t (or simply s ;θ t) to make explicit
the position, rule, and substitution of the narrowing step, where θ = σ |̀Var(s)

(i.e., we label the narrowing step only with the bindings for the narrowed term).
A narrowing derivation t0 ;∗σ tn denotes a sequence of narrowing steps t0 ;σ1

. . . ;σn tn with σ = σn ◦ · · · ◦ σ1 (if n = 0 then σ = id).
Following [12], we are not interested in the termination of narrowing for ar-

bitrary terms (this is similar to the case of logic programming, where a logic
program seldom terminates for all possible initial goals). Rather, we are inter-
ested in proving the termination of narrowing for a particular class of initial
terms, which is specified using the notion of abstract term (inspired by the mode
declarations of logic programming [5]). Intuitively, an abstract term has the form
f(m1, . . . ,mn), where f ∈ D and mi is either g (definitely ground) or v (possibly
variable), for all i = 1, . . . , n. Any abstract term tα, implicitly induces a (possi-
bly infinite) set of terms, γ(tα), by replacing the g arguments of tα with ground
constructor terms and the v arguments with arbitrary terms.



In the following, given a set of terms T and a binary relation ∝ on terms,
we say that T is ∝-terminating if there is no term t1 ∈ T such that an infinite
sequence of the form t1 ∝ t2 ∝ t3 ∝ . . . exists. For instance, given a TRS R
and a set T , we will consider whether T is ;R-terminating (for narrowing) or
→R-terminating (for rewriting).

2.1 Termination of narrowing and extra variables

As mentioned in Sect. 1, the challenge in this paper is dealing with the termi-
nation of narrowing in TRSs whose filterings introduce extra variables.

Definition 1 (argument filtering, π). An argument filtering over a signature
F is a function π such that, for every function or constructor symbol f/n ∈ F ,
we have π(f) ⊆ {1, . . . , n}. Argument filterings are extended to terms as follows:6

– π(x) = x for all x ∈ V,
– π(f(t1, . . . , tn)) = f(π(ti1), . . . , π(tim)) for all f/n ∈ F , n ≥ 0,

where π(f) = {i1, . . . , im} and 1 ≤ i1 < . . . < im ≤ n.

Let us consider the following TRS Rc:

f(succ(zero), y)→ inc(dec(succ(zero)),min, y) dec(succ(y))→ y
min→ zero inc(zero, y, z)→ f(y, z)

together with the argument filtering

π(f) = π(succ) = {1} π(inc) = {1, 2} π(dec) = π(min) = π(zero) = ∅

Now, if we filter the TRS, i.e., if we replace every rule l → r in this TRS by
π(l)→ π(r), we get the following filtered TRS π(Rc):

f(succ(zero))→ inc(dec,min) dec→ y
min→ zero inc(zero, y)→ f(y)

This filtered TRS is not useful because of the extra variable in the third rule.
Therefore, we propose to replace this variable by a fresh function ⊥, so that
the third rule becomes dec → ⊥. In general, though, ⊥ should be reducible to
any ground constructor term to keep the correctness of this replacement (i.e., ⊥
is nothing but a variant of gen), which makes it useless since any filtered TRS
extended with such a definition for ⊥ would be non-terminating by definition.

Luckily, in some cases, we may have a terminating definition for ⊥. For
instance, if the set {π(l) | l→ r ∈ R} is shallow, i.e., if all terms in this set have
the form f(t1, . . . , tn), where ti is either a variable or a ground (constructor) term
for all i = 1, . . . , n. A TRS is called left-shallow if the set of its left-hand sides is
shallow. In this case, it suffices to consider a (finite) definition of ⊥ that reduces
to any ground constructor term ti in the above set. This is safe from the point of
view of termination since, under the above conditions, ⊥ will be reducible to any
6 By abuse of notation, we keep the same symbol for the original function and the

filtered function with a possibly different arity.



(non-variable) argument in the left-hand side of the filtered rules and, thus, no
potentially infinite derivation might be broken by the introduction of the fresh
function ⊥. E.g., for the example above, we have

{π(l) | l→ r ∈ Rc} = {f(succ(zero)), min, dec, inc(zero, y)}

which is shallow. Hence the following definition for ⊥ would suffice: ⊥ → zero,
⊥ → succ(zero). The net effect is that we produced an equivalent DP problem


F(succ(zero))→ INC(dec,min)
F(succ(zero))→ DEC
F(succ(zero))→ MIN
INC(zero, y)→ F(y)

 ,



f(succ(zero))→ inc(dec,min)
min→ zero
dec→ ⊥

inc(zero, y)→ f(y)
⊥ → zero
⊥ → succ(zero)




that can be solved using standard techniques for the termination of rewriting
(e.g., AProVE [6]). Such an example could not be proved terminating using the
previous techniques because of the extra variable in the filtered rules.

In order to formalize our extension, we first need to recall the existing nota-
tion, terminology and results from the literature.

Given a left-linear constructor TRS R over the signature F = D ] C, we
denote by GEN(R) the following set of rules:

GEN(R) = { gen→ c(
n times︷ ︸︸ ︷

gen, . . . , gen) | c/n ∈ C, n > 0 }

where constants c() are simply denoted by c. We also denote by Rgen a TRS
over F ] {gen} resulting from augmenting R with GEN(R), in symbols Rgen =
R∪ GEN(R).

Variables are then replaced by generators in the obvious way: given a term
t ∈ T (F ,V), we let t̂ = tσ, with σ = {x 7→ gen | x ∈ Var(t)}. Note that t̂
is ground for any term t since all variables occurring in t are replaced by the
function gen.

We say that the set of reachable calls from a given term are the subterms
rooted by a defined function symbol (thus the name call) that occur in the rewrite
derivations issuing from this term. Formally, given a TRS R and a term t, we
define the set of reachable calls callsR(t) from t in R as follows: callsR(t) =
{ s|p | t →∗R s, with root(s|p) ∈ D for some position p }. The following
definition formalizes the notion of narrowing chain, a slight extension of the
standard notion of chain in term rewriting in order to consider an initial set of
terms (as specified by an abstract term) and an argument filtering:

Definition 2 (chain). Let R and P be TRSs over the signatures F = D ] C
and F ] = F ∪ {f ] | f/n ∈ D}, respectively. Let π be an argument filtering over
F that is extended over tuple symbols so that π(f ]) = π(f) for all f ∈ D and let
tα be an abstract term. A (possibly infinite) sequence of pairs s1 → t1, s2 → t2,
. . . from P is a (tα,P,R, π)-chain if there is a substitution σ : V 7→ T (F ,V)
such that the following conditions hold:7

7 As in [2], we assume fresh variables in every (occurrence of a) dependency pair and
that the domain of substitutions may be infinite.



– there is a term s ∈ callsRgen(t̂) for some t ∈ γ(tα) such that s] = ŝ1σ and
– t̂iσ →∗Rgen

ŝi+1σ for every two consecutive pairs in the sequence and, more-
over, we have π(ŝiσ), π(t̂iσ) ∈ T (F ]) for all i > 0 (i.e., π filters away all
occurrences of gen).

Unfortunately, not all argument filterings are useful in our context. In the fol-
lowing, we focus on what we call safe argument filterings.

Definition 3 (safe argument filtering). Let R be a TRS over a signature
F = D ] C. Let π be an argument filtering over F that is extended over tuple
symbols so that π(f ]) = π(f) for all f ∈ D and let tα = f(m1, . . . ,mn) be an
abstract term. We say that π is safe for tα in R if the following conditions hold:8

(1) mi = g for all i ∈ π(f),
(2) Var(π(t)) ⊆ Var(π(s)) for all rules s→ t ∈ R ∪DP (R).

Observe that condition (2) above is equivalent to the variable condition in [6].
We argue however that it is too restrictive for narrowing and in the next section
we introduce a transformation on the TRS R which allows for more freedom
when constructing a safe argument filtering.

Once a safe argument filtering has been found, it is possible to transform the
narrowing problem into a rewriting DP problem, as shown in [9, 12], and to solve
it using one of the many solvers available nowadays.

2.2 The ⊥-transformation

In the following, given a TRS R and an argument filtering π, we denote by
[R]π⊥ the TRS that results from R by replacing in R every extra variable of
π(R) with ⊥. Formally, [R]π⊥ = {l → rσ | l → r ∈ R with σ(x) = ⊥ if x ∈
Var(π(r)) \ Var(π(l)) and σ(x) = x otherwise }.

As in [12], given an argument filtering π and a TRS R, we replace the extra
variables of π(R) (if any) by the fresh symbol⊥, i.e., we replace π(R) by π([R]π⊥).
The novelty, then, is that we will also add a safe definition for ⊥. What is a
safe definition of ⊥? The following condition characterizes this notion. In what
follows, we denote by s→>p,R t any rewrite step s→q,R t with s|q a subterm of
s|p (i.e., any rewrite step where a subterm below position p has been reduced).
This notation is extended to rewrite derivations in the natural way.

Definition 4. Let R be a TRS, π an argument filtering, and tα an abstract
term. We say that a set of rules R⊥ defining ⊥ are safe for tα if s →∗>ε,Rgen

s′

implies π(s)→∗>ε,π([R]π⊥∪R⊥) π(s′) for all s ∈ callsRgen(t̂) with t ∈ γ(tα).9

The condition above is essential to guarantee that the connection between the
dependency pairs of the original TRS is not lost. Of course, a definition of R⊥
which is analogous to that of gen is always safe. This definition, however, contains
8 This is similar to the definition introduced in [12] and is slightly extended in [9].
9 This is a strict extension of the notion of safeness in [9].



size-increasing rules as soon as the signature of R contains constructors of non-
zero arity. There are cases, aside from the trivial case of no extra variables in
π(R), in which we can include a less aggressive definition of ⊥ and still be
able to ensure safeness. We are ready now to give a complete definition of our
transformation, which always produces a safe definition of ⊥.

Definition 5 (⊥-transformation). Let R be a TRS over the signature F , π
an argument filtering, tα an abstract term, and ⊥ a fresh symbol. Then we have

⊥(R, π, tα) = [R]π⊥ ∪R⊥

where R⊥ is defined as follows:

1. If π(R) does not contain extra variables, or it contains extra variables but
do not play any role in the rewrite derivations connecting dependency pairs
(see [9, Lemma 11] for a precise definition), then R⊥ = { }.

2. Otherwise, if π(R) is left-shallow, then R⊥ = {l → l|p | l → r ∈ π(R), p ∈
PosF (l), and p 6= ε }.

3. In any other case, we have R⊥ = { ⊥ → c(

n times︷ ︸︸ ︷
⊥, . . . ,⊥) | c/n ∈ C, n > 0 }.

The next lemma clarifies our interest in the above transformation:

Lemma 1. Let R be a TRS, π an argument filtering, tα an abstract term, and
⊥ a fresh symbol. Then ⊥(R, π, tα) enjoys the following properties:

– ⊥(R, π, tα) contains no extra variables;
– the definition R⊥ of ⊥ in ⊥(R, π, tα) is safe according to Def. 4.

If we look at the definition of ⊥(R, π, tα) in detail, cases (1) and (2) are ad-
vantageous. Obviously (3) is the least desirable case, being R⊥ generally a
non-terminating system (which does not necessarily imply an infinite narrow-
ing problem, since we consider derivations starting from an initial term).

The following result states the soundness of our approach:

Theorem 1. Let R be a left-linear constructor TRS over a signature F = D]C
and let tα be an abstract term. Let π be a safe argument filtering for tα in
⊥(R, π, tα) that is extended over tuple symbols so that π(f ]) = π(f) for all
f ∈ D. If there exists no infinite (tα,DP(R),⊥(R, π, tα), π)-chain, then γ(tα) is
;R-terminating.

Now, we derive a sufficient condition for the termination of narrowing in terms
of a standard dependency pair problem:

Theorem 2. Let R be a left-linear constructor TRS over a signature F = D]C
and let tα be an abstract term. Let π be a safe argument filtering for tα in
⊥(R, π, tα) that is extended over tuple symbols so that π(f ]) = π(f) for all
f ∈ D. If (π(DP (R)), π(⊥(R, π, tα))) is a finite DP problem, then there exist
no infinite (tα,DP(R),⊥(R, π, tα), π)-chains.



2.3 Mechanizing the approach

The problem of termination of narrowing boils down to computing a safe argu-
ment filtering and transforming the problem into a rewriting DP problem. The
argument filtering employed determines the form of the resulting rewriting DP
problem, and if too restrictive it effectively destroys the chances of succeeding
in obtaining a termination proof.

The new component of our approach consists in replacing the initial TRS R
with a new one, ⊥(R, π, tα), which relaxes the second condition in the definition
of a safe argument filtering, increasing the choice of safe argument filterings.
However, ⊥(R, π, tα) can include a set of rules R⊥ which may introduce increas-
ing rules into the picture when case (3) of Def. 5 is considered. Hence it is only
advisable to apply the transformation when the TRS considered falls into one
of the nice cases (1) or (2).

The problem of computing a safe argument filtering is approached as a search
problem. We propose the following strategy:

1. The starting point is a filtering π0 which enforces the first condition in Def. 3.
2. Then, we proceed by progressively refining π0 until a filtering π1 is obtained

which enforces the following condition: Var(π1(t)) ⊆ Var(π1(s)) for all de-
pendency pairs s→ t ∈ DP (R). Note that this is always possible, although
there are multiple choices.

3. At this point we proceed depending on R and π1:
– If we are in case (1) or (2) of Def. 5, then perform the ⊥-transformation

and apply Theorem 2 (note that this is always possible as the transfor-
mation replaces all the extra variables).

– Otherwise, then there is at least one extra variable in π1(R) and π1(R)
is not left-shallow:
• If there is an extra variable and there are one or more ways to refine
π1 to filter it away, then do so enforcing the condition in Step 2, and
continue repeating Step 3.

• If there is an extra variable left which cannot be filtered away, per-
form the transformation and apply Theorem 2.

In our running example, we have that (π0(DP (R)), π0(R)) is


F(succ(zero))→ INC(dec,min)
F(succ(zero))→ DEC
F(succ(zero))→ MIN
INC(zero, y)→ F(y)

 ,


f(succ(zero))→ inc(dec,min)

min→ zero
dec→ x

inc(zero, y)→ f(y)




At this point there is an extra variable x left, which cannot be filtered away. We
apply the transformation and since π0(R) is left-shallow, we get


F(succ(zero))→ INC(dec,min)
F(succ(zero))→ DEC
F(succ(zero))→ MIN
INC(zero, y)→ F(y)

 ,



f(succ(zero))→ inc(dec,min)
min→ zero
dec→ ⊥

inc(zero, y)→ f(y)
⊥ → zero
⊥ → succ(zero)




which can easily be proved terminating (using, e.g., AProVE [6]).



3 Discussion

In this work, we improve a previous approach to the termination analysis of
narrowing. Basically, our main achievement is relaxing the so-called variable
condition, allowing for extra variables in cases where they are not harmful. This
includes the case when the variables are not used in between pairs in a chain, and
the case when the filtered TRS is left-shallow. This is a significant improvement
over [12] and can also be applied to remove some extra variables within the
termination analysis for logic programs of [10].

As for future work, we plan to formalize the notion of termination from an
initial goal in general, which should pave the way for an adequate formalization
of the approach presented in this abstract. Moreover we consider the use of static
analysis on the TRS in order to compute an approximation of the possible values
that an extra variable may take in a given narrowing computation. When this
set of possible values is finite, even if the filtered TRS is not left-shallow, a more
accurate definition for ⊥ can be constructed.

References

1. S. Antoy and M. Hanus. Overlapping Rules and Logic Variables in Functional
Logic Programs. In Proc. of ICLP’06, pages 87–101. Springer LNCS 4079, 2006.

2. T. Arts and J. Giesl. Termination of Term Rewriting Using Dependency Pairs.
Theoretical Computer Science, 236(1-2):133–178, 2000.

3. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.
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Abstract. We propose a new grouping operator for logic programs based on the
bagof predicate. The novelty of our proposal lies in the use of modes, which
allows us to prove properties regarding groundness of computed answer substi-
tutions and termination. Moreover, modes allow us to define a somewhat declar-
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1 Introduction

In a system designed to answer queries (be it a database or a logic program), an aggre-
gate function is designed to be carried out on the set of answers to a given query rather
than on a single answer. For example, in a Datalog program containing one entry per
employee, one needs aggregate functions to compute data such as the average age or
salary of the employee, the number of employees etc.

Grouping and aggregation are useful in practice, and paramount in database sys-
tems. In fact, the reason why we address the problem here is of a practical nature: we
are developing a language for trust management [5,7,17] called TuLiP [9,8]. TuLiP is
based on (partially function-free) moded logic programming, in which a logic program
is augmented with an indication of which are the input and the output positions of each
predicate. Modes allow to prove program properties such as groundness of answers
and termination for those programs which respect them (also called well-moded pro-
grams) [2]. The problem we faced is the following: in order to write reputation-based
rules within TuLiP, we must extend it in such a way that it allows statements such as
“employee X will be granted access to confidential document Y provided that the ma-
jority of senior executives recommends him”, which require the use of grouping and
aggregation.

To realise aggregates in logic programming, there are two possible approaches. In
the first approach, grouping and aggregation is implemented as one atomic operation.
This is equivalent to having aggregates as built ins. In the second one, one first calls a
grouping query (like bagof), and then computes the aggregate on the result of the group-
ing. We prefer this second approach for a number of reasons: first, grouping queries are



interesting on their own, especially in Trust Management where sometimes we need
to query a specific subset of entities without performing any aggregate operation; sec-
ondly, by separating grouping from aggregation one can use the same data set for dif-
ferent aggregate operations.

So, basically, what we need then is something similar to the well-known bagof pred-
icate, which, however, is not suitable for our purposes for two reasons: first, it is not
moded and – being a higher-order predicate – there is no straightforward way to as-
sociate a mode to it; secondly, it imposes a somewhat restrictive condition on variable
occurrences which can be circumvented, but at the cost of using an ugly construction.

The basic contribution of this paper is the definition and the study of the properties
of a new grouping predicate moded_bagof, which can be seen as a moded counterpart
of bagof. We show that – in presence of well-moded programs – moded_bagof enjoys
the usual properties of moded predicates, namely groundness of c.a. substitutions and
(under additional conditions) termination. Moreover, modes allow to lift the restrictive
condition on variable sharing we mentioned before. As we will see – assigning modes
to moded_bagof is not trivial, as it depends on the mode of the subgoal it contains.

We define the semantics of moded_bagof in terms of computed answer substitutions.
We tried to be precise while avoiding to resort to higher order theories. We succeeded
but only to some extent: a disadvantage of having grouping and aggregation as separate
operations is that in order to be able to define fully declarative semantics for grouping,
one needs to extend the language with set-based primitives like set membership (∈) or
set-equation (=). This is a not trivial task and significant work in this area has been
carried out (see Section Related Work). Alternatively, one can use a more practical
approach and use a list as a representation of a multiset. Because a list is not a multiset
(two lists with different order of the elements are two different lists), the declarative
semantics cannot be precise in this case.

The paper is structured as follows. In Section 2 we present the preliminaries on
Logic Programming and notational conventions used in this paper. In Section 3 we
state the basic facts about well-moded logic programs. In Section 4 we show how to do
grouping in Prolog and we define our own grouping atom moded_bagof. In Section 5
we show an operational semantics of moded_bagof by defining the computed answer
substitutions for programs that do not contain grouping subgoals. In Section 6 we show
how to use moded_bagof in programs containing grouping subgoals. Here we gener-
alise the notion of well-moded logic programs to those including grouping subgoals. In
Section 7 we discuss the properties of the well-moded programs containing grouping
atoms. In particular, we prove two important properties: groundness of computed an-
swer substitutions and termination. The paper finishes with Related Work in Section 8
and Conclusions in Section 9.

2 Preliminaries on Logic Programming (without grouping)

In what follows we study definite logic programs executed by means of LD-resolution,
which consists of the SLD-resolution combined with the leftmost selection rule. The
reader is assumed to be familiar with the terminology and the basic results of the se-
mantics of logic programs [1]. We use boldface to denote sequences of objects; there-



fore t denotes a sequence of terms while B is a sequence of atoms (i.e. a query). We
denote atoms by A,B,H, . . . , queries by A,B,C, . . . , clauses by c, d, . . . , and pro-
grams by P . For any atom A, we denote by Pred(A) the predicate symbol of A. For
example, if A = p(a,X), then Pred(A) = p. The empty query is denoted by� and the
set of clauses defining a predicate is called a procedure.

For any syntactic object (e.g., atom, clause, query) o, we denote by Var(o) the
set of variables occurring in o. Given a substitution σ = {x1/t1, ..., xn/tn} we say
that {x1, . . . , xn} is its domain (denoted by Dom(σ)) and that Var({t1, ..., tn}) is its
range (denoted by Ran(σ)). Further, we denote by Var(σ) = Dom(σ) ∪ Ran(σ). If,
t1, ..., tn is a permutation of x1, ..., xn then we say that σ is a renaming. The composi-
tion of substitutions is denoted by juxtaposition (θσ(X) = σ(θ(X))). We say that an
syntactic object (e.g., an atom) o is an instance of o′ iff for some σ, o = o′σ, further
o is called a variant of o′, written o ≈ o′ iff o and o′ are instances of each other. A
substitution θ is a unifier of objects o and o′ iff oθ = o′θ. We denote by mgu(o, o′) any
most general unifier (mgu, in short) of o and o′.

(LD) Computations are sequences of LD derivation steps. The non-empty query
q : B,C and the clause c : H ← B (renamed apart wrt q) yield the resolvent (B,C)θ,
provided that θ = mgu(B,H). A derivation step is denoted by B,C θ=⇒c (B,C)θ. c
is called its input clause. A derivation is obtained by iterating derivation steps. A maxi-

mal sequence δ := B0
θ1=⇒c1 B1

θ2=⇒c2 · · ·Bn
θn+1=⇒cn+1 Bn+1 · · · of derivation steps

is called an LD derivation of P ∪ {B0} provided that for every step the standardisation
apart condition holds, i.e., the input clause employed at each step is variable disjoint
from the initial query B0 and from the substitutions and the input clauses used at ear-
lier steps. If the program P is clear from the context and the clauses c1, . . . , cn+1, . . .
are irrelevant, then we drop the reference to them. If δ is maximal and ends with the
empty query (Bn = �) then the restriction of θ to the variables of B is called its
computed answer substitution (c.a.s., for short). The length of a (partial) derivation δ,
denoted by len(δ), is the number of derivation steps in δ.

A multiset is a collection of elements that are not necessarily distinct [18]. The
number of occurrences of an element x in a multisetM is its multiplicity in the multiset,
and is denoted by mult(x,M). When describing multisets we use the notation that is
similar to that of the sets, but instead of { and } we use [[ and ]] respectively.

3 Well-Moded Logic Programs

Informally speaking, a mode indicates how the arguments of a relation should be used,
i.e. which are the input and which are the output positions of each atom, and allow one
to derive properties such as absence of run-time errors for Prolog built-ins, or absence
of floundering for programs with negation [2].

Definition 1 (Mode). Consider an n-ary predicate symbol p. By a mode for p we mean
a function mp from {1, . . . , n} to {In,Out}.

If mp(i) = In (resp. Out), we say that i is an input (resp. output) position of p
(with respect to mp). We assume that each predicate symbol has a unique mode associ-
ated to it; multiple modes may be obtained by simply renaming the predicates. We use



the notation (X1, . . . , Xn) to indicate the mode m in which m(i) = Xi. For instance,
(In,Out) indicates the mode in which the first (resp. second) position is an input (resp.
output ) position. To benefit from the advantage of modes, programs are required to be
well-moded [2], which means that they have to respect some correctness conditions re-
lating the input arguments to the output arguments. We denote by In(A) (resp. Out(A))
the sequence of terms filling in the input (resp. output) positions ofA, and by VarIn(A)
(resp. VarOut(A)) the set of variables occupying the input (resp. output) positions of
A.

Definition 2 (Well-Moded). A clause H ← B1, . . . , Bn is well-moded if for all i ∈
[1, n]

VarIn(Bi) ⊆
⋃i−1
j=1 VarOut(Bj) ∪VarIn(H), and

VarOut(H) ⊆
⋃n
j=1 VarOut(Bj) ∪VarIn(H).

A query A is well-moded iff the clauseH ← A is well-moded, whereH is any (dummy)
atom of zero arity. A program is well-moded if all of its clauses are well-moded.

Note that the first atom of a well-moded query is ground in its input positions and a
variant of a well-moded clause is well-moded. The following lemma, due to [2], shows
the “persistence” of the notion of well-modedness.

Lemma 1. An LD-resolvent of a well-moded query and a well-moded clause that is
variable-disjoint with it, is well-moded. �

As a consequence of Lemma 1 we have the following well-known properties. For
the proof we refer to [4].

1. Let P be a well-moded program and A be a well-moded query. Then for every
computed answer σ of A in P , Aσ is ground.

2. LetH ← B1, . . . , Bn be a clause in a well-moded program P . IfA is a well-moded
atom such that γ0 = mgu(A,H) and for every i ∈ [1, j], j ∈ [1, n− 1] there exists
a successful LD derivation Biγ0, . . . , γi−1

γi−→P � then Bj+1γ0, . . . , γj is a well-
moded atom.

4 Grouping in Prolog

Prolog already provides some grouping facilities in terms of the built-in predicate bagof.
The bagof predicate has the following form:

bagof(Term,Goal,List).

Term is a prolog term (usually a variable), Goal is a callable Prolog goal, and List is
a variable or a Prolog list. The intuitive meaning of bagof is the following: unify List
with the list (unordered, duplicates retained) of all instances of Term such that Goal is
satisfied. The variables appearing in Term are local to the bagof predicate and must not



appear elsewhere in a clause or a query containing bagof3. If there are free variables
in Goal not appearing in Term, bagof can be re-satisfied generating alternative values
for List corresponding to different instantiations of the free variables in Goal that do
not occur in Term. The free variables in Goal not appearing in Term become therefore
grouping variables. By using existential quantification, one can force a variable in Goal
that does not appear in Term to be treated as local.

Let us look at some examples of grouping using the bagof predicate.

Example 1. Consider program P consisting of the following four ground atoms:
p(a,1), p(a,2), p(b,3), p(b,4). Now, query Q = bagof(Y,p(Z,Y),X)
receives the following two answers: (1) {X/[1,2],Z/a} and (2) {X/[3,4],Z/b}.
Here, because Z is an uninstantiated free variable, bagof treats Z as a grouping vari-
able and Y as a local variable. Thus, for each ground instance of Z, such that there
exists a value of Y such that p(Z,Y) holds, bagof returns a list X containing all in-
stances of Y. In this case bagof returns two lists: the first containing all instances of
Y such that p(a,Y) holds, the second containing all instances of Y such that p(b,Y)
holds. In the query above Y is a local variable. If we also want to make Z local,
then we have to explicitly use existential quantification for Z. The query becomes
Q = bagof(Y,Zˆp(Z,Y),X) and there is only one answer {X/[1,2,3,4]}.
Now both Y and Z are local: Y because it appears in Term, Z because it is explicitly
existentially quantified.

In TuLiP, we use modes to guide the credential distribution and discovery and to
guarantee groundness of the computed answer substitutions for the queries. Because
we want to state the groundness and termination results also for the programs con-
taining grouping atoms, we need a moded version of bagof. Therefore we introduce
moded_bagof, which a syntactical variant of bagof and is moded. We decided to use a
slightly different syntax for moded_bagof comparing to that of the original bagof built-
in. First of all we want to make grouping variables explicit in the notation. Secondly,
we want to eliminate the need of using the existential quantification for making some of
the variables local in the grouping atom. By using different notation we can simplify the
definition of local variables in the grouping atom which makes the presentation easier
to follow.

Definition 3. A grouping atom moded_bagof is an atom of the form:

A = moded_bagof(t, gl,Goal, x)

where t is a term, gl is a list of distinct variables each of which appears in Goal, Goal
is an atomic query (but not a grouping atom itself), and x is a free variable.

The moded_bagof grouping atom has similar semantics to that of bagof, with one
exception: the original bagof fails if Goal has no solution while moded_bagof returns
an empty list (in other words moded_bagof never fails).

3 This is the condition on variable sharing we mentioned in the introduction; it is not problematic
as it can be circumvented as follows: consider the goal bagof(p(X, Y ), q(X, Y, Z), W ), if X
occurs elsewhere in the clause or the query containing this goal then one should rewrite it as
bagof (T,(T=p(X,Y),q(X,Y,Z)),W).



Definition 3 requires that Goal is atomic. This simplifies the treatment (in particular
the treatment of modes) and is not a real restriction, as one can always define new
predicates to break down a nested grouping atom into a number of grouping atoms that
satisfy Definition 3.

Example 2. Consider again the program from Example 1. The moded_bagof equivalent
for the query bagof(Y,p(Z,Y),X) is moded_bagof(Y,[Z],p(Z,Y),X) and
for the query bagof(Y,Zˆp(Z,Y),X) it is moded_bagof(Y,[],p(Z,Y),X).

5 Semantics of atomic moded_bagof queries

Before investigating the use of moded_bagof atoms as subgoals in programs, in this
section we focus on the semantics of moded_bagof when used in combination with
programs in which moded_bagof atoms themselves do not occur. This way we can
focus on the semantics of moded_bagof without being immediately distracted by the
problems related to the termination of logic programs containing moded_bagof atoms
as subgoals (we extend the use of moded_bagof to programs in the Section 6).

A subtle difficulty in providing a reasonable semantics for moded_bagof is due to
the fact that we have to take into consideration the multiplicity of answers. In a typ-
ical situation, moded_bagof will be used to compute e.g. averages, as in the query
moded_bagof(W,[Y],p(Y,W),X), average(X,Z). To this end, X should ac-
tually be instantiated to a multiset of terms corresponding to the answers of the query
p(Y,W). A number of researchers investigated the problem of incorporating sets into
a logic programming language (see Related Work for an overview). Here, we follow
a more practical approach and we represent a multiset with a Prolog list. The disad-
vantage of using a list is that it is order-dependent: by permuting the elements of a
list one can obtain a different list. In the (natural) implementation, given the query
moded_bagof(t, gl,Goal, x), the c.a.s. will instantiate x to a list of elements, the or-
der of which is dependent on the order with which the computed answer substitutions
to the query Goal are computed. This depends in turn on the order of the clauses
in the program. This means that we cannot provide the declarative semantics for our
moded_bagof construct unless we introduce multisets as first-class citizens of the lan-
guage.

The fact that we are unable to give fully declarative semantics of moded_bagof
does not prevent us from proving important properties of groundness of the computed
answer substitutions and termination of programs containing grouping atoms. Below,
we define the computed answer substitution to moded_bagof for two cases: in the first
case we assume that multisets of terms are part of the universe of discourse and that
a multiset operator [[ ]] is available, while in the second case we resort to ordinary
Prolog lists. The disadvantage of using lists is that they are order-dependent, and that
if a multiset contains two or more different elements, then there exists more than one
list “representing” it. Here we simply accept this shortcoming and tolerate the fact that,
in real Prolog programs, the aggregating variable x will be instantiated to one of the
possible lists representing the multiset of answers.



Definition 4 (c.a.s. to moded_bagof (using multisets and Prolog lists)). Let P be a
program, and A = moded_bagof(t, gl, Goal, x) be a query. The multiset [[α1, . . . , αk ]]
of computed answer substitutions of P ∪ A is defined as follows:

1. Let Σ = [[σ1, . . . , σn ]] be the multiset of c.a.s. of P ∪ Goal.
2. Let Σ1, . . . Σk be a partitioning of Σ such that two answers σi and σj belong to

the same partition iff glσi = glσj ,
3. (Multisets) For each Σi, let tsi be the multiset of terms obtained by instantiating t

with the substitutions σi in Σi, i.e. tsi = [[ tσi | σi ∈ Σi ]], and let gli = glσ where
σ is any substitution from Σi.

3. (Prolog Lists) For each i ∈ [1, k], let ∆i be an ordering on Σi, i.e. a list of substi-
tutions containing the same elements of Σi, counting multiplicities. Then, for each
∆i = [σi1 , . . . , σim ], let tsi be the list of terms obtained by instantiating t with the
substitutions in ∆i, i.e. tsi = [tσi1 , . . . , tσim ], and let gli = glσ where σ is any
substitution from ∆i.

4. For i ∈ [1, k], αi is the substitution {gl/gli, x/tsi}.

Example 3. Let P be a program containing the following facts: p(a,c,1),
p(a,d,1), p(a,e,3), p(b,c,2), p(b,d,2), p(b,e,4).
Let A = moded_bagof(Z,[Y],p(Y,W,Z),X). Then P ∪A yields the following
two c.a.s.: α1 = {Y/a,X/[[1,1,3]]} and α2 = {Y/b,X/[[2,2,4]]}. If, instead
of multisets, we use Prolog lists we simply have: α1 = {Y/a,X/[1,1,3]} and α2 =
{Y/b,X/[2,2,4]}.

Since Prolog does not support multisets directly, in the sequel we use lists. In or-
der to bring Definition 4 into practice, i.e. to really compute the answer to a query
moded_bagof(t, gl,Goal, x), we have to require that P ∪ Goal terminates.

6 Using moded_bagof in queries and programs

In this section we discuss the use of moded_bagof in programs. In particular, we show
how to use modes and the program stratification to guarantee groundness of computed
answer substitutions and termination.

We begin with the definition of a mode of the moded_bagof atom.

Modes The mode of a query moded_bagof(t, gl,Goal, x) depends on the mode of the
Goal, so it is not fixed a priori. In addition, we introduce the concept of a local variable.

Definition 5. Let A = moded_bagof(t, gl,Goal, x). We define the following sets of
input, output and local variables for A:

– VarIn(A) = VarIn(Goal),
– VarOut(A) = (Var(gl) \VarIn(A)) ∪ {x},
– VarLocal(A) = Var(A) \ (VarIn(A) ∪VarOut(A)),



For example, let A = moded_bagof(q(W,Y,Z),[Y],p(W,Y,Z),X) be an ag-
gregate atom, and assume that the original mode of p is (In,Out ,Out). Then,
VarIn(A) = {W}, VarOut(A) = {X,Y}, and VarLocal(A) = {Z}.

Now, we can extend the definition of well-moded programs to take into consider-
ation moded_bagof atoms; the only extra care we have to take is that local variables
should not appear elsewhere in the clause (or query).

Definition 6 (Well-Moded-Extended). We say that the clause H ← B1, . . . , Bn is
well-moded if for all i ∈ [1, n]

VarIn(Bi) ⊆
⋃i−1
j=1 VarOut(Bj) ∪VarIn(H), and

VarOut(H) ⊆
⋃n
j=1 VarOut(Bj) ∪VarIn(H).

and ∀Bi ∈ {B1, . . . , Bn}

VarLocal(Bi) ∩

 ⋃
j∈{1,...,i−1,i+1,...,n}

Var(Bj) ∪Var(H)

 = ∅.

A query A is well-moded iff the clauseH ← A is well-moded, whereH is any (dummy)
atom of zero arity. A program is well-moded if all of its clauses are well-moded.

LD Derivations with Grouping We extend the definition of LD-resolution to queries
containing moded_bagof atoms.

Definition 7 (LD-resolvent with grouping). Let P be a program. Let ρ : B,C be a
query. We distinguish two cases:

1. if B is a moded_bagof atom and α is a c.a.s. for B in P then we say that B,C
and P yield the resolvent Cα. The corresponding derivation step is denoted by
B,C α=⇒P Cα.

2. if B is a regular atom and c : H ← B is a clause in P renamed apart wrt ρ such
that H and B unify with mgu θ, then we say that ρ and c yield resolvent (B,C)θ.

The corresponding derivation step is denoted by B,C θ=⇒c (B,C)θ.

As usual, a maximal sequence of derivation steps starting from query B is called an LD
derivation of P ∪ {B} provided that for every step the standardisation apart condition
holds. ut

Example 4. In a company, there is a policy that a confidential project document can
be read by any employee recommended by majority of senior executives of one of the
project partners. Such a policy can be modelled by the following rule (a credential in
TuLiP):

read_doc(company,X) :- partner(company,P),

moded_bagof(Y1,[],senior(P,Y1),Z1),

moded_bagof(Y2,[X],(senior(P,Y2),recommends(Y2,X)),Z2)),

length(Z1,L1), length(Z2,L2), L2 > L1/2.



Assume that there exist the following credentials:

partner(company,company). senior(partnerA,sandro).

partner(company,partnerA). senior(partnerA,mark).

partner(company,partnerB). senior(partnerA,pieter).

partner(company,partnerC). senior(partnerA,john).

recommends(sandro,marcin). recommends(pieter,marcin).

recommends(john,marcin).

One of the things we try to handle in TuLiP is where to store the credentials so that they
can be found later during the credential discovery. If we assume that mode(read_doc) =
mode(partner) = mode(senior) = mode(recommends) = (In,Out) then by the
credential storage principles of TuLiP, all the credentials will be stored by their is-
suers (indicated by the first argument in an atom). TuLiP’s Lookup and Inference Al-
goRithm (LIAR) is guaranteed to find all the relevant credentials. Now, given the query
read_doc(company,X), one expects to receive {X/marcin} as the only c.a.s. In-
deed, the answers for the two moded_bagof(...) subgoals are {Z1/[sandro,
mark,pieter,john]} for the first one and {X/marcin,Z2/[sandro,pieter,
john]} for the second.
Notice the importance of the correct discovery of the credentials. For instance, if one of
the recommends(...) credentials is not found, the query would fail, which means
that marcin would not be able to access the document even though he has sufficient
permissions.

7 Properties

There are two main properties we can prove for programs containing grouping atoms:
groundness of computed answer substitutions and – under additional constraints – ter-
mination.
Groundness Well-moded moded_bagof atoms enjoy the same features as regular well-
moded atoms. The following lemma is a natural consequence of Lemma 1.

Lemma 2. Let P be a well-moded program and A = moded_bagof(t, gl,Goal, x)
be a grouping atom in which gl is a list of variables. Take any ground σ such that
Dom(σ) = VarIn(A). Then each c.a.s. θ of P ∪ Aσ is ground on A’s output vari-
ables, i.e. Dom(θ) = VarOut(A) and Ran(θ) = ∅.

Proof. By noticing that VarIn(A) = VarIn(Goal) and that each variable in the group-
ing list gl appears in Goal, the proof is a straightforward consequence of Lemma 1. ut

Termination Termination is particularly important in the context of grouping queries,
because if Goal does not terminate (i.e. if some LD derivation starting in Goal is in-
finite) then the grouping atom moded_bagof(t, gl,Goal, x) does not return any answer
(it loops).

A concept we need in the sequel is that of terminating program; since we are dealing
with well-moded programs, the natural definition we refer to is that of well-terminating
programs.



Definition 8. A well-moded program is called well-terminating iff all its LD-derivations
starting in a well-moded query are finite.

Termination of (well-moded) logic programs has been exhaustively studied (see for
example [3,14]). Here we follow the approach of Etalle, Bossi, and Cocco [14].

If the grouping atom is only in the top-level query and there are no grouping atoms
in the bodies of the program clauses then, to ensure termination, it is sufficient to re-
quire that P be well-terminating in the way described by Etalle et al. [14]: i.e. that for
every well-moded non-grouping atom A, all LD derivations of P ∪A are finite. If this
condition is satisfied then all LD derivations of P ∪ Goal are finite and then the query
moded_bagof(t, gl,Goal, x) terminates (provided it is well-moded).

On the other hand, if we allow grouping atoms in the body of the clauses, then we
have to make sure that the program does not include recursion through a grouping atom.
The following example shows what can go wrong here.

Example 5. Consider the following program:

(1) p(X,Z) :- moded_bagof(Y,[X],q(X,Y),Z).
(2) q(X,Z) :- moded_bagof(Y,[X],p(X,Y),Z).
(3) q(a,1). (4) q(a,2). (5) q(b,3). (6) q(b,4).

Here p and q are defined in terms of each other through the grouping operation.
Therefore p(X,Z) cannot terminate until q(X,Y) terminates (clause 1). Compu-
tation of q(X,Y) in turn depends on the termination of the grouping operation on
p(X,Y) (clause 2). Intuitively, one would expect that the model of this program con-
tains q(a,1), q(a,2), q(b,3), and q(b,4). However, if we apply the extended
LD resolvent (Definition 7) to compute the c.a.s. of p(X,Y) we see that the computa-
tion loops.

In order to prevent this kind of problems, to guarantee termination we require pro-
grams to be aggregate stratified [16]. Aggregate stratification is similar to the con-
cept of stratified negation [1], and puts syntactical restrictions on the aggregate pro-
grams so that recursion through moded_bagof does not occur. For the notation, we
follow Apt et al. in [1]. Before we proceed to the definition of aggregate stratified pro-
grams we need to formalise the following notions. Given a program P and a clause
H ← . . . , B, . . . . ∈ P :

– if B is a grouping atom moded_bagof(t, gl,Goal, x) then we say that Pred(H)
refers to Pred(Goal);

– otherwise, we say that Pred(H) refers to Pred(B).

We say that relation symbol p depends on relation symbol q in P , denoted p w q, iff
(p, q) is in the reflexive and transitive closure of the relation refers to. Given a non-
grouping atom B, the definition of B is the subset of P consisting of all clauses with
a formula on the left side whose relation symbol is Pred(B). Finally, p ' q ≡ p v
q ∧ p w q means that p and q are mutually recursive, and p A q ≡ p w q ∧ p 6' q
means that p calls q as a subprogram. Notice that A is a well-founded ordering.



Definition 9. A program P is called aggregate stratified if for every clause H ←
B1, . . . , Bm, in it, and every Bj in its body if Bj is a grouping atom
Bj = moded_bagof(t, gl,Goal, x) then Pred(Goal) 6' Pred(H).

Given the finiteness of programs it is easy to show that a program P is aggregate strati-
fied iff there exists a partition of it P = P1∪ · · ·∪Pn such that for every i ∈ [1, . . . , n],
and every clause cl = H ← B1 . . . , Bm ∈ Pi, and every Bj in its body, the following
conditions hold:

1. ifBj = moded_bagof(. . . , . . . ,Goal, . . .) then the definition of Pred(Goal) is con-
tained within

⋃
j<i Pj ,

2. otherwise the definition of Pred(B) is contained within
⋃
j≤i Pj .

Stratification alone does not guarantee termination. The following (obvious) exam-
ple demonstrates this.

Example 6. Take the following program:

q(X,Y) :- r(X,Y).
r(X,Y) :- q(X,Y).
p(Y,X) :- moded_bagof(Z,[Y],q(Y,Z),X).

Notice that q ' r. This program is aggregate stratified, but the query p(Y,X) will not
terminate.

In order to handle the problem of Example 6 we need to modify slightly the classical
definition of termination. The following definition relies on the fact that the programs
we are referring to are aggregate stratified.

Definition 10 (Termination of Aggregate Stratified Programs). Let P be an aggre-
gate stratified program. We say that P is well-terminating if for every well-moded atom
A the following conditions hold:

1. All LD derivations of P ∪A are finite,
2. For each LD derivation δ of P ∪A, for each grouping atom moded_bagof(t, gl,
Goal, x) selected in δ, P ∪ Goal terminates.

The classical definition of termination considers only point (1). Here however, we have
grouping atoms which actually trigger a side goal which is not taken into account by (1)
alone. This is the reason why we need (2) as well. Notice that the notion is well-defined
thanks to the fact that programs are aggregate stratified.

To guarantee termination, we can combine the notion of aggregate stratified pro-
gram above with the notion of well-acceptable program introduced by Etalle, Bossi,
and Cocco in [14] (other approaches are also possible). We now show how.

Definition 11. Let P be a program and let BP be the corresponding Herbrand base. A
function | | is a moded level mapping iff

1. it is a level mapping for P , namely it is a function | | : BP → N, from ground
atoms to natural numbers;



2. if p(t) and p(s) coincide in the input positions then |p(t)| = |p(s)|.
For A ∈ BP , |A| is called the level of A. ut

Condition (2) above states that the level of an atom is independent from the terms
filling in its output positions. Finally, we can report the key concept we use in order to
prove well-termination.

Definition 12. (Weakly- and Well-Acceptable [14]) Let P be a program, | | be a level
mapping and M a model of P .

– A clause of P is called weakly acceptable (wrt | | and M ) iff for every ground
instance of it, H ← A, B,C,

if M |= A and Pred(H) ' Pred(B) then |H| > |B|.

P is called weakly acceptable with respect to | | and M iff all its clauses are.
– A programP is called well-acceptable wrt | | andM iff | | is a moded level mapping,
M is a model of P and P is weakly acceptable wrt them. ut

Notice that a fact is always both weakly acceptable and well-acceptable; furthermore
if MP is the least Herbrand model of P , and P is well-acceptable wrt | | and some
model I then, by the minimality of MP , P is well-acceptable wrt | | and MP as well.
Given a program P and a clause H ← . . . , B, . . . in P , we say that B is relevant iff
Pred(H) ' Pred(B). For the weakly and well-acceptable programs the norm has to
be checked only for the relevant atoms, because only the relevant atoms might provide
recursion. Notice then that, because we additionally require that programs are aggregate
stratified, grouping atoms in a clause are not relevant (called as subprograms).
We can now state the main result of this section.

Theorem 1. Let P be a well-moded aggregate stratified program.

– If P is well-acceptable then P is well-terminating.

Proof. (Sketch). Given a well-moded atom A, we have to prove that (a) all LD deriva-
tions starting in A are finite and that (b) for each LD derivation δ of P ∪A, for each
grouping atom moded_bagof(t, gl,Goal, x) selected in δ, P ∪ Goal terminates.

To prove (a) one can proceed exactly as done in [14], where the authors use the
same notions of well-acceptable program: the fact that here we use a modified version
of LD-derivation has no influence on this point: since grouping atoms are resolved by
removing them, they cannot add anything to the length of an LD derivation.

On the other hand, to prove (b) one proceeds by induction on the strata of P . Notice
that at the moment that the grouping atom is selected, Goal is well-moded (i.e., ground
in its input position). Now, for the base case if Goal is defined in P1, then, by (a) we
have that all LD-derivations starting in Goal are finite, and since we are in stratum P1

(where clause bodies cannot contain grouping atoms) no grouping atom is ever selected
in an LD derivation starting in Goal. So P ∪ Goal terminates.

The inductive case is similar: if Goal is defined in Pi+1, then, by (a) we have that all
LD-derivations starting in Goal are finite, and since we are in stratum Pi+1 if a grouping
atom moded_bagof(t′, gl′, Goal′, x′) is selected in an LD derivation starting in Goal,
we have that Goal′ must be defined in P1 ∪ · · · ∪ Pi, so that – by inductive hypothesis
– we know that P ∪Goal′ terminates. Hence the thesis. ut



8 Related Work

Aggregate and grouping operations are given lots of attention in the logic programming
community. In the resulting work we can distinguish two approaches: (1) in which the
grouping and aggregation is performed at the same time, and (2) – which is closer to
our approach – in which grouping is performed first returning a multiset and then an
aggregation function is applied to this multiset.

In the first approach an aggregate subgoal is given by group_by(p(x, z), [x], y =
F(E(x, z))), which is equivalent to y = F([[E(x, z) : ∃(z)p(x, z) ]]). Here x are the
grouping variables, p(x, z) is a so called aggregation predicate, and E(x, z) is a tuple
of terms involving some subset of the variables x ∪ z. F is an aggregate function that
maps a multiset to a single value. The variables x and y are free in the subgoal while
z are local and cannot appear outside the aggregate subgoal. In other words, except for
output variable y, if a variable does not appear on the grouping list, this variable is local.
The early declarative semantics for group_by was given by Mumick et al. [18]. In this
work, aggregate stratification is used to prevent recursion through aggregates. Later,
Kemp and Stuckey [16] provide the declarative semantics for group_by in terms of
well-founded and stable semantics. They also examine different classes of aggregate
programs: aggregate stratified, group stratified, magical stratified, and also monotonic
and semi-ring programs. From a more recent work, Faber et al. [15] also rely on ag-
gregate stratification and they define a declarative semantics for disjunctive programs
with aggregates. They use the intensional set definition notation to specify the multiset
for the aggregate function. Denecker et al. [11] point out that requiring the programs
to be aggregate stratified might be too restrictive in some cases and they propose a
stronger extension of the well-founded and stable model semantics for logic programs
with aggregates (called ultimate well-founded and stable semantics). In their approach,
Denecker et al. use the Approximation Theory [10]. The work of Denecker et al. is
continued and further extended by Pelov et al. [19].

In the second approach, where the grouping is separated from aggregation (as in
our approach), the grouping operation is represented by an intensional set definition.
This approach uses an (intensional) set construction operator returning a multiset of an-
swers which is then passed as an argument of an aggregate function: m = [[E(x, z) :
∃(z)p(x, z) ]], y = F(m). To be handled correctly (with a well defined declarative se-
mantics), this approach requires multisets to be introduced as first-class citizens of the
language. Dovier, Pontelli, and Rossi [13] introduce intensionally defined sets into the
constraint logic programming language CLP({D}) where D can be for instance FD for
finite domains or R for real numbers. In their work, Dovier et al. concentrate on the
set-based operations and so, they do not consider multisets directly. Interestingly, they
treat the intensional set definition as a special case of an aggregate subgoal in which F
is a function which given a multiset m as an argument returns the set of all elements in
m – i.e. F removes duplicates from m.

Introducing (multi)sets to a pure logic programming language (i.e. not relying on a
CLP scheme) is also a well-researched area. From the most prominent proposals, Dovier
et al. [12] propose an extended logic programming language called {log} (read “set-
log”) in which sets are first-class citizens. The authors introduce the basic set operations



like set membership ∈ and set equality = along with their negative counterparts /∈ and
6=.

Concerning multisets directly, Ciancarini et al. [6] show how to extend a logic pro-
gramming language with multisets. They strictly follow the approach of Dovier et al.
[12]. Important to notice here, is that these earlier works of Dovier et al. and Ciancarini
et al. (as well as most of other related work on embedding sets in a logic programming
language – see Dovier et al. [13,12] for examples) focus on the so called extensional set
construction – which basically means that a set is constructed by enumerating the ele-
ments of the set. This is not suitable for our work as this does not enable us to perform
grouping.

Moded Logic Programming is well-researched area [2,20]. However, modes have
been never applied to aggregates. We also extend the standard definition of a mode to
include the notion of local variables. By incorporating the mode system we are able to
state the groundness and termination results for the bagof -like operations.

9 Conclusions

In this paper we study the grouping operations in Prolog using the standard Prolog
built-in predicate bagof. Grouping is needed if we want to perform aggregation, and we
need aggregation in TuLiP to be able to model reputation systems. In order to make the
grouping operations easier to integrate with TuLiP, we add modes to bagof (we call the
moded version moded_bagof). We extend the definition of a mode by allowing some
variables in a grouping atom to be local. Finally, we show that for the class of well-
terminating aggregate stratified programs the basic properties of well-modedness and
well-termination also hold for programs with grouping.

Future Work At the University of Twente we develop a new Trust Management lan-
guage TuLiP. TuLiP is a function-free first-order language that uses modes to support
distributed credential discovery. In Trust Management, the need of having support for
aggregate operations is widely accepted. This would allow one to bridge two related yet
different worlds of certificate based and reputation based trust management. At the mo-
ment TuLiP does not support aggregate operations. We are planning to incorporate the
moded_bagof operator introduced in this paper in TuLiP and investigate its applicability
in the Distributed Trust Management.
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Abstract. We consider a new application condition of negative unfold-
ing, which guarantees its safe use in unfold/fold transformation of strati-
fied logic programs. The new condition of negative unfolding is a natural
one, since it is considered as a special case of replacement rule. The cor-
rectness of our unfold/fold transformation system in the sense of the per-
fect model semantics is proved. We then consider the coinductive proof
rules proposed by Jaffar et al. We show that our unfold/fold transforma-
tion system, when used together with Lloyd-Topor transformation, can
prove a proof problem which is provable by the coinductive proof rules
by Jaffar et al. To this end, we propose a new replacement rule, called
sound replacement, which is not necessarily equivalence-preserving, but
is essential to perform a reasoning step corresponding to coinduction.
Key Words: preservation of equivalence, negative unfolding, coinduction,
unfold/fold transformation

1 Introduction

Since the pioneering paper by Tamaki and Sato [12], a number of unfold/fold
transformation rules for logic programs have been reported (see an excellent
survey [7] and references therein). Among them, negative unfolding is a trans-
formation rule, which applies unfolding to a negative literal in the body of a
clause. When used together with usual (positive) unfold/fold rules and replace-
ment rules, negative unfolding is shown to play an important role in program
transformation, construction (e.g., [5], [3]) and verification (e.g., [8], [10]). One
of the motivations of this paper is to re-examine negative unfolding proposed in
the literature.

The framework for program synthesis by Kanamori-Horiuchi [5] is one of the
earliest works in which negative unfolding is introduced. Pettorossi and Proietti
(resp., Fioravanti, Pettorossi and Proietti) have proposed transformation rules
for locally stratified logic programs [8] (resp., locally stratified constraint logic
programs [3]), including negative unfolding (PP-negative unfolding for short).

Unlike positive unfolding, however, PP-negative unfolding does not always
preserve the semantics of a given program in general, when used with unfold/fold
� This work was partially supported by JSPS Grant-in-Aid for Scientific Research (C)

21500136.



rules. We give such a counterexample in Sect. 2.2, which shows that, when used
together with unfolding and folding, negative unfolding requires a careful treat-
ment. In this paper, we therefore reconsider the application condition of negative
unfolding, and propose a new framework for unfold/fold transformation of strat-
ified programs which contains a replacement rule as well. We show that our
proposed framework preserves the perfect model semantics. The new condition
of negative unfolding given in this paper is a natural one, since it can be consid-
ered as a special case of the application condition of replacement.

Our motivation behind the proposed transformation system is its applicabil-
ity to proving properties of the perfect model of a (locally) stratified program.
The relationship between unfold/fold transformation and theorem proving has
been recognized; an unfolding rule corresponds to a resolution step, while a
folding operation corresponds to an application of inductive hypotheses. In fact,
several approaches of using unfold/fold transformation to proving program prop-
erties have been reported, among others, Pettorossi and Proietti [8], Fioravanti
et al. [3] and Roychoudhury et al. [10] These are precursors of the present paper.
In this paper, we consider the coinductive proof rules proposed by Jaffar et al. [4]
We show that our unfold/fold transformation system, when used together with
Lloyd-Topor transformation [6], can prove a proof problem which is provable
by the coinductive proof rules by Jaffar et al. Our proof method based on un-
fold/fold transformation has therefore at least the same power as that of Jaffar
et al. To this end, we propose a new replacement rule, called sound replacement,
which is not necessarily equivalence-preserving, but plays an important role to
perform a reasoning step corresponding to coinduction.

The organization of this paper is as follows. In Section 2, we describe a
framework for unfold/fold transformation of stratified programs and give the
new condition for the safe use of negative unfolding. In Section 3, we explain
the coinductive proof rules by Jaffar et al. [4], and discuss an application of our
framework for unfold/fold transformation to proving properties of constraint
logic programs. Finally, we give a summary of this work in Section 4.1

Throughout this paper, we assume that the reader is familiar with the basic
concepts of logic programming, which are found in [6, 1].

2 A Framework for Unfold/Fold Transformation

In this section, we propose a framework for unfold/fold transformation of strat-
ified programs which includes negative unfolding as well as replacement rule.
Although we confine the framework to stratified programs here for simplicity, it
is possible to extend it to locally stratified constraint programs as in [3].

The frameworks proposed by Pettorossi and Proietti [8] and by Fioravanti
et al. [3] are based on the original framework by Tamaki-Sato [12] for definite
programs, while our framework given below is based on the generalized one by
Tamaki-Sato [13]. Roychoudhury et al. [10] proposed a general framework for
1 Due to space constraints, we omit most proofs and some details, which will appear

in the full paper.



unfold/fold transformation which extended the one by Tamaki-Sato [13]. Their
systems [10], [9] have a powerful folding rule (disjunctive folding), whereas they
did not consider negative unfolding.

2.1 Transformation Rules

We first explain our transformation rules here, and then prepare some conditions
imposed on the transformation rules and show the correctness of transformation
in Sect. 2.2.

We divide the set of the predicate symbols appearing in a program into two
disjoint sets: primitive predicates and non-primitive predicates.2 This partition
of the predicate symbols is arbitrary and it depends on an application area of the
user. We call an atom (a literal) with primitive predicate symbol a primitive atom
(primitive literal), respectively. A clause with primitive (resp., non-primitive)
head atom is called primitive (resp., non-primitive). We assume that every
primitive clause in an initial program remains untransformed at any step in the
transformation sequence (Definition 8).

The set of all clauses in program P with the same predicate symbol p in
the head is called the definition of p and denoted by Def(p, P ). The predicate
symbol of the head of a clause is called the head predicate of the clause. In the
following, the head and the body of a clause C are denoted by hd(C) and bd(C),
respectively. Given a clause C, a variable in bd(C) is said to be existential , if
it does not appear in hd(C). The other variables in C are called free variables.

A stratification is a total function σ from the set Pred(P ) of all predicate
symbols appearing in P to the set N of natural numbers. It is extended to a
function from the set of literals to N in such a way that, for a positive literal A,
σ(A) = i, where i is the stratification of predicate symbol of A. We assume that
σ satisfies the following: For every primitive atom A, σ(A) = 0. For a positive
literal A, σ(¬A) = σ(A) + 1 if A is non-primitive, and σ(¬A) = 0 otherwise.
For a conjunction of literals G = l1, . . . , lk (k ≥ 0), σ(G) = 0 if k = 0 and
σ(G) = max{σ(li) : i = 1, . . . , k} otherwise.

For a stratified program P , we denote its perfect model by M(P ).
In our framework, we assume that an initial program, from which an un-

fold/fold transformation sequence starts, has the structure specified in the fol-
lowing definition.

Definition 1. Initial Program Condition
Let P0 be a program, divided into two disjoint sets of clauses, Ppr and Pnp,

where Ppr (Pnp) is the set of primitive (non-primitive) clauses in P0, respectively.
Then, P0 satisfies the initial program condition, if the following conditions hold:

1. No non-primitive predicate appears in Ppr.
2. Pnp is a stratified program, with a stratification σ, called the initial stratifi-

cation. Moreover, σ is defined as follows: For every non-primitive predicate
symbol p, σ(p) = max(1, m), where m := max{σ(bd(C)) | C ∈ Def(p, P0)}.

2 In [8], primitive (non-primitive) predicates are called as basic (non-basic), respec-
tively.



3. Each predicate symbol p in P0 is assigned a non-negative integer i (0 ≤ i ≤
I), called the level of the predicate symbol, denoted by level(p), where I is
called the maximum level of the program. For every primitive (resp. non-
primitive) predicate symbol p, level(p) = 0 (resp., 1 ≤ level(p) ≤ I). We
define the level of an atom (or literal) A, denoted by level(A), to be the
level of its predicate symbol, and the level of a clause C to be the level of
its head. Then, every predicate symbol of a positive literal in the body of a
clause in P0 has a level not greater than the level of the clause. �

Remark 1. In the original framework [12], each predicate in an initial program3 is
classified as either old or new , thus the number of levels is two. The definition of
a new predicate consists of a single clause whose body contains positive literals
with old predicates only. Therefore, a recursive definition of a new predicate
is not allowed. Moreover, it has no primitive predicates. The above definition
follows the generalized framework in [13], thus eliminating such limitations. ��

We now give the definitions of our transformation rules. First, positive un-
folding is defined as usual.

Definition 2. Positive Unfolding
Let C be a renamed apart clause in a stratified program P of the form:

H ← G1, A, G2, where A is an atom, and G1 and G2 are (possibly empty)
conjunctions of literals. Let D1, . . . , Dk with k ≥ 0, be all clauses of program P ,
such that A is unifiable with hd(D1), . . . , hd(Dk), with most general unifiers (m.
g. u.) θ1, . . . , θk, respectively.

By (positive) unfolding C w.r.t. A, we derive from P the new program P ′ by
replacing C by C1, . . . , Ck, where Ci is the clause (H ← G1, bd(Di), G2)θi, for
i = 1, . . . , k. ��

The following definition of negative unfolding rule is due to Pettorossi and
Proietti (PP-negative unfolding , for short) [8].

Definition 3. Negative Unfolding
Let C be a renamed apart clause in a stratified program P of the form:

H ← G1,¬A, G2, where A is an atom, and G1 and G2 are (possibly empty)
conjunctions of literals. Let D1, . . . , Dk with k ≥ 0, be all clauses of program
P , such that A is unifiable with hd(D1), . . . , hd(Dk), with most general unifiers
θ1, . . . , θk, respectively. Assume that:

1. A = hd(D1)θ1 = . . . = hd(Dk)θk, that is, for each i (1 ≤ i ≤ k), A is an
instance of hd(Di),

2. for each i (1 ≤ i ≤ k), Di has no existential variables, and
3. from ¬(bd(D1)θ1 ∨ . . . ∨ bd(Dk)θk), we get an equivalent disjunction Q1 ∨

. . .∨Qr of conjunctions of literals, with r ≥ 0, by first pushing ¬ inside and
then pushing ∨ outside.

3 When we say “an initial program P0” hereafter, P0 is assumed to satisfy the initial
program condition in Def. 1.



By negative unfolding w.r.t. ¬A, we derive from P the new program P ′ by
replacing C by C1, . . . , Cr, where Ci is the clause H ← G1, Qi, G2, for i =
1, . . . , r. ��

Next, we recall the definition of folding in [13]. The notion of a molecule [13] is
useful for clearly stating folding, replacement rule and other related terminology.

Definition 4. Molecule, Identity of Molecules [13]
An existentially quantified conjunction M of the form: ∃X1 . . . Xm(A1, . . . , An)

(m ≥ 0, n ≥ 0) is called a molecule, where X1 . . . Xm are distinct variables called
existential variables and A1, . . . , An are literals. The set of other variables in M
are called free variables, denoted by V f(M).

Two molecules M and N are considered to be identical, denoted by M =
N , if M is obtained from N through permutation of conjuncts and renaming
of existential variables. When more than two molecules are involved, they are
assumed to have disjoint sets of variables, unless otherwise stated.

A molecule without free variables is said to be closed . A molecule without free
variables nor existential variables is said to be ground . A molecule M is called
an existential instance of a molecule N , if M is obtained from N by eliminating
some existential variables by substituting some terms for them.4 ��
Definition 5. Folding, Reversible Folding

Let P be a program and A be an atom. A molecule M is said to be a P -
expansion of A (by a clause D) if there is a clause D : A′ ← M ′ in P and a
substitution θ of free variables of A′ such that A′θ = A and M ′θ = M .

Let C be a clause of the form: B ← ∃X1 . . . Xn(M, N), where M and N are
molecules, and X1 . . . Xn are some free variables in M . If M is a P -expansion
of A (by a clause D), the result of folding C w.r.t. M by P is the clause: B ←
∃X1 . . . Xn(A, N). The clause C is called the folded clause and D the folding
clause (or folder clause).

The folding operation is said to be reversible if M is the only P -expansion
of A in the above definition. 5 ��

To state conditions on replacement, we need the following definition.

Definition 6. Proof of an Atom (a Molecule)
Let P be a stratified program and A be a ground atom true in M(P ). A

finite successful ground SLS-derivation T with its root ← A is called a proof of
A by P .

The definition of proof is extended from a ground atom to a conjunction of
ground literals, i.e., a ground molecule, in a straightforward way. Let L be a
ground molecule and T be a proof of L by P . Then, we say that L has a proof
T by P . L is also said to be provable if L has some proof by P .

For a closed molecule M , a proof of any ground existential instance of M is
said to be a proof of M by P . ��
4 The variables in the substituted terms, if any, becomes free variables of M .
5 The terminology of reversible folding was used in a totally different sense in the

literature (see [7]).



Definition 7. Replacement Rule
A replacement rule R is a pair M1 ⇒ M2 of molecules, such that V f(M1) ⊇

V f(M2), where V f(Mi) is the set of free variables in Mi (1 ≤ i ≤ 2). Let
C be a clause of the form: A ← M . Assume that there is a substitution θ of
free variables of M1 such that M is of the form: ∃X1 . . . Xn(M1θ, N) for some
molecule N and some variables X1 . . . Xn (n ≥ 0) in V f(M1θ). Then, the result
of applying R to M1θ in C is the clause: A ← ∃X1 . . . Xn(M2θ, N).

A replacement rule M1 ⇒ M2 is said to be correct w.r.t. an initial program
P0, if, for every ground substitution θ of free variables in M1 and M2, it holds
that M1θ has a proof by P0 iff M2θ has a proof by P0. ��

We can now define a transformation sequence as follows:

Definition 8. Transformation Sequence
Let P0 be an initial program (thus satisfying the conditions in Def.1), and R

be a set of replacement rules correct w.r.t. P0. A sequence of programs P0, . . . , Pn

is said to be a transformation sequence with the input (P0,R), if each Pn (n ≥ 1)
is obtained from Pn−1 by applying to a non-primitive clause in Pn−1 one of the
following transformation rules: (i) positive unfolding, (ii) negative unfolding, (iii)
reversible folding by P0, and (iv) some replacement rule in R. �

We note that every primitive clause in P0 remains untransformed at any step
in a transformation sequence.

2.2 Correctness of Unfold/fold Transformation

To preserve the perfect model semantics of a program in transformation, we
need some conditions on the transformation rules. The conditions we impose on
the transformation rules are intended for the rules to satisfy the following two
properties: one is for the preservation of the initial stratification σ of an initial
program P0, and the other is for preserving an invariant of the size (according to
a suitable measure) of the proofs of an atom true in P0. The following definition
of the well-founded measure μ is a natural extension of that in [13] for definite
programs, where μ is defined in terms of an SLD-derivation.

Definition 9. Weight-Tuple, Well-founded Measure μ
Let P0 be an initial program with the maximum level I and A be a ground

atom true in M(P0). Let T be a proof of A by the initial program P0, and let
wi (1 ≤ i ≤ I) be the number of selected non-primitive positive literals of T
with level i. Then, the weight-tuple of T is an I-tuple 〈w1, . . . , wI〉.

We define the well-founded measure μ(A) as follows:

μ(A) := min{w | w is the weight-tuple of a proof of A}
where min S is the minimum of set S under the lexicographic ordering6 over N I ,
and N is the set of natural numbers. For a ground molecule L, μ(L) is defined
similarly. For a closed molecule M , μ(M) := min{w | w is the weight-tuple of a
proof of M ′, where M ′ is a ground existential instance of M}. ��
6 We use the inequality signs >,≤ to represent this lexicographic ordering.



Note that the above defined measure μ is well-founded over the set of ground
molecules which have proofs by P0. By definition, for a ground primitive atom
A true in M(P0), μ(A) = 〈0, . . . , 0〉 (I-tuple).

Conditions on Folding We first give the conditions imposed on folding. The
following is to preserve the initial stratification σ of initial program P0, when
folding is applied.

Definition 10. folding consistent with the initial stratification
Let P0 be an initial program with the initial stratification σ. Suppose that

reversible folding rule by P0 with folding clause D is applied to folded clause C.
Then, the application of folding is said to be consistent with σ, if the stratum
of head predicate of D is less than or equal to that of the head of C, i.e.,
σ(hd(C)) ≥ σ(hd(D)). �

The following gives a sufficient condition for folding to be consistent with the
initial stratification.

Proposition 1. Let P0 be an initial program with the initial stratification σ.
Suppose further that the definition of clause D in P0 consists of a single clause,
that is, Def(p, P0) is a singleton, where p is the predicate symbol of hd(D).
Then, every application of reversible folding with folding clause D is consistent
with σ. �

We note that, when Def(p, P0) is a singleton, σ(p) = max(1, σ(bd(D))) (see
Def. 1). Then, the above proposition is obvious. The framework by Pettorossi-
Proietti [8] satisfies this condition, since the head predicate of D is supposed to
be a new predicate which does not appear elsewhere.

Next, we explain another condition on folding for the preservation of μ, which
is due to Tamaki-Sato [13] for definite programs.

Definition 11. Descent Level of a Clause
Let C be a clause appearing in a transformation sequence starting from an

initial program P0 with I + 1 layers. The descent level of C, denoted by dl(C),
is defined inductively as follows:

1. If C is in P0, dl(C) := level(C), where level(C) is the level of C in P0.
2. If C is first introduced as the result of applying positive unfolding to some

clause C ′ in Pi (0 ≤ i) w.r.t. a positive literal A in C ′, then dl(C) := dl(C ′),
if A is primitive. If A is non-primitive, then dl(C) := min{dl(C ′), level(A)}.

3. If C is first introduced as the result of applying negative unfolding to some
clause C ′, then dl(C) := dl(C ′).

4. If C is first introduced as the result of folding, or applying some replacement
rule to some submolecule of the body of some clause C ′, then dl(C) := dl(C ′).

��
The difference between the above definition and that of the original one in

[13] is Condition 3 for negative unfolding, while the other conditions remain
unchanged.



Definition 12. Folding Condition
In the transformation sequence, suppose that a clause C is folded using a

clause D as the folding clause, where C and D are the same as those in Definition
5. Then, the application of folding is said to satisfy the folding condition, if the
descent level of C is smaller than the level of D. ��

Conditions on Replacement Rules Next, we state our conditions imposed
on replacement rules.

Definition 13. Replacement Rules Consistent with σ and μ
Let R be a replacement rule of the form M1 ⇒ M2, which is correct w.r.t.

initial program P0. Then, R is said to be consistent with the initial stratification
σ if σ(M1) ≥ σ(M2), and it is said to be consistent with the well-founded
measure μ if μ(M1θ) ≥ μ(M2θ) for any ground substitution θ for V f(M1) such
that M1θ and M2θ are provable by P0.

�

The replacement rule in Pettorossi-Proietti [8] satisfies the above conditions.
In their case, literals appearing in the replacement rule are primitive. Then, the
consistency with σ is trivial, since σ(M1) = σ(M2) = 0 by definition, and the
consistency with μ is due to the fact that the weight-tuple of a proof of Miθ is
〈0, . . . , 0〉 (I-tuple) for i = 1, 2.

The following proposition shows that the initial stratification is preserved in
a transformation sequence.

Proposition 2. Preservation of the Initial Stratification σ
Let P0 be an initial program with the initial stratification σ, and P0, . . . , Pn (n ≥
1) be a transformation sequence, where every application of folding as well as
replacement rule is consistent with σ. Then, Pn is stratified w.r.t. σ. ��

The New Condition on Negative Unfolding and the Correctness of
Transformation We are now in a position to give an example which shows that
negative unfolding does not always preserve the semantics of a given program.

Example 1. Let P0 be the stratified program consisting of the following clauses:

P0 = { D : f ← m,¬e
m ←
e ← e
e ← ¬m. }

(1) : f ← ¬e (pos. unfolding D)

(2) : f ← ¬e, m (neg. unfolding (1))

(3) : f ← f (folding (2))

We note that M(P0) |= m ∧ ¬e, thus M(P0) |= f . Assume that the predicate
symbol of m in P0 is non-primitive. By applying positive unfolding to clause D
w.r.t. m, we derive clause (1). Then, applying negative unfolding to clause (1)
w.r.t. ¬e results in clause (2), noting that ¬(e ∨ ¬m) ≡ ¬e ∧ m. Since positive
unfolding is applied to clause D w.r.t. a non-primitive atom m, the folding
condition in [8] allows us to fold clause (2) w.r.t. ¬e, m using folder clause D,



obtaining clause (3). Now, we note that clause (3) is self-recursive. Let P ′ be the
result of the program transformation starting from P0, i.e., P ′ = P0\{D}∪{(3)}.
Then, M(P0) �= M(P ′), because M(P ′) |= ¬f . ��

The application of negative unfolding always preserves the initial stratifica-
tion σ, while it does not preserve the well-founded measure μ in general. In fact,
applying negative unfolding to (1) w.r.t. ¬e in Example 1 replaces it by ¬e, m,
obtaining clause (2). We note that σ(¬e) = σ(¬e, m), while it is not always true
that μ(¬e) ≥ μ(¬e, m). To avoid the above anomaly, we therefore impose the
following condition on negative unfolding.

Definition 14. Negative Unfolding Consistent with μ
The application of negative unfolding is said to be consistent with μ, if it

does not increase the positive occurrences of a non-primitive literal in the body
of any derived clause. That is, in Def. 3, every positive literal (if any) in Qi is
primitive, for i = 1, . . . , r. ��

In Example 1, the consistency of negative unfolding with μ when applied
to clause (1), requires that m be primitive. Then, this prohibits the subsequent
folding operation in clause (3) from the folding condition (Def. 12).

One way to view our condition on negative unfolding is that negative un-
folding is a special case of replacement, i.e., a replacement rule R of the form
¬A ⇒ Qi, where Qi is given in Def. 3. Note that, when M(P0) |= ¬A, it holds
that μ(¬A) = 〈0, . . . , 0〉. Therefore, μ(Qi) should be 〈0, . . . , 0〉 in order for R to
be consistent w.r.t. μ. This means that every positive literal (if any) in Qi is
primitive, which is exactly what Def. 14 requires.

Remark 2. We note that, unlike negative unfolding, folding is not an instance
of replacement in our framework. In Def. 5, the application of reversible folding
replaces a molecule M in the body of the folded clause by an atom A, where M
is a P -expansion of A by some folding clause D in P0. Then, we have from the
definition of μ that μ(Mθ) < μ(Aθ) for any ground substitution θ such that Mθ
and Aθ are provable by P0. 7 As this replacement of M by A is not consistent
with μ, it does not satisfy our conditions imposed on replacement rules (Def. 13).
This is the reason why we need the extra condition on folding in Def. 12. ��

The following shows the correctness of our transformation system.

Proposition 3. Correctness of Transformation
Let P0 be an initial program and R be a set of replacement rules correct w.r.t.
P0. Let P0, . . . , Pn (n ≥ 0) be a transformation sequence with the input (P0,R),
where (i) every application of folding is consistent with σ and satisfies the folding
condition (Def. 12), and (ii) every application of replacement rule is consistent
with σ and μ. Moreover, suppose that every application of negative unfolding is
consistent with μ. Then, M(Pn) = M(P0). ��
7 We assume from the folding condition (Def. 12) that A is non-primitive.



3 Coinductive Proofs via Unfold/Fold Transformations

In this section, we consider the applicability of our transformation system to
proving properties of the perfect model of a stratified program. Jaffar et al.
[4] consider proof obligations of the form G |= H, where G,H are conjunctions
of either an atom or a constraint, and var(H) ⊆ var(G). The validity of this
entailment means that M(P ) |= ∀X̃(G → H)8, where P is a (constraint) definite
program which defines predicates, called assertion predicates, occurring in G and
H, ∀X̃ is an abbreviation for ∀X1 . . . ∀Xj (j ≥ 0) s.t. Xj ∈ var(G). As we noted
earlier, although our unfold/fold transformation system is given for stratified
programs in Sect. 2 for simplicity of explanation, it is possible to extend it to
locally stratified constraint programs as in [3]. While Jaffar et al. [4] consider
a constraint logic program as P , we hereafter consider only equality (=, and �=
for negation of an equation) constraints for the sake of simplicity, and assume
the axioms of Clark’s equality theory (CET)[6].

The proof rules by Jaffar et al. [4] are given in Fig. 1. A proof obligation is
of the form Ã � G |= H, where Ã is a set of assumption goals.

When a proof obligation G |= H is given, a proof will start with Π = {∅ � G |=
H}, and proceed by repeatedly applying the rules in Fig. 1 to it. In the figure, the
symbol � represents the disjoint union of two sets, and UNFOLD(G) is defined
to be {G′ | ∃C ∈ P : G′ = reduct(G, C)}, where G = B1, . . . , Bn is a goal (i.e.,
a conjunction of either constraints or literals), C is a clause in a given program
P , and a reduct of G = B1, . . . , Bn using a clause C, denoted by reduct(G, C), is
defined to be of the form: B1, . . . , Bi−1, bd(C), Bi = hd(C), Bi+1, . . . , Bn. Note
that a constraint Bi = hd(C) gives an m.g.u. of Bi and hd(C).

The left unfold with new induction hypothesis (LU+I) (or simply “left-unfold”)
rule performs a complete unfold on the lhs of a proof obligation, producing a
new set of proof obligations. The original assertion, while removed from Π, is
added as an assumption to every newly produced proof obligation.

On the other hand, the right unfold (RU) rule performs an unfold on the rhs
of a proof obligation. The (RU) rule does not necessarily obtain all the reducts.

The rule coinduction application (CO) transforms an obligation by using an
assumption which can be created only by the (LU+I) rule, thereby realizing
the coinduction principle. The underlying principle behind the (CO) rule is that
a “similar” assertion G′ |= H′ has been previously encountered in the proof
process, and assumed to be true.

The rule constraint proof (CP) removes one occurrence of a predicate p(ỹ)
appearing in the rhs of a proof obligation. Applying the CP rules repeatedly will
reduce a proof obligation to the form which contains no assertion predicates in
the rhs and consists only of constraints. Then, the direct proof (DP) rule may
be attempted by simply removing any predicates in the corresponding lhs and
by applying the underlying constraint solver assumed in the language we use.

Jaffar et al. show the soundness of the proof rules in Fig. 1 [4].
8 As noted in [4], the use of the term coinduction here has no relationship with the

greatest fixed point of a program.



Fig. 1. Coinductive Proof Rules by Jaffar et al. [4]

(LU+I)
Π � {Ã � G |= H}

Π ∪ ⋃n

i=1
{Ã ∪ {G |= H} � Gi |= H}

UNFOLD(G) =
{G1, . . . ,Gn}

(RU)
Π � {Ã � G |= H}
Π ∪ {Ã � G |= H′}

H′ ∈ UNFOLD(H)

(CO)
Π � {Ã � G |= H}

Π ∪ {∅ � H′θ |= H}
G′ |= H′ ∈ Ã and there exists
a substitution θ s.t. G |= G′θ

(CP)
Π � {Ã � G ∧ p(x̃) |= H ∧ p(ỹ)}

Π ∪ {Ã � G |= H∧ x̃ = ỹ}
(DP)

Π � {G |= H}
Π

G |= H holds by
constraint solving

Theorem 1. (Soundness) [4] A proof obligation G |= H holds in M(P ) for a
given definite constraint program P , if, starting with the proof obligation ∅ �
G |= H, there exists a sequence of applications of proof rules that results in proof
obligations Ã � G′ |= H′ such that (a) H′ contains only constraints, and (b)
G′ |= H′ can be discharged by the constraint solver. ��

The following is an example of a coinductive proof in [4], and we show how
the corresponding proof is done via unfold/fold transformations. To this end, we
first state the notion of useless predicates, which is originally due to Pettorossi
and Proietti [8], but we use it with a slight modification as follows.

Definition 15. Useless Predicate
The set of the useless predicates of a program P is the maximal set U of

predicates of P such that a predicate p is in U if, for the body of each clause
of Def(p, P ), it has (i) either a positive literal whose predicate is in U , or (ii) a
constraint which is unsatisfiable. �

It is easy to see that, if p is a useless predicate of P , then M(P ) |= ¬A, where
A is a ground atom with predicate symbol p.

Example 2. A Coinductive Proof without Base Case [4]
Let P be a program consisting of the following clauses:

p(X) ← q(X)
q(X) ← q(X)
r(X) ←

Suppose that the proof obligation is to prove that p(X) |= r(X), calling this
assertion A1. The proof process is shown in Fig. 2 (left). We first apply rule



(LU+I) to A1, obtaining another assertion A2: q(X) |= r(X). Again, we apply
rule (LU+I) to A2, deriving another assertion A3, which is equivalent to A2.
This time, we can apply the coinduction rule (CO) to A3, and obtain a new
assertion r(X) |= r(X). This assertion is then proved simply by applying rules
(CP) and (DP).

Fig. 2. A Coinductive Proof of Example 2 and the Corresponding Proof via Unfold/fold
Transformations

∅ � p(X) |= r(X)

{A1} � q(X) |= r(X)
(LU+I)

{A1, A2} � q(X) |= r(X)
(LU+I)

∅ � r(X) |= r(X)
(CO)

|= X = X
(CP)

true
(DP)

Cf : f ← ¬nf1

Cnf1 : nf1 ← p(X),¬r(X)
Cnf2 : nf2(X) ← q(X),¬r(X)

(1) : nf1 ← q(X),¬r(X) (pos. unfolding Cnf1)
(2) : nf1 ← nf2(X) (folding (1))
(3) : nf2(X) ← q(X),¬r(X) (pos. unfolding Cnf2)
(4) : nf2(X) ← nf2(X) (folding (3))

Fig. 2 (right) shows the corresponding proof via unfold/fold transformations.
We first consider the clause C0 corresponding to the initial proof obligation A1,
i.e., C0 : f ← ∀X(p(X) → r(X)). Then, we apply Lloyd-Topor transformation
to C0, obtaining the clauses {Cf , Cnf1}, where predicate nf1 is a new predicate
introduced by Lloyd-Topor transformation.

We assume that assertion predicates (p and q in this example) are non-
primitive. By applying positive unfolding to Cnf1 w.r.t. p(X), we have clause
(1). From this, we consider a new clause Cnf2 whose body is the same as that
of (1) and assume that Cnf2 is in initial program P0 from scratch. Therefore, let
P0 = P ∪{Cf , Cnf1 , Cnf2}. We then apply folding to clause (1), obtaining clause
(2).

On the other hand, applying positive unfolding to Cnf2 w.r.t. q(X) results in
clause (3), which is then folded by using folder clause Cnf2 , giving a self-recursive
clause (4). Let P4 = P0\{Cnf1 , Cnf2}∪{(2), (4)}. Since the above transformation
sequence preserves the perfect model semantics, it holds that M(P0) = M(P4).
Note that nf2 and nf1 are useless predicates of P4. We thus have that M(P4) |=
∀X(¬nf2(X)) ∧ ¬nf1, which means that M(P4) |= f . Therefore, it follows that
M(P0) |= f , which is to be proved. ��

Next, we consider how to realize the reasoning step corresponding to the
coinduction rule in our transformation system. The coinduction rule (CO) in
Fig. 1 requires to check whether there exists some substitution θ s.t. G |= G′θ
and H′θ |= H, which means that M(P0) |= (G∧¬H) → (G′∧¬H′)θ, where P0 is
a program defining assertion predicates. In this case, if (G ∧¬H) has a proof by
P0, then (G′∧¬H′)θ has a proof by P0, but not vice versa. We therefore propose
a new form of the replacement rule, which is, unlike the replacement rule in Def.
7, not necessarily equivalence-preserving.

Definition 16. Sound Replacement Rule



Let P0 be an initial program with the initial stratification σ, and R be a
replacement rule of the form M1 ⇒ M2, which is consistent with σ and μ. Then,
R is said to be sound w.r.t. P0, if, for every ground substitution θ of free variables
in M1 and M2, it holds that, if M1θ has a proof by P0, then M2θ has a proof
by P0. ��

When we use the sound replacement rules in unfold/fold transformation, we
can show the following proposition in place of Proposition 3.

Proposition 4. Soundness of Transformation
Let P0, . . . , Pn (n ≥ 0) be a transformation sequence under the same assumptions
in Prop. 3, except that, in the transformation sequence, some sound replacement
rules are applied, with a proviso that, if a sound replacement rule is applied to
clause C in Pk for some k (0 ≤ k ≤ n) and it is the first time a sound replacement
rule is applied in the transformation sequence, then every application of a sound
replacement rule, if any, is applied to a clause C ′ in Pi (k < i ≤ n) with
σ(hd(C ′)) = σ(hd(C)) for the rest of the transformation sequence, where σ is
the initial stratification of P0.

Then, it holds that (i) M(P0) |<j= M(Pn) |<j for all j s.t. 0 ≤ j < σ(hd(C)),
and (ii) M(P0) |σ(hd(C))⊆ M(Pn) |σ(hd(C)), where M |<i (M |i) is the restriction
of a perfect model M to the set of atoms whose strata are less than i (equal to
i), respectively. ��

We can now show that our proof via unfold/fold transformations including
the sound replacement rule has at least the same power as that of the coinduc-
tive proof rules by Jaffar et al. [4], assuming that our transformation system
is extended to deal with a constraint logic program with a suitable constraint
language and the constraint theory corresponding to the underlying constraint
solver. To show that, we find it convenient to use an expression, called an ex-
tended negative literal, which is defined as follows:

Definition 17. Extended Negative Literal
An extended negative literal is an expression of the form: ∀X̃(H → ⊥), where

H is a conjunction of either atoms or constraints, X̃ are some free variables in
H, and ⊥ means false. �

In particular, when an extended negative literal N is of the form: h → ⊥
and h is an atom, N is simply a negative literal ¬h. When an extended negative
literal ∀X̃(H → ⊥) occurs in the body of a clause, we regard it a notational
convention of ¬newp(Ỹ ), where newp is a new predicate symbol not appearing
elsewhere and is defined by clause D of the form: newp(Ỹ ) ← H(X̃, Ỹ ), where
H(X̃, Ỹ ) means that X̃ are the existential variables in D. Therefore, although
we use an expression allowing an extended negative literal, our framework still
remains in (constraint) stratified programs.

Proposition 5. Coinductive Proofs via Unfold/fold Transformations
Let P be a given (constraint) definite program. Suppose that a proof obligation
M(P ) |= ∀X̃(G → H) can be proved by the coinductive proof rules in Fig



1. Suppose further that P0 = P ∪ {Cf , Cnf}, where Cf = f ← ¬nf(X̃) and
Cnf = nf(X̃) ← G, (H → ⊥).

Then, there exists a transformation sequence P0, . . . , Pn (n ≥ 0) satisfying
the same assumptions in Prop. 4, such that nf is a useless predicate of Pn. ��

From the above proposition, our proof scheme via unfold/fold transforma-
tions with sound replacement will be as follows: If we obtain by transformation
Pn such that nf is useless in Pn, then it follows from Prop. 5 that M(Pn) |=
∀X̃¬nf(X̃), thus M(P0) |= f , which is to be proved.

4 Conclusion

We have considered the new application condition of negative unfolding, which
guarantees its safe use in an unfold/fold transformation system for stratified
programs. We showed that the new application condition imposed on negative
unfolding is a natural one, since it can be considered as a special case of the re-
placement rule. We proved that our unfold/fold transformation system preserves
the perfect model semantics.

We then considered the coinductive proof rules proposed by Jaffar et al.
[4] We showed that our unfold/fold transformation system, when used together
with Lloyd-Topor transformation, can prove a proof problem which is provable
by the coinductive proof rules by Jaffar et al. To this end, we proposed a new
replacement rule, called sound replacement, which is not necessarily equivalence-
preserving, but is essential to perform a reasoning step corresponding to coin-
duction.

In [11], a framework for unfold/fold transformation of locally stratified pro-
grams is proposed, where another well-founded ordering is introduced for the
correctness proof, thus it is non-comparable with the current work. The trans-
formation system by Roychoudhury et al. [10] used a very general measure for
proving the correctness, and they considered a disjunctive folding. On the other
hand, their systems [10, 9] have no negative unfolding. In fact, the correctness
proof in [9] depends on the preservation of the semantic kernel [2], which is not
preserved in general when negative unfolding is applied, thus their correctness
proof in [9] will be unavailable in the presence of negative unfolding. We leave it
for future research to investigate the difference of disjunctive folding and negative
unfolding in application areas such as verification.

One of the motivations of this work is to understand the close relationship
between program transformation and inductive theorem proving. We hope that
our results reported in this paper will be a contribution to promote further
cross-fertilization between the two fields.

Acknowledgement The author would like to thank anonymous reviewers for
their constructive and useful comments on the previous version of the paper.
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Abstract.  We introduce negation into coinductive logic programming (co-LP) 
via what we term Coinductive SLDNF (co-SLDNF) resolution. We present 
declarative and operational semantics of co-SLDNF resolution and present their 
equivalence under the restriction of rationality. Co-LP with co-SLDNF 
resolution provides a powerful, practical and efficient operational semantics for 
Fitting’s Kripke-Kleene three-valued logic with restriction of rationality. 
Further, applications of co-SLDNF resolution are also discussed and illustrated.  

Keywords: Coinductive Logic Programming; Negation as Failure; Program 
Completion; Kripke-Kleene three-valued logic. 

1 Introduction 

Coinduction is a powerful technique for reasoning about unfounded sets, unbounded 
structures, and interactive computations. Coinduction allows one to reason about 
infinite objects and infinite processes [2, 6]. Coinduction has been recently introduced 
into logic programming (termed coinductive logic programming, or co-LP for brevity) 
by Simon et al [17] and an operational semantics (termed co-SLD resolution) defined 
for it. Practical applications of co-LP include goal-directed execution of answer set 
programs [7], reasoning about properties of infinite processes and objects, model 
checking and verification and planning [16]. Negation is important in logic 
programming. Without negation, many of the interesting applications of co-LP, to 
planning, goal-directed execution of answer set programs, etc. are not possible. In this 
paper we extend Simon et al’s work on co-LP with negation as failure [3]. Our work 
can also be viewed as adding coinduction to SLDNF resolution [10], thus we term the 
operational semantics of co-LP extended with negation as failure as coinductive 
SLDNF resolution or co-SLDNF resolution. Co-SLDNF resolution and its correctness 
result constitute the main contribution of this paper. Co-LP with co-SLDNF resolution 
provides a powerful, practical and efficient operational semantics for Fitting’s Kripke-
Kleene three-valued logic [6] with restriction of rationality. The resulting language 
efficiently handles many challenging problems and applications dealing with rational 
infinite objects and streams, modal operators, nonmonotonic inference, etc. [3].   

2   Preliminaries 



Coinduction is the dual of induction. Induction corresponds to well-founded structures 
that start from a basis which serves as the foundation for building more complex 
structures. For example, natural numbers are inductively defined via the base element 
zero and the successor function. Inductive definitions have 3 components: initiality, 
iteration and minimality. Thus, the inductive definition of a list of numbers is as 
follows: (i) [ ] (an empty list) is a list (initiality); (ii) [ H | T ] is a list if T is a list and 
H is some number (iteration); and, (iii) the set of lists is the minimal set of such lists 
(minimality). Minimality implies that infinite-length lists of numbers are not members 
of the inductively defined set of lists of numbers. Induction corresponds to least fixed 
point interpretation of recursive definitions. In contrast, coinduction eliminates the 
initiality condition and replaces the minimality condition with maximality. Thus, the 
coinductive definition of a list of numbers is: (i) [ H | T ] is a list if T is a list and H is 
some number (iteration); and, (ii) the set of lists is the maximal set of such lists 
(maximality). There is no need for the base case in coinductive definitions, and while 
this may appear circular, the definition is well formed since coinduction corresponds 
to the greatest fixed point (gfp) interpretation of recursive definitions (recursive 
definitions for which gfp interpretation is intended are termed corecursive 
definitions).   

The basic concepts of co-LP are based on rational, coinductive proof [17], that are 
themselves based on the concepts of rational tree and rational solved form of 
Colmerauer [4]. A tree is rational if the cardinality of the set of all its subtrees is 
finite. An object such as a term, an atom, or a (proof or derivation) tree is said to be 
rational if it is modeled (or expressed) as a rational tree. A rational proof of a rational 
tree is its rational solved form computed by rational solved form algorithm [4], 
following the account of [11]. The reader is referred to [4, 11] for details. Some of the 
noteworthy results for rational trees and its algebra are: (i) the rational solved form 
algorithm always terminates, (ii) the conjunction of equations E is solvable iff E has a 
rational solved form, and (iii) the algebra of rational trees and the algebra of infinite 
trees are elementarily equivalent. For co-LP, there are three further extensions to the 
rational solved form. First, we extend the concept of rational proof of rational trees of 
terms to atoms with terms (predicates). Second, as we recall [8, 10, 11] the equality 
theory for the algebra of rational trees, requires one modification to the axioms of the 
equality theory of the algebra of finite trees for co-LP over the rational domain, 
namely, (i) t(x) ≠ x, for all x and t for each “finite” term t(x) containing x that is 
different from x, and (ii) if t(x) = x then x = t(t(t(...))) for all x and t for each “rational” 
term. Note that this modified axiomatization of the equality theory is required for 
rational trees and we will elaborate with a few examples with co-LP. Third, negation 
is added.   

A coinductive proof of a rational (derivation) tree of program P is a rational solved 
form (tree-solution) of the rational (derivation) tree.  One worthy note is that  
irrational atoms are generally not found in practical logic programs. Further, any 
irrational atom that has an infinite derivation should have a rational cover, as noted in 
[9], which could be characterized by the (interim) rational atom observed in each step 
of the derivation. This observation will be used later to assure some of the results of 
infinite LP also applicable to rational LP.  

The Coinductive hypothesis rule (CHR) states that during execution, if the current 
resolvent R contains a call C’ that unifies with an ancestor call C encountered earlier, 



then the call C’ succeeds; the new resolvent is R’θ where θ = mgu(C, C’) and R’ is 
obtained by deleting C’ from R. With this rational feature, co-LP allows programmers 
to manipulate rational (finite and rational) structures in a decidable manner as noted 
earlier. To achieve this feature of rationality, unification has to be necessarily 
extended, to have “occurs-check” removed [4]. SLD resolution extended with the 
coinductive hypothesis rule is called co-SLD resolution [16, 17]. Co-SLD resolution 
is very similar to SLD resolution except that goals with rational proofs are permitted.  
In SLD-resolution, given a call during execution of a logic program, the candidate 
clauses are tried one by one via backtracking. Under co-SLD resolution, however, the 
candidate clauses are extended with yet more alternatives: applying the coinductive 
hypothesis rule to check if the current call will unify with any of the earlier calls.  
That is, coinductive hypothesis rule computes whether current node (an atom) in a 
derivation tree can be unified with an earlier node (an atom) or not. Therefore, if there 
is a cycle in the path of the execution, it will be detected by co-SLD and infinite 
traversal of this cycle stopped. Thus by applying co-SLD resolution throughout the 
rational tree (of derivation) of atoms, one may end up with a rational solved form (a 
coinductive proof) of rational derivation tree. Thus, given the coinductive logic 
program: 

stream([ H | T ]):- number(H), stream(T). 
the goal ?-stream(X) will bind X to infinite (rational) streams of numbers.  
Solutions such as X = [ 1 | X ], X = [ 1, 2 | X ], etc., will be produced by the co-LP 
system using CHR.   
 The Infinitary Herbrand Universe of a logic program P, HU(P), is the set of all 
ground terms formed out of the constants and function symbols appearing in P. Note 
that HU contains infinite terms also (e.g., f(f(f(….)))). Herbrand Base of P, HB(P), is 
the set of all ground atoms formed by using predicate symbols in P with ground terms 
from HU(P), and similarly Herbrand Ground, HG(P), for all the ground clauses of P. 
We denote the subset of Herbrand Universe restricted to rational terms by HUR(P); 
HBR(P) and HGR(P) are similarly defined. Further, we say rational Herbrand space of 
program P, denoted HSR(P), to mean the 3-tuple of (HUR(P), HBR(P), HGR(P)). 

3 Coinductive SLDNF Resolution 

Negation causes many problems in logic programming (e.g., nonmonotonicity). For 
example, one can write programs whose meaning is hard to interpret, e.g., p :- not (p). 
and whose completion is inconsistent.  We use the notation nt(A) to denote negation 
as failure (naf) for a coinductive atom A; nt(A) is termed a naf-literal. Also note that 
without occurs-check, the unification equation X=f(X) means X is bound to f(f(f( .... 
))) (an infinite rational term).  From this point, we take all logic programs to be 
normal logic programs (that is, a logic program with zero or more negative literals in 
the body of a clause, and zero or one atom in the head) and finite (finite set of clauses 
with a finite set of alphabets). 

Definition 3.1 (Syntax of co-LP with negation as failure): A coinductive logic 
program P is syntactically identical to a traditional (that is, inductive) logic program. 
However, predicates executed with co-SLD resolution (gfp semantics restricted to 



rational proofs) are declared as coinductive; all other predicates are assumed to be 
inductive (i.e., lfp semantics is assumed). The syntax of declaring a clause for a 
coinductive predicate A of arity n is as follows:  

 coinductive (A/n).  
 A :- L1, …, Lm. 

where m ≥ 0 and A is an atom (of arity n) of a general program P, Li, (0 ≤ i ≤ m), is a 
positive or naf-literal.  � 

The major considerations for incorporating negation into co-LP are: (i) negation as 
failure: infer nt(p) if p fails and vice versa, i.e., nt(p) fails if p succeeds, (ii) negative 
coinductive hypothesis rule: infer nt(p) if nt(p) is encountered again in the process of 
establishing nt(p), and (iii) consistency in negation, infer p from double negation, i.e.,  
nt(nt(p)) = p.  Next we extend co-SLD resolution so that naf-goals can also be 
executed. The extended operational semantics is termed co-SLDNF resolution.  Co-
SLDNF resolution further extends co-SLD resolution with negation. Essentially, it 
augments co-SLD with the negative coinductive hypothesis rule, which states that if a 
negated call nt(p) is encountered during resolution, and another call to nt(p) has been 
seen before in the same computation, then nt(p) coinductively succeeds. To 
implement co-SLDNF, the set of positive and negative (ancestor) calls has to be 
maintained in the positive hypothesis table (denoted χ+) and negative hypothesis table 
(denoted χ-) respectively. The operational semantics of co-LP with negation as failure 
is defined as an interleaving of co-SLD and negation as failure under the co-Herbrand 
model.  Extending co-SLD to co-SLDNF, the goal {nt(A)} succeeds (or has a 
successful derivation) if {A} fails; likewise, the goal {nt(A)} fails (or has a failure 
derivation) if the goal {A} succeeds. We restrict P∪{A} to be allowed [10] (p.89) to 
prevent floundering and thus to ensure soundness. We also restrict ourselves to the 
rational Herbrand space. Since naf-literals may be nested, one must keep track of the 
context of each predicate occurring in the body of a clause, i.e., whether it is in the 
scope of odd or even number of negations. If a predicate is under the scope of even 
number of negations, it is said to occur in positive context, else it occurs in negative 
context. In co-SLDNF resolution, negated goals that are encountered should be 
remembered since negated goals can also succeed coinductively. Thus, the state is 
represented as (G, E, χ+, χ-) where G is the subgoal list (containing positive or 
negated goals), E is a system of term equations, χ+ is the set of ancestor calls 
occurring in positive context (i.e., in the scope of zero or an even number of 
negations).  χ- is the set of ancestor calls occurring in negative context (i.e., in the 
scope of an odd number of negations). Further, we need a few more requisite concepts 
for the definition of co-SLDNF.  

Given a co-LP P and an atom A in a query goal G, the set of all clauses with the same 
predicate symbol A in the head is called the definition of A.  Further the unifiable-
definition of A is the set of all clauses of Ci = { Hi :- Bi } (where 1 ≤ i ≤ n) where A is 
unifiable with Hi.  Each Ci of the unifiable-definition of A is called a candidate 
clause for A. Each candidate clause Ci of the form {Hi(ti) :- Bi.} is modified to 
{Hi(xi) :- xi = ti, Bi.}, where (xi = ti, Bi) refers to the extended body of the candidate 
clause, ti is an n-tuple representing the arguments of the head of the clause Ci, Bi is a 
conjunction of goals, and xi is an n-tuple of fresh unbound variables (that is, 
standardized apart).  Let Si be the extended body of the candidate clause Ci (that is, 



Si is (xi = ti, Bi), for each i where 1 ≤ i ≤ n).  Then an extension Gi of G for A in 
negative context w.r.t. Si is obtained by replacing A with Siθi where θi = mgu(A, Hi).  
The complete-extension G’ of G for A in negative context is obtained by the 
conjunction of the extension Gi for each Si where 1 ≤ i ≤ n.  If there is no definition 
for A in P, then the complete-extension G’ of G for A in negative context is obtained 
by replacing A with false.  For example, given G = nt(D1, A, D2) with the n-
candidate clauses for A where its extended body is Si(xi) where 1 ≤ i ≤ n.  Then the 
complete-extension G’ of G for A will be: G’ = (nt(D1, S1(x1)θ1, D2), …, nt(D1, 
Sn(xn)θn, D2)).  Intuitively, the concept of the complete-extension captures the idea of 
negation as failure that the proof of A in negative context (that is, a negative subgoal, 
¬A) requires the failure of all the possibilities of A.  That is, ¬A ↔ ¬(H1 ∨ … ∨ Hn) 
↔ (¬H1 ∧ … ∧ ¬Hn) where Hi is a candidate clause of A. Thus the complete-
extension embraces naturally the dual concepts of (i) the negation of the disjunctive 
subgoals (the disjunction in negative context) with (ii) the conjunction of the negated 
subgoals. For example, nt(D1, (S1(x1)θ1 ∨ … ∨ Sn(xn)θn), D2) is equivalent to (nt(D1, 
S1(x1)θ1, D2), …, nt(D1, Sn(xn)θn, D2))).  Co-SLDNF resolution is defined as follows.  

Definition 3.2 Co-SLDNF Resolution: Suppose we are in the state (G, E, χ+, χ-) 
where G is a list of goals containing an atom A, and E is a set of substitutions 
(environment). 
(1)  If A occurs in positive context, and A’ ∈ χ+ such that θ = mgu(A,A’), then the 

next state is (G’, Eθ, χ+, χ-), where G’ is obtained by replacing A with �. 
(2)  If A occurs in negative context, and A’ ∈ χ- such that θ = mgu(A,A’), then the 

next state is (G’, Eθ, χ+, χ-), where G’ is obtained by A with false.  
(3)  If A occurs in positive context, and A’ ∈ χ- such that θ = mgu(A,A’), then the 

next state is (G’, E, χ+, χ-), where G’ is obtained by replacing A with false. 
(4)  If A occurs in negative context, and A’ ∈ χ+ such that θ = mgu(A,A’), then the 

next state is (G’, E, χ+, χ-), where G’ is obtained by replacing A with �.  
(5)  If A occurs in positive context and there is no A’ ∈ (χ+ ∪ χ-) that unifies with A, 

then the next state is (G’, E’, {A}∪χ+, χ-) where G’ is obtained by expanding A 
in G via normal call expansion using a (nondeterministically chosen) clause Ci 
(where 1≤ i ≤ n) whose head atom is unifiable with A with E’ as the new system 
of equations obtained.  

(6) If A occurs in negative context, and there is no A’ ∈ (χ+ ∪ χ-) that unifies with 
A, then the next state is (G’, E’, χ+, {A}∪χ-) where G’ is obtained by the 
complete-extension of G for A.  

(7)  If A occurs in positive or negative context and there are no matching clauses for 
A, and there is no A’ ∈ (χ+ ∪ χ-) such that A and A’ are unifiable, then the next 
state is (G’, E, χ+, {A} ∪ χ-), where G’ is obtained by replacing A with false.  

(8) (a) nt(…, false, …) reduces to �, (b) nt(A, �, B) reduces to nt(A, B) where A and 
B represent conjunction of subgoals, and (c) nt(�) reduces to false.  

Note (i) that the result of expanding a subgoal with a unit clause in step (5) and (6) is 
an empty clause (�). (ii) When an initial query goal reduces to an empty clause (�), it 
denotes a success (denoted by [success]) with the corresponding E as the solution, and 
(ii) when an initial query goal reduces to false, it denotes a fail (denoted by [fail]).  � 



Definition 3.3 (Co-SLDNF derivation): Co-SLDNF derivation of the goal G of 
program P is a sequence of co-SLDNF resolution steps (of Definition 3.2) with a 
selected subgoal A, consisting of (1) a sequence (Gi, Ei, χi+, χi-) of state (i ≥ 0), of (a) 
a sequence G0, G1, ... of goal, (b) a sequence E0, E1, ... of mgu's, (c) a sequence χ0+, 
χ1+, ... of the positive hypothesis table, (d) χ0-, χ1-, ... of the negative hypothesis table, 
where (G0, E0, χ0+, χ0-) = (G, ∅, ∅, ∅) as the initial state, and (2) for step (5) or step 
(6) of Definition 3.2, a sequence C1, C2, ... of variants of program clauses of P where 
Gi+1 is derived from Gi and Ci+1 using θi+1 where Ei+1 = Eiθi+1 and (χi+1+, χi+1-) as its 
resulting positive and negative hypothesis tables.  (3) If a co-SLDNF derivation from 
G results in an empty clause of query �, that is, the final state of (�, Ei, χi+, χi-),  then 
it is a successful co-SLDNF derivation, and a derivation fails if a state is reached in 
the subgoal-list which is non-empty and no transitions are possible from this state (as 
defined in Definition 3.2). �  

Note that there could be more than one derivation from a node if there is more than 
one step available for the selected subgoal (e.g., many clauses are applicable for the 
expansion rules of step (5) or step (6) in Definition 3.2).  A co-SLDNF resolution 
step may involve expanding with a program clause for Definition 3.2 (5) or (6) with 
the initial goal G = G0, and the initial state of (G0, E0, χ0+, χ0-) = (G, ∅, ∅,  ∅), and 
Ei+1 = Eiθi+1 (and so on) may look as follows: 

  C1,θ1    C2,θ2  C3,θ3 
 (G0, E0, χ0+, χ0-) ⎯→ (G1, E1, χ1+, χ1-) ⎯→  (G2, E2, χ2+, χ2-) ⎯→  ... 

Further, for sake of the notational simplicity, we use the disjunctive form for step (6) 
of Definition 3.2 instead of the conjunctive form for our examples. For example, 
nt(D1, (S1(x1)θ1;  … ; Sn(xn)θn), D2) is used for (nt(D1, S1(x1)θ1, D2), …, nt(D1, 
Sn(xn)θn, D2))) where “∨” is denoted by “;” as we adapt the conventional Prolog 
disjunctive operator for convenience. Next restricting ourselves to the rational 
Herbrand space, the success set and finitely-failed set of co-SLDNF are next defined. 
Let [SS] be the (coinductive) Success Set and let [FF] be the (coinductive) Finite-
Failure Set.  We assume that a query is a subset of the signed atoms from the given 
program P. 

Definition 3.4  (Success Set and Finite-Failure Set of co-LP with negation) Let P be 
a normal co-LP program with its rational Herbrand space.  Then:  

(1) [SS]={ A | A ∈ HBR(P), the goal { A } →* � }   
(2) [FF]={ A | A ∈ HBR(P), the goal { nt(A) } →* � },  

where →* denotes a co-SLDNF derivation of length 0 or more, and � denotes an 
empty clause {}. � 

Note that the third possibility is an irrational (infinite) derivation, considered to be 
undefined in the rational space.  

4 Some Illustrating Examples 

Next we consider a few illustrative examples for co-SLDNF resolution.  With the 
example programs and queries, we also consider their model (fixed point) and 



program completion.  Note that we show co-SLDNF derivation in the left column 
and the annotation in the right column with co-SLDNF step numbers from Def. 3.2.  

Example 4.1 Consider the following program NP1:  
NP1: p :- nt(q).   
 q :- nt(p). 

First, consider the query Q1 = ?- p generating the following derivation:  
 ({p}, {}, {}, {})             by (5) 
→  ({nt(q)}, {}, {p},{})   by (6) 
→  ({nt(nt(p))}, {}, {p}, {q})   by (1) 
→  ({}, {}, {p}, {q})     [success] 

Second, consider the query Q2 = ?- nt(p) generating the following derivation:  
 ({nt(p)}, {}, {}, {})            by (6) 
→  ({nt(nt(q))}, {}, {},{p})   by (5) 
→  ({nt(nt(nt(p)))}, {}, {q}, {p})   by (2) 
→  ({}, {}, {q}, {p})     [success] 

Third, the query Q3 = ?- p, nt(p) will generate the following derivation:  
 ({p, nt(p)}, {}, {}, {})          by (5) 
→  ({nt(q), nt(p)}, {}, {p},{})   by (6) 
→  ({nt(nt(p)), nt(p)}, {}, {p}, {q})  by (1) 
→  ({nt(p)}, {}, {p}, {q})     [success] for p; nt(p) by (4) 
→  ({nt(�)}, {}, {p}, {q})            by 8(c) 
→  ({false}, {}, {p}, {q})            [fail] 

Finally the query Q3 = ?- p, q. will generate the following derivation:  
 ({p, q}, {}, {}, {})          by (5) 
→  ({nt(q), q}, {}, {p},{})   by (6) 
→  ({nt(nt(p)), q}, {}, {p}, {q})   by (1) 
→  ({q}, {}, {p}, {q})     [success] for p; q by (3) 
→  ({false}, {}, {q}, {p})     [fail] 

Note that the queries Q1 and Q2 succeed whereas the queries Q3 and Q4 fail.  We 
should note that the above program NP1 has two fixed points (two models, M1A and 
M1B where M1A={p}, M1B={q}, M1A∩M1B=∅), that are not consistent with each 
other.  As we noted, the query ?- nt(p) is true with M1B={q}, while the query ?- p is 
true with M1A={p}.  Thus, computing with (maximal) fixed point semantics in 
presence of negation can be troublesome and seemingly lead to contradictions; one 
has to be careful that given a query, different parts of the query are not computed 
w.r.t. different fixed points.  Moreover, the query ?-p, nt(p) will never succeed if we 
are aware of the context (of a particular fixed point being used).  However, if the 
subgoals p and nt(p) are evaluated separately and the results conjoined without 
enforcing their consistency, then it will wrongly succeed. To ensure consistency of the 
partial interpretation, the sets χ+ and χ- are employed in our operational semantics; 
they in effect keep track of the particular fixed point(s) under use.   

Example 4.2  Consider the following program NP2:  
NP2: p :- p. 

First, consider the query Q1 = ?- p generating the following derivation:  
  ({p}, {}, {}, {})            by (5) 



→  ({p}, {}, {p},{})   by (1) 
→  ({}, {}, {p}, {})     [success] 

Second, consider the query Q2 = ?- nt(p) generating the following derivation:  
  ({nt(p)}, {}, {}, {})           by (6) 

→  ({nt(p)}, {}, {},{p})   by (2) 
→  ({nt(false)}, {}, {}, {p})   by (8a) 
→  ({}, {}, {}, {p})     [success] 

Third, consider the query Q3 = ?- p, nt(p) generating the following derivation:  
  ({p, nt(p)}, {}, {}, {})           by (5) 

→  ({p, nt(p)}, {}, {p},{})   by (1) 
→  ({nt(p)}, {}, {p}, {})   [success] for p; nt(p) by (4)  
→  ({nt(�)}, {}, {p}, {})           by (8c) 
→  ({false}, {}, {p}, {})           [fail] 

Both queries Q1 and Q2 succeed with NP2.  The program NP2 has two fixed points 
(two models M2A and M2B where M2A={p} and M2B={}). Further M2A∩M2B = 
∅ and M2B ⊆ M2A.  M2A is the greatest fixed point and M2B is the least fixed 
point of NP2. As we noted, the query ?- nt(p) is true and the query ?- p is false with 
M2B = {}, while the query ?- p is true with MP2A={p}. This type of the behavior of 
co-LP with co-SLDNF seems to be confusing and counter-intuitive.  However, as we 
noted earlier with NP1, this type of behavior is indeed advantageous as we extend 
traditional LP into the realm of modal reasoning. Clearly, the addition of a clause like 
{ p :- p. } to a program extends each of its initial models into two models where one 
includes p and the other does not include p. Further, co-SLDNF enforces the 
consistency of the query result causing the query ?- p, nt(p) to fail. However, the 
query Q4 = ?- (p; nt(p)) will then generate the following derivation with program 
NP2 and succeed (in fact, there are two distinct success derivations one for p and 
another for nt(p)):  
  ({p ; nt(p)}, {}, {}, {})           by (5) 

→  ({p ; nt(p)}, {}, {p},{})   by (1) 
→  ({� ; nt(p)}, {}, {p}, {})    [success] for p; nt(p) by (4) 
→  ({}, {}, {p}, {})            [success] 

Example 4.3  Consider the following program NP3: 
NP3: p :- nt(p).  

First, consider the query Q1 = ?- p generating the following derivation:  
  ({p}, {}, {}, {})            by (5) 

→  ({nt(p)}, {}, {p},{})   by (4) 
→  ({nt(�)}, {}, {p}, {})     by (8c) 
 →  ({false}, {}, {p}, {})    [fail] 

Second, consider the query Q2 = ?- nt(p) generating the following derivation:  
  ({nt(p)}, {}, {}, {})           by (6) 

→  ({nt(nt(p))}, {}, {},{p})   by (3) 
→  ({nt(nt(false))}, {}, {}, {p})  by (8a) 
→  ({nt(�)}, {}, {}, {p})     by (8c) 
 →  ({false}, {}, {}, {p})     [fail] 

Third, consider the query Q3 = ?- (p; nt(p)) generating the following derivation: 



  ({p ; nt(p)}, {}, {}, {})           by (5) 
→  ({nt(p); nt(p)}, {}, {p},{})   by (4) 
→  ({nt(�); nt(p)}, {}, {p}, {})    by (8c) 
 →  ({false; nt(p)}, {}, {p}, {})   [fail] for subgoal p;  
 →  ({nt(p)}, {}, {p}, {})   by (4) 
→  ({nt(�)}, {}, {p}, {})           by (8c) 
→  ({false}, {}, {p}, {})           [fail] 

The program NP3 has no fixed point (no model), in contrast to the program NP2 
which has two fixed points {} and {p}. Further, the query ?- (p ; nt(p)) provides a 
validation test  for NP3 w.r.t. p whether NP3 is consistent or not.  Consider the 
program completion CP2 (of NP2) which is { p ≡ p }.  In contrast, there is no 
consistent completion of program for NP3 where its completion of program CP3 of 
NP3 is { p ≡ ¬p }, a contradiction.  

Example 4.4  Consider the following program NP4:  
NP4: p :- nt(q).  

and reconsider program NP1:    
NP1: p :- nt(q).     
 q :- nt(p).  

NP4 has a model MP4 = {p} whereas NP1 has two models MP1A = {p} and MP1B = 
{q} as we noted earlier. Further the completion of the program CP4 for NP4 is: { p ≡ 
¬q.  q ≡ false. }, and the completion of the program CP1 for NP1 is: { p ≡ ¬q.  q ≡ 
¬p. }.  With co-SLDNF semantics, the query ?- p succeeds with NP1 and NP4 
whereas the query ?- q succeeds with NP1 but not with NP4. This is consistent with 
the semantics of the program completion of these two programs. After discussing the 
correctness of co-SLDNF resolution, we will show the equivalence of a logic program 
under co-SLDNF semantics and the semantics of program completion w.r.t. the result 
of a successful co-SLDNF derivation, as we noted for this example. 

Example 4.5 Consider the following program NP5 with three clauses:  
NP5: p :- q.     
 p :- r.    
 r. 

NP5 has one fixed point (model), which is the least fixed point, MP5 = { p, r }.  The 
query ?- nt(p) will generate the following transition sequence: 

 ({nt(p)}, {}, {}, {})            by (6) 
→  ({nt(q), nt(r)}, {}, {},{p})   by (7) 
→  ({nt(false), nt(r)}, {}, {}, {p,q})  by (8a) 
→  ({nt(r)}, {}, {}, {p,q})     by (6) 
→  ({nt(�)}, {}, {}, {p,q,r})           by (8c) 
→  ({false}, {}, {}, {p,q,r})           [fail] 

We used propositional logic programs in the examples above, but these examples 
could just as easily be illustrated with predicate logic programs.  Note that co-
SLDNF resolution allows one to develop elegant implementations of modal 
logics[12]). In addition, co-SLDNF resolution provides the capability of non-
monotonic inference (e.g., predicate Answer Set Programming [12]) that can be used 
to develop novel and effective first-order modal non-monotonic inference engines.   



5 Correctness of co-SLDNF Resolution 

The declarative semantics of a co-inductive logic program with negation as failure 
(co-SLDNF) is an extension of a stratified-interleaving (of coinductive and inductive 
predicates) of the minimal Herbrand model and the maximal Herbrand model 
semantics with the restriction of rational trees. This allows the universe of terms to 
contain rational (that is, rationally infinite) terms, in addition to the traditional finite 
terms.  As we noted earlier with program NP3 in Example 4.3, negation in logic 
program with coinduction may generate nonmonotonicity and thus there exists no 
consistent co-Herbrand model.  For a declarative semantics to co-LP with negation 
as failure, we rely on the work of Fitting [6] (Kripke-Kleene semantics with three-
valued logic), extended by Fages [5] for stable models with completion of a program.  
Their framework, which maintains a pair of sets (corresponding to a partial 
interpretation of success set and failure set, resulting in a partial model) provides a 
sound theoretical basis for the declarative semantics of co-SLDNF.  As we noted 
earlier, we restrict Fitting’s and Fages’s results within the scope of rational LP over 
the rational space.  We summarize this framework next. 

Definition 5.1 (Pair-set and pair-mapping): Let P be a normal logic program, with its 
rational Herbrand Space HSR(P), and let (M, N) ∈ 2HBx2HB (where HB is the rational 
Herbrand base HBR(P)) be a partial interpretation.  Then the pair-mapping (TP

+, TP
-) 

for defining the pair-set (M, N) are as follows:  
TP

+(M,N) = {head(R) | R∈ HGR(P), pos(R) ⊆ M, neg(R) ⊆ N}, 
TP

-(M,N) = {A | ∀R∈ HGR(P), head(R)=A → pos(R)∩N≠∅ ∨ neg(R)∩M≠∅}  
where head(R) is the head atom of a clause R, pos(R) is the set of positive atoms in 
the body of R, and neg(R) is the set of atoms under negation.  � 

It is noteworthy that the TP
+ operator w.r.t. M of the pair set (M, N) is identical to the 

immediate consequence operator TP [10] where TP(I) = { head(R) | R∈HGR(P), I |= 
body(R) } where body(R) is the set of positive and negative literals occurring in the 
body of a clause R. We recall [10] (also noted by Fages [5] in Proposition 4.1) that a 
Herbrand interpretation I (that is, I ⊆ HG(P)) is a model of comp(P) iff I is a fixed 
point of Tp. Intuitively, the outcome of the operator TP

+ is to compute a success set.  
In contrast, the outcome of TP

- is to compute the set of atoms guaranteed to fail. Thus 
the pair-mapping (TP

+, TP
-) specifies essentially a consistent pair of a success set and a 

finite-failure set. Further the pair-set (M, N) of the pair-mapping (TP
+, TP

-) enjoys 
monotonicity and gives Herbrand models (fixed points) under certain conditions as 
follows. 

Theorem 5.1 (Fages [5], Proposition 4.2, 4.3, 4.4, 4.5). Let P be an infinite LP. Then: 
(1)  If M ∩ N = ∅ then TP

+(M, N) ∩ TP
-(M, N) = ∅. 

(2)  < TP
+, TP

-> is monotonic in the lattice 2HBx2HB (where HB is the Herbrand Base) 
ordered by pair inclusion ⊆, that is, (M1, N1) ⊆ (M2, N2) implies that < TP

+, TP
-> 

(M1, N1) ⊆ < TP
+, TP

- > (M2, N2). 
(3)  If M ∩ N = ∅ and (M, N) ⊆ < TP

+,TP
- > (M, N) then there exists a fixed point 

(M’, N’) of < TP
+, TP

- > such that (M, N) ⊆ (M’, N’) and M’ ∩ N’ = ∅. 
(4)  If (M, N) is a fixed point of < TP

+, TP
- >, M ∩ N=∅ and M ∪ N = HB, then M is 



a Herbrand Model (HM) of comp(P).  � 

Note that the pair mapping <TP
+, TP

-> and the pair-set (M, N) are the declarative 
counterparts of co-SLDNF resolution; the set (M, N) corresponds to (χ+, χ-) of 
Definition 5.1.  Thus Fages’s theorem above captures the declarative semantics of 
co-SLDNF resolution of general infinite LP; and we need to see whether Theorem 
5.1 for a set of finite rational logic programs (which is a subset of infinite logic 
programs) over the rational space. The proofs for Theorem 5.1 (1-2) are 
straightforward. For Theorem 5.1 (3) with HGR(P), the immediate consequence, that 
is, the pair-set (M,N) by the pair-mapping < TP

+, TP
-> applied each time is rational, 

and this is true for any finite n steps where n ≥ 0.  This is due to the earlier 
observations: (i) that the algebra of rational trees and the algebra of infinite trees are 
elementarily equivalent, (ii) that there is no isolated irrational atom as result of the 
pair-mapping and pair-set for rational LP over rational space, and (iii) that any 
irrational atom as result of an infinite derivation in this context should have a rational 
cover, as noted in [9], which could be characterized by the (interim) rational atom 
observed in each step of the derivation.  For Theorem 5.1 (4), there are two cases to 
consider for each atom resulting in a fixed point: rational or irrational.  For the 
rational case, it is straightforward that it will be eventually derived by the pair-
mapping as there is a rational cover that eventually converges to the rational atom, 
and the rational model contains the fixed point.  For the irrational case, it does not 
exist in the program’s rational space but there is a rational cover converging into the 
irrational fixed point over infinity. That is, there is a fixed point but its irrational atom 
is not in the rational model. In this case, co-SLDNF derivation (tree) will be irrational, 
to be labeled undefined (even though it is meant for infinite success or infinite failure).  
Thus we have the following corollary. 

Corollary 5.2 (Fages’s Theorem for Rational Models):  Let P be a normal 
coinductive logic program.  Let (TP

+, TP
-) be the corresponding pair mappings 

[Definition 5.1]. Given a pair set (M, N) ∈ 2HBx2HB [where HB is the rational 
Herbrand base HBR(P)] with M∩N = ∅ and (M, N) ⊆ < TP

+, TP
- >(M, N) then there 

exists a fixed point (M’, N’) of < TP
+,TP

- > such that (M, N) ⊆ (M’, N’) and 
M’∩N’=∅.  If (M’, N’) is a fixed point of < TP

+,TP
->, M’∩N’=∅ and 

M’∪N’=HBR(P), then M’ is a (Rational) Herbrand model of P (denoted HMR(P)). � 

Moreover we can establish that a model of P w.r.t. a successful co-SLDNF derivation 
is also a model of comp(P).  Later we show that under a successful co-SLDNF 
resolution, a program P and its completion, comp(P), coincide.  As we noted earlier, 
the pair mapping <TP

+, TP
-> and the pair-set (M, N) are the declarative counterparts of 

co-SLDNF resolution; the set (M, N) corresponds to (χ+, χ-) of Definition 3.2.   
Further we note that there may be more than one fixed points (which are possibly 
inconsistent with each other). Note that HMR(P) is also a model of comp(P) since 
comp(P) coincides with P under co-SLDNF, as we show later. As noted earlier, the 
condition of mutual exclusion (that is, M∩N = ∅) keeps the pair-set (M,N) monotonic 
and consistent under the pair-mapping. The pair-mapping with the pair-set maintains 
the consistency of truth value assigned to an atom p. Thus, cases where both p and 
nt(p) are assigned true, or both are assigned false, are rejected.  Next we show that P 
coincides with comp(P) under co-SLDNF.  First we recall the work of Apt, Blair and 



Walker [1] for supported interpretation and supported model. 

Definition 5.2 (Supported Interpretation [1]). An interpretation I of a general program 
P is supported if for each A∈I there exists a clause A1←L1,...,Ln in P and a 
substitution θ such that  I |=  L1θ, ..., Lnθ, A=A1θ, and each Liθ is ground. Thus I is 
supported iff for each A∈I there exists a clause in HG(P) with head A whose body is 
true in I. � 

Theorem 5.3 (Apt, Blair, and Walker [1], Shepherdson [15]). Let P be a general 
program.  Then: (1) I is a model of P iff TP(I) ⊆ I.  (2) I is supported iff TP(I) ⊇ I. 
(3) I is a supported model of P iff it is a fixed point of TP, i.e., TP(I) = I. � 

We use these results to show that comp(P) and P coincide under co-SLDNF 
resolution.  The positive and negative coinductive hypothesis tables (χ+ and χ-) of 
co-SLDNF are equivalent to the pair-set under the pair-mapping and thus enjoy (a) 
monotonicity, (b) mutual exclusion (disjoint), (c) consistency. First (1), it is 
straightforward to see that in a successful co-SLDNF derivation the coinductive 
hypothesis tables χ+ and χ- serve as a partial model (that is, if the body of a selected 
clause is true in χ+ and χ- then its head is also true (A ← L1,...,Ln)).  Second (2), it is 
also straightforward to see that a successful co-SLDNF derivation constrains the 
coinductive hypothesis tables χ+ and χ- at each step to stay supported (that is, if the 
head is true then the body of the clause is true: (A → L1,...,Ln)).  By co-inductive 
hypothesis rule, the selected query subgoal (say, A) is placed first in χ+ (resp. χ-) 
depending on its positive (resp. negative) context.  The rest of the derivation is to 
find a right selection of clauses (A → L1,...,Ln) whose head-atom is unifiable with A, 
and whose body is true using normal logic programming expansion or via negative or 
positive coinductive hypothesis rule. Thus, it follows from above that a coinductive 
logic program (A ← L1,...,Ln) is equivalent to its completed program (A ↔ L1,...,Ln) 
under co-SLDNF resolution. Next, correctness of co-SLDNF is proved by equating 
the operational and declarative semantics, as follows.  

Theorem 5.4 (Soundness and Completeness of co-SLDNF). Let P be a general 
program over its rational Herbrand Space.  
(1) (Soundness of co-SLDNF):  (a) If a goal {A} has a successful derivation in 
program P with co-SLDNF, then A is true, i.e., there is a model HMR(P) where A ∈ 
HMR(P). (b) Similarly, if a goal { nt(A) } has a successful derivation in program P, 
then nt(A) is true in program P, i.e., there is a model HMR(P) such that A ∈ 
HBR(P)\HMR(P).   
(2) (Completeness of co-SLDNF):  (a) If A ∈ HMR(P), then A has a successful co-
SLDNF derivation or an irrational derivation.  Further (b) if A ∈ HBR(P)\HMR(P), 
then nt(A) has a successful co-SLDNF derivation or an irrational derivation.   � 

Note that the coincidence of P and comp(P) under co-SLDNF is important.  If 
comp(P) is not consistent, say w.r.t. an atom p, then there is no successful rational 
derivation of p or nt(p).   

Example 5.1  Consider the following program IP1 = { q :- p(a).   p(X) :- p(f(X). }.  
This is an example of an irrational derivation (irrational proof tree) since for query ?- 
q the derivation (q → p(a) → p(f(a)) → p(f(f(a))) → …) is non-terminating.  



Similarly the negated query ?- nt(q) is also non-terminating (i.e., nt(q) → nt(p(a)) → 
nt(p(f(a))) → nt(p(f(f(a)))) → ... ).  But it is clear that both q and p(a) are in the 
rational Herbrand base HBR(IP1). Moreover, q and p(a) are not in HMR(IP1) but in 
HBR(IP1)\HMR(IP1) as there is no rational derivation tree for q and p(a).  Further, 
for the second clause { p(X) :- p(f(X). }, there is only one ground (rational) atom 
p(X′), where X′=f(X′)=f(f(f(...))), which satisfies the clause and makes p(X) true; all 
other finite or rational atoms p(Y) are false.  Thus the ground atom p(f(f(f(...)))) 
(p(X) where X=f(X)) is in  HMR(P), and all other  finite and rational atoms p(Y) 
where  Y ≠ f(Y) should be in HBR(P)\HMR(P) as one would expect.  The derivation 
of query ?- q which is irrational hence will not terminate.  Thus if there is no rational 
coinductive proof for an atom G, then the query ?- G will have an irrational infinite 
derivation. 
Example 5.2 Consider the program NP3A as follows: 

NP3A: p :- nt(p), q.    
The queries Q1 – Q3 of NP3 in Example 4.3 will generate the same result for NP3A.  
Its program completion NP3B (denoted comp(NP3A)) is then defined as follows:  

NP3B: p :- nt(p), q.   
 nt(p) :- nt(nt(p), q).   
 nt(q). 

The query Q1 = ?- p will fail with NP3B while the query Q2 = ?- nt(p) will succeed 
with the following derivation:  

  ({nt(p)}, {}, {}, {})            by (6) 
 →  ({nt(nt(p), q)}, {}, {},{p})   by (3) 
 →  ({nt(nt(false), q)}, {}, {}, {p})   by (8a) 
 →  ({nt(�, q)}, {}, {q}, {p})     by (8c) 
 →  ({nt(q)}, {}, {q}, {p})     by (6) 

 →  ({}, {}, {q}, {p})      [success] 
Recall that NP3 has no fixed point (no model) as its program completion is 
inconsistent.  In contrast, NP3A has a model MP3A (={}) where its program 
completion CP3A is {p ≡ (¬p∧q) ≡ ¬(p∨¬q). q ≡ false.}, to illustrate the 
nonmonotonic capability.  In summary, co-LP with co-SLDNF provides a powerful, 
effective and practical operational semantics for Fitting’s Kripke-Kleene three-valued 
logic [6] with restriction of rationality with modal and nonmonotonic capability. 

6 Applications of co-LP with co-SLDNF 

Some of the exploratory and exemplary applications of co-LP with co-SLDNF can be 
found in [12], for predicate Answer Set Programming (ASP) solver, Boolean SAT 
solver, model checking and verification, and modal nonmonotonic inference. One 
major application of co-SLDNF is the top-down goal-directed predicate ASP solver 
[13].  Here we present an example of Boolean SAT solver to show how one can 
quickly and elegantly program Boolean SAT solver [14] using co-SLDNF resolution.  

Example 6.1.  Consider two programs BP1 and BP2 where each is a “naïve” 
coinductive SAT solver (co-SAT Solver) for propositional Boolean formulas: 



    BP1: pos(X) :- nt(neg(X)).  
   neg(X) :- nt(pos(X)). 

   BP2: t(X) :- t(X). 
Note that with a minor variation, BP1 is a predicate version of NP1 = { p :- nt(q).  q 
:- nt(p). }, and BP2 of NP2 = { p :- p. }.  With BP1, the rules assert that the 
predicates pos(X) and neg(X) have mutually exclusive values, i.e., a propositional 
symbol X cannot be set simultaneously both to true and false.  Next, any well-
formed propositional Boolean formula constructed from a set of propositional 
symbols and logical connectives { ∧, ∨, ¬} is now translated into a query that is 
executed under co-SLDNF resolution. First (1), each positive propositional symbol p 
will be transformed into pos(p), and each negated propositional symbol into neg(p). 
The Boolean operator AND (“∧”)will be translated into “,” (Prolog’s AND-operator), 
while the OR (or “∨”) operator will be translated to “;” (Prolog’s OR-operator). Thus, 
the Boolean expression (p1  ∨ p2 ) ∧ ( p1 ∨ ¬ p3 ) ∧ (¬ p2 ∨ ¬ p4 ) will be 
translated into the query:  ?- (pos(p1);pos(p2)),(pos(p1);neg(p3)),(neg(p2); neg(p4)). 
This query can be executed under co-SLDNF resolution to get a consistent assignment 
for propositional variables p1 through p4. The assignments will be recorded in the 
positive and negative coinductive hypothesis tables (if one were to build an actual 
SAT solver, then a primitive will be needed that should be called after the query to 
print the contents of the two hypotheses tables). Indeed a meta-interpreter for co-
SLDNF resolution has been prototyped by us and used to implement the naïve SAT 
solver algorithm. For the query above our system will print as one of the answers: 
 positive_hypo ==> [pos(p1), neg(p2)] 
 negative_hypo ==> [neg(p1), pos(p2)] 
which outputs the solution p1=true and p2=false.  More solutions can be obtained by 
backtracking.  Similarly for BP2, Boolean formula is transformed into co-LP query 
as follows: (1) a positive literal p1 as t(p1), (2) a negative literal ¬p1 as nt(t(p1)), (3) 
(p1∧p2) as (t(p1), t(p2)), (4) (p1∨p2) as (t(p1); t(p2)), (5) (p1  ∨ p2 ) ∧ ( p1 ∨ ¬ p3 
) ∧ (¬ p2 ∨ ¬ p4 ) as ((t(p1);t(p2)), (t(p1); nt(t(p3)), (nt(t(p2); nt(t(p4))), and so on.  
The derivation of BP2 is very similar to that of NP2. 

7 Conclusion and Future Work 

Coinductive logic programming realized via co-SLD resolution has many practical 
applications. It is natural to consider extending coinductive logic programming with 
negation as failure since negation is required for almost all practical applications of 
logic programming.  In this paper we presented co-SLDNF resolution, which 
extends Simon et al’s co-SLD resolution with negation as failure.  Co-LP with co-
SLDNF resolution provides a powerful, practical and efficient operational semantics 
for Fitting’s Kripke-Kleene three-valued logic with restriction of rationality. Co-
SLDNF resolution has many practical applications, most notably to realizing goal-
directed execution strategies for answer set programming extended with predicates. 
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Abstract. Transforming a recursive procedure into a tail recursive one
brings many computational benefits; in particular in each recursive call
there is no context information to store. In this paper we consider the
particularly simple induction schema over natural numbers, and we pro-
pose two methods to automatically turn it into another proof with tail
recursive content: one continuation and one accumulator based.
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1 Introduction

Let M be a proof by induction over n (natural number) of the property ∀n.ϕ(n),
and let, by the Proofs-as-Program paradigm, [[M ]] be the (recursive) content of
M . In this paper we will try to answer the following question: How to turn M

automatically into another proof N with tail recursive content for the same state-

ment? Penny Anderson in her Ph.D. thesis [1] used Frank Pfenning’s Insertion

Lemma [16] proof transformation, in order to extract tail recursive programs
from proofs. This method, although particularly interesting, is user dependent.
What we will do here is to present and develop in a formal setting an idea first
roughly introduced in [4] (originated from an informal chat the first author had
with Andrej Bauer in the spring of 2004, reported in Bauer’s mathematical blog
[3]) in order to extract tail recursive programs from proofs but in a completely
automatic fashion.

Let us consider the following program, written in an ML-like syntax:

let rec FACT n = if n = 0 then 1 else n * FACT (n - 1)

FACT computes the factorial of n, for any positive integer n. But this implemen-
tation is not tail recursive because in each step of the computation the compiler
has to store (on a stack) the context (n ∗ []), evaluate FACT (n-1) 7→ v, and



return (n ∗ v). It is well known that FACT can be turned into a simpler function
where it is not necessary to stack any context information:

let rec FACT’ n =

let rec FACT’’ n m y =

if n = 0 then y else FACT’’ (n - 1) (m + 1) ((m + 1) * y)

in FACT’’ n 0 1

Now assume FACT to be the computational content of the proof by induction
M , with end formula ∀nϕ(n), that states that for each natural n there exists
n!. From which proof is it possible to extract FACT’? Both programs FACT and
FACT’ compute the factorial function, so FACT’ should be the content of an
appropriate proof of ∀nϕ(n) as well. So the problem has shifted to understanding
which property satisfies FACT’’. Given a natural n, (FACT’’n) is a function that
takes the natural m, the witness y for ϕ(m) and returns a witness for ϕ(n + m).
Hence given n, (FACT’’n 0 1) is the witness for ϕ(n) as expected. Intuitively, we
expect FACT’’ to be the computational content of some proof of the formula
∀n, m(ϕ(m) → ϕ(n + m)) In this article we will show that this is the right
intuition to follow for the automatic generation of tail recursive programs.

The paper is organized as follows: section 2 is a short introduction to the logi-
cal foundation of program extraction and to Gödel T, in Section 3 we address two
proofs transformation in order to extract continuation and accumulator based
tail recursive programs, in Section 4 we show that there exists a formal connec-
tion between the two proof transformations presented in Section 3 and finally, in
Section 5 we apply our methods to a well known problem in bioinformatics, the
Maximal Scoring Subsequence Problem. All the proofs presented in the paper are
developed with the MINLOG proof assistant [18].

2 Logical Foundations

2.1 Program Extraction in MINLOG

MINLOG (www.minlog-system.de) is a proof assistant intended to reason about
computable functions of finite type using minimal logic. A major aim of the
Minlog project is the development of practically useful tools for the machine-
extraction of realistic programs from proofs.

The method of program extraction implemented in MINLOG is based on mod-
ified realizability as introduced by Kreisel [14]. In short, from every constructive
proof M of a non-Harrop formula A (in natural deduction proof calculus) one
extracts a program [[M ]] “realizing” A, essentially, by removing computationally
irrelevant parts from the proof (proofs of Harrop formulas have no computa-
tional content). The extracted program (Gödel T with types) has some simple
type τ(A) which depends on the logical shape of the proved formula A only.

Besides the usual quantifiers, ∀ and ∃, MINLOG has so-called non-computatio-
nal quantifiers, ∀nc and ∃nc which allow for the extraction of simpler programs.
Intuitively, a proof of ∀ncA(x) (A(x) non-Harrop) represents a procedure that
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assigns to every x a proof M(x) of A(x) where M(x) does not make “compu-
tational use” of x, i.e. the extracted program [[M(x)]] does not depend on x.
Dually, a proof of ∃ncA(x) is proof of M(x) for some x where the witness x is
“hidden”, that is, not available for computational use.

For a complete documentation on the extraction of programs in MINLOG

please refer to [20].

2.2 Gödel’s T with Types

Types are built from base types N (Naturals) , L(ρ) (lists with elements of type
ρ) and B (booleans) by function (→) and pair (×) formation. The Terms of
Gödel’s T [21] are simply typed λ-calculus terms with pairs, projections (πi)
and constants (constructors and recursive operators for the basic types)

Types ρ, σ ::= N |B |L(ρ) | ρ → σ | ρ × σ

Const c ::= 0N | SuccN→N | ttB |ffB | (:)L(ρ) | ::ρ→L(ρ)→L(ρ) |Rσ
N
|Rσ

L(ρ)|R
σ
B

Terms r, s, t ::= c |xρ|(λxρrσ)ρ→σ|(rρ→σsρ)σ|(π0t
ρ×σ)ρ| (π1t

ρ×σ)σ | (rρ, sσ)ρ×σ

The expression (:) represents the empty list, and (a0 :: . . . :: an :) a list with
n + 1 elements. We equip this calculus with the usual conversion rules for the
recursive operators, applications and projections.

The η-reduction relation λx(r x) −→η r is defined for x 6∈ FV(r). By −→Rηβ

we indicate the union of −→β , 7−→, and −→η. By −→+
Rηβ we indicate the transi-

tive closure of −→Rηβ . Finally we define the extensional equality relation =Rηβ ,
as the least equivalence relation that contain −→Rηβ . The extensional equality

relation captures the idea that two functions should be considered equal if they
yield equal results whenever applied to equal arguments.

We already emphasised that realizability is extensively used in MINLOG. In
this proof assistant, extracted programs are presented in a textual style, that we
briefly describe now along with the correspondence with the above mathematical
notations: in programs produced by MINLOG, tt and ff are typeset #tt and #ff

respectively; λx.t written ([x]t), (Rσ
N/B/L(ρ) b s) as (Rec (nat/bool/list rho =>

sigma) b s) and (π0/1e) as (left/right e). Finally the term (Rσ
B

r s)t is printed
as (if t r s).

3 Proof Manipulation

This section is devoted to exposing the proof transformations we have in mind in
order to generate (by extraction) more efficient programs starting with a given
inductive proof on natural numbers. How the techniques can be extended to
other data types is discussed in the conclusion.

Definition 3.1 (Tail Expressions [12]) The tail expressions of t ∈ Terms,

are defined inductively as follows:

1. If t ≡ (λx.e) then e is a tail expression.
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2. If t ≡ (if t r s) is a tail expression, then both r and s are tail expressions.

3. If t ≡ (Rι r s) is a tail expression, then r and s are tail expressions.

4. Nothing else is a tail expression,

where ι ∈ {N,L(ρ)}.

Definition 3.2 A tail call is a tail expression that is a procedure call.

Definition 3.3 (Tail Recursion [13]) A recursive procedure is called tail re-

cursive when its tail calls itself or calls itself indirectly through a series of tail

calls.

Now, let us consider F be the following proof by induction over N:

|M

ϕ(0)

|N

∀n(ϕ(n) → ϕ(n + 1))

∀nϕ(n)

The content of F is (Rσ
N

b f) with b and f base and step case of the recursion
operator, content of the proofs M and N .

3.1 Continuation based Tail Recursion

Given the procedure (Rσ
N

b f) defined in the previous section, let Λ be the term:

(R
(σ→σ′)→σ′

N
λk(kb) λn, p, k( p λu(k(f n u))))

The procedure Λ, by Definition 3.3, is tail recursive. The first input argument
of Λ, which has type (σ → σ′), is called a continuation; Λ is a function with
just one tail recursive call and a functional accumulator parameter k with the
following property: for each n, at the i-th (0 < i ≤ n) step of the computation
of (Λ n (λx.x)) the continuation has the form λu(f (n− 1) (. . . (f (n− i)u) . . .)).
At the n-th step the continuation λu(f (n − 1) (. . . (f 0 u) . . .)) is applied to the
term b and returns. We see that such returned value corresponds to (Rσ

N
b f)n.

This fact is stated formally in the following,

Theorem 3.1 For each natural n:

Λ n =Rηβ λkσ→σ′

k((Rσ
N

b f)n)

Proof. By induction over n:

As expected, when applied to the identity continuation (λxx) we get another
program in the same equivalence class:

Corollary 3.1 λn(Λ n (λxx)) =Rηβ (Rσ
N

b f)
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Now we show how λn(Λ n (λxx)) can be synthesized, in an automatic way,
from another proof of the same given statement ∀nϕ(n). More formally, assume
we are given some proof term F , with extraction [[F ]] = (Rσ

N
b f), is it possible to

find another proof F ′ of the same statement, which leads to the other program:
[[F ′]] = λn(Λ n (λxx))? This is the challenge we give a positive answer hereafter.

The key point is to understand the logical role of the continuation parameter
in Λ: given a natural n, at each step i : n, . . . , 0 in computing (Λ n (λx.x)), the
continuation is a function that takes the witness for ϕ(i) and returns the witness
for ϕ(i+m), for m such that i+m = n. So we expect Λ to be the computational
content of a proof with end formula:

∀n∀ncm((ϕ(n) → ϕ(n + m)) → ϕ(n + m)) (1)

We observe that the counter m is introduced to count how much n is decreasing

during the computation. So, as such, it plays a “logical” role (or commentary
role if one prefers); in other words, it is irrelevant at the programming level,
and should be marked to be dropped out. To this end, we explicitly underline
the “hidden” role of m quantifying over it by the special non-computational

quantifier ∀nc[20, page 47]. Let us prove the above statement (1), under the
assumptions we have proofs for both ϕ(0) and ∀n(ϕ(n) → ϕ(n+1)) statements.

Proposition 3.1 ϕ(0) → ∀n(ϕ(n) → ϕ(n + 1)) → ∀n∀ncm((ϕ(n) → ϕ(n +
m)) → ϕ(n + m))

Proof. Assume b : ϕ(0) and f : ∀n(ϕ(n) → ϕ(n + 1)). By induction on n.

n = 0 We have to prove

∀ncm((ϕ(0) → ϕ(m)) → ϕ(m))

So assume m and k : (ϕ(0) → ϕ(m)). Apply k to b : ϕ(0).
n + 1 Assume n, the recursive call p : ∀ncm((ϕ(n) → ϕ(n + m)) → ϕ(n + m)),

m, and the continuation k : ϕ(n + 1) → ϕ(n + m + 1). We have to prove:

ϕ(n + m + 1)

Apply p to (m + 1) obtaining (p (m + 1)) : (ϕ(n) → ϕ(n + m + 1)) →
ϕ(n + m + 1). So, if we are able to prove the formula ϕ(n) → ϕ(n + m + 1),
by some proof t, we can just apply (p (m + 1)) to t and we are done.
So let us prove

ϕ(n) → ϕ(n + m + 1)

Assume v : ϕ(n). We apply k to (f n v).

Corollary 3.2 ϕ(0) → ∀n((ϕ(n) → ϕ(n + 1))) → ∀nϕ(n).

Proof. Assume b : ϕ(0), f : ∀n(ϕ(n) → ϕ(n + 1)) Given n, to prove ϕ(n), we
instantiate the formula proved in Proposition 3.1 on b, f , n, 0 and ϕ(n) → ϕ(n).
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Extracted program 1 Ind CONT

[b,f,n](Rec nat => (sigma => sigma’) => sigma’

[k](k b)

[n,p,k]p ([u] k(f n u))) n ([x]x)

We name the corresponding extracted term Ind CONT ( Extracted program 1).

Notice that, although the functional parameter in Λ is a continuation, Λ is
not of the kind provided alongside a CPS-transformation[10] of the recursion
over naturals schemata. In fact f and b are not altered in our transformation
and they could contain bad expressions, like not tail calls.

The formula (1) could be substituted by the more general ∀n((ϕ(n) → ⊥) →
⊥). However, we offer a simpler formulation for the logical property the contin-
uation parameter is supposed to satisfy. In addition, this approach represents a
non trivial usage of the non computational quantifiers ∀nc.

3.2 Accumulator based tail recursion

Here we present the essence of Bauer’s [3] original idea. Given the procedure
(Rσ

N
b f) defined in the last section, let Π be the term:

(RN→σ→σ
N

λm, y(y) λn, p, m, y(p (m + 1) (f m y)))

In Π there are two accumulator parameters: a natural and parameter of type σ

where intermediate results are stored. For each natural n, at the i-th (0 < i ≤ n)
step of the computation of (Π n 0 b) the accumulator of the partial results will
be equal to the expression (f (i− 1) (. . . (f 0 b) . . .)). At the n-th step (base case
of Π) the accumulator of the partial results is returned and it corresponds to
(Rσ

N
b f)n. This fact is stated in theorem 3.2 below.

Definition 3.4 For all n,m, let f
N→N→σ→σ

be a function such that:

fm n = f (n + m)

Proposition 3.2 For all naturals n and m:

(Rσ
N

(fm 0 b) fm+1)n =Rηβ (Rσ
N

b fm) (n + 1)

Proof. By induction on n.

Theorem 3.2 For all natural n,

Π n =Rηβ λm, y((Rσ
N

y fm)n)

Proof. By induction on n.
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Now, compared with the previous step, we have to provide an initial value to
Π in order to get an equivalent program. According to the accumulator-based
approach, arguments 0, b roughly take the place of the continuation (function).
See section 4 for more development on this remark.

Corollary 3.3 λn(Π n 0 b) =Rηβ (Rσ
N

b f)

Again, we still have to address the question, whether being given a proof F

such that
[[F ]] = (Rσ

N
b f)

it is possible to find out F ′ such that:

[[F ′]] = λn(Π n 0 b)?

Functions are very powerful tools, so it is not a surprise that going along without
them has a cost. Actually, we can still achieve our goal, but the answer is now
a little bit more elaborate.

Given two natural indices i , j, with i+ j = n, (Π i j) is a function that takes
the witness for ϕ(j) and returns the witness for ϕ(i + j). So we expect Π to be
the computational content of a proof with end formula:

∀n, m(ϕ(m) → ϕ(n + m))

that uses the proofs terms Mϕ(0) and N∀n(ϕ(n)→ϕ(n+1)) as assumptions. Let us
prove this claim.

Proposition 3.3 ϕ(0) → ∀n(ϕ(n) → ϕ(n + 1)) → ∀n, m(ϕ(m) → ϕ(n + m))

Proof. Assume b : ϕ(0) and f : ∀n(ϕ(n) → ϕ(n + 1)). By induction on n:

n = 0 We have to prove
∀m(ϕ(m) → ϕ(m))

this is trivially proved by λm, u(u).
n + 1 Let us assume n, the recursive call p : ∀m(ϕ(m) → ϕ(n + m)), m and the

accumulator y : ϕ(m). We have to prove

ϕ(n + m + 1)

Apply f to m and y obtaining (f m y) : ϕ(m + 1). Now apply p to (m + 1)
and (f m y).

The accumulator-based program transformation provides us with a new proof of
the induction principle over natural numbers:

Corollary 3.4 ϕ(0) → ∀n(ϕ(n) → ϕ(n + 1)) → ∀nϕ(n).

Proof. Assume b : ϕ(0), f : ∀n(ϕ(n) → ϕ(n + 1)) and n. To prove ϕ(n): instan-
tiate the formula proved in Proposition 3.3 on n, 0 and b : ϕ(0)

We are done: the corresponding extracted program, named Ind ACC, is pre-
sented in the Extracted program 2.
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Extracted program 2 Ind ACC

[b,f,n](Rec nat => nat => sigma => sigma

[m,y]y

[n,p,m,y] p (m+1) (f m y) n 0 b)

4 From Higher Order to First Order Computation

In this section, we answer positively to the question of the existence of some
formal connection between Ind CONT and Ind ACC. The link between the two
of them relies on Defunctionalization. This program transformation, first intro-
duced by Reynolds in the early 1970’s [17] and later on extensively studied by
Danvy [8], is a whole program transformation to turn higher-order into first-
order functional programs, that is to transform programs where functions may
be anonymous, given as arguments to other functions and returned as results,
into programs where none of the functions involved accept arguments or produce
results that are functions. Let us consider the following simple example taken
from [8]:

(* aux : (nat -> nat) -> nat *)

let aux f = (f 1) + (f 10)

(* main : nat * nat * bool -> nat *)

let main x y b = aux (fun z -> x + z) *

aux (fun z -> if b then y + z else y * z)

The above function aux calls the higher order function f twice: on 1 and 10 and
returns the sum as its result. Also, the main function calls aux twice and returns
the product of these calls. There are only two function abstractions and they
occur in main.

Defunctionalizing this program amounts to defining a data type with two
constructors, one for each function abstraction, and its associated apply function.
The first function abstraction contains one free variable (x, of type nat), and
therefore the first data-type constructor requires a natural. The second function
abstraction contains two free variables (y, of type nat, and b of type bool), and
therefore the second data-type constructor requires an integer and a boolean.

In main, the first abstraction is thus introduced with the first constructor
and the value of x, and the second abstraction with the second constructor and
the values of y and b.

To the functional argument used in aux, corresponds a pattern matching
done by the following apply function:

type lam = LAM1 of nat | LAM2 of nat * bool

(* apply : lam * nat -> nat *)

let apply l z =
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match l with

| LAM1 x -> x + z

| LAM2 y b -> if b then y + z else y - z

(* aux_def : lam -> nat *)

let aux_def f = apply f 1 + apply f 10

(* main_def : nat * int * bool -> nat *)

let main_def x y b = aux_def (LAM1 x) * aux_def (LAM2 y b)

Now let us apply defunctionalization to Ind CONT. We introduce the algebra
path nat (below) to represent the initial continuation λxx and the intermediate

continuation λu(k(f n u)).

type path_nat = TOP | UP of path_nat * nat

Each constructor has as much parameters as free variables occurring in
the corresponding continuation function. Finally the call (k b) in Ind CONT

is replaced by the apply function (here is anonymous) that dispatches over the
path nat constructors. We named the defunctionalization of Ind CONT Insd Def CONT

(Extracted program 3).

Extracted program 3 Ind Def CONT

[n](Rec nat => path_nat => sigma

[q] (Rec path_nat => sigma => sigma

[y] y

[m,q’,p,y] p (f m y)) q b

[n,p,q] p (UP q n)) n TOP

Now the question is: from which proof is it possible to extract Ind Def CONT?
Given q of type path nat and y “of type” ϕ(n) the inner procedure would be
expected to return an element of type ϕ(n) when q = TOP and an element of
type ϕ(n + m + 1) when q = (UP (...(UP TOPn + m)...) n). But q does not
depend explicitly on n, so given y and p alone one cannot guess anything about
the type of the returned value. In order to state this link between the above two
inputs we need to quantify non computationally over an additional parameter
as showed in the theorem below. In order to do that, let us before introduce the
following notation.

Definition 4.1 Given p and q of type path nat the “degree” of q with respect

to p is defined by the following partial function:

♯p(q) =






♯p(p) = 0
♯p(TOP) = Undef if p 6= TOP

♯p((UP q n)) = 1 + ♯(q)
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Definition 4.2 Given x and p of type path nat and a natural n, we say that x

has a “good shape” with respect to p at level n when

GoodShape(x, p, n) ⇐⇒

{
p = x

p 6= x = (UP q l) ∧ (l = n) ∧ GoodShape(q, p, n + 1)

In the following we adopt the following notation: by C[t] we indicate a path nat

term that contain an occurrence of the term t. So for example if C[t]=(UP(UP

TOP j )i), for some naturals i and j, then t it could be TOP, (UP TOP j ) or C[t]
it self.

Theorem 4.1 ϕ(0) → ∀n(ϕ(n) → ϕ(n+1)) → ∀x∀ncn(GoodShape(x, TOP, n) →
ϕ(n) → ϕ(n + ♯TOP(x)))

Proof. By induction over x.

x = TOP Assume n, u : ϕ(n) and GoodShape(TOP, TOP, n). The thesis follows by
u.

x = (UP q l) Assume p : ∀ncn(GoodShape(q, TOP, n) → ϕ(n) → ϕ(n + ♯(q))), n,
gs : GoodShape((UP q l), TOP, n) and y : ϕ(n). By gs and definition 4.1
follows l = n and gs′ : GoodShape(q, TOP, n + 1). Instantiate f on l and ϕ(n)
(l is equal to n) obtaining (f l y) : ϕ(n + 1). To prove the thesis, it remains
to instantiate p on n + 1, gs′ and (f l y).

The program extracted from theorem 4.1 is Ind Def CONT (see the Extracted
program 3). But we are not done yet: the theorem below shows as Ind Def CONT

needs some additional simplification. In the following lines we will favor the
presentation λn(P n TOP) in place of Ind Def CONT.

Proposition 4.1 For all n, ppath nat, ACCpath nat, if

λn((P n p) (n + 1)) =Rηβ P 0 ACC

then GoodShape(ACC, p, 0) and ♯pACC = n + 1.

Proof. By induction on n.

As a corollary of theorem 4.1, we have that, for p = TOP the expression
λn(P n TOP)(n + 1), that is Ind Def CONT(n + 1), rewrites to (P 0 ACC) with
GoodShape(ACC, TOP, 0) and ♯TOP(ACC) = n + 1. A data structure like path nat

is too complex to store this particular simple data. So we replace path nat by
N in Ind Def CPS according to the informal correspondence:

TOP ! 0

(UPTOPn) ! 1

...
...

(UP(. . . (UPTOPn) . . .)0) ! n + 1
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Extracted program 4 Ind Intermediate ACC

[n] (Rec nat => nat => sigma

[q] (Rec nat => nat => sigma => sigma

[m,y] y

[q’,p,m,y] p (m+1) (f m y)) q 0 b

[n,p,q] p (q+1)) n 0

obtaining the code Ind Intermediate ACC (Extracted program 4). This procedure
still performs some redundant computations: the outer recursion runs over n,
so the accumulator parameter q ranges from 0 to n. At this point the inner
routine (that will return the final result) is called on q, now equal to n. This
is equivalent to calling directly the subroutine over n, which corresponds to
Ind ACC as expected.

5 Case Study

Let us consider now a more elaborated example taken from Bioinformatics. This
is an area where the correctness and the efficiency of programs plays a crucial
role: efficiency because DNA sequences are really huge and getting a lower com-
plexity class is essential, correctness because we need to trust programs and we
cannot check their results by hand. An important line of research is “Sequence
Analysis”, which is concerned with locating biologically meaningful segments in
DNA sequences. In this context, we will treat the so-called “Maximal Scoring
Subsequence” (MSS) Problem. For a sequence of real numbers, we are looking
for a contiguous sub-sequence such that the sum of its elements is maximal over
all sub-sequences. Several authors have investigated that problem or a variation
thereof, see, e.g., [9, 6, 11, 15, 22]

5.1 The MSS Problem

The MSS problem, in its most general presentation, can be explained as follows:

MSS Problem : Given a list l of real numbers, find an interval (i, k) (with
i ≤ k ≤ |l| − 1) such that

k′

∑

j=i′

l [j] ≤

k∑

j=i

l [j]

for every (i′, k′) (with i′ ≤ k′ ≤ |l|−1). The problem doesn’t admit solutions
for all the inputs, in fact on the empty list there is no solution.

Here we report on a variant of the MSS problem first proposed in [2, 19].
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MSS Problem Instance :Given the function seg : N × N → X defined on
[0, . . . , n] × [0, . . . , n], find an interval (i, k),(with i ≤ k ≤ n) such that

seg [i′, j′] ≤X seg [i, j]

for every (i′, k′), (with i′ ≤ k′ ≤ n). This time the problem admits a solution
on each natural input n. Here X is a set on which we can define a total order
relation ≤X. Moreover we require seg to have the following property:

AX = ∀n, i, j(seg[i, n] ≤X seg[j, n] → seg[i, (Succ n)] ≤X seg[j, (Succ n)])

Theorem 5.1 For all n

∃i, k((i ≤ k ≤ n) ∧ ∀i′, k′(i′ ≤ k′ ≤ n) → seg[i′, k′] ≤X seg[i, k]) (2)

∃j((j ≤ n) ∧ ∀j′(j′ ≤ n) → seg[j′, n] ≤X seg[j, n]) (3)

Proof. By induction on n.

n = 0 We set i = k = j = 0.
n + 1 Assume (2) and (3) hold for n (hypothesis IH1

n,IH2
n). Let (in, kn) and jn be

the segment and the value that satisfy IH1
n and IH2

n respectively (see picture
in Figure 1) By IH2

n, for an arbitrary j′ ≤ n

in kn
jn n n + 1

seg [j′, n] ≤ seg[jn, n], ∀j′ ≤ n

seg [i′, k′] ≤ seg[in, kn], ∀i′, k′
≤ n

Fig. 1. The witnesses in,jn and kn at step n of the induction

seg[j′, n] ≤X seg[jn, n] (4)

Instantiating Ax on n,j′,jn and (4),

seg[j′, n + 1] ≤X seg[jn, n + 1]

The witness for IH2
n+1 is given by:

jn+1 =

{
jn seg[n + 1, n + 1] ≤X seg[jn, n + 1]
(n + 1) seg[n + 1, n + 1] �X seg[jn, n + 1]
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We have to prove that jn+1 satisfies,

∀j′.(j′ ≤ (n + 1)) → seg[j′, (n + 1)] ≤X seg[jn+1, (n + 1)])

This has to be proved both for j′ ≤ n and j′ = (n + 1). Both cases follow
straightforwardly from IH2

n and the construction of jn+1. The new maximal
segment, is given by:

(in+1, jn+1) =

{
(in, kn) seg[jn+1, n + 1] ≤X seg[in, kn]
(jn+1, n + 1) seg[jn+1, n + 1] �X seg[in, kn]

Again, we have to prove that (in+1, kn+1) satisfies,

∀i′, k′(i′ ≤ k′ ≤ (n + 1)) → seg[i′, k′] ≤X seg[in+1, kn+1]

This property has to be proved both for (i′ ≤ k′ ≤ n) and (i′ ≤ k′ = n + 1).
Both cases follows from IH1

n, IH2
n, and the construction of (in+1, kn+1)

The program extracted from the previous proof is MSS (Extracted program 5).
The above algorithm makes use of the expression (LET r IN s). This is actually

Extracted program 5 MSS

[seg] (Rec nat => sigma

(0,0,0)

[n,(i,j,k)]

LET m = if (seg[n+1, n+1] <= seg[j, n+1]) j (n+1)

IN if (seg[m,n+1] <= seg[i,k]) (i,m,k) (m,m,n+1))

syntactic sugar : although it does not belong to our term language, MINLOG
allows the user to make use of it. This is irrelevant in the context of the paper,
and the reader is referred to [5] for a more detailed development on that issue.

By the following extension of the definition 3.1:

3′. if t ≡ (LET r IN s) then s is a tail expression.

and accordingly to definition 3.3, the program MSS is not tail recursive.

5.2 Generation of a Continuation/Accumulator based MSS-Program

We apply the transformations proposed in section 3.1 and 3.2 to the proof of the
theorem 5.1 in order to extract respectively a continuation and an accumulator
based version of the MSS program. We named the extracted code of these two
transformations respectively MSS CONT (Extracted program 6) and MSS ACC

(Extracted program 7). Both MSS ACC and MSS ACC are tail recursive, as the
result of automatic transformation from the proof of the theorem 5.1. This way,
we have ensured they are still correct implementations of the abstract algorithm
while being more efficient at the same time.

13



Extracted program 6 MSS CONT

([seg,n]

(Rec nat => (sigma => sigma) => sigma

[k] k (0,0,0)

[n,p,k] p ([(i,j,k)]

LET m = if (seg[n+1, n+1] <= seg[j, n+1]) j (n+1)

IN if (seg[m,n+1] <= seg[i,k]) (i,m,k) (m,m,n+1))))

n [x]x

Extracted program 7 MSS ACC

([seg,n]

(Rec nat => nat => sigma => sigma

[m,y] y

[n,p,m,(i,j,k)]

p (m+1) LET m = if (seg[n+1, n+1] <= seg[j, n+1]) j (n+1)

IN if (seg[m,n+1] <= seg[i,k]) (i,m,k) (m,m,n+1))))

n 0 (0,0,0)

6 Conclusions and future work

The expression Π introduced in section 3.2 represents a way to mimic a let

expression just by a pure lambda calculus expression (original goal of Bauer
in designing it). The terms Λ and Π compute, applied to appropriate input
parameters, the same function (Rσ

N
b f). But we note that Λ is in some way

more general than Π . The modification of Λ in order to make it work on lists
(let us name it ΛL(ρ)) instead of naturals is easy; more importantly, the proof
from which ΛL(ρ) can be extracted is obtained by a slight modification of the
proof from which Λ is extracted. In the case of lists the end formula to prove
should be: ∀lL(ρ)(P (l) → ⊥) → ⊥. Unfortunately we can not extend in the same
way Π and its proof: Π looks intrinsically dependent on the algebra of natural
numbers.

A final remarks on the formal transformation of Ind CONT into Ind ACC

presented in section 4. It could be interesting to study if, and how, to perform
the inverse operation, that is to go from Ind ACC to Ind CONT. We argue that
it could be done by the Refunctionalization technique [7], but this aspect needs
a deeper investigation.
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Abstract. This paper discusses refinement of programs that may raise and catch
exceptions. We show that exceptions are naturally expressed by a class of pred-
icate transformers built on Arieli and Avron’s four-valued logic and develop a
refinement framework for the four-valued predicate transformers. The resulting
framework enjoys several refinement laws that are useful for stepwise refinement
of programs involving exception handling and partial predicates. We demonstrate
some typical usages of the refinement laws in the proposed framework by a few
examples of program transformation.

1 Introduction

Program refinement has been intensively studied in the framework of refinement cal-
culus [BvW98, Mor94]. Refinement calculus identifies each program with a predicate
transformer and formally justifies refinement of programs by means of the so-called
refinement relation that is induced from the logical entailment. Although refinement
calculus is successfully applied to a certain extension of Dijkstra’s guarded command
language [Dij76], fundamental difficulties arise when we try to extend the language
with exceptions.

First, since exceptional termination is not discriminated from non-termination in
the predicate transformer semantics, a construct that catches exceptions would also
catch non-termination, which is counter-intuitive from the operational point of view.
In [KM95], King and Morgan proposed a solution to this problem and developed a
refinement calculus that adds the exit command and the exception block construct
try S catch T 1 to the language. Their solution was to specify each predicate transformer
by a pair of post-conditions 〈ϕn,ϕe〉 as the input, rather than by a single post-condition:
They write wp(S,ϕn,ϕe) for the weakest pre-condition that guarantees the program S
either to normally terminate establishing ϕn or to exceptionally terminate establishing
ϕe. The weakest pre-conditions for exit and the exception block are given by:

wp(exit,ϕn,ϕe) = ϕe, wp(try S catch T,ϕn,ϕe) = wp(S,ϕn,wp(T,ϕn,ϕe)).

The intuition behind these specifications are explained as follows. The exit command
immediately causes an exceptional termination. Thus, in order for the exit command
to exceptionally terminate establishing ϕe, the weakest pre-condition must be ϕe. The
exception block try S catch T executes S and terminates normally, if no exception is

1 This exception block construct is our own extension of the one proposed in [KM95].



raised; If an exception is ever raised, the raised exception is caught and then processed
by T to resume normal execution. Therefore, for the exception block to terminate estab-
lishing the pair 〈ϕn,ϕe〉 of post-conditions, S is either to normally terminate establishing
ϕn or to exceptionally terminate establishing wp(T,ϕn,ϕe), guaranteeing that the exe-
cution of T is to terminate in a condition as required by the pair 〈ϕn,ϕe〉.

Another problem in refining exceptions is that they are not only raised explicitly
by the command exit but also implicitly by a failure of computation (e.g., division
by zero). In this paper, we argue the latter type of exceptions that are raised by partial
predicates, i.e., predicates whose truth value may be undefined in some states. Partiality
poses a foundational issue in developing the theory of refinement based on the classical
logic, in which partiality is ruled out. For example, in Dijkstra’s predicate transformer
semantics, the weakest pre-condition of the conditional statement if p then S else T is
specified by a formula (p ⇒ S(ϕ))∧ (¬p ⇒ T (ϕ)) for any post-condition ϕ, but this
formula is nonsensical in the classical logic when p is undefined.

In this paper, we propose a refinement calculus for refining programs that may raise
and catch exceptions, where exceptions can be raised explicitly by the exit command
and implicitly by the evaluation of partial predicates. For this, we develop our theory of
program refinement in a predicate transformer semantics based on Arieli and Avron’s
four-valued logic [AA96, AA98].

The four-valued predicate transformer semantics can be easily derived from King
and Morgan’s, in the following way. First, we identify each statement S by a predicate
transformer that maps a pair of (classical) predicates 〈ϕn,ϕe〉 to another pair of predi-
cates 〈ϕ′

n,ϕe〉, where ϕ′
n is the weakest pre-condition computed by King and Morgan’s

predicate transformer wp. This definition is intended to guarantee the program S ei-
ther to normally terminate establishing ϕn or to exceptionally terminate establishing ϕe,
whenever the preceding statement normally terminates establishing ϕ′

n or exceptionally
terminates establishing ϕe. Notice that the condition ϕe for exceptional termination is
left unchanged by the transformer because no statement can cancel exceptional termi-
nation caused by the preceding statements.

Next, let us designate a classical predicate by a total function from the set of states
to {0,1}, where 0 and 1 designates the two classical truth values (i.e., false and true,
respectively). Then we identify each pair of predicates 〈ϕn,ϕe〉 by a single four-valued
predicate ϕ such that ϕ(σ) = 〈ϕn(σ),ϕe(σ)〉 for every state σ. The range of the four-
valued predicate is {〈1,0〉,〈0,1〉,〈0,0〉,〈1,1〉}, which we designate by t, f, ⊥, and >,
respectively. This structure with four truth values gives rise to the so called Belnap’s
four-valued logic [Bel77], which has been studied by Ginsberg in the generalized set-
ting of bilattices [Gin88] and was further examined by Fitting [Fit94]. Arieli and Avron
[AA96, AA98] introduced the notion of logical bilattices and developed the correspond-
ing proof system.

The four-valued logic provides a firm logical basis for refining exceptions, as the
original refinement calculus does for refining the guarded command language. The
constructs for exceptions and others as well are concisely specified by the formulas
of four-valued logic; The conditional control via partial predicates can be translated
into a predicate transformer, where the undefinedness of partial predicates is denoted
by the truth value ⊥; The refinement relation is induced from the logical entailment (in



the sense of four-valued logic), i.e., S v T iff S(ϕ) entails T (ϕ) for any post-condition
ϕ.

We emphasize that we use the four-valued logic in two different ways. In the pred-
icate transformer semantics, it is used for discriminating the possible termination be-
haviors (either, both, or none of normal termination and exceptional termination), while
in modelling partial predicates, it is used as a many-valued logic that allows undefined-
ness. Although a three-valued logic would be sufficient for the latter purpose, we stick
to the four-valued logic in developing the theory of refinement in order to achieve a
smooth translation of conditional controls via partial predicates into four-valued predi-
cate transformers. For a more neat characterization of partial predicates that adheres to
the operational intuition, we also consider partial predicates in a three-valued sublogic,
whose truth values are limited to f, t, and ⊥. In later sections we exploit the properties
of partial predicates in this three-valued sublogic.

Related work. Formal treatment of exceptions and partial predicates has been studied
rather separately. The exception mechanism was formulated in the refinement calculus
by King and Morgan [KM95] and further examined in [Wat02], but partial predicates
are out of their concern. (If partial predicates are ignored at all, the refinement calculus
of theirs and that of ours are essentially the same.)

Partial predicates in program logic have been intensively studied in the context of
three-valued logic. For instance, the VDM specification language deals with undefined-
ness in a logic called LPF [Jon86, JM94]; Bono et al. [BK06] formulated a Hoare
logic with a third truth value denoting ‘crash’ of execution. Many other variants of
three-valued logic have been proposed for the sake of a better treatment of partiality
[Owe93, JM94, MB99]. The three-valued logic, however, is not suitable for describing a
predicate transformer semantics for exceptions, because the underlying predicate logic
must be able to discriminate the four different status of termination. Hähnle [Häh05]
discussed that partiality should be dealt by underspecification, rather than by a value
representing undefinedness in a many-valued logic. His argument is, however, about
predicates in specification statements and does not consider exception catching.

Huisman and Jacobs [HJ00] extended Hoare logic to deal with abrupt (exceptional)
termination in Java programming language. They also formulated the mechanism of
catching exceptions in their program logic by representing several different modes of
exceptional termination by different forms of Hoare triple. In contrast to theirs, ours
simply supports a single mode of exceptional termination. This does not imply ours are
less expressive than theirs; Ours can simulate different modes of exceptional termina-
tion by introducing a special variable indicating the mode of termination.

Outline. The rest of the paper is organized as follows. Section 2 introduces the notion
of bilattices and the four-valued logic. Section 3 specifies a set of program statements
as four-valued predicate transformers and we identify the class of predicate transform-
ers. The statements involve exit, exceptions blocks, and conditional controls via partial
predicates. The logical connectives for partial predicates are also discussed. In Sec-
tion 4, we investigate a set of refinement laws that hold for these statements and logical
connectives. In Section 5, we apply the refinement laws to carry out some program
transformations. Finally, Section 6 concludes the paper.



2 The bilattice FOUR and the Four-Valued Logic

2.1 The bilattice FOUR of four truth values

-
≤t

6≤k
(〈0,1〉 =) f

@@⊥ (= 〈0,0〉)¡¡
t (= 〈1,0〉)

@@
> (= 〈1,1〉)

¡¡

Fig. 1. The bilattice of four truth values

Let TWO be the lattice of classical truth val-
ues 0 and 1 with the trivial order 0 < 1. The
bilattice FOUR is a structure obtained by a
product construction TWO ¯ TWO: it con-
sists of four elements 〈1,0〉, 〈0,1〉, 〈0,0〉,
and 〈1,1〉, which are alternatively written t,
f, ⊥, and >, respectively. The bilattice has
two lattice structures simultaneously (see the double Hasse diagram of Figure 1), each
characterized by the partial orders ≤t and ≤k defined below.2

〈x1,y1〉 ≤t 〈x2,y2〉 iff x1 ≤ x2 and y2 ≤ y1,

〈x1,y1〉 ≤k 〈x2,y2〉 iff x1 ≤ x2 and y1 ≤ y2.

The ≤t order (≤k order, resp.) induces the meet ∧ and join ∨ operators (meet ⊗ and
join ⊕ operators, resp.) The definitions are given below, where u and t stand for the
meet and join in TWO, respectively.

〈x1,y1〉∧ 〈x2,y2〉 = 〈x1 u x2,y1 t y2〉, 〈x1,y1〉∨ 〈x2,y2〉 = 〈x1 t x2,y1 u y2〉,
〈x1,y1〉⊗〈x2,y2〉 = 〈x1 u x2,y1 u y2〉, 〈x1,y1〉⊕〈x2,y2〉 = 〈x1 t x2,y1 t y2〉.

In addition, negation ¬ is defined by ¬〈x,y〉 = 〈y,x〉 as an operator that inverts the
≤t order but keeps the ≤k order.

In FOUR, the operations ∨ and ∧ are De Morgan dual of each other, i.e., ¬(x∨
y) = ¬x∧¬y and ¬(x∧ y) = ¬x∨¬y, while ⊕ and ⊗ are De Morgan self-dual, i.e.,
¬(x⊕y) =¬x⊕¬y and ¬(x⊗y) =¬x⊗¬y. The four values are related with each other
by means of ∨, ∧, ⊕, and ⊗, e.g., ⊥∨ f = ⊥, t⊕ f = >, x∨⊥ = x⊗ t.

The bilattice FOUR is distributive, i.e., the four lattice operations ∧, ∨, ⊗, and ⊕
distribute over each other, e.g., x⊕ (y∧ z) = (x⊕ y)∧ (x⊕ z). A distributive bilattice is
also interlaced, that is, each of the four lattice operations is monotonic with respect to
both ≤t and ≤k, e.g., y ≤t z implies x⊗ y ≤t x⊗ z.

The bilattice structure can be made into a logical bilattice that provides suitable
notions of implications in four-valued logic [AA96]. With D = {t,>} being the set of
designated truth values, which are the values recognized as (at least) known to be true,
the bilattice FOUR is made into a logical bilattice with two implication connectives,
called weak implication ⊃ and strong implication →, which are defined as below:

x ⊃ y ,
{

t (x 6∈ D)
y (otherwise) , x→y , (x ⊃ y)∧ (¬y ⊃ ¬x).

Using strong implication, we define the equivalence x ↔ y by (x→y)∧ (y→x).
2 In the literature, ≤t is often regarded as the degree of truth and ≤k as the amount of infor-

mation: Given a product 〈x,y〉 of classical truth values, x represents the amount of evidence
for an assertion, while y represents the amount of evidence against it. However, one should
refrain from sticking to this particular interpretation, since the four-valued logic is used for
discriminating the possible termination behaviors in the predicate transformer semantics.



2.2 The four-valued predicate logic

We give a four-valued first-order predicate logic, based on the Arieli and Avron’s four-
valued propositional system. (Extension to the predicate logic is straightforward, as
mentioned in [AA96].) We assume the set Value of program values (e.g., integers) and
the set Var of program variables. Let us define State to be the set of total functions from
Var to Value. Given σ ∈ State and X ∈ Var, σ(X) denotes the value that is assigned to
the program variable X in the state σ.

Four-valued predicates, denoted by p, q, etc., are total functions from State to the
four truth values in FOUR. The four-valued predicates form a bilattice, where the two
partial orders ≤t and ≤k and logical connectives ∧, ∨, ⊗, ⊕, ¬, ⊃, →↔ are accordingly
defined in the pointwise way. That is, for every state σ, p ≤t q (p ≤k q, resp.) holds
iff p(σ) ≤t q(σ) (p(σ) ≤k q(σ), resp.), and also logical connectives are defined by
(p∨ q)(σ) , p(σ)∨ q(σ), (¬p)(σ) , ¬p(σ), etc. In abuse of notations, we will also
denote a constant predicate by the constant itself. That is, we write t for a predicate p
such that p(σ) = t for every state σ; Similarly for f,⊥, and >.

It is easy to verify that the bilattice of the four-valued predicates is distributive, in-
terlaced, bounded, and complete. (A bilattice is complete, if the two lattices induced
by the partial orders ≤t and ≤k are both complete.) The completeness indicates that
we may also define quantification by means of the infinite join or meet. Given a fam-
ily of predicates {p(i) | i ∈ Value}, we define the universal quantification (existential
quantification, resp.) over i of predicate p(i) by ∀i.p(i) , V

i p(i) (∃i.p(i) , W

i p(i),
resp.)

The above mentioned structure of logical bilattice induces a four-valued predi-
cate logic [AA96], which has a Gentzen-style proof system for sequents of the form
p1, · · · , pn ` q1, · · · ,qm (n,m ≥ 0). The sequent corresponds to the consequence rela-
tion p1, · · · , pn |= q1, · · · ,qm, which means, for any state σ, if pi(σ) ∈ D for all i, then
q j(σ) ∈ D for some j. We say a predicate p is valid iff |= p holds (in other words,
p(σ) ∈ D for any state σ).

Notice that the four-valued logic is a non-classical logic. In particular it is para-
consistent and does not admit the law of the excluded middle that is, neither ` p∨¬p
nor p∧¬p ` q hold. The connectives ⊃, →, and ↔ are a logical implication or an
equivalence in the following sense: |= p ⊃ q iff p |= q; |= p→q iff p ≤t q; |= p ↔ q
iff p = q. Furthermore the logical equivalence ↔ is a congruence: |= p ↔ q implies
|= Θ(p) ↔ Θ(q) for any formula scheme Θ. For further details of the proof system and
logical properties of the four-valued logic, see [AA96, AA98].

Throughout the paper, we follow the convention that the negation and quantifica-
tions bind most tightly, while implications do least tightly and associate to right. We do
not impose any particular precedence between ∨, ∧, ⊕, and ⊗.

Finally, let us introduce some notations that are related to states. A program expres-
sion e is a total function from State to Value. We write σ[X\v] for the state obtained
by updating the value assigned to the program variable X in the state σ by the value v.
Similarly, we write σ[X\e] for an update of variable X with the value of expression e,
that is, σ[X\e(σ)]. Given a four-valued predicate p, we also write p[X\v] (p[X\e], resp.)
for the predicate q such that q(σ) = p(σ[X\v]) (q(σ) = p(σ[X\e]), resp.) In particular,
a predicate p[X\v] can be recognized as a predicate indexed by v ranging over Value.



In abuse of notations, we may often confuse a program variable X with an expression
e such that e(σ) = σ(X). More generally, we may confuse numerical expressions and
predicates with their pointwise extensions. For example, when we write X + 1 ≥ Y , it
denotes a predicate q such that q(σ) =

(
σ(X)+1 > σ(Y )

)
, where + is the binary inte-

ger addition and ≥ is the binary predicate such that (v ≥ v′) = t if v is greater than or
equal to v′ but (v ≥ v′) = f otherwise.

3 Predicate Transformers and Refinement

3.1 The lattice of predicate transformers

As we have argued earlier, a predicate transformer should be a function that maps a
pair of predicates 〈ϕn,ϕe〉 to another pair 〈ϕ′

n,ϕe〉. We also require every predicate
transformer to be monotonic.

Definition 3.1. A pair of four-valued predicates p and p′ is called an exception match-
ing pair if t⊕ p = t⊕ p′ holds.

A predicate transformer S over four-valued predicates is monotonic if S(ϕ)≤k S(ϕ′)
holds for every exception matching pair ϕ and ϕ′ such that ϕ≤k ϕ′. S is exception stable
if ϕ and S(ϕ) are an exception matching pair, for every ϕ.

Let PTran be the set of predicate transformers of four-valued predicates that are
monotonic and exception stable. Then PTran is made into a bounded complete lattice
as follows.

Theorem 3.1. Let PTran be lattice induced by the partial order v by:

S v T iff S(ϕ) ≤k T (ϕ) for any ϕ,

where the join ⊕ and meet ⊗ operators are a pointwise extension of the corresponding
logical connectives:

(S⊕T )(ϕ) = S(ϕ)⊕T (ϕ) and (S⊗T )(ϕ) = S(ϕ)⊗T (ϕ).

Then PTran is a bounded complete lattice.

The class PTran of predicate transformers are also closed under function composi-
tion, where we write S;T to mean (S;T )(ϕ) = S(T (ϕ)) and intend a sequential execu-
tion of S followed by T . The meet S⊗T and join S⊕T in PTran, called demonic choice
and angelic choice, respectively, are intended a non-deterministic choice between S and
T : The demonic choice represents the least possible non-deterministic execution that
the two statements agree, while the angelic choice represents the greatest possible one.

In order to verify that a refinement relation S v T holds, we need to show S(ϕ) ≤k
T (ϕ) for every ϕ. There are several different ways to verify this.

Proposition 3.1. For any S,T ∈ PTran and any four-valued predicate ϕ, S(ϕ)≤k T (ϕ)
iff S(ϕ) ≤t T (ϕ) iff |= S(ϕ)→T (ϕ) iff S(ϕ) |= T (ϕ) iff S(ϕ) ` T (ϕ).

Thus we may verify S v T by checking the validity of S(ϕ)→T (ϕ) in the model
of bilattice, which will be effective for the propositional cases. In case quantifiers are
involved, we may resort to a formal proof deriving the sequent of the form S(ϕ) ` T (ϕ).
Further discussions on these alternative ways for validating refinement laws are found
in the full paper [Nis].



skip(ϕ) , ϕ (skip)(
X := e

)
(ϕ) , (f⊕ϕ[X\e])⊗ (t⊕ϕ) (assignment)

abort(ϕ) , f⊗ϕ (non-termination)

magic(ϕ) , t⊕ϕ (miracle)

exit(ϕ) , (t⊕ϕ)⊗¬(t⊕ϕ) (exit)

try S catch T ,
(
f⊕S

(
(f⊕ϕ)⊗¬(f⊕T (ϕ))

))
⊗ (t⊕ϕ) (exception handling){

p
}
(ϕ) , ¬(p ⊃>)⊗ϕ (assertion)[

p
]
(ϕ) , (p ⊃⊥)⊕ϕ (assumption)〈

p
〉
(ϕ) , ((p ⊃⊥)⊕ϕ)⊗¬((p ⊃>)⊕ϕ) (conditional exit)

Fig. 2. Four-valued predicate transformers for program statements

3.2 Predicate transformers for basic statements

Let us write 〈ϕn,ϕe〉 for the pair of predicates that a four-valued predicate ϕ encodes as
we have argued in the introduction. When we define a predicate transformer in PTran,
we often need to operate on the two classical predicates in the pair separately. For
example, given four-valued predicates p and q, a four-valued predicate that encodes
〈pn,qe〉 can be expressed by the formula (f⊕ p)⊗ (t⊕q). This is verified by a simple
calculation:

(f⊕ p)⊗ (t⊕q) = (〈0,1〉⊕〈pn, pe〉)⊗ (〈1,0〉⊕〈qn,qe〉) = 〈pn,1〉⊗〈1,qe〉 = 〈pn,qe〉.

In a similar way, we can verify that (t⊕ p)⊗¬(t⊕ p) calculates 〈pe, pe〉 and (f⊕ p)⊗
¬(f⊕ p) does 〈pn, pn〉.

In Figure 2, we give the definitions of four-valued predicate transformers for a set
of basic statements. (It is easy to verify that all of them are a member of PTran.)

– skip is the idle statement. It is an identity function and hence is a neutral element
for the sequential composition, i.e., skip;S = S;skip = S.

– X := e is the assignment statement. Given a post-condition 〈ϕn,ϕe〉, it calculates
the weakest pre-condition ϕn[X\e] for normal termination and keeps the condition
ϕe for exceptional termination unchanged. Note that this assignment is total and
deterministic, that is, it always successfully assigns a unique value to the program
variable. We will discuss partial assignments in Section 5.2.

– abort and magic are extremal elements, that is, the least and greatest elements of
PTran, respectively. abort3 represents a statement that is not guaranteed to termi-
nate normally. On the other hand, magic represents a miraculous statement that al-
ways terminates normally, establishing any required post-condition (even falsity).

2 There are different ways of expressing the same operation, e.g., (t⊗ p)⊕ (f⊗q); Similarly for
other formulas.

3 The name ‘abort’ is historical and is not necessarily adequate in the context of this paper, but
we keep using it for compatibility.



They are a left-zero element of sequential composition, that is, abort;S = abort
and magic;S = magic.

– exit is the statement that raises an exception. As we discussed earlier, it is char-
acterized by a function that transforms every post-condition 〈ϕn,ϕe〉 into 〈ϕe,ϕe〉.
Again exit is a left-zero element, i.e., exit;S = exit.

– try S catch T is the exception handling statement. The statement calculates the
weakest post-condition for normal termination given by King and Morgan’s wp
function and combines it with the condition for exceptional termination, using the
formula discussed above.

–
{

p
}

,
[
p
]
, and

〈
p
〉
, which are called assertion, assumption, and conditional exit,

respectively, are primitive forms of conditional controls, which decide how to con-
tinue the execution, depending on the value of the four-valued predicate p, which
is called a guard predicate. They are all equivalent to skip, if the predicate p has a
designated truth value (i.e., either t or >); otherwise,

{
p
}

,
[
p
]
,
〈

p
〉

are equivalent
to abort, magic, exit, respectively.4

The basic statements above can be combined to form a more complicated statement.
A conditional statement if p then S else T , which may raise an exception when a partial
predicate p evaluates to ⊥, can be defined as follows:

if p then S else T ,
〈

p∨¬p
〉
;((

[
p
]
;S)⊗ (

[
p ⊃⊥

]
;T )).

The partiality of predicate p is first tested by the prepended
〈

p∨¬p
〉
, which acts like

exit if p has the value ⊥ but like skip otherwise. Then, a demonic choice is made be-
tween the two branches, each prepended by an assumption statement. (The assumption
statement in the unselected branch becomes magic, which is dismissed by the outer
demonic choice.)

3.3 Logical connectives for partial predicates

In the above definition of conditional statements, we interpret > as an indication of true
on the ground that > is a designated value in the four-valued logic, but this sometimes
leads to a result that run counter to the operational intuition. (For example, some of the
laws given in Section 5.1 do not hold for arbitrary four-valued guard predicates.)

In order to obtain a more precise modelling of partial predicates that adheres to the
operational intuition, let us consider consistent predicates: A four-valued predicate p is
called consistent if p(σ) ∈ {t, f⊥} for any σ. The class of consistent predicates forms
a three-valued sublogic, whose native conjunction operator ∧ and disjunction operator
∨, a.k.a. strong Kleene connectives, are non-strict operators that avoid ⊥ whenever
possible. (For instance, both f∧⊥ and ⊥∧ f are interpreted f rather than ⊥.)

Though the strong Kleene connectives have no corresponding operations in real
programming languages, but we can define logical operators that are found in practical

4 Some programming languages provide a feature called ‘assertion’, which is used for excep-
tionally terminating the execution when some critical violation of condition is detected. Note
the difference from the assertion

{
p
}

, which is non-terminating when the test on p is false.
The name ‘assertion’ is thus somewhat confusing but we keep using it for historical reason.



programming languages in the three-valued sublogic as follows. Let us write, following
[Fit94], p : q for ((p⊗ t)⊕¬(p⊗ t))⊗q. This derived formula p : q has ⊥ if p has f or
⊥; otherwise, it has the value of q.

We can define a ‘sequential’ disjunction ~∨ and conjunction ~∧ for any pair of con-
sistent predicates p and q, as follows.

p~∧q , p∧ (p : q) p~∨q , p∨ (¬p : q)

These operators are strict and evaluated sequentially from left to right: it becomes ⊥ as
soon as the left subformula p evaluates to ⊥.

We can also define the weak Kleene connectives ∨w and ∧w as the consensus of the
corresponding two sequential connectives of opposite directions.

p∧w q , (p~∧q)⊗ (q~∧p) p∨w q , (p~∨q)⊗ (q~∨p)

In contrast to the strong Kleene connectives, the value of these connectives is defined
only if both of the subformulas are defined.

The strong Kleene connectives ∧ and ∨, the sequential connectives ~∧ and ~∨, and
also the weak Kleene connectives ∧w and ∨w are all De Morgan dual for each.

4 Refinement Laws for Statements

In the rest of this paper, we assume that guard predicates occurring in control state-
ments are four-valued, unless explicitly stated otherwise; We will indicate wherever a
guard predicate is required to be consistent. We further assume that, unless it is explic-
itly stated otherwise, numerical predicates (which we mentioned in the last paragraph
of Section 2.2) are classical, that is, p(σ) ∈ {t, f} for any σ. The class of classical pred-
icates in the four-valued logic forms a classical sublogic, where the connectives ∨, ∧,
and ¬ substitute for the classical connectives of disjunction, conjunction, and negation,
respectively, and implications ⊃ and → substitute for the material implication. We may
resort to the standard classical logical reasoning in this sublogic.

Let us first examine some basic refinement laws. From the distributivity of logi-
cal connectives, we can derive several distribution laws for demonic choice. The se-
quencing operator admits the left distribution law, i.e., (S1 ⊗S2);T = (S1;T )⊗ (S2;T ).
(The right distribution law does not hold in general, though.) The exception handling
statement also admits a distribution law try S1 ⊗ S2 catch T = (try S1 catch T )⊗
(try S2 catch T ).

By the interlaced property of logical connectives, all the statements introduced in
the previous section are monotonic with respect to refinement of its substatements. For
instance, S1 ⊗T1 v S2 ⊗T2 holds if S1 v S2 and T1 v T2.

4.1 Refinement of conditional controls

The statement skip and the three conditional control statements are ordered in PTran
as below.



{
p
}
v skip v

[
p
]

(4.1)
{

p
}
v

〈
p
〉
v

[
p
]

(4.2)

Further, the assertion (the assumption, resp.) is monotonic (anti-monotonic, resp.)
with respect to the ≤t order over guard predicates. That is, if p→q is valid (or equiva-
lently, p |= q), we have:{

p
}
v

{
q
}

(4.3)
[
q
]
v

[
p
]

(4.4)

In contrast, the conditional exit has no such particular (anti-)monotonicity property.
Provided that p→q is valid, we have:{

p
}

=
{

p
}

;
{

q
}

=
{

p
}

;
[
q
]
=

{
p
}

;
〈
q
〉

(4.5)[
p
]
=

[
p
]
;
{

q
}

=
[
p
]
;
[
q
]
=

[
p
]
;
〈
q
〉

(4.6)〈
p
〉

=
〈

p
〉
;
{

q
}

=
〈

p
〉
;
[
q
]
=

〈
p
〉
;
〈
q
〉

(4.7)

The following laws indicate that successive conditional control statements of the
same kind can be substituted with a single control statement which combines the guard
formulas in the original statements by either ∧, ~∧, or ∧w.{

p
}

;
{

q
}

=
{

q
}

;
{

p
}

=
{

p∧q
}

=
{

p~∧q
}

=
{

p∧w q
}

(4.8)[
p
]
;
[
q
]
=

[
q
]
;
[
p
]
=

[
p∧q

]
=

[
p~∧q

]
=

[
p∧w q

]
(4.9)〈

p
〉
;
〈
q
〉

=
〈
q
〉
;
〈

p
〉

=
〈

p∧q
〉

=
〈

p~∧q
〉

=
〈

p∧w q
〉

(4.10)

Combining the laws (4.5) through (4.10), we can propagate a copy of a statement of
conditional control past one or more successive control statements (of possibly different
kinds), e.g.,

[
p
]
;
{

q
}

;
〈
r
〉

=
[
p
]
;
{

q
}

;
〈
r
〉
;
[
p
]
.

The disjunction in the guard of an assertion or an assumption can be substituted
with an appropriate non-deterministic choice.{

p∨q
}

=
{

p
}
⊕

{
q
}

(4.11)
[
p∨q

]
=

[
p
]
⊗

[
q
]

(4.12)

From the fact that exactly one of the formulas p and p ⊃ ⊥ can have a designated
truth value at once, we obtain the following laws.[

p
]
⊗

[
p ⊃⊥

]
= skip (4.13)[

p
]
;
[
p ⊃⊥

]
=magic (4.14)

〈
p
〉
;
〈

p ⊃⊥
〉

= exit (4.15)

Some interesting laws hold for the conditional exit of the form
〈

p∨¬p
〉
, when p is

a formula of a sequential or a weak Kleene connective.〈
(p~∧q)∨¬(p~∧q)

〉
=

〈
p∨¬p

〉
;
〈
¬p∨q∨¬q

〉
(4.16)〈

(p~∨q)∨¬(p~∨q)
〉

=
〈

p∨¬p
〉
;
〈

p∨q∨¬q
〉

(4.17)〈
(p∧w q)∨¬(p∧w q)

〉
=

〈
(p∨w q)∨¬(p∨w q)

〉
=

〈
p∨¬p

〉
;
〈
q∨¬q

〉
(4.18)



When the predicate p is classical, we have:{
p ⊃⊥

}
=

{
¬p

}
(4.19)

[
p ⊃⊥

]
=

[
¬p

]
(4.20)

〈
p∨¬p

〉
= skip (4.21)

4.2 Refinement of exceptions

The following refinement laws hold for exception statements.

exit;S = exit (4.22) try S;
〈

p
〉

catch skip = try S catch skip (4.23)

Some useful laws hold for a subclass of PTran, called non-exceptional predicate
transformers. A transformer S is called non-exceptional, if it has no chance of excep-
tional termination, that is, ψn = ψ′

n holds whenever 〈ψn,ϕe〉= S(〈ϕn,ϕe〉) and 〈ψ′
n,ϕ′

e〉=
S(〈ϕn,ϕ′

e〉). This is formally specified in terms of four-valued logic as follows.

Definition 4.1. A predicate transformer S ∈ PTran is called non-exceptional, if S(ϕ) =
S(ϕ′) holds whenever f⊕ϕ = f⊕ϕ′.

It is easy to verify that all the statements introduced in Section 3, except for exit and〈
p
〉
, are non-exceptional if so are their substatements.
For any non-exceptional statement S, the following laws hold.

try S catch T = S (4.24) try S;exit catch T = S;T (4.25)

5 Examples of Program Transformation by Stepwise Refinement

We will apply the refinement laws developed in the previous section to transformation
of programs that involve exceptions and partial predicates.

5.1 Translating conjunctions and disjunctions into explicit controls

Programs often contain implicit controls by partial predicates. For example, a single
conditional statement if p~∧q then S else T contains several implicit information for
control: The predicate p~∧q evaluates from left to right; As soon as p evaluates to f, the
else clause is selected; As soon as p evaluates to ⊥, an exception is raised; If p evaluates
to t, q is examined.

We justify this operational intuition via refinement by showing that the above con-
ditional statement is equivalent to the nested conditional statement if p then (if q then S
else T ) else T . Let us first give a few subsidiary refinement laws.[

p~∧q ⊃⊥
]
=

[
p∧q ⊃⊥

]
=

[
p ⊃⊥

]
⊗

[
q ⊃⊥

]
. (5.1)[

p
]
;
〈
¬p∨q

〉
=

[
p
]
;
〈
q
〉

if p is consistent (5.2)〈
p∨¬p

〉
;
[
p ⊃⊥

]
=

〈
p∨¬p

〉
;
[
p ⊃⊥

]
;
〈
¬p∨q∨¬q

〉
if p is consistent (5.3)



Then we can carry out the following derivation, provided p is consistent.

if p~∧q then S else T =
〈
(p~∧q)∨¬(p~∧q)

〉
;
([

p~∧q
]
;S⊗

[
p~∧q ⊃⊥

]
;T

)
=

〈
p∨¬p

〉
;
〈
¬p∨q∨¬q

〉
;
([

p
]
;
[
q
]
;S⊗

[
p ⊃⊥

]
;T ⊗

[
q ⊃⊥

]
;T )

)
— by (4.16), (4.9), (5.1), and distributivity

=
〈

p∨¬p
〉
;
[
p
]
;
〈
¬p∨q∨¬q

〉
;
([

p
]
;
[
q
]
;S⊗

[
p ⊃⊥

]
;T ⊗

[
q ⊃⊥

]
;T

)
⊗

〈
p∨¬p

〉
;
[
p ⊃⊥

]
;
〈
¬p∨q∨¬q

〉
;
([

p
]
;
[
q
]
;S⊗

[
p ⊃⊥

]
;T ⊗

[
q ⊃⊥

]
;T

)
— by (4.13) and distributivity

=
〈

p∨¬p
〉
;
([

p
]
;
〈
q∨¬q

〉
;
([

q
]
;S⊗

[
q ⊃⊥

]
;T

)
⊗

[
p ⊃⊥

]
;T ⊗

[
p ⊃⊥

]
;
[
q ⊃⊥

]
;T

)
— by (5.2), (5.3), (4.6), (4.7), (4.9), (4.10), (4.14), and distributivity

=
〈

p∨¬p
〉
;
([

p
]
;
〈
q∨¬q

〉
;
([

q
]
;S⊗

[
q ⊃⊥

]
;T

)
⊗

[
p ⊃⊥

]
;T

)
— by (4.9), (4.4)

= if p then (if q then S else T ) else T

We can also derive a law for the sequential disjunction:

if p~∨q then S else T = if p then S else (if q then S else T ),

where p is consistent. For the weak Kleene connectives, we have similar laws:

if p∧w q then S else T = if p then (if q then S else T ) else
〈
q∨¬q

〉
;T and

if p∨w q then S else T = if p then
〈
q∨¬q

〉
;S else (if q then S else T ),

where p need not be consistent.

5.2 Refining exception handling

Let us apply our refinement laws to a larger program. In the development, we will
make use of the technique that propagates context information via the assertion state-
ment [LvW97, Gro00]. Below we list several non-trivial laws for propagating context
information. {

p
}

;X := e v X := e;
{
∃v.(p[X\v]∧X = e[X\v])

}
(5.4){

p
}

;
[
q
]
v

[
q
]
;
{

p∧q
}

(5.5){
p
}

;
〈
q
〉
v

〈
q
〉
;
{

p∧q
}

(5.6){
p
}

; if q then S else T v if q then (
{

p∧q
}

;S) else (
{

p∧ (q ⊃⊥)
}

;T ) (5.7)

if q then (S;
{

p
}
) else (T ;

{
q
}
) v (if q then S else T );

{
p∨q

}
(5.8){

p
}

; try S catch T v try
{

p
}

;S catch T (5.9)

try S;
{

p
}

catch (T ;
{

q
}
) v (try S catch T );

{
p∨q

}
; (5.10)

Let us consider a program that implements a numerical algorithm:

S0 , X := N; try repeat Y := X ;X := (Y ×Y +N)÷ (2×Y ) until X ≥ Y catch skip.



This program computes the integral value of
√

N for non-negative integer N, based on
the Newton-Raphson method [PTVF07], and assigns the answer to the variable Y . In
the repeat · · · until loop, the integer division operator ÷ may raise an exception due
to division-by-zero, in which case, however, the exception is caught and the execution
normally terminates with a correct answer.

Since PTran is a bounded complete lattice, each loop statement is specified by the
least fixpoint µ.F of a function F ∈ PTran→PTran that is monotonic w.r.t. refinement
order v [BvW98]. The loop statement in S0 is given by the least fixpoint of the function:

F (T ) , Y := X ;X := (Y ×Y +N)÷ (2×Y ); if X ≥ Y then skip else T.

In order to express the possible partiality caused by division-by-zero, we interpret
the partial assignment statement X := (Y ×Y +N)÷ (2×Y ) by

〈
¬(Y = 0)

〉
;X := (Y ×

Y + N)÷′ (2×Y ), where ÷′ is a total extension of ÷ such that division by 0 yields a
fixed constant value (say, 0), instead of being undefined.

In the following derivation, we refine the original program S0 by a program that
makes no uses of exceptional statements.

S0 = X := N; try (
[
¬(X = 0)

]
;µ.F )⊗ (

[
¬(X = 0) ⊃⊥

]
;µ.F ) catch skip

— by (4.13) and distributivity

= X := N;
(
(try

[
¬(X = 0)

]
;
{

0 < X ≤ N
}

;µ.F catch skip)⊗
(try

[
¬(X = 0) ⊃⊥

]
;
{
¬(X = 0) ⊃⊥

}
;µ.F catch skip)

)
— by distributivity and (4.6)

In order to show the refinement of the left substatement of the demonic choice, we
need some lemmas.

Lemma 5.1.{
0 < X ≤ N

}
;repeat Y := X ;X := (Y ×Y +N)÷ (2×Y ) until X ≥ Y

v repeat
{

0 < X ≤ N
}

;Y := X ;X := (Y ×Y +N)÷′ (2×Y ) until X ≥ Y

Lemma 5.2. Suppose F ∈ PTran→PTran is a monotonic function. Then, µ.F is non-
exceptional, if F (S) is so for every non-exceptional S.

Lemma 5.1 indicates that 0 < X ≤ N is a loop invariant and lemma 5.2 says that the
fixpoint operator on PTran preserves non-exceptionality. Proofs of these lemmas can
be found in the full paper [Nis].

try
[
¬(X = 0)

]
;
{

0 < X ≤ N
}

;µ.F catch skip
v try

[
¬(X = 0)

]
;repeat

{
0 < X ≤ N

}
;Y := X ;X := (Y ×Y +N)÷′ (2×Y )

until X ≥ Y catch skip — by lemma 5.1



v try
[
¬(X = 0)

]
;repeat Y := X ;

{
¬(Y = 0)

}
;X := (Y ×Y +N)÷′ (2×Y )

until X ≥ Y catch skip — by (5.4) and (4.3)

=
[
¬(X = 0)

]
;repeat Y := X ;

{
¬(Y = 0)

}
;X := (Y ×Y +N)÷′ (2×Y )

until X ≥ Y — by (4.24) and non-exceptionality from lemma 5.2

=
[
¬(X = 0)

]
;repeat Y := X ;X := (Y ×Y +N)÷ (2×Y ) until X ≥ Y

— by (4.5) and (4.1)

For the other substatement, we derive:

try
[
¬(X = 0) ⊃⊥

]
;
{
¬(X = 0) ⊃⊥

}
;µ.F catch skip

v try
([
¬(X = 0) ⊃⊥

]
;Y := X ;

{
¬(Y = 0) ⊃⊥

}
;
〈
¬(Y = 0)

〉
;

X := (Y ×Y +N)÷′ (2×Y ); if X ≥ Y then skip else µ.F
)

catch skip
— fixpoint; by (5.4)

= try
[
¬(X = 0) ⊃⊥

]
;Y := X ;

{
¬(Y = 0) ⊃⊥

}
;exit catch skip

— by (4.6) and (4.15)

v
[
¬(X = 0) ⊃⊥

]
;Y := X . — by (4.25) and (4.1)

Therefore the derivation ends up with:

S0 v X := N;(
[
¬(X = 0)

]
;µ.F ⊗

[
¬(X = 0) ⊃⊥

]
;Y := X)

= X := N; if ¬(X = 0) then repeat Y := X ;X := (Y ×Y +N)÷ (2×Y ) until X ≥ Y

else Y := X .

6 Conclusion and Future Work

We proposed a refinement calculus for refining exceptions in programs. In order to
model the normal termination as well as the exceptional termination in a single logical
platform, we developed a four-valued predicate transformer semantics, which is based
on Arieli and Avron’s four-valued logic [AA96]. The programming constructs for rais-
ing and catching exceptions can be concisely expressed by the formulas of four-valued
logic in this framework. In particular, we allow partial predicates in the conditional con-
trol statements in order to model exceptions that are raised implicitly when the predicate
in a conditional statement is undefined. The four-valued logic provides a fruitful field
for justifying refinement of programs that involve both explicit and implicit controls by
exceptions.

This paper, with a few deviations, dealt with concrete program statements such
as assignment, (conditional) exit, etc. Future research will concern abstract statements
such as non-deterministic (possibly partial) assignment and general specification state-
ment (which allows the uses of partial pre- and post-conditions) and also the methodol-
ogy for deriving concrete programs from these abstract statements.
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Abstract. In this paper, we propose an approach for automated test
case generation based on techniques from constraint programming (CP).
We advocate the use of standard CP search strategies in order to express
preferences on the generated test cases and to obtain the desired degree
of coverage. We develop our framework in the concrete context of an
imperative language and show that the technique is sufficiently powerful
to deal with arbitrary pointer-based data-structures allocated on the
heap.

1 Introduction

It is a well-known fact that a substantial part of a software development budget is
spent on the act of correcting errors in the software under development. Arguably
the most commonly applied strategy for finding errors and thus producing (more)
reliable software is testing: running a software component with respect to a well-
chosen set of inputs and comparing the outputs that are produced with the
expected results in order to find errors. In previous work [4], we have developed
a technique that allows to automatically generate a set of test inputs for a given
program written in the logic programming language Mercury. The basic idea
of that technique, itself inspired by [20], is as follows: first, a path through the
control-flow graph of a predicate is transformed into a set of constraints on the
(input) variables of the predicate such that when the predicate is called with
input values satisfying these constraints, its execution is guaranteed to follow
the given path. Next, a dedicated constraint solver is used to compute such
concrete input values. By repeating the process for a carefully constructed finite
subset of all execution paths one can guarantee that the set of generated input
values cover a substantial part of the source code and can as such be used to
perform so-called structural or whitebox testing.

In the current paper, which is a report on work in progress, we generalize
and extend the approach of [4], reformulating it completely within the framework
of constraint programming (CP). This presents several advantages over [4] and
similar proposals:
? Post-doctoral researcher of the Fund for Scientific Research - Flanders.
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– The whole process – from the construction of an execution path to the gener-
ation of concrete test inputs – is now modeled as a single constraint problem,
rather than as a pair of complementary processes. This presents a cleaner
and more uniform formalisation of the technique.

– More importantly, since the selection of an execution path is modeled within
the constraint problem, one can obtain different degrees of coverage, or even
coverage with respect to different criteria, by using different search strategies
within the solver. In other words, the technique can – at least to a certain
extent – be seen as parametrised with respect to a coverage criterion or a
desired degree of coverage.

– The resulting technique is also more efficient, since it avoids the construc-
tion of constraint sets representing paths that do not correspond to a real
execution.

In order to show the power of our generalized approach, we cast it in the setting
of a (small) deterministic imperative language with pointer-based data struc-
tures and show that our approach is able to generate test cases dealing with
in-place updates of variables, pointers and a variety of potentially cyclic data
structures. As the definition below shows, we only consider integer values and
data structures constructed from simple “cons” cells having two fields that we
will name head and tail. We indicate in Section 2.5 how our technique for test
case generation can easily be extended to deal with a more involved language
having primitive values other than integers and full struct-like data structures.

integers n
variables x
expressions e ::= x | n | nil | new cons(e1, e2) | e.head | e.tail

| e1 == e2 | e1 /= e2 | e1+e2

statements s ::= skip | l := e | s1;s2 | if e then s1 else s2

| while e { s }
left-hand sides l ::= x | l.head | l.tail

As usual, expressions are used to syntactically represent values within the
source code of a program. Among the possible expressions are program variables,
integers, the null-pointer nil, a reference to a newly heap-allocated cons cell new
cons(e1,e2), the selection of the head (e.head), respectively tail (e.tail) field of
the cons cell referenced by e, equality and inequality tests (== and /=), and the
arithmetic operator for addition +.3 We will assume that ImpL is simply typed
and only allows comparison of two values belonging to the same type (either
integers or references).4 Moreover, arithmetic is only allowed on integer values;
the language does not support pointer arithmetics.

A program in ImpL is a single statement or a sequence of statements, where a
statement is either a no-op (skip), an assignment, another sequence, a selection

3 Other arithmetic operators are omitted in order to keep the formal definition of the
semantics small, but they can be added at will.

4 Integers are also used as booleans: 0 denotes false and all other integers denote true.
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or a while-loop. The left-hand side of an assignment is either a variable or a
reference to one of the fields in a cons cell. Consider, for example, the following
simple program:

while (x.tail.head /= x.head) {
x := x.tail
};

x.tail := nil

The above program basically manipulates a simply linked list x whose cells
consist of two fields: a head containing an integer and a tail containing a pointer
to the following cell or nil. It scans the list for two successive identical elements,
and severs the list after the first such occurrence. For example, using the notation
[1,2,3] for the nil-terminated linked list with successive elements 1,2 and 3, the
effect of running this program with x the list [1,2,3,3,4], is that, after the while
loop, the list will have the value [1,2,3].

2 Generating test inputs

2.1 Overview

As usual, execution of an imperative program manipulates an environment E
and a heap H. An environment is a finite mapping from variables to values,
where a value is either an integer, nil or a reference to a cons cell represented
by ptr(r) with r a unique value denoting the address of the cons cell on the heap.
Likewise, a heap is a finite mapping from such references r to cons cells of the
form cons(vh,ve) with vh and ve values (possibly including references to other
cons cells). For the example given above (with x initially the list [1,2,3,3,4]),
the environment and heap before and after running the program would look as
follows:

E : x 7→ ptr(r1)
H : r1 7→ cons(1,ptr(r2)) r4 7→ cons(3,ptr(r5))

r2 7→ cons(2,ptr(r3)) r5 7→ cons(4,nil)

r3 7→ cons(3,ptr(r4))

E : x 7→ ptr(r1)
H : r1 7→ cons(1,ptr(r2))

r2 7→ cons(2,ptr(r3))

r3 7→ cons(3,nil)

Now, in order to generate test inputs for a program, the idea is to symbolically
execute the program, replacing unknown values by constraint variables. During
such a symbolic execution, each test in the program (i.e. the if-then-else and while
conditions) represents a choice; the sequence of choices made determines the
execution path followed. There are many possible execution paths through the
program. Each one of them can be represented by constraints on the introduced
variables and on the environment and heap.

Returning to our example, we would replace the concrete value for x by a
constraint variable, say V, representing an unknown value. Among the infinite
number of possible execution paths, a particular path would execute the while
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condition three times, and the loop body twice. This would imply that the value
represented by V is a list of at least 4 elements, and the third and fourth element
are identical, whereas the first differs from the second and the second form the
third. This information would be represented by constraints on V and the heap
collected along the execution. Solving these constraints could get us for instance
the concrete input [1,2,3,3,4] proposed above. However, there are many other
concrete inputs that satisfy these constraints: [1,2,3,3], [0,1,0,0], or even
the cyclic list that starts with [1,2,1] and then points back the first element.

Using our constraint-based approach, we can both capture the many paths
and the many solutions for a single path as non-determinism in our constraint-
based modelling of test case generation. This allows us to use the search strategies
of CP to deal with both of them. For instance, we can find all paths up to length
6 using a simple depth-bounded search. Figure 1 illustrates the search tree for
the example.

[x,x,...]

[x,y,y,...]

[x,y,z,z,...]

[0]* [1]* [-1]*

[0,0]
[1,1]

[-1,-1]
...

[0,0]*
[1,1]*

[-1,-1]*
...

[0] + [0]*
[1]+[1]*
[-1]+[-1]*

...

...

Fig. 1. Tree of paths (left) and tree of value assignments for left-most path (right).

2.2 Constraint Generation

In order to represent unknown input data we add logical (or constraint) vari-
ables to the semantic domain of values and represent the environment and heap
by logical variables as well. In order to model symbolic execution of our lan-
guage, we introduce a semantics in which program state is represented by a
triple 〈E,H, C〉 where E and H are constraint variables symbolically represent-
ing, respectively, the environment and heap, and C is a set of constraints over
E and H. Constraints are conjunctions of primitive constraints that take the
following form:

– o1 = o2, equality of two syntactic objects,
– o1 6= o2, inequality of two syntactic objects,
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– (o1 7→ o2) ∈ M , membership of a mapping M , and
– M1 ] {o1 7→ o2} = M2, update of a mapping M1.

where a mapping M denotes a constraint variable representing an environment
or a heap. Constraint solvers for these constraints are defined in Section 2.3.

The symbolic semantics is depicted in Figures 2 and 3. In these figures and
in the remainder of the text, we use uppercase characters to syntactically distin-
guish constraint variables from ordinary program variables (represented by low-
ercase characters). A judgement of the form 〈E0, H0, C0〉 e v; H1; C1 denotes
that given a program state 〈E0, H0, C0〉, the expression e evaluates to value v and
transforms the program state into a state represented by 〈E0, H1, C1〉. Note that
H1 is a fresh constraint variable that represents the possibly modified heap whose
content is defined by the constraints in C1. Likewise, a judgement of the form
〈E0, H0, C0〉s〈E1, H1, C1〉 denotes the fact that a statement s transforms a pro-
gram state represented by 〈E0, H0, C0〉 into the one represented by 〈E1, H1, C1〉.
Since a newly added constraint can introduce inconsistencies in the set of col-
lected constraints, we define the conditional evaluation of an expression and a
statement as follows: judgements of the form {E0, H0, C0} e  v; H1; C1 and
{E0, H0, C0}s〈E1, H1, C1〉 denote, respectively, 〈E0, H0, C0〉 e  v; H1; C1 and
〈E0, H0, C0〉s〈E1, H1, C1〉 under the condition that C0 is consistent (represented
by T |= C0, where T is the constraint theory).5 Formally:

(Cond-e)
T |= C0 〈E0, H0, C0〉 e v; H1; C1

{E0, H0, C0} e v; H1; C1

(Cond-s)
T |= C0 〈E0, H0, C0〉 s 〈E1, H1, C1〉

{E0, H0, C0} s 〈E1, H1, C1〉
The use of conditional evaluation avoids adding further constraints to an already
inconsistent set. This implies that search strategies (see Section 2.4) will only
explore execution paths that can model a real execution.

2.3 Constraint Propagation

Among the four types of primitive constraints (Section 2.2), the equality and in-
equality constraints are easily defined as Herbrand equality and inequality, and
appropriate implementations can be found in Prolog systems as, respectively,
unification and the dif/2 inequality constraint. The constraints on the environ-
ment and heap (membership and update of a mapping) on the other hand are
specific to our purpose. We define them in terms of the following propagation
rules, that allow us to infer additional constraints:

(o 7→ o1) ∈ M ∧ (o 7→ o2) ∈ M =⇒ o1 = o2

M1 ] {o 7→ o1} = M2 =⇒ (o 7→ o1) ∈ M2

o 6= o′ ∧M1 ] {o 7→ o1} = M2 ∧ (o′ 7→ o2) ∈ M2 =⇒ (o′ 7→ o2) ∈ M1

The above rules are easily implemented as Constraint Handling Rules (CHR) [9].
5 In practice, the consistency check may be incomplete. Then unreachable execution

paths may be explored.
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(Var)
V fresh

〈E, H, C〉 x V ; H; C ∧ {x 7→ V } ∈ E
(Int)

n ∈ Z
〈E, H, C〉 n n; H; C

(Nil) 〈E, H, C〉 nil nil; H; C

(Cons)
〈E, H0, C0〉 e1  v1; H1; C1 {E, H1, C1} e2  v2; H2; C2 H3, r fresh

〈E, H0, C0〉 new cons(e1, e2) ptr(r); H3; C2 ∧H3 = H2 ] {r 7→ cons(v1, v2)}

(Head)
〈E, H0, C0〉 e v; H1; C1 R, Vh, Vt fresh

〈E, H0, C0〉 e.head Vh; H1; C1 ∧ v = ptr(R) ∧ (R 7→ cons(Vh, Vt)) ∈ H1

(Tail)
〈E, H0, C0〉 e v; H1; C1 R, Vh, Vt fresh

〈E, H0, C0〉 e.tail Vt; H1; C1 ∧ v = ptr(R) ∧ (R 7→ cons(Vh, Vt)) ∈ H1

(EqualT)
〈E, H0, C0〉 e1  v1; H1; C1 {E, H1, C1} e2  v2; H2; C2

〈E, H0, C0〉 e1 == e2  1; H2; C2 ∧ v1 = v2

(EqualF)
〈E, H0, C0〉 e1  v1; H1; C1 {E, H1, C1} e2  v2; H2; C2

〈E, H0, C0〉 e1 == e2  0; H2; C2 ∧ v1 6= v2

(NEqualT)
〈E, H0, C0〉 e1  v1; H1; C1 {E, H1, C1} e2  v2; H2; C2

〈E, H0, C0〉 e1 /= e2  1; H2; C2 ∧ v1 6= v2

(NEqualF)
〈E, H0, C0〉 e1  v1; H1; C1 {E, H1, C1} e2  v2; H2; C2

〈E, H0, C0〉 e1 /= e2  0; H2; C2 ∧ v1 = v2

(Add)
〈E, H0, C0〉 e1  v1; H1; C1 {E, H1, C1} e2  v2; H2; C2 v fresh

〈E, H0, C0〉 e1 + e2  v; H2; C2 ∧ v = v1 + v2

Fig. 2. Symbolic evaluation of expressions.

(Skip) 〈E, H, C〉 skip 〈E, H, C〉

(VarAss)
〈E0, H0, C0〉 e v; H1; C1 E1 fresh

〈E0, H0, C0〉 x := e 〈E1, H1, C1 ∧ E1 = E0 ] {x 7→ v}〉

(HeadAss)

〈E, H0, C0〉 e v; H1; C1 {E, H1, C1} l vr; H1; C2

R, Vh, Vt, H2 fresh C3 ≡ C2 ∧ vr = ptr(R) ∧ (R 7→ cons(Vh, Vt)) ∈ H1

〈E, H0, C0〉 l.head := e 〈E, H2, C3 ∧H2 = H1 ] {R 7→ cons(v, Vt)}〉

(TailAss)

〈E, H0, C0〉 e v; H1; C1 {E, H1, C1} l vr; H1; C2

R, Vh, Vt, H2 fresh C3 ≡ C2 ∧ vr = ptr(R) ∧ (R 7→ cons(Vh, Vt)) ∈ H1

〈E, H0, C0〉 l.tail := e 〈E, H2, C3 ∧H2 = H1 ] {R 7→ cons(Vh, v)}〉

(Seq)
〈E0, H0, C0〉 s1 〈E1, H1, C1〉 {E1, H1, C1} s2 {E2, H2, C2}

〈E0, H0, C0〉 s1;s2 〈E2, H2, C2〉

(IfThen)
〈E0, H0, C0〉 e v; H1; C1 {E0, H1, C1 ∧ v 6= 0} s1 {E1, H2, C2}

〈E0, H0, C0〉 if e then s1 else s2 〈E1, H2, C2〉

(IfElse)
〈E0, H0, C0〉 e v; H1; C1 {E0, H1, C1 ∧ v = 0} s2 {E1, H2, C2}

〈E0, H0, C0〉 if e then s1 else s2 〈E1, H2, C2〉

(WhileT)
〈E0, H0, C0〉 e v; H1; C1 {E0, H1, C1 ∧ v 6= 0} s;while e { s } {E1, H2, C2}

〈E0, H0, C0〉 while e { s } 〈E1, H2, C2〉

(WhileF)
〈E0, H0, C0〉 e v; H1; C1

〈E0, H0, C0〉 while e { s } 〈E0, H1, C1 ∧ v = 0〉

Fig. 3. Symbolic execution of statements.
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2.4 Search

In order to obtain concrete test cases, our constraint solver has to overcome two
forms of non-determinism: 1) the non-determinism inherent to the extended op-
erational semantics, and 2) the non-determinism associated to the selection of
concrete values for the program’s input. Traditionally, in Constraint Program-
ming a problem with non-deterministic choices is viewed as a (possibly infinite)
tree, where each choice is represented as a fork in the tree. Each path from the
root of the tree to a leaf represents a particular set of choices, and has zero or
one solution. In our context, a solution is of course a concrete test case. As the
tree does not imply a particular order on the solutions, we are free to choose
any search strategy, which specifies how the tree is navigated in search of the
solutions. Moreover, since the problem tree can be infinite, we may select an
incomplete search strategy, i.e. one that only visits a finite part of the tree. Let
us have a more detailed look at these two forms of non-determinism and how
they can be handled by a solver.

Non-Deterministic semantics. Several of the language constructs have multiple
overlapping rules in the definition of the symbolic semantics. In particular those
for if-then-else ((IfThen) and (IfElse)) and while ((WhileT) and (WhileF))
constructs imply alternate execution paths through the program. Also, observe
that the while-construct is a possible source of infinity in the problem tree as the
latter must in general contain a branch for each possible number of iterations of
the loop body. This means that a solver is usually forced to use an incomplete
search strategy; for example a depth-bounded search strategy which does not
explore the tree beyond a given depth.

Recall the example in Section 2.1 where the while-loop may iterate an arbi-
trary number of times. A depth-bounded search only considers test cases that
involve iterations up to a given bound.

Non-Deterministic Values As the following example shows, even a single exe-
cution path can introduce non-determinism in the solving process. Consider the
program y := x.tail, which has only one execution path. This execution path
merely restricts the initial environment and heap to E0 = {x ptr(A), y Vy}
and (A cons(Vh, Vt)) ∈ H0. There are an infinite number of concrete test cases
that satisfy these restrictions. Here are just a few:

E0 H0

{x ptr(a1), y nil} {a1 cons(0, nil)}
{x ptr(a1), y nil} {a1 cons(0, a1)}
{x ptr(a1), y nil} {a1 cons(1, nil)}
{x ptr(a1), y ptr(a1)} {a1 cons(0, nil)}
{x ptr(a1), y nil} {a1 cons(0, ptr(a2)), a2 cons(0, nil)}

There are two kinds of unknown values: unknown integer Vi and unknown
references Vr. Integers are easy: non-deterministically assign any natural number
to an unknown integer:

∨
n∈N Vi = n.
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For the references the story is more involved. Assume that R is the set of
references created so far, r′ is a fresh reference, and V ′

i and V ′
r are fresh unknown

integer and reference values. Then there are three assignments for an unknown
reference Vr: 1) nil, 2) one of the previous references R, or 3) a new reference
r′. In the last case, the heap must contain an additional cell with fresh unknown
components.

Vr = nil ∨ (
∨
r∈R

Vr = ptr(r)) ∨ (Vr = ptr(r′) ∧ (r′ 7→ cons(V ′
i , V ′

r )) ∈ H0)

In practice, we must again restrict ourselves to a finite number of alterna-
tives. We may be interested in only a single solution: an arbitrary one, one that
satisfies additional constraints or one that is minimal according to some cri-
terion. Alternatively, multiple solutions may be desired, each of which differs
sufficiently from the others based on some measure. All of these preferences can
be expressed in terms of suitable search strategies. For instance, the minimality
criterion is captured by a branch-and-bound optimization strategy.

2.5 Generalized Data Structures

So far we have only considered data structures composed of simple cons cells.
However, our constraint-based approach can easily be extended to cope with
arbitrary structures. Consider for instance this C-like struct for binary trees:

struct tree { int value;
tree left;
tree right; }

In order to deal with the tree type defined above, it suffices to extend both the
concrete and the constraint semantics of ImpL with 1) a new tree constructor
representing a triple and 2) three field selectors (e.g. value, left, and right)
similar to the cons constructor and the head and tail selectors. In addition, the
search process employed by the solver needs to be adjusted in order to generate
arbitrary tree values. An unknown tree value Vt is assigned as follows:

Vt = nil ∨ (
∨

r∈Rt

Vt = ptr(r)) ∨ (Vr = r′ ∧ (r′ 7→ tree(V ′
i , V ′

l , V ′
r ) ∈ H0)

where Rt is the set of previously created tree references, r′ is a fresh tree ref-
erence, and V ′

i , V ′
l and V ′

r are respectively a fresh unknown integer value and
fresh unknown tree values. It should be clear to the reader that the above ap-
proach is easily generalized to arbitrary structures in a datatype-generic manner.
Also, other primitive types such as reals and booleans are easily supported by
integrating additional off-the-shelf constraint solvers for them.

Moreover, note that invariants on the data structures, such as acyclicness,
can be imposed on the unknown input in terms of additional constraints, e.g.
provided by the programmer. This allows to seamlessly incorporate specification-
level constraints into our method – similarly to [21, 18].
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3 Ongoing Work

A large amount of work exists in the field of automatic test case generation
for imperative programs. The arguably simplest method is random generation
of test data [1, 7]. In symbolic evaluation techniques (e.g. [3, 14, 16]), the input
parameters are replaced by symbolic values, in order to derive a symbolic expres-
sion representing the values of a program’s variables. This approach is notably
used in the ATGen tool for structural coverage of Spark ADA programs [15]. In
so-called dynamic approaches, the program is actually executed on input data
that is arbitrarily chosen from a given domain. The input data is then iteratively
refined to obtain a final test input such that the execution follows a chosen path,
or reaches a chosen statement [13, 8].

Constraint-based test data generation was originally introduced in [6] in the
context of mutation testing [5] and aims at transforming the automatic test data
generation problem into a CLP problem over finite domains. This approach has
been used in many works, including [11, 12]. It is also used in two different
testing tools, Godzilla [17] and InKA [10]. The latter notably generates test
data satisfying different criteria such as statement coverage, branches coverage
and MC/DC6.

In this paper, we have presented a constraint-based approach for generat-
ing white-box test cases for a small but representative imperative programming
language. Our technique is able to generate complex heap-allocated and pointer-
based data structures without any user intervention. The selection of both execu-
tion paths and concrete test inputs are modelled uniformly as a single constraint
problem. An interesting advantage of our technique over most existing work is
that we use parametrizable CP search strategies within the solver in order to
express (coverage) criteria the generated test suites must satisfy. Our framework
would therefore be able to generate test cases accordingly to any (coverage)
criterion, instead of proposing a predefined set of built-in criteria.

We have developed an initial prototype in SWI-Prolog, which is available
at http://www.cs.kuleuven.be/~toms/Testing/ together with example pro-
grams. As we’ve already said, Prolog’s advantage is that it provides most of
the required constraints for free, and the missing ones are easily implemented in
CHR. However, Prolog’s disadvantage is that depth-first search is built in, which
makes experimenting with alternative search strategies hard – if not impossible.

We are currently working on a new implementation of our approach within
the Monadic Constraint Programming framework [19], which is an open frame-
work for building complex search strategies as a composition of simpler ones.
This system will enable us to investigate the exact relation between the use of
particular search strategies for constraint solving and the generation of interest-
ing sets of test cases according to different adequacy criteria.

6 Modified condition/decision coverage [2]
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Using Rewrite Strategies for Testing BUpL Agents
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Abstract. In this paper we focus on the problem of testing agent programs writ-
ten in BUpL, an executable high-level agent modelling language. Our approach
consists of two main steps. We first define a formal language for the specification
of test cases with respect to BUpL. We then implement test cases written in the
formal language by means of a general method based on rewrite strategies. Test-
ing an agent program with respect to a given test case corresponds to strategically
executing the rewrite theory associated to the agent with respect to the strategy
implementing the test case.
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1 Introduction

An agent is commonly seen as an encapsulated computer system that is situated in some
environment and that is capable of flexible, autonomous action in that environment in
order to meet its design objectives [15]. An important line of research in the agent
systems field is the design of agent languages [2] with emphasis on the use of formal
methods. The guiding idea is that agent-specic concepts such as beliefs (representing
the environment and possibly other data the agent has to store), goals (representing the
desired state of the environment), and plans (specifying which (sequences of) actions to
execute in order to reach the goals) facilitate the programming of agents. Along these
lines, we take as case of study in this paper a simple variant of 3APL [8], the agent
language BUpL, which is introduced in [1]. There the authors advocate the use of the
Maude language [5] and its supporting tools for both prototyping and verifying BUpL
agents. One of the main advantages of Maude is that it provides a single framework
in which the use of a wide range of formal methods is facilitated. Maude is a high-
performance reflective language and system supporting equational and rewriting logic
specification and programming. The language has been shown to be suitable both as a
logical framework in which many other logics can be represented, and as a semantic
framework, through which programming languages with an operational semantics can
be implemented in a rigorous way [11]. Not only is it possible to prototype and execute
operational semantics in Maude, but also to verify temporal properties of the prototyped
programs using the Maude LTL model-checker [6]. Furthermore, Maude facilitates the
specification of strategies for controlling the application of rewrite rules.

? Email: L.Astefanoaei@cwi.nl; Address: Centrum voor Wiskunde en Informatica (CWI),P.O.
Box 94079,1090 GB Amsterdam, The Netherlands; Tel.: +31 (0)20 592 4368



This paper extends the results from [1] by investigating the problem of agent cor-
rectness, however for infinite state agents. In [1], verification was achieved by means
of LTL model-checking. Model-checking works only for finite state systems. In fact,
sometimes model-checking fails even in the finite case. This is because of the state ex-
plosion problem. In such conditions, when directly proving correctness is no longer pos-
sible, new techniques come into view. For example, one can build finite (or small) ab-
stractions which can be model-checked instead, following the counterexample-guided
abstraction methodology [4]. Or one can define a logic in the Hoare style [9] and use
annotations in order to reason about the properties of the system. We, however, con-
sider yet another possibility which is to “simply” look for bugs (failures) by testing the
system. This is because, as it will be later clear, test cases, as we define them, have
a natural mapping into rewrite strategies. Since we work with the Maude system and
since a strategy language has already been integrated into Maude [7], extending the
previous implementation was an easy process which allowed us to experiment with our
definitions in a short time.

The very basic idea behind testing is that it aims at showing that the intended and
the actual behaviour of a system differ by generating and checking individual execu-
tions. Testing object-oriented software has been extensively researched and there are
many pointers in the literature with respect to manual and automated, partition and
random testing, test case generation, criterias for test selection (please see [12] for an
overview). In an agent-oriented setup, there are less references. A few pointers are [16,
13] for developing test units from different agent methodologies, however the direction
is orthogonal to the one we consider.

Our intention is to follow the model-based testing methodology. Roughly, model-
based testing involves 4 stages: (1) build an abstract model of the system under test, (2)
validate the model, (3) generate test cases from the model, (4) apply test cases to the
system under test and compare the output to the models output. For simplicity, in this
paper we do not discuss the first two stages. We only assume that each agent imple-
mentation follows a specification which is assumed to be valid by definition. Instead,
we are concerned with the last stages. In order to achieve (3), an important step is to
have a systematic method for specifying what we want to test, i.e., test cases. This is
one issue we focus upon. We define a formal language for the specification of test cases
for individual BUpL agents. Test cases are then defined by regular expressions where
the basic elements are observable actions and beliefs. An agent passes a test when it
successfully executes certain actions in a certain order with certain results reflected in
mental states. We make the short note that we deliberately choose to design in our lan-
guage tests on beliefs in order to have a more expressive formalism. One might raise the
issue that inspecting the mental states of the agents classifies our method as white-box
testing. However, since beliefs can be deduced from the effects of the observable ac-
tions, in fact, our method lies at the boundary between black-box and gray-box testing.
To define test cases, there is no need in understanding the way BUpL agents work (i.e.,
the internal mechanism for updating states or the structure of repair rules and plans),
but only to look at observable actions, which we see as the interface of BUpL agents.

The other issue we focus upon relates to (4), and is, namely, how to test. Our method
to perform testing is to use a strategy-based mechanism for implementing test cases. In



a rewriting framework, strategies are meant to control nondeterministic executions by
instrumenting the rewrite rules at a meta-level. Usually, in concrete implementations the
nondeterminism is reduced by means of scheduling policies. While testing a concrete
implementation, e.g., a multi-threaded Java application, there is no obvious distinction
between testing the program itself and testing the default scheduling mechanism of the
threads. We emphasise that the language we consider, BUpL, is a modelling language,
where the nondeterminism in choices among plans and exception handling mechanisms
is a main aspect we deal with. It is important to note that strategies are a means of
clearly separating between the executions of programs (with respect to a given seman-
tics) at object-level and the control of executions at meta-level (without any change in
the semantics). Strategies give a great degree of flexibility which becomes important
when the interest is in verification. For example, in our case, in order to analyse or ex-
periment with another testing formalism one only needs to change the strategy instead
of changing the semantics of the agent language or the agent program itself.

2 BUpL Agents By Example

In this section, we briefly present the syntax and semantics of BUpL for ease of ref-
erence and completeness. A BUpL agent has an initial belief base and an initial plan.
A belief base is a collection of ground (first-order) atomic formulae which we refer
to as beliefs. The agent is supposed to execute its initial plan, which is a sequential
composition and/or a non-deterministic choice of actions or composed plans. The se-
mantics of actions is defined using pre and post conditions. An action can be executed
if the precondition of the action matches the belief base. The belief base is then updated
by adding or removing the elements specified in the postcondition. When, on the con-
trary, the precondition does not match we say the execution of the action (or the plan of
which it is a part) fails. In such a case repair rules are applied (if any), and this results
in replacing the plan that failed by another.

Syntactically, a BUpL agent is a tuple (B0, p0, A, P , R), where B0 is the initial
belief base, p0 is the initial plan, A is the set of internal and observable actions, P are
the plans, and R are the repair rules. The initial belief base and plan form the initial
mental state of the agent. To illustrate the syntax, we take as an example a BUpL agent
that solves the tower of blocks problem. We represent blocks by natural numbers. We
assume that initially there are three blocks: 1 and 2 are on the table (0), and 3 is on top
of 1. The agent has to rearrange them such that they form the tower 321 (1 is on 0, 2
on top of 1 and 3 on top of 2). The only action an agent can execute is move(x, y, z) to
move block x from block y onto z, if x and z are clear. Blocks can always be moved to
the table, i.e., the table is always clear.

The BUpL agent from Figure 1 is modelled such that it illustrates the use of repair
rules: we explicitly mimic a failure by intentionally writing a plan to move block 2
onto 1. This is not possible, since block 3 is already on top of 1. Similar scenarios
can easily arise in multi-agent systems: imagine that initially 3 is on the table, and the
agent decides to move 2 onto 1; imagine also that another agent comes and moves 3
on top of 1, thus moving 2 onto 1 will fail. The failure is handled by the repair rule



B0 = { on(3, 1), on(1, 0), on(2, 0), clear(2), clear(3), clear(0) }

A = {move(x, y, z) = (on(x, y) ∧ clear(x) ∧ clear(z), { on(x, z), ¬on(x, y), ¬clear(z) } ) }

P = { build = move(2, 0, 1);move(3, 0, 2) }

R = { on(x, y)← move(x, y, 0); build }

Fig. 1: A BUpL Toy Agent

on(x, y) ← move(x, y, 0); build. Choosing [x/3][y/1] as a matcher enables the agent
to move block 3 onto the table and then the initial plan can be restarted.

We shortly describe the BUpL semantics. The states of BUpL agents are pairs of
belief bases and plans. These change with respect to the transition rules in Figure 2.

p = (a; p′) a = (ψ, ξ) ∈ A θ ∈ Sols(B |= ψ)

(B, p) aθ→ (B ] ξθ, p′θ)
((i/o)-act)

(B, (p1 + p2))
τ→ (B, pi)

(sumi)

(B, a; p) 6 a→ φ← p′ ∈ R θ ∈ Sols(B |= φ)

(B, p) τ→ (B, p′θ)
(fail-act)

π(x1, . . . , xn) := p

(B, π(t1, . . . , tn))
τ→ (B, p(t1, . . . , tn))

(π)

Fig. 2: BUpL Rules

The rule ((i/o)-act) captures the effects of performing action a (either internal or
observable), which is the head of the current plan. If θ is a solution to the matching prob-
lem3 B |= ψ, where ψ is the precondition of a, then the current mental state changes to
a new one, where the current belief base is updated with the effects of a and the current
plan becomes the “tail” of the previous one. The transition rule (fail-act) handles ex-
ceptions. If the head of the current plan is an action that cannot be executed (the set of
solutions for the matching problem is empty) and if there is a repair rule φ ← p′ such
that the new matching problem B |= φ has a solution θ then the plan is replaced by
p′θ. The transition rule (π) implements “plan calls”. If the abstract plan π(x1, . . . , xn)
defined as p(x1, . . . , xn) is instantiated with the terms t1, . . . , tn then the current plan
becomes p(t1, . . . , tn) which stands for p[x1/t1] . . . [xn/tn]. The transition rule (sumi)
replaces a choice between two plans by either one of them.

3 We make the short observation that since belief bases are always ground, we need to solve
matching and not unification problems.



2.1 Prototyping BUpL Agents as Rewrite Theories

In [1] it is shown how the operational semantics of BUpL can be implemented and
executed as a rewrite theory in Maude. The main advantage of using Maude for this
is that the translation of operational semantics into Maude is direct [14], ensuring a
faithful implementation. Thanks to this, it is relatively easy to experiment with different
kinds of semantics, making Maude suitable for rapid prototyping.

We do not explain here the way BUpL is prototyped in Maude but we briefly il-
lustrate at a more generic level how BUpL transition rules map into rewrite rules. A
rewriting logic specification or rewrite theory is a tuple 〈Σ,E,R〉, where Σ is a signa-
ture consisting of sorts (types) and function symbols, E is a set of equations and R is
a set of rewrite rules. The signature describes the terms that form the state of the sys-
tem. These terms can be rewritten using equations and rewrite rules. Rewrite rules are
used to model the dynamics of the system, i.e., they describe transitions between states.
Equations form the functional part of a rewrite theory, and are used to reduce terms
to their “normal form” before they are rewritten using rewrite rules. The application
of rewrite rules is intrinsically non-deterministic, which makes rewriting logic a good
candidate for modelling concurrency.

In our case, the signature describes the mental states of the agents. The rewrite rules
describe how BUpL mental states change. There is a natural encoding of transition rules
as conditional rewrite rules. The general mathematical format of a conditional rewrite
rule is as follows:

l : t→ t′ if (
∧
i

ui = vi) ∧ (
∧
j

wj : sj) ∧ (
∧
k

pk → qk)

It basically says that l is the label of the rewrite rule t → t′ which is used to “rewrite”
the term t to t′ when the conditions on t are satisfied. Such conditions can be either
equations like ui = vi, memberships like wj : sj (that is, wj is of type sj) or other
rewrites like pk → qk. For example, the corresponding rewrite rule for transition (act)
in the case of observable actions is:

o-act : (B, p)→ (update(B, ξθ), p′θ) if p = o-a; p′ ∧ o-a = (ψ, ξ) ∧
θ = match(B, ψ)∧ o-a : Ao

where Ao denotes the sort of observable actions. As it will be clear in the next sections,
we need the distinction between internal and observable actions for testing, in order to
have a more expressive framework.

All other transition rules are encoded as rewrite rules in a similar manner and we do
not further explain them. In what follows, we only need to remember that each transition
has a corresponding rewrite rule labelled with the same name.

2.2 Meta-controlling BUpL Agents with Rewrite Strategies

In this section we make a short overview of the strategy language presented in [7] with
illustrations of how strategies can be used to control the execution of BUpL agents. We
first denote the rewrite theory that implements the operational semantics of BUpL by
T . Given a BUpL agent, we denote by ms terms corresponding to BUpL mental states



(B, p). These terms can be rewritten by the rewrite rules from T . We further denote by
S the strategy language from [7]. Given a strategy expressionE in the strategy language
S, the application of E to ms is denoted by E@ms. The semantics of E@ms is the set
of successors which result by rewriting ms using the rewrite rules from S(T ).

The simplest strategies we can define in the strategy language S are the constants
idle and fail: idle @ ms = {ms}, fail @ ms = ∅. Another basic strategy consists
of applying to a BUpL agent state ms a rule identified by one of the labels: i-act, o-
act, fail-act, or sum, possibly with instantiating some variables appearing in the rule.
The semantics of l@ms, where l is one of the above rule labels, is the set of all terms
to which ms rewrites in one step using the rule labelled l. For example, applying the
strategy o-act to the initial state (B0, build) of the BUpL builder from Figure 1 has as
result ∅ because initially the only possible observable action move(2, 0, 1) fails. How-
ever, applying the strategy fail-act has as result the set {(B0, (move(3, 1, 0); build)),
(B0, (move(1, 0, 0); build)), (B0, (move(2, 0, 0); build))} , thus the set of all possi-
ble states reflecting a solution to the matching problem B0 |= on(x, y). Of course,
some of these resulting states are meaningless in the sense that there is no point in
moving a block from the table to the table. A much more adequate strategy is fail-
act[θ ← [x/3][y/1]], that is, to explicitly give the value we are interested in to the
variable θ which appears in the rewrite rule fail-act. This results in a set containing only
the state (B0, (move(3, 1, 0); build)).

Since matching is one of the basic steps that take place when applying a rule, another
strategy one can define is match T s.t. C. When applied to a given state term ms,
the result is {ms} if ms matches the pattern T and the condition C is satisfied with
the substitutions for the variables obtained in the matching, otherwise ∅. For example,
applying match (B, p) s.t. on(2, 1) ∈ B to (B0, build) has as result ∅ because on(2, 1)
is not in B0.

The language S allows further strategies definitions by combining them under the
usual regular expression constructions like concatenation (“;”), union (“|”) and iteration
(“*”, “+”). Thus, givenE,E′ as already defined strategies, we have that (E;E′)@ms =
E′@(E@ms), meaning that E′ is applied to the result of applying E to ms. The strat-
egy (E | E′)@ms defined as (E@ms) ∪ (E′@ms) means that both E and E′ are
applied to ms. The strategy E+@ms is defined as

⋃
i≥1

(Ei@ms) with E1 = E and

En = En−1;E, E∗ = idle | E+, thus it recursively re-applies itself.

It is also possible to define if-then-else combinators. The strategy E ? E′ : E′′

defined as (if (E@ms) = ∅ then E′@(E@ms) else E′′@ms fi) has the meaning that if,
when evaluated in a given state term, the strategy E is successful then the strategy E′

is evaluated in the resulting states, otherwise E′′ is evaluated in the initial state.

The if-then-else combinator is further used to define the following strategies. The
strategy not(E) = E ? fail : idle which reverses the result of applying E. The strategy
try(E) = E ? idle : idle changes the state term if the evaluation of E is successful, and
if not, returns the initial state. The strategy test(E) = not(E) ? fail : idle checks the
success/failure result of E but it does not change the initial state. The strategy E! = E∗

; not(E) “repeats until the end”.



3 Testing BUpL Agents

Searching can be viewed as an ad hoc way of testing. While it may work for certain
cases, it has several drawbacks. As for model-checking, state space explosion may be a
problem since the whole state space is considered (if no bound is used on the search).
Moreover, it works with invariants expressed over the states of the system, while one
may also want to test other properties such as the execution of certain sequences of
actions.

3.1 Formalising Test Cases

Our test case format is based on two main BUpL concepts: observable actions and
beliefs. We introduce a general test case format that allows to express that certain se-
quences of observable actions are executed, and that the belief bases of the correspond-
ing trace satisfy certain properties. Sequences of actions are defined as regular expres-
sions, and properties of belief bases can be specified in a subset of LTL with only �
(always) and ♦ (eventually) as temporal operators. The idea is that the action expression
of a test is used to generate execution traces satisfying the action expression. That is,
the action expression controls the execution of the agent in the sense that only those ac-
tions are executed that are in conformance with the action expression. This is crucial for
reducing the state space, and makes this approach essentially different from searching.

The following BNF grammar defines the language T of test cases, where a denotes
a ground observable action, R a set of observable actions, x is a ground atom and bel is
a predicate which holds when a certain belief is present in the current belief base.

Ta ::= idle | (a,R) | Ta; Ta | Ta + Ta | T ∗a
Tb ::= bel(x) | ¬Tb | Tb ∧ Tb | �Tb | ♦Tb
T ::= Ta | (Ta, Tb) | T ; T | T + T

Ta and Tb are the languages of expressions over actions and beliefs, respectively.
Ta defines regular expressions over pairs (a,R), which express that observable action
a should be executed while R is a set of observable actions forming a subset of those
actions that are ready (enabled) to be executed. This provides additional expressivity in
comparison with a variant where one could only say that some action a should be exe-
cuted. The latter can be expressed in our language by (a, ∅) (for convenience denoted
simply as a), since ∅ is trivially a subset of the enabled actions. A test case can be an ex-
pression over actions, a pair consisting of an action expression and a belief expression,
or a test composed using sequential composition or nondeterministic choice. As sug-
gested above, a test (Ta , Tb) informally means that the actions of Ta should be executed
and the belief bases of the corresponding trace should satisfy Tb. The sequential compo-
sition of two tests is satisfied by a trace if the first part of the trace satisfies the first test,
and the second part satisfies the second test, and similarly for non-deterministic choice.
We note that Tb is not a test on its own, since then we would lose the control over the
execution provided by the action expression, which is necessary for reducing the state
space. If Tb could be a test on its own, this would come down to model-checking for
satisfaction of Tb.



We now define formally when a BUpL agent satisfies a test. We denote the appli-
cation of a test T on an initial configuration (an initial BUpL mental state) ms0 as
T @ms0 and we define its semantics (more precisely, its set semantics) inductively, on
the structure of tests. The semantics is defined such that it yields the set of final states
reachable through executing the agent restricted by the test, i.e., only those actions are
executed that comply with the test. This means that an agent with initial mental state
ms0 satisfies a test T if T @ms0 6= ∅, in which case we say that a test T is successful.
Since one usually tests for the absence of “bad” execution paths, we say that a BUpL
agent with initial mental state ms0 is safe with respect to a test T if the application of
the test fails, i.e., T @ms0 = ∅.

T @ms0 =



{ms0}, T = idle

{ms | ms0
a⇒ ms}, T = (a,R) ∧R ⊆ R(ms)

∅, T = (a,R) ∧R 6⊆ R(ms)
T1@ms0 ∪ T2@ms0, T = T1 + T2
T2@(T1@ms0), T = T1; T2
{ms0} ∪

⋃
i≥1 T i1 @ms0, T = T ∗1

Ta@ms0, T = (Ta, Tb) ∧ (Ta,ms0 |=t Tb)
∅, T = (Ta, Tb) ∧ (Ta,ms0 6|=t Tb)

The arrow a⇒ stands for⇒ a→⇒, where⇒ denotes the reflexive and transitive clo-
sure of τ→. T i@t is T @T i−1@t and R(ms) denotes the set of actions ready to be
executed from ms, i.e., R(ms) = {a | ∃ms′ s.t. ms a⇒ ms′}. The satisfiability relation
|=t is defined as an extension of |=LTL:

Ta,ms0 |=t bel(x) if ms0 = (B, p) ∧ x ∈ B
Ta,ms0 |=t Tb if (∀σ ∈ Pathst(Ta,ms0))(σ |=LTL Tb)

with Pathst(Ta,ms0) denoting the paths from ms0 taken while executing the test Ta.
We explain the semantics of (a,R)@ms0 in some more detail. The idea is that the

test should be successful for ms0 if action a can be executed in ms0, while R is a
subset of the enabled actions (defined by R ⊆ R(ms)). The result is then the set of
mental states resulting from the execution of a, as defined by {ms | ms0

a⇒ ms}. We
need to keep those mental states to allow a compositional definition of the semantics.
In particular, when defining the semantics of T1; T2 we need the mental states resulting
from applying the test T1 , since those are the mental states in which we then apply the
test T2, as defined by T2@(T1@ms0).

3.2 Using Rewrite Strategies to Implement Test Cases

In this section we describe how the strategy language S can be used for implementing
test cases. To give some intuition and motivation, we consider the way one would im-
plement the basic test case a. As we have defined it above, the application of this test
case to a BUpL mental statems is the set of all mental states which can be reached from
ms by executing the observable action a after eventually executing τ steps correspond-
ing to internal actions, applying repair rules or making choices, i.e., after computing



closure sets of particular types of rewrite rules. It thus represents a strategic rewriting
of ms. We are only interested in those rewritings which finally make it possible to ex-
ecute a. To achieve this at the object-level means to have a procedure implementing
the computation of the closure sets. However, the semantics of the application of the
test a is independent of the computation of closure sets. Following [7], we promote the
design principle that automated deduction methods (e.g., closure sets of τ steps) should
be specified declaratively as inference systems and not procedurally. Depending on
the application, specific algorithms for implementing the inference systems should be
specified as strategies to apply the inference rules. This has the implication that there is
a clear separation between execution (by rewriting) at the object-level and control (of
rewriting) at the meta-level.

While implementing the test a, the closure sets we need to consider are with respect
to the rules act-fail, sum and i-act. We make the short note that for a different agent
language the closure computations could be different, depending on the semantics of
the language. In our case, the implementation we propose is as follows:

do(a) = try(sum) ; i-act ! ; try(fail-act) ; test(o-act) ? o-act[o-a← a] :
( test(match (B, nil)) ? fail : do(a) )

It basically first reduces the current plan to plans containing only the sequence operator.
The strategy further computes the closure of internal actions. Executing i-act might lead
to failures, thus also repair rules are applied. At this point we test whether with the new
plans it is possible to execute an observable action. If this is the case then we apply
the rewrite rule o-act where we substitute the variable o-a by the parameter a. The
application either succeeds or fails (in the case where the observable action is different
from the one we want). If test(o-act) fails then the head of the plan is not observable
but an internal action, thus we need to repeat the sequence of closure computations for
sum, internal actions and repair rules.

The test whether a certain fact is believed (after eventually applying internal actions,
repair rules and plan choices) is implemented as follows:

bel(x) = (test(match ({x} ∪ B, p)) ? fail : i-act) ! ;
(test( match ({x} ∪ B, p)) ? idle : ( test(match (B, nil)) ? fail :

try(fail-act) ; try(sum) ; not(o-act) ; bel(x) ) )

The strategy bel(x) checks first if x has been added to the belief base. If this is the case,
then we are done. Otherwise, it repeatedly applies internal action until either x has been
added or i-act fails. In this latter case, either the plan is nil and the strategy finishes
with fail or an internal action fails and consequently fail-act is applied. After, it tries to
apply sum reducing all plans to sequences. Any state where the plan has an observable
action in the head is discarded (not(o-act)) since we look for new belief updates while
executing only internal actions.

All other test cases are implemented by means of composing the strategies do and
bel under the regular expression constructions. We do not detail them, a simple inductive
reasoning with respect to the test case definition from Section 3.1 should suffice. We
only consider that given a test case T , the strategy implementing it is denoted by s(T ).

We now approach the issue of the correctness. Given a test case T and the corre-
sponding strategy implementing it s(T ), in order to prove that the application of s(T )



is correct, we need to prove that, on the one hand, any success of the strategy is an error
found by testing and on the other hand, if the strategy fails then the agent is safe with
respect to the test.

Theorem 1 (Correctness). Given ms a mental state, T a test case and s(T ) the strat-
egy implementing T , we have that s(T )@ms ⊆ T @ms.

Proof. We only consider the strategy do. The proof for bel is similar. The correctness of
the possible compositions with respect to the regular expression constructions follows
from the correctness of the strategy language.
Basically, we need to prove the following implications:

1. do(a)@ms = Res and Res 6= ∅ ⇒ (∀ms′ ∈ Res)(ms a⇒ ms′)
2. do(a)@ms = ∅ ⇒ms 6 a⇒

1. From the definition of do:

Res = E@(try(fail-act)@(i-act!@ (try(sum)@ms︸ ︷︷ ︸
Res1

)

︸ ︷︷ ︸
Res2

)

︸ ︷︷ ︸
Res3

)

with E = test(o-act) ? o-act[o-a← a] : ( test(match (B, nil)) ? fail : do(a)).

Let ms′ ∈ Res. We have that there exists ms3 ∈ Res3 (1) s.t. ms3
a→ ms′.

From (1) we have that there exists ms2 ∈ Res2 s.t. ms2
τ→ ms3 (2), with ms2 being

identical to ms3 in the case the strategy try(fail-act) did not change the state (i.e., the
rule fail-act) was not applicable).

From (2) we have that there exists ms1 ∈ Res1 s.t. ms1
τ∗→ ms2 (3), corresponding to

executing internal actions.
From (3) we have that ms τ→ ms1 (4), with ms being identical to ms1 in the case the
strategy try(sum) did not change the state.

From (4) - (1) we have that ms τ→ ms1
τ∗→ ms2

τ→ ms3
a→ ms′ that is (ms a⇒ ms′).

2. None of Resi with i ∈ {1, 2, 3} cannot be empty since by the definition the strate-
gies try and “!” return at least the initial state, that is there exists ms3 ∈ Res3 such that

ms
τ∗→ ms3, with ms3 being identical to ms in the case none of the rewrite rules sum,

i-act, fail-act were applicable. This means that do(a)@ms = ∅ only if E@ms3 fails.
There are two cases:
(1) test(o-act) is successful ⇒ from ms3 it is possible to execute an external action,
however different from a, which means that o-act[o-a← a] fails;
(2) test(o-act) fails ⇒ test(match (B, nil)) is successful, which means that the plan in
ms3 has reached its end.
In any case we have that ms τ

∗

→ ms3 6
a→. ut

This result allows us to conclude that if the application of s(T ) is successful then T is
also successful.



We now approach the issue of completeness. We want to show that any error found
by a test T is also found by the strategy s(T ) and that if an agent is safe with respect
to T then s(T ) fails. Before proving these results, we present two helpful lemmas.
We note that in the strategies do and bel we try to apply fail-act and sum only once.
This is enough for the completeness of our test case implementation. Indeed, let us
first consider fail-act. Intuitively, if, on the one hand, after the application of fail-act
no action can take place then applying fail-act again can do no good, since nothing
changed. If, on the other hand, after applying once fail-act the first action of the new
plan can be executed then we are done, the faulty plan has been repaired.

Lemma 1. The strategy try(fail-act) is idempotent, i.e., for any ms try(fail-act)2 @ms
= try(fail-act) @ms.

Proof. Let Res = try(fail-act) @ms. Any ms′ ∈ Res different from ms is the result of
applying the rewrite rule fail-act so it has the form (B, pθ), where φ ← p ∈ R (the set
of repair rules) and θ ∈ Sols(B |= φ). If fail-act were again applicable for such ms′,
the resulting term ms′′ is also of the same form sinceR is fixed and B does not change.
Thus, any ms′′ is already an element of Res and so try(fail-act) @Res = Res. ut

A similar reasoning works also for sum. Taking into account that the “+” operator
is commutative and associative and that the “;” operator is associative, a normal form
(i.e., sum of plans with only sequence operators) always exists. Since sum is applied to
states where the plans are reduced to their normal form we have that states with basic
plans will always be in the result of trying to apply sum more than once.

Lemma 2. Given a mental state ms we have that sum! @ms ⊆ try(sum) @ms.

Proof. We only consider the interesting case where sum is applicable.

Let ms = (B, p) where p has been reduced to the form
n∑
i=1

pi and pi are basic plans

(composed by only the “;” operator). From the definition of the rewrite rule sum we
have that (B, pi) ∈ sum @ms ∀i ∈ {1, . . . , n}. Since these are the only plans which
can no longer be simplified by the rule sum, we have that they are the only elements of
sum! @ms, thus sum! @ms ⊆ try(sum) @ms. ut

Theorem 2 (Completeness). Given ms a mental state, T a test case and s(T ) the
strategy implementing T , we have that T @ms ⊆ s(T )@ms.

Proof. The proof is by structural induction on the definition of T . Due to space limit,
as it was the case when proving correctness, we only consider the basic test a. We need
to prove the following implications:

1. (ms a⇒ ms′)⇒ (ms′ ∈ do(a)@ms)
2. (ms 6 a⇒)⇒ (do(a)@ms = ∅)

1. Let ms3 be such that ms τk

→ ms3
a→ ms′, with k a natural number. We have that

ms′ ∈ o-act[o-a← a] @ms3 (1).

We now consider the sequence ms τ
k

→ ms3.



Let ms = (B, p). If p is a sum of plans then from ms a state msi = (B, pi) with pi
being a basic plan of p can be reached in a number of τ steps, that is ms τ

∗

⇒ msi. If p is
not a sum, then we let pi and msi be identical to p resp. ms. From Lemma 2 we obtain
that msi ∈ try(sum)@ms (2).
For the ease of notation, let head (resp. tail) be a function on plans returning the first
action of a plan (resp. a plan without its head). Letms1 = B1, p1) be the state reachable
from msi by executing internal actions from pi (if head(pi) 6∈ Ai then ms1 = msi).
We have that ms1 ∈ i-act!@msi (3).
If head(p1) is an internal action which cannot be executed, then we let ms2 = (B1, p2)
be the state with an enabled head(p2) which results by applying repair rules (otherwise
ms2 = ms1). From Lemma 1 we know that ms2 (if exists) can be found by applying
only once fail-act, thus ms2 ∈ try(fail-act)@ms1 (4).
From ms2 the same reasoning applies (wrt (2), (3), (4)) until ms3 is reached (in a finite
number of τ steps, smaller than k). Thus ms3 ∈ (try(fail-act) @ i-act! @ try(sum) @
not(o-act))! @ms (5).
From (1) and (5) we have that ms′ ∈ do(a)@ms.
2. Let ms1 = (B, p) be such that ms τk

→ ms1 and the τ steps correspond to the appli-
cation of sum, i-act and fail-act until no longer possible (i.e., ms1 6

τ→). This means that
either p is nil or that head(p) ∈ Ao but different from a. Thus, ms1 ∈ (try(fail-act) @
i-act! @ try(sum) @ not(o-act))! @ms and test(o-act) ? o-act[o-a ← a] : ( match (B,
nil) ; fail ) @ms1 fails, thus do(a)@ms = ∅. ut

This result makes it possible to conclude that if the application of s(T ) to the initial
mental state ms of a well-defined BUpL agent fails then ms is safe with respect to T .

We conclude by making a short discussion on the termination of the application of
strategies. It can be the case that the strategies do and bel do not terminate for certain
agents. We take, as a trivial example, an agent with a recursive plan p =i-a ; p, where
ia ∈ Ai, e.i., is an internal action. We have that i-act! never terminates and thus neither
does do. Termination is an important property which we would like to ensure. However,
we need to impose certain constraints and this might result in loosing completeness.

4 A Running Example

The BUpL builder described in Figure 1 has a small number of states. Thus, verification
by model-checking is feasible. In what follows we modify it so that the resulting state
space is infinite, making model-checking infeasible. We consider that the programmer
needs to implement a BUpL builder which respects the specification “the agent should
always construct towers, the order of the blocks is not relevant, however each tower
should use more blocks than the previous, and additionally, the length of the towers
must be an even number”, thus 21, 4321 are “well-formed” towers. Since it is out of
the scope of this paper, our notion of specification is merely informal. We only men-
tion that the specification, in model-based testing, plays the role of the model. Its main
characteristics are that it serves a specific purpose (building even length towers) and
that it is a simplification of the concrete system by omitting and encapsulating details



(e.g., the internal updates). We make the short remark that such specifications could be
represented by a transition system. Or by a BUnity agent, as it is considered in [1].

Figure 3 illustrates the code of a BUpL agent implementing the above specification.
Due to space limit we do not explain in detail its mechanism. The agent is designed such
that it always builds a higher tower4, thus the number of its mental states continuously
increases.

B0 = { on(1, 0), length(1), max(0), clear(1), clear(0), done(0) }

A = { move(x, y, z) = (on(x, y) ∧ clear(x) ∧ clear(z), { on(x, z), ¬on(x, y), ¬clear(z) }, )
incLength(x) = (length(x), { ¬length(x), length(x+ 1) }),
addBlock(x) = (¬on(x, 0), { on(x, 0), clear(x) }),
setMax(x, y) = (max(y), { ¬max(y),max(x) }),
finish(x, y) = (¬done(x) ∧ done(y), { ¬(done(y)), done(x) }) }

P = { build(n, c) = move(c− n, 0, c− n− 1); incLength(c− n− 1); build(n− 1, c)
generate(x, y) = addBlock(x); generate(x− 1, y),
p0(x, y) = setMax(x, y); generate(x, y)) }

R = { length(x) ∧max(y) ∧ (x ≤ y)← build(y, y + x− 1),
length(x) ∧max(x) ∧ done(y) ∧ (x ≥ y)← finish(x, y);⊥,
max(x) ∧ done(x)← setMax(x+ 2, x), generate(x+ 2, x) }

Fig. 3: A BUpL Builder with Infinite State Space

For such an agent we can no longer verify correctness with respect to the speci-
fication by model-checking. Instead, we test it. We recall that our purpose is to test
whether “bad” states are reachable from the initial configuration of the BUpL builder
and that “bad” means odd length towers, in our case. Thus, if we consider testing
whether done(3) appears in the belief base after executing move(2, 0, 1) followed by
move(3, 0, 2) we only need to apply the strategy do(move(2, 0, 1)); do(move(3, 0, 2)); bel(done(3)).
For illustration purposes, the implementation of the agent is on purpose faulty (the cor-
rect agent tests the parity of x in the repair rule corresponding to executing the action
finish). This means that the application of the strategy should result in a non empty
state, meaning that the test case is successful. On the contrary, the application should
be unsuccessful when the correct repair rule is used. From this we can conclude that the
agent is safe with respect to the test.

We have already mentioned that the strategy language S has been incorporated into
the Maude system. This made it possible for us to extend the implementation from
[1] such that we can provide a testing framework as alternative to the model-checking
facility. We have further experimented with different test cases which we applied to the
Maude prototype corresponding to the BUpL builder from Figure 3. We have run our
tests on a Fedora 10 system (Kernel linux 2.6.27.12-170.2.5.fc10.x86 64) with an AMD
Athlon(tm) 64 Processor 3500+ and 1 GB memory. The process of executing the BUpL
builder with respect to the test case do(move(2, 0, 1)); do(move(3, 0, 2)); bel(done(3))

4 The example can be understood as a typical agent with maintenance goals



took 4ms for the BUpL builder and generated 24040 rewrites. We make the short note
that the number of rewrites is high mainly because the strategy language is implemented
at the meta-level and thus

Maude> (srew builder(3, 0) using
do(move(2,0,1)); do(move(3,0,2)); bel(done(3)) .)

rewrites: 24040 in 3943ms cpu (4079ms real)
(6096 rewrites/second)

rewrite with strategy :
result LBpMentalState :

<< iLabel(’finish[’s_ˆ3[’0.Zero],’s_[’0.Zero]]),
clear(0)# clear(3)# done(3)# length(3)# max(3)#
on(1,0)# on(2,1)# on(3,2),i[bot,empty]>>

Maude> (next .)
rewrites: 1136 in 46ms cpu (81ms real)

(24173 rewrites/second)
next solution rewriting with strategy :
No more solutions .

Fig. 4: One Test Execution for the BUpL Builder

From the Maude output illustrated in Figure 4, we can see that the strategy has suc-
ceeded and that the resulting state reflects that done(3) has been updated to the belief
base and that the current tower is 321. We can further see that there are no more so-
lutions (corresponding to faulty executions) from the output of the default command
next. More examples and the actual Maude code (also including more test case imple-
mentations) can be downloaded from our website http://homepages.cwi.nl/
˜astefano/agents/ bupl-strat.php.

5 Conclusions and Future Work

We have formalized testing and we have introduced strategies to implement test cases.
Generalising our current results to multi-agent systems should be easy in a particular
framework where the interaction between agents is achieved not by means of commu-
nication but by action-based coordination mechanisms. We already have some results
with respect to implementing such coordination mechanisms by strategies and this is
why we think the generalisation should be easy.

We did not address the issue of automatic model extraction. In our scenario, it was
easy to infer the model from the specification, however, this is not always the case.
Furthermore, one usually needs to validate the model with respect to the system under
testing. Nor did we address the issue of automatic test case generation. Writing suitable
test cases is not a trivial task, which would be alleviated by automatic test case genera-
tion. One trivial solution would be to consider all possible paths in the model. However,
more refined approaches to reduce the paths to subsets of interesting ones are based
on model-checking, theorem-proving or symbolic executions [10]. It is also the case
that such techniques can be used in combination to better cover test case generation.
These are subjects of future research. Also ongoing work are the techniques we have
mentioned in the introduction, abstraction and reasoning about annotations.
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11. Narciso Martı́-Oliet and José Meseguer. Rewriting logic as a logical and semantic frame-
work. In J. Meseguer, editor, Electronic Notes in Theoretical Computer Science, volume 4.
Elsevier Science Publishers, 2000.

12. Bertrand Meyer. Seven Principles of Software Testing. IEEE Computer, 41(8):99–101, 2008.
13. Duy Cu Nguyen, Anna Perini, and Paolo Tonella. A Goal-Oriented Software Testing

Methodology. In Michael Luck and Lin Padgham, editors, AOSE, volume 4951 of Lecture
Notes in Computer Science, pages 58–72. Springer, 2007.

14. Traian-Florin Serbanuta, Grigore Rosu, and José Meseguer. A rewriting logic approach to
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Abstract. We introduce a just-in-time specializer for Prolog. Just-in-
time specialization attempts to unify of the concepts and benefits of
partial evaluation (PE) and just-in-time (JIT) compilation. It is a variant
of PE that occurs purely at runtime, which lazily generates residual code
and is constantly driven by runtime feedback.
Our prototype is an on-line just-in-time partial evaluator. A major fo-
cus of our work is to remove the overhead incurred when executing an
interpreter written in Prolog. It improves over classical offline PE by re-
quiring almost no heuristics nor hints from the author of the interpreter;
it also avoids most termination issues due to interleaving execution and
specialization. We evaluate the performance of our prototype on a small
number of benchmarks.

1 Introduction

Just-in-time compilers have been hugely successful in recent years, often provid-
ing significant benefits over traditional (ahead-of-time) compilers.1 Indeed, much
more information is available at runtime, some of which can be very expensive
or impossible to obtain ahead-of-time by traditional static analysis. The biggest
success story is possibly the Java HotSpot [22] just-in-time compiler, which now
often matches or beats classical C++ compilers in terms of speed.

Dynamic languages have seen a recent surge in activity and industrial ap-
plications. Dynamic languages, due to their very nature, make traditional static
analysis and compilation nigh impossible. Hence, a lot of hope is put into just-in-
time compilation. Many techniques have been proposed; one of the main recent
successes is the Psyco just-in-time specializer [24] for Python. In the best cases
it can remove all the overhead incurred by the dynamic nature of the language.
Its successor, the JIT compiler generator developed in the PyPy framework [26],
is one of the bases for the present work, where we are interested in applying sim-
ilar techniques to Prolog in general and partial evaluation of Prolog programs
in particular.

1 Even though there is of course room for both. Some applications do require static
compilation techniques and validation, in the form of static analysis or type checking,
which provides benefits over runtime validation.



Partial evaluation [16] is a technology that has been very popular for improv-
ing the performance of Prolog programs. Indeed, for Prolog, partial evaluation
is more tractable than for imperative or object-oriented languages, such as C
or Python. Especially for interpreters (one of the typical Prolog applications),
speedups of several orders of magnitude are possible [2]. However, while some
isolated successul applications exist, there is no widespread usage of partial eval-
uation technology. One problem is that the static input needs to be known ahead
of time, whereas quite often the input that enables optimisations is only available
at runtime. Also, one faces problems such as code explosion, as the specialized
program sometimes needs to anticipate all possible runtime combinations in or-
der not to loose static information. We argue that these problems can be solved
by incorporating and adapting ideas from just-in-time compilation.

In this paper we present the technique of just-in-time partial evaluation along
with an first prototype implementation for Prolog. The key contributions of our
work are:

1. Just-in-time specialization allows us to decide which information is relevant
for good optimisation; we can decide at runtime what is static and dynamic.

2. The specializer can inspect a runtime value at any point in time, and use it
as a static value in order to partially evaluate the code that follows. We call
this concept promotion.

3. Partial evaluation is done lazily; only parts really required are specialized,
and compilation and execution are tightly interleaved.

Our paper is structured as follows. We discuss the problems that trouble
classical partial evaluation in more detail in Sect. 2. The main mechanism of
just-in-time partial evaluation is explained in Sect. 3. These goals are achieved
with the use of “lazy choice points”, which are the basic concept of this work.
The control of our partial evaluator is discussed in Sect. 4. In Sect. 5 we examine
the behaviour of our specializer for some examples. Related work and conclusion
are presented in Sect. 6 and 7 respectively.

2 Problems of Classical Partial Evaluation

Partial evaluation [16] is a well-known source-to-source program transformation
technique. It specialises programs by pre-computing those parts of the program
which depend only on statically known input. The so-obtained transformed pro-
grams are less general than the original but can be much more efficient. In the
context of logic programming, partial evaluation proceeds mostly by unfolding
[19, 17] and is sometimes referred to as partial deduction.

Partial evaluation has a number of problems that have prevented it from
being widely used, despite its considerable promise. One of the hardest prob-
lems of partial evaluation is the balance between under- and over-specialization.
Over-specialization occurs when the partial evaluator generates code that is too
specialized. This usually leads to too much code being generated and can lead
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to “code explosion”, where a huge amount of code is generated, without signifi-
cantly improving the speed of the code.

The opposite effect is that of under-specialization. When it occurs, the resid-
ual code is too general. This happens either if the partial evaluator does not
have enough static information to make better code, or if the partial evaluator
erroneously decides that some of the information it has is actually not useful
and it then discards it.

The partial evaluator has to face difficult choices between over- and under-
specialization. To prevent under-specialization it must keep as much information
as possible, since once some information is lost, it cannot be regained. However,
keeping too much information is also not desirable, since it can lead to too much
residual code being produced, without producing any real benefit.

Figure 1 shows an example where Ecce (a partial evaluator for pure Pro-
log [18]) produces bad code when doing partial evaluation. The code in the
figure is a simple Prolog meta-interpreter which stores the outstanding goals
in a list (the point of the jit merge point predicate is explained in Sect.
4.2. Ecce just ignores it). The interpreter works on object-level representa-
tions of append, naive reverse and a predicate replacing the leaves of a tree.
When Ecce is asked to residualize a call to the meta-interpreter interpreting
the replaceleaves predicate, it loses the information that the list of goals can
only consist of replaceleaves terms. Thus eventually the residual code must
be able to deal with arbitrary goals in the list of goals, which causes the full
original program to be included in the residual code that Ecce produces (see
predicates solve 5, my clause 6 and append 7 in the residual code). This is
a case of under-specialization (the code could be more specific and thus faster)
and also of code explosion (the full interpreter is contained again, not only the
parts that are needed for replaceleaves). We will come back to this example
in Section 5.

A related problem is Prolog builtins. Many Prolog partial evaluators do not
handle Prolog builtins very well. For example Ecce only supports purely logical
builtins (which are builtins which could in theory be implemented by writing
down a potentially infinite set of facts). Some builtins are just hard to support
in principle, e.g., a partial evaluator cannot assume anything about the result of
read(X).

The fact that many classical Prolog partial evaluators do not support builtins,
means that quite often user programs have to be rewritten in non-trivial ways –
a time-consuming task.

3 Basics of Just-in-time Specialization

3.1 Basic Setting

We propose to solve the problems described in the previous section by just-in-
time partial evaluation. The basic idea is that the partial evaluator is executed
at runtime rather than ahead of time, interleaved with the execution of the
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Original code:

solve([]).

solve([A|T]) :-

jit_merge_point,

my_clause(A,B), append(B,T,C), solve(C).

append([], T, T).

append([H|T1], T2, [H|T3]) :-

append(T1, T2, T3).

my_clause(app([],L,L),[]).

my_clause(app([H|X],Y,[H|Z]),[app(X,Y,Z)]).

my_clause(replaceleaves(leaf, NewLeaf, NewLeaf),[]).

my_clause(replaceleaves(node(Left, Right), NewLeaf,

node(NewLeft, NewRight)),

[replaceleaves(Left, NewLeaf, NewLeft),

replaceleaves(Right, NewLeaf, NewRight)]).

my_clause(nrev([],[]), []).

my_clause(nrev([H|T], Z), [nrev(T, T1), app(T1, [H], Z)]).

Residual code for solve([replaceleaves(A, B, C)]) by Ecce :

solve([replaceleaves(A, B, C)]) :- solve__2(A, B, C).

solve__2(leaf,A,A).

solve__2(node(A,B),C,node(D,E)) :- solve__3(A,C,D,B,E,[]).

solve__3(leaf,A,A,B,C,D) :- solve__4(B,A,C,D).

solve__3(node(A,B),C,node(D,E),F,G,H) :-

solve__3(A,C,D,B,E,[replaceleaves(F,C,G)|H]).

solve__4(leaf,A,A,B) :- solve__5(B).

solve__4(node(A,B),C,node(D,E),F) :- solve__3(A,C,D,B,E,F).

solve__5([]).

solve__5([A|B]) :-

my_clause__6(A,C),

append__7(C,B,D),

solve__5(D).

my_clause__6(app([],A,A),[]).

my_clause__6(app([A|B],C,[A|D]),[app(B,C,D)]).

my_clause__6(replaceleaves(leaf,A,A),[]).

my_clause__6(replaceleaves(node(A,B),C,node(D,E)),

[replaceleaves(A,C,D),replaceleaves(B,C,E)]).

my_clause__6(nrev([],[]),[]).

my_clause__6(nrev([A|B],C),[nrev(B,D),app(D,[A],C)]).

append__7([],A,A).

append__7([A|B],C,[A|D]) :-

append__7(B,C,D).

Fig. 1. Under-Specialization in Ecce for a Meta-Interpreter
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specialized code. This allows it to observe the runtime behaviour of the program,
giving it more information than a static specializer to base its decisions on.
The approach we take is that the specializer produces some residual code upon
demand, uses assert to put it into the Prolog database and then immediately
runs the asserted code.2 More residual code is produced later, if that becomes
necessary. The details of when this process is started and stopped are described
below.

The specialization process itself proceeds by interpretation of the Prolog
source code. If a deterministic call to a user-predicate is interpreted, it is un-
folded; otherwise specialization stops as described in the following section. If a
call to a built-in is encountered, in the general case the call is skipped, i.e. put in
the residual code; but a number of common built-ins have corresponding custom
specialization rules and produce specialized residual code (or no code at all).

3.2 Promotion: Lazy Choice Points

The fundamental building block for the partial evaluator to make use of the
just-in-time setting are lazy choice points. When reaching a choice point in the
original program, the partial evaluator does not know which choice would be
taken at runtime. Compiling all cases is undesirable, since that can lead to code
explosion. Therefore it inserts a callback to the specializer into the residual code
and stops the partial evaluation to let the residual code run. When the callback
is reached, the specializer is invoked again and specializes exactly the switch case
that is needed by the running code. After specialization has finished, this new
code is generated.

Another usage of lazy choice points by the partial evaluator is to get infor-
mation about terms (X in the figure) which are required to obtain good special-
ization but are not available statically. When the actual runtime value (or some
partial info about the value, like the functor and arity) of an unknown term is
needed by the partial evaluator during specialization, specialization stops and
a callback is inserted. Then the residual code generated so far is executed until
the callback point is reached. When this happens, the value of the formerly un-
known term is available (there are no unknown terms at runtime of course). At
this point the specializer is invoked with the now known term and more code can
be produced. We call this process promotion: it promotes a dynamic, unknown
value to a static value available to the specializer.

Our approach is best illustrated by an example. Assume we have the following
predicate:

negation(true(X), false(X)).
negation(false(X), true(X)).

First, our specializer rewrites this predicate in a pre-processing phase into the
following form, which makes the choice point and first-argument indexing visible:
2 On some Prolog systems, dynamically asserted code runs slower than static code.

We can sometimes use workarounds, like compile predicates in SWI-Prolog.
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negation(X, Y) :- switch_functor(X, [
case(true/1, (X = true(Z), Y = false(Z))),
case(false/1, (X = false(Z), Y = true(Z)))]).

The predicate switch functor performs a switch on the functor of its first
argument, the possible cases are described by the second argument. It could be
implemented as a Prolog-predicate like this:

switch_functor(X, [case(F/Arity, Body)|_]) :-
functor(X, F, Arity), call(Body).

switch_functor(X, [_|MoreCases]) :-
switch_functor(X, MoreCases).

If the specializer encounters the call negation(X) it cannot know whether
the functor of X will be true or false (if it would know the functor of X it could
continue unfolding with the correct case immediately). Therefore the specializa-
tion process stops. At this point the following code has been generated and put
into the clause database:

’$negation1’(X, Y) :-
’$case1(X), ’$promotion1’(X, Y).

’$case1(true(_)).
’$case1(false(_)).
’$promotion1’(X, Y) :-

functor(X, F, N),
callback(F/N, ’$promotion1’, ...),
’$promotion1’(X, Y).

The predicate ’$negation1’ is the entry-point of the specialized version of
negation. The ’$case1’ predicate ensures that X is bound when ’$promotion1’
is called and that solutions are generated in the right order. The ’$promotion1’
predicate is the lazy choice point. At this point this predicate has only one clause,
which is for invoking the specializer again. More clauses will be added later. If it
is executed, partial evaluation will be resumed by calling callback, passing in
the functor and the arity of the argument as information for specializing more
code. Thus, one concrete clause of the choice point will be generated. After this
is done, the promotion predicate is called again, which will execute the newly
generated case.

The callback gets the functor and arity as its first argument. The second
argument is the name of the predicate that should get a new clause added. The
further arguments (shown only as ... in the code above) contain the Cases in
the switch functor call, the continuation of what the partial evaluator still has
to evaluate after the choice point. When callback is called, it will use its first
argument to decide which of the cases it should partially evaluate further.

Let us assume that ’$negation1’ is first called with false(X) as an ar-
gument. Then ’$promotion1’ will be executed, calling callback(false/1,
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’$promotion1’, ...). This will resume the partial evaluator which then gener-
ates residual code only for the case where X is of the form false( ). The residual
code looks as follows:

’$promotion1’(false(Z), Y) :-
!, Y = true(Z).

This code will be asserted using asserta, which means that it will be tried
before the clause of ’$promotion1’ shown above. This has the effect that the
next time ’$negation1’ is called with false(X) as an argument, this code will
be used and no specialization will be performed. The cut is necessary to prevent
the backtracking into the clause calling back into the specializer.

If the ’$negation1’ predicate is never actually called with an argument of
the form true(X), then the other case of the switch will never be specialized,
saving time and memory. This might not matter for such a trivial case as the
one above, but it strongly reduces specialization time and size of the residual
code for more realistic cases (e.g. consider what happens if the body of negation
contains calls to many predicates). If the other case will be specialized eventually,
the residual code would look like this:

’$promotion1’(true(Z), Y) :-
!, Y = false(Z).

This code will again be inserted into the database using asserta so that it
too will be tried before the specialization case.

3.3 Other uses of lazy switches

The switch functor primitive has some other uses apart from the obvious
ones that it was designed for. These other uses also exploit the laziness of
switch functor, less so the switching part. One of them is to implement a
lazy version of disjunction (the “;” builtin).

Another use of switch functor is to support the call(X) builtin (which
very few partial evaluators for Prolog do efficiently). This can be considered to
be a switch of X over all the predicates in the program. Since switch functor
is lazy, only those predicates that are actually called at runtime need to be
specialized. An example for this can be found in Sect. 4.3.

4 Control and Ensuring Termination

4.1 Code Generation and Local Control

So far we have not explained exactly how we generate the specialized code (apart
from the lazy switches). Basically, we use the well-known partial evaluation
framework as presented in [17] (which builds upon the original work in [19]).
The control of partial evaluation for logic programs is often separated into local
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and global control [21], where the global control decides which calls are special-
ized and the local control performs the unfolding of those calls. In the simple
setting described so far, we can simply view the local control of our just-in-
time specializer as performing unfolding until a choice point is reached. At this
point, the specializer stops and generates a resultant clause with a callback into
the specializer (as explained in the last section). More precisely, the unfolding
rule will recursively process the leftmost literal in a goal that has not yet been
examined, with the following options:

1. If it is a switch functor which is sufficiently instantiated, the proper case
will be chosen.

2. If it is a switch functor which is not sufficiently instantiated, unfolding
stops and a call back into the specializer is inserted into the resultant, using
a lazy switch, as explained in the previous section.

3. If it is a built-in, then the built-in is specialized, yielding a single computed
answer along with a specialized version of the built-in to be put into the
residual code. For non-deterministic built-ins, the computed answer is gen-
eral enough to cover all solutions. Failure can also sometimes be detected,
in which case the branch is pruned.

4. If the leftmost literal is a user-predicate, it will be simply unfolded. Ob-
serve that this is deterministic, as all choice points are encoded via the
switch functor primitive.

To ensure that the semantics are preserved in the presence of impure built-ins
or predicates, we do not always left-propagate bindings (in case we do not select
the leftmost literal). Bindings are left-propagated only until impure built-ins are
met, using techniques from [23].

As our just-in-time specializer interleaves ordinary execution with code gen-
eration, the overall procedure cannot always terminate (namely when the user
query under consideration does not terminate). However, we would like to ensure
that if the unspecialized program itself terminates (existentially or universally
respectively) then the just-in-time specializer process should also terminate (exis-
tentially or universally respectively). The above process does not fully guarantee
this, as our just-in-time specializer may not detect that a call to a built-in in
point 3 actually fails. This means that the just-in-time specializer would proceed
specialization on a computation path which does not occur at runtime, which is
a problem if this path is infinite.

One pragmatic solution is to ensure that the just-in-time specializer will
maximally perform N specialization steps before executing residual code again.
Every time the residual code is executed, the computation progresses. Therefore
the presence of the just-in-time specializer can only lead to a linear slowdown,
which means in particular that it preserves termination behaviour.

4.2 Global Control

In some cases the specialization technique described so far can be sufficient.
However, it does not reuse any of the generated residual code (i.e., the specializer
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produces a tree of predicates); what we want is to eventually obtain a jump to
an already-specialized predicate, typically closing a loop. Instead of a tree, the
final result should be an arbitrary graph of residual predicates.

In the current prototype, the specializer never tries to reuse existing residual
code on its own. To trigger global control, the specialized program needs to re-
quest the attempt to reuse existing residual code by inserting a call to a special
predicate called jit merge point. This predicate does nothing if executed nor-
mally, but is dealt with by the partial evaluator in a special way. For an example
usage, see Figure 1.

The need for this sort of explicit hint is clearly not ideal, but we felt that
it simplified implementation enough to still be a good choice, given that most
programs with an interpretative nature need to contain only one call or a small
number of calls to this predicate. We plan to find ways of automatically placing
this call in the future.

At the places where a call to jit merge point is seen, the partial evaluator
tries to reuse an already existing residual predicate. It does this by comparing
the list of goals that the partial evaluator currently has with those it had at
earlier calls to jit merge point. If two such lists of goals are similar enough
the partial evaluator inserts a call to the residual predicate produced earlier and
stops the partial evaluation process. The exact conditions when this is possible
are outside the scope of this paper and are fully explained in [3]. In summary, the
procedure remembers which parts of the term have been used to resolve choice
points; parts which did not contribute in any way to improve the specialisation
are thrown away.3

In the next subsection we present a simple example which illustrates this
aspect of our system, and also highlights the potential of our just-in-time spe-
cialization compared to traditional partial evaluation.

4.3 A Worked Out Example: Read-Eval-Print Loop

As an showcase example we wrote a minimal read-eval-print loop for Prolog,
which can be seen in Fig. 2. Most classical partial evaluators have a hard-time
producing good code for read eval print loop, because after read(X) the value
of X is unknown, which makes it impossible to figure out which predicate call(X)
will ultimately call.

For our prototype this represents no real problem. The functor of X can be
promoted, thus observing at runtime which predicate is to be called. Subse-
quently, this predicate can be specialized. Fig. 2 also shows an example session
as well as the residual code that our prototype generated for this session (note
that the clauses for ’$callpromotion1’ are shown in the order in which they are
in the database, which is the reverse order in which they have been generated).

3 In some sense this can be seen as an evolution of the generalisation operator from
[12] to a just-in-time specialisation setting.
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Code of the read-eval-print loop and some example predicates:

read_eval_print_loop :-

jit_merge_point,

read(X),

call(X),

print(X),

nl, read_eval_print_loop.

% example predicates

f(a). f(b). f(c).

g(X) :- h(Y, X), f(Y).

h(c, d).

k(_, _, _) :- g(X), g(X).

Example session:

|: f(c).

f(c)

|: g(X).

g(d)

|: fail.

No

Produced residual code (promotion specialization cases not shown):

’$entrypoint1’ :-

read(A),

’$callpromotion1’(A).

’$callpromotion1’(fail) :- !,

fail.

’$callpromotion1’(g(A)) :- !,

A=d,

print(g(d)),

nl,

’$entrypoint1’.

’$callpromotion1’(f(A)) :- !,

’$case1’(A), ’$promotion1’(A).

’$case1’(a). ’$case1’(b). ’$case1’(c).

’$promotion1’(c) :- !,

print(f(c)),

nl,

’$entrypoint1’.

Fig. 2. A Simple read-eval-print-loop for Prolog
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5 Experimental Results

To get some idea about the performance of our dynamic partial evaluation sys-
tem, we ran a number of benchmarks. We compared the results with those of
Ecce [18], an automatic online program specializer for pure Prolog. The exper-
iments were run on a machine with a 1.4 GHz Pentium M processor and 1GiB
RAM, using Linux 2.6.24. For running our prototype and the original and spe-
cialized programs we used SWI-Prolog Version 5.6.47 (Multi-threaded, 32 bits).
Ecce was used both in “classic mode” which uses normal partial evaluation and
in “conjunctive mode” (which uses conjunctive partial deduction with character-
istic trees and homeomorphic embedding; see [9]). Conjunctive partial evaluation
is considerably more powerful, but also much more complex.

Figure 3 presents five benchmarks. The first three are examples for a typical
logic programming interpreter with one and also with two levels of interpretation.
The fourth example is a higher-order example, using the meta-predicates =..
and call. Finally, the fifth is a small interpreter for a dynamic language. Note
that “spec” refers to the specialization time and “run” to the runtime of the
specialized code. The second number for the just-in-time partial evaluator is
derived by running the same goal a second time, which will not trigger more
partial evaluation. For Ecce the specialization time was not measured.

Our prototype is in all cases faster than the original code, but also in all
cases slower (by a factor between 2 and 8) than Ecce in conjunctive mode.
On the other hand, our prototype is faster than Ecce in classical mode in two
cases. These are not bad results, considering the relative complexity of the two
projects. Our prototype is rather straightforward. It was written from scratch
over the course of some months and consists of about 1500 lines of Prolog code.
On the other hand, Ecce is a mature system that employs serious theoretical
results and consists of about 25000 lines of Prolog code.

As we have also seen in Section 2 the third benchmark is one where Ecce in
classical mode produces rather bad code. This can be seen in the benchmark re-
sults as well, there is nearly no speedup when compared to the original code. Our
prototype has the same problem, it also loses the information that all the goals
in the goal list are replaceleaves calls. However, in our case this is not a prob-
lem, since that information can be regained with a promotion, thus preventing
code explosion and under-specialization.

6 More Related Work

Promotion is a concept that we have already explored in other contexts. Psyco
is a run-time specializer for Python that uses promotion (called “unlift” in [24]).
Similarly, the PyPy project [25, 4], in which all three authors are also involved,
contains a just-in-time specialization system built on promotion [26].

Greg Sullivan describes a runtime partial evaluator for a small dynamic lan-
guage based on lambda calculus [27]. Sullivan [27] further distinguishes two cases
(quoting): “Runtime partial evaluation [...] defers some of the partial evaluation
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Experiment Inferences CPU Time Speedup

A vanilla meta-interpreter [14, 20] run-
ning append with a list of 100000 ele-
ments. The interpreter can be seen in
Figure 1.

Vanilla - Append
original 500008 0.35 s 1.0
JIT PE, spec+run 281842 0.13 s 2.69
JIT PE, run 200016 0.11 s 3.18
ecce classic 100003 0.03 s 11.67
ecce conjunctive 100003 0.03 s 11.67

The vanilla interpreter running itself
running append with a list of 100000 el-
ements.

Vanilla - Vanilla - Append
original 2000023 1.42 s 1.0
JIT PE, spec+run 1577228 0.66 s 2.15
JIT PE, run 700020 0.32 s 4.44
ecce classic 100003 0.04 s 35.5
ecce conjunctive 100003 0.04 s 35.5

The vanilla interpreter running
replaceleaves, see Figure 1. Input was
a full tree of depth 18.

Vanilla - Replace Leaves
original 2621438 2.76 s 1.0
JIT PE, spec+run 2493636 1.77 s 1.56
JIT PE, run 2097162 1.58 s 1.75
ecce classic 2097074 2.64 s 1.05
ecce conjunctive 589825 0.78 s 3.54

A higher order example: reduce in Pro-
log using =.. and call. This is summing
a list of 100000 integers, knowing stat-
ically the functor that is used for the
summation.

Reduce - Add
original 1492586 16.73 s 1.0
JIT PE, spec+run 5082861 3.53 s 4.74
JIT PE, run 5000014 3.24 s 5.16
ecce classic 1134504 8.5 s 1.97
ecce conjunctive 2000001 1.85 s 9.04

An interpreter (∼100 lines of Prolog) for
a small stack-based dynamic language.
The benchmark is running an empty
loop of 100000 iterations.

Stack Interpreter
original 2100010 3.13 s 1.0
JIT PE, spec+run 5699992 1.46 s 2.14
JIT PE, run 200019 0.08 s 39.13
ecce classic 100003 0.05 s 62.6
ecce conjunctive 100003 0.04 s 78.25

Fig. 3. Experimental Results

process until actual data is available at runtime. However the scope and actions
related to partial evaluation are largely decided at compile time. Dynamic par-
tial evaluation goes further, deferring all partial evaluation activity to runtime.”
Using this terminology, our system does dynamic partial evaluation.

One of the earliest works on runtime specialization is Tempo for C [8, 7].
However, it is essentially an offline specializer “packaged as a library”; decisions
about what can be specialized and how are pre-determined.

Another work in this direction is DyC [13], another runtime specializer for C.
Specialization decisions are also pre-determined, i.e. dynamic partial evaluation
is not attempted, but “polyvariant program-point specialization” gives a coarse-
grained equivalent of our promotion. Targeting the C language makes higher-
level specialization difficult, though (e.g. malloc is not optimized).
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Polymorphic inline caches (PIC) [15] are very closely related to promotion.
They are used by JIT compilers of object-oriented language and also insert a
growable switch directly into the generated machine code. This switch exam-
ines the receiver types for a message for a particular call site. From that angle,
promotion is an extension of PICs, since promotions can be used to switch on
arbitrary values, not just receiver types.

The recent work on trace-based JITs [11] (originating from Dynamo [1])
shares many characteristics of our work. Trace-based JITs concentrate on gener-
ating good code for loops, and generate code by observing the runtime behaviour
of the user program. They also only generate code for code paths that are actu-
ally followed by the program at runtime. The generated code typically contains
guards; in recent research [10] on Java, these guards’ behavior is extended to
be similar to our promotion. This has been used by several implementations to
implement a dynamic language (JavaScript) [5, 6].

7 Conclusion and Future Work

In this paper we drew explicit parallels between partial evaluation and just-in-
time compilers. We showed with a Prolog prototype of a just-in-time partial
evaluator that these two domains might benefit a lot from a synergy. In par-
ticular, inspired by Polymorphic Inline Caches, we have developed the notion
of promotion for partial evaluation. We hope that our approach can help ad-
dress several fundamental issues that so far prevent classical partial evaluation
to reach its fullest potential: code explosion, termination, full Prolog support,
and scalability to large programs.

Due to the use of promotion our just-in-time partial evaluator works reason-
ably well for interpreters of dynamic languages and generally in situations where
information that the partial evaluator needs is only available at runtime. This is
an advantage that a classical partial evaluator can never possess for fundamen-
tal reasons. We have not tried our prototype on really large programs yet, so it
remains to be seen whether it works well for these.

There are some downsides to our approach. In particular promotion needs
a Prolog system that supports assert well, since the whole approach depends
on that in a crucial manner. We have not yet evaluated our work on any Prolog
system other than SWI-Prolog (which supports assert rather well). In the future
we would like to support other Prolog platforms like Ciao Prolog or Sicstus
Prolog as well.

Global control is another area that still needs further work. We plan to
explore ways of inserting the jit merge points automatically. Furthermore,
the global control strategy needs further evaluation and possible refinement.

Finally we need to take a look at the speed of the partial evaluator itself,
which we so far disregarded completely. Since partial evaluation happens at
runtime it is necessary for the partial evaluator to not have too bad performance.
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Abstract. While there are well-understood methods for detecting loops
whose iterations are independent and parallelizing them, there are com-
paratively fewer proposals that support parallel execution of a sequence
of loops or nested loops in the case where such loops have dependencies
among them. This paper introduces a refined notion of independence,
called eventual independence, that in its simplest form considers two
loops, say loop1 and loop2, and captures the idea that for every i there
exists k such that the i+ 1-th iteration of loop2 is independent from the
j-th iteration of loop1, for all j ≥ k. Eventual independence provides
the foundation of a semantics-preserving program transformation, called
synchronized pipelining, that makes execution of consecutive or nested
loops parallel, relying on a minimal number of synchronization events
to ensure semantics preservation. The practical benefits of synchronized
pipelining are demonstrated through experimental results on common
algorithms such as sorting and Fourier transforms.

1 Introduction

Multi-core processors are becoming ubiquitous: most laptops currently on the
market contain at least two execution units, whereas servers commonly use eight
or more cores. Since the number of on-chip cores is expected to double with
each processor generation, there is a pressing challenge to develop programming
methodologies which exploit the power of multi-core processors without compro-
mising correctness and reliability. One prominent approach is to let programmers
write sequential programs and to build compilers that parallelize these programs
automatically.

Most parallelization techniques rely on some notion of independence, which
ensures that certain fragments of the program only access distinct regions of
memory, and thus execution of one such code fragment has no effect on the exe-
cution of the others. For example, code fragments written in a simple imperative
language are guaranteed to be independent if their reads and writes are disjoint,
in which case their sequential composition can be parallelized without modify-
ing the overall semantics of the program. More refined notions of independence
include the classical notions of absence of flow dependence, anti-dependence, or
output dependence [11].



Well-understood methods exist for detecting loops whose iterations are inde-
pendent (i.e., they do not contain loop-carried dependencies) and parallelizing
them. These techniques have been used to achieve automated/correct paral-
lelization of a number of algorithms for scientific computing such as, e.g., image
processing, data mining, DNA analysis, or cosmological simulation. However,
these parallelization methods do not provide significant speedups for other algo-
rithms which contain sequences or nesting of loops whose iterations are partially
dependent and/or irregular. Examples of such loops appear, for example, in sort-
ing algorithms or Fourier transforms. On the other hand, such algorithms can be
parallelized efficiently by the technique that we propose, synchronized pipelin-
ing, which allows loops with dependencies to be executed in parallel by making
sparse use of synchronization events to ensure that the ahead-of-time execution
of loop iterations does not alter the original semantics.

Our proposal is illustrated in Section 2 with a mergesort algorithm. As a
warm up to Section 2, let us first consider synchronized pipelining in its simplest
form, when it deals with two consecutive loops:

while b1 do c1; while b2 do c2

where c2 (but not b2) depends on c1. The aim is to return a code where (mod-
ifications of) the two loops are executed in parallel, so that iterations of c2
are executed as early as possible. To justify such a transformation, we rely on
eventual independence, a generalization of independence which accounts for the
possibility of executing the m + 1-th iteration of a loop ahead of time. Infor-
mally, c2 is eventually independent from c1 iff for every n2, there exists n1 such
that after n1 iterations of c1 and n2 iterations of c2, c1 and c2 are independent.
Once eventual independence between the two loops is established, it is possible
to define a semantics-preserving transformation that outputs a program:

while b1 do c′1 || while b2 do c′2

where c′1 is obtained from c1 by adding event announcements to indicate that
part of the computation of c2 can be performed, and c′2 is obtained from c2 by
inserting blocking statements that control the gradual and early computation
of c2; in both cases, the transformation of ci into c′i is guided by the eventual
independence relation.

In the course of the paper, we develop the notions of eventual independence
and synchronized pipelining, starting from the simple case discussed above and
then dealing with sequences of loops and nested loops. In addition, we illus-
trate the benefits of our approach, drawing experimental results from common
cases such as the above mentioned sorting algorithms and Fourier transforms.
In summary, the main contributions of this paper are:

– the formal definition of eventual independence (Section 4),
– the definition and correctness proof of synchronized pipelining (Section 5),

and
– experimental results that validate the benefits of synchronized pipelining

(Section 6).



void mergesort (int* A,int length) {
int i,j,c;

for (i = 1; i < length;i*=2) {
j = 0;
while (j < length) {
c = j; ...
while (c < j + 2*i){

...
a[c] = ... ;
...
c++;

}
j = j + 2*i;

}
}

}

void mergesort (int* A,int length) {
int i,j,c;

i = 1;
j = 0;
while (j < length) {

c = j; ...
while (c < j + 2*i){
...
c++;

}
j = j + 2*i;

}

i = 2;
j = 0;
while (j < length) {

c = j; ...
while (c < j + 2*i){
...
c++;

}
j = j + 2*i;

}

...

i = length/2;
j = 0;
while (j < length) {

c = j; ...
while (c < j + 2*i){
...
c++;

}
j = j + 2*i;

}

}

Fig. 1: Iterative mergesort algorithm

Although many of the concepts and results of the paper only make minimal
assumptions on the programming language, we carry our development in the
setting of a parallel imperative language with events, introduced in Section 3.

2 Motivating Example: mergesort

Figure 1 presents an iterative merge-sort algorithm. After unrolling some of the
for loop iterations from the fragment shown on the right of the figure, we have
a sequence of iterations of the inner loop while(j < length){. . .} accessing
and modifying the array intervals [0, 1], [2, 3], . . ., [length − 1, length] in the
first iteration, the intervals [0, 3], [4, 7], . . ., [length − 3, length] in the second
iteration, and so on until the last iteration in which the intervals [0, length/2]
and [length/2 + 1, length] are accessed.

One can clearly see that, from the common notion of data dependence, the
first and second unrolled iteration cannot be executed in parallel, since they read
and/or modify overlapping regions of the array. However, after partial comple-
tion of the first iteration, the second iteration can proceed without waiting for
the first iteration to finish. For instance, in the sequential version, the iteration



that process the interval [0, 3] waits for the first iteration to finish processing
the interval [length− 1, length]. However, the second iteration can safely start
processing the array interval [0, 3], right after the first iteration has finished
processing the array intervals [0, 1] and [2, 3]. The parallelization technique we
propose allows the second loop iteration to gradually progress in parallel, intro-
ducing synchronization primitives in order to preserve the original semantics. To
this end, we rely on a heuristic oracle Ω, defined in terms of the number of steps
already executed by the first and second loop, that determines at which point
of the first loop it is safe to enable a partial execution of the second one.

3 Setting

The target language for synchronized pipelining is a simple imperative language
with arrays, extended with parallel composition and synchronization primitives.

The extension includes an empty statement nil, a standard parallel compo-
sition ‖, and event-based synchronization primitives. We assume given a set of
events S used for synchronization. Let τ ∈ S and S ⊆ S represent a synchro-
nization event and a synchronization event set, respectively. The statement S! is
a non-blocking announcement of the events in S, whereas the statement τ → c
waits for the event τ to be announced before proceeding with the execution of
c.

The semantics of programs is given by a transition relation between con-
figurations, where a configuration is either an exceptional configuration abort,
resulting e.g. from and array-out-of-bound access, or a normal configuration, i.e.,
an element of Stmt×Σ×S?, where Stmt is the set of program statements, Σ is
the set of states, i.e., mappings from program variables to integer values, and S?
is the powerset of S. Formally, the semantics is given by a small-step relation:
 ⊆ (Stmt×Σ × S?)× ((Stmt×Σ × S?) + {abort}).

The transition rules for synchronization and parallel execution are given in
Figure 2, together with the definition of the congruence relation≡⊆ Stmt×Stmt;
all other rules are standard. Note that event announcement is asynchronous and
that event identifiers are never removed from ε. Thus, once an event has been
announced, and until the end of the program execution, every process waiting
for that event is ready to proceed.

Example 1. Consider for example the statement (x := 5; τ !) ‖ τ → x := 1.
Starting from a state where τ has not been announced, the execution terminates
with the variable x holding the value 1, since x := 1 cannot proceed before the
event τ has been announced.

As usual, we can derive from the small-step semantics an evaluation semantics
⇓⊆ (Stmt×Σ × S?)× (Σ + abort), by setting:

〈c, σ, ε〉 ⇓ σ′ iff ∃ε′. 〈c, σ, ε〉 ? 〈nil, σ′, ε′〉
〈c, σ, ε〉 ⇓ abort iff 〈c, σ, ε〉 ? abort

where  ? denotes the reflexive and transitive closure of  . In turn, the evalu-
ation semantics can be used to define a notion of semantic equivalence.



〈S!, σ, ε〉 〈nil, σ, ε ∪ S〉
τ ∈ ε

〈τ → c, σ, ε〉 〈c, σ, ε〉

c ≡ d 〈d, σ, ε〉 〈d′, σ′, ε′〉 d′ ≡ c′

〈c, σ, ε〉 〈c′, σ′, ε′〉
c ≡ d 〈d, σ, ε〉 abort

〈c, σ, ε〉 abort

〈c, σ, ε〉 〈c′, σ′, ε′〉
〈c ‖ d, σ, ε〉 〈c′ ‖ d, σ′, ε′〉

〈c, σ, ε〉 abort

〈c ‖ d, σ, ε〉 abort

i ‖ nil ≡ i i ‖ j ≡ j ‖ i i ‖ (j ‖ k) ≡ (i ‖ j) ‖ k

Fig. 2: Operational semantics (excerpts)

Definition 1 (Semantical Equivalence). Let c1, c2 ∈ Stmt be two state-
ments, σ ∈ Σ be a state and ε ⊆ S be a set of synchronization events. We
say that c2 simulates c1 w.r.t. σ and ε, written Jc1K ≤(σ,ε) Jc2K, iff for every
σ′ ∈ (Σ + abort), we have 〈c1, σ, ε〉 ⇓ σ′ ⇒ 〈c2, σ, ε〉 ⇓ σ′. We say that c1
and c2 are semantically equivalent w.r.t. σ and ε, written Jc1K ≡(σ,ε) Jc2K, iff
Jc1K ≤(σ,ε) Jc2K and Jc2K ≤(σ,ε) Jc1K.

4 Eventual Independence

The purpose of this section is to introduce the notion of eventual independence,
and to discuss how eventual independence relations may be inferred. For the
sake of completeness, we start by recalling the semantic notion of independence
between two statements.

Definition 2 (Independent Statements). Two statements c1, c2 ∈ Stmt are
independent iff Jc1; c2K ≡ Jc1 ‖ c2K.

Eventual independence aims to capture a relation between iterations of two
loops, and thus would be naturally formalized as a relation between natural
numbers. For the clarity of the technical development, it is however preferable
to view eventual independence as a relation between natural numbers and events,
and assume given a function λ : N→ S that assigns to each natural number m
of loop2 the event λ(m) that will release the m-th iteration of loop2.

Definition 3 (Eventual Independence Relation). Statements c1, c2 ∈ Stmt
are eventually independent w.r.t. a relation Ω ⊆ N×S iff for all m,n, k ∈ N, ε ⊆
S s.t. (n, λ(m)) ∈ Ω, σ ∈ Σ and no synchronization variables in ε appear in
c1 or c2: Jcn1 ; cm−1

2 ; ck1 ; c2K ≡(σ,ε) Jcn1 ; cm−1
2 ; (ck1 ‖ c2)K where ci stands for the

sequential composition of i instances of the statement c. Given Ω and n ∈ N, we
let ω(n) = {s | (n, s) ∈ Ω}.

Notice that when considering sequential code, it is sufficient to state the seman-
tics equivalence in terms of the empty event set. If λ(m) = s, then the mth

iteration of c2 shall wait for the event s to execute. Assuming (n, s) ∈ Ω then it



is safe to signal the event s after executing n times the statement c1, allowing
c2 to proceed. Indeed, by definition of Ω, it follows from (n, s) ∈ Ω that after
n iterations of c1, all subsequent iterations of c1 never write again on a piece of
memory on which the mth iteration of c2 depends.

Perhaps surprisingly, independent loops need not be eventually independent.
Consider the following program

(i :=0; while i < 5 do a[i] :=a[i] +1); (j :=5; while j<10 do a[j] :=a[j] +1)

The two statements are independent, but the bodies of the two loops are not
eventually independent.

It is possible to resolve the discrepancy by refining eventual independence so
that it considers a set of initial states (restricting the scope of σ in Definition 3)
and, when they exist, bounds on the number of iterations performed by the
loops (restricting the scope of m,n, k in Definition 3). To avoid cluttering the
exposition, we stick to our simpler notion of eventual independence; however, the
definitions and correctness proof extend readily to these more refined notions.

4.1 Inferring Eventual Independence

The eventual independence relation Ω and the function λ are essential ingredi-
ents of synchronized pipelining, as they will be used to guide the insertion of
synchronization statements in the original program. Therefore, it is important
to be able to infer Ω and λ for a large class of code fragments. We have been
able to infer this data efficiently for the algorithms under consideration, that
manipulate array structures of significant size. Consider the case in which both
c1 and c2 read and modify data from a single array a, iterating over the induc-
tion variables h1 and h2 respectively. By simple code inspection, one can easily
collect the sets of syntactic expressions ~e1 and ~e2 used to read or update the
array a inside the loop body. These array accesses are not always expressed in
terms of the induction variables h1 and h2. However, in general, we have found
that they are expressed in terms of induction variables h′1 and h′2 derived from
h1 and h2. In those cases, induction variable analysis [7] allows one to rewrite
the derived induction variables h′1 and h′2 in terms of the induction variables h1

and h2, i.e. h′1 = f1(h1) and h′2 = f2(h2) for some function expressions f1 and
f2. Most frequently, when h′i is an induction variable derived from hi, then fi is
a linear function on hi. If h′i is derived from h′′i , which is an induction variable
derived from hi, then fi is a polynomial function. More complex cases may arise,
for instance when fi is defined as a geometric function on hi.

In most of the algorithms that we have considered as the target of the trans-
formation, f1 and f2 are defined as linear functions. One can find, although less
frequently, cases in which f1 and f2 are polynomial functions. In those cases,
the expressions ~e1(h′1) and ~e2(h′1) are easily rewritten in terms of the induc-
tive variables, i.e., as ~e1(f1(h1)) and ~e2(f2(h2)). By static interval analysis, we
can approximate the regions of data that is read and modified by c1 and c2,
in terms of the induction variables h1 and h2, and the expressions ~e1(f1(h1))



and ~e2(f2(h2)). Assume [drw1 , erw1 ] represents the interval of the array a that is
written or read by c1, where drw1 , erw1 are integer expressions that depend on h1

(and similarly with c2). Since ~e(f1(h1)) and ~e(f2(h2)) are linear (or polynomial)
functions on h1 and h2, one can determine whether they are monotonic (or de-
termine the points from which they are monotonic). If the d and e expressions
are increasing as the h variables grow (the decreasing case is symmetrical) one
can propose an eventual independence relation Ω. For instance when drw1 and
erw2 are increasing functions, we determine the values for h1 and h2 such that
erw2 < drw1 , and then, since the h2-th iteration of c2 is independent of the h1-th
iteration of c1, we can have (h1, λ(h2)) ∈ Ω.

Example 2. We show in this paragraph how to determine an eventual indepen-
dence relation for two particular loops statements. Suppose the loop statements
are defined, respectively, by the loop bodies c1 and c2, defined as

c1
.= a[x] := 1; x := x + 1

c2
.= y := y + a[z]; z := z + 1

First of all, notice that statements c1 and c2 access the array a, so they are not
independent. By examining the c1 and c2, it is immediate that the indexes of the
array accesses are monotonically increasing and the relation between the initial
values of program variables (denoted x? for a variable x) define the eventual
independence relation. In this case we have drw1 (h1) = erw1 (h1) = h1 + x? and
drw2 (h2) = erw2 (h2) = h2 + z? so the procedure’s requirements translate into
: h2 + z? < h1 + x?. The argument above allows us to propose an eventual
independence relation Ω.

(z? − x? + 1, λ(1)) ∈ Ωc1,c2
∀x. x ≤ z? − x? + 1⇒ (x, λ(1)) 6∈ Ωc1,c2

This Ω relation formalizes the intuition that as long as the statement c1 has
been executed x?− y? + 1 more times than the statement c2, the next execution
of c2 is independent of any further execution of c1. Furthermore, since the size of
the array a (|a|) is bounded, if c1 is executed more than |a|−x? times, we end up
at an exceptional state abort, in which case any execution of c2 is independent.
In conclusion, the following relation Ω determines the eventual independence
between c1 and c2:

x+ x? ≤ |a| ∧ y < x− (z? − x? + 1)⇒ (x, λ(y)) ∈ Ωc1,c2
x+ x? > |a| ⇒ (x, λ(y)) ∈ Ωc1,c2

5 Synchronized Pipelining

We now define synchronized pipelining, starting from two consecutive loops, and
then extending the transformation to sequences of loops and nested loops. We
then briefly discuss how the method applies to recursive procedures.

Consider a program c of the form while b1 do c1; while b2 do c2, where c1 and
c2 are compound statements that access an array. We assume that the boolean



conditions b1 and b2 are not affected by the execution of c2 and c1, respectively.
Further, we let h1 and h2 be program counters that determine the number of
iterations already performed for the first and second loop respectively. Our aim
is to transform the program so that it executes both loops in parallel. To pre-
serve the program semantics, the transformation must insert code that ensures
a correct synchronization between the two loops, so the resulting program will
be of the form while b1 do c′1 ‖ while b2 do c′2, where c′1 is derived from c1
by adding event announcements and c′2 is derived from c2 by adding synchro-
nization guards. Both transformations are guided by a relation Ω of eventual
independence and by a function λ that are given as input to the transformation.

Definition 4. The synchronized pipelining of c is statement ¯̄c defined as:

¯̄c = (while b1 do c′1);S! ‖ while b2 do c′2

where c′1 = c1;ω(h1)!, c′2 = λ(h2) → c2, and S is the set of all events on which
statement c′2 can wait.

Statement S! is introduced after the execution of c′1 to ensure that all events
are indeed announced, and then the progress of the original program is preserved.
In order to accomplish that, statement S simply announces all events, in any
order. Since all events in which statement c′2 is waiting are eventually announced
by S!, statement c′2 cannot block indefinitely. For the same reason, c ≤ ¯̄c. Notice
that the set of events announced by c′1 and S! may be redundant. In practice,
one can reduce program size and synchronization overhead by statically removing
duplicated events. Similarly, c2 may be simplified by removing synchronization
primitives that wait on the same event. We assume, however, the definition given
above for notational simplicity.

The eventual independence condition determined by Ω is enough to show
that the semantics preservation. That is, every execution state reached by the
final program is also reachable by the original one.

Proposition 1 (Semantics Preservation). For every initial state σ ∈ Σ and
every event set ε disjoint from the fresh synchronization variables introduced by
the transformation, we have that JcK ≡(σ,ε) J¯̄cK.

5.1 Extensions

We first analyze the case of a sequence of loops. Then, we explain how we proceed
in the presence of nested loops. Finally, we consider recursive procedures.

Loop Sequences. Now suppose the original program is of the form:

while b1 do c1; . . . ; while bn do cn

The idea is to parallelize the whole program by progressively applying the basic
transformation to each pair of interfering loops. Therefore, we must provide for



all i, j such that i < j an eventual independence relation Ωi,j and a function
λi,j : N → S. By definition of eventual independence, we must have for every
(n, λi,j(m)) ∈ Ωi,j and for all state σ and event set ε:

Jcni ; cm−1
j ; cki ; cjK ≡(σ,ε) Jcni ; cm−1

j ; (cki ‖ cj)K

Since the parallel execution of the ith loop may interfere not only with its
immediately preceding loop, but with every preceding one, we synchronize each
pair of non-independent loops. Thus, the ith loop of the final program becomes:

while bi do
⋃

1≤j<i

λi,j(h)→

ci; ⋃
i<j≤n

ωi,j(h)!

 ;∀i<j≤nSi,j !

where Si,j stands for all the synchronization events used to synchronize execu-
tion between while bi do ci and while bj do cj , for every i < j . From the
expression above, it may seem that excessive synchronization overhead is intro-
duced. However, the actual number of synchronization primitives depends on the
definition of λ and ω, and on the removal of duplicated synchronization events.

Nested Loops. We now turn our attention to a different but more common
program structure: nested loops. Consider the following program as the target
of the parallelization: while a do (c1; while b do c; c2). In order to be able to
apply our transformation we take the following assumptions:

1. We assume that the number of iterations of the outer loop (or an overap-
proximation) can be computed at runtime. In the rest of this section we let
β stand for the number of iterations that may be computed at runtime and,
for simplicity, we assume that the boolean condition a is of the form l ≤ β,
where l is the induction variable of the outer loop, incremented with step
1 from the initial value 1. In practice, the exact form of a may differ from
this assumption, but we assume that it is possible to evaluate the number of
iterations at runtime based on the current memory state. Intuitively, if we
can determine the exact number of iterations of the outer loop, we can un-
roll it and parallelize the resulting program by applying the transformation
on sequences of loops as explained above. However, assuming that we can
statically determine the exact number of iterations is an unnecessary and
too strong assumption.

2. We assume also that there is no interference between the scalar variables
read and modified in c1 and c. We can reduce the interference between loop
iterations by vectorizing each scalar variable v into an array v̂, with the
cost of extra memory usage. For every statement c and boolean condition
b, we denote ĉ[l] and b̂[l] the result of vectorizing scalar variables in c and
b, respectively. The value of the variable l determines which position of the
vectorized variables is in use. At the end of the transformed program, a
sync operation takes each vectorized variable v̂, and transforms it back into
the original scalar variable v, i.e., executes v = v̂[β]. The reason for this



vectorization is to avoid clashes between the values that are accessed by the
fragments while b̂[i] do ĉ[i], for different values of i.

3. The last hypothesis we make is that the scalar variables initialized by the
statement c1 are not modified by c or c2 after vectorization. This is a rea-
sonable assumption to make, since data structure accesses are in most cases
confined to the inner loop. This allows us to ignore dependencies on these
instructions to the rest of the loop.

As before, for every i, j ∈ N s.t. i < j ≤ β we need a function λi,j : N →
S mapping iterations to synchronization events. In this case, the parametric
relationΩi,j takes into account the last instructions of the outer loop. We require,
if (n, λi,j(m)) ∈ Ωi,j and for every ε ⊆ S and σ ∈ Σ, that:

Jĉ[i]n; ĉ[j]m−1; ĉ[i]k; ĉ2[i]; ĉ[j]K ≡(σ,ε) Jĉ[i]n; ĉ[j]m−1; (ĉ[i]k; ĉ2[i] ‖ ĉ[j])K

The transformation is similar to the one performed for sequences of loops.
Since inner loops are syntactically equal, the value of induction variable l cor-
responding to the outer loop is used to distinguish between different iterations.
The transformation follows, thus, the scheme:

while a do τc,l−1 → (ĉ1[l]; τc1,l!) ;
while b̂[l] do

(⋃
1≤j<l λl,j(h)→

(
ĉ[l];

⋃
l<j≤β ωl,j(h)!; ĉ2[h′]

))
;

sync

Notice that the order in which the instances of ĉ[l] are executed is preserved.

Recursive Procedures. We can extend the parallelization transformation ap-
plied to nested loops to recursively defined functions containing loop statements.

Automatic transformation of recursive functions into iterative loops, i.e., re-
cursion removal, is straightforward if functions are tail recursive. In our program-
ming language, a function is tail recursive if no extra computation is performed
after a recursive function call returns. For instance, the mergesort algorithm
shown in Section 2, is an iterative variant of the more typical mergesort algo-
rithm defined in terms of mutually recursive procedures.

Extending this automatic transformation to general recursive procedures is
challenging, and has been widely studied [16] as a program optimization since it
enables to reduce the overhead of call stack manipulation.

5.2 Motivating Example Revisited

Our motivating example, mergesort, was annotated with synchronization state-
ments that follow the guidelines described in our transformation. If we take two
consecutive iterations of the main loop of the program, we can sketch the con-
structs we have presented in our theoretical model.

Starting from the original code, we need first to vectorize the variables that
parametrize our inner loop. In our example this is variable i. Since we need to



spawn a new procedure in order to launch (possibly) a new thread, we encapsu-
late the inner loop in a Cilk procedure, which receives i as a parameter. Then,
the stack allocation scheme automatically vectorizes variable i for us, since now
each iteration will possess its own copy of i, independent from the others, and
initialized to the value which each iteration would see in a sequential execution.

In the original program, the variable c is the expression used for writing in
the array, and furthermore it is the lowest variable which is read or written in
the array. On the other side, the variable r is the highest variable which is read,
this is a consequence of the initial state of the inner loop and is preserved in
the loop body. We can analyze the loop and determine that c is monotonically
increasing. It follows that if we have two consecutive iterations,i and i + 1, of
the loop, the latter cannot proceed unless it can assure that the value of3 ci is
bigger than that of ri+1.

Thus, the following piece of code is added to the original code:

...
while (j < length){

while (c-j<2*i){
event_wait(r);
fromQueue = last(Q);
if (l-j > i){

...
A[c] = dequeue(Q);

}
event_announce(c);
c++;
}

...

Our function λ essentially maps m → rm. It becomes apparent now that our Ω
relation must relate every tuple (n,λ(m)) where ci+1

n is larger than rightim.
We now need to determine λ and Ω for every other possible combination of

iterations. But since the same loop is repeated, with the same properties, we
require the same condition to advance, namely rim < cjn, and thus Ωi,j again
contain pairs (n,λi,j(m)) which meet that condition.

6 Experimental Results

We have experimented with the parallelizing transformation taking as input a
program written in a subset of C and returning a Cilk [8] program. Cilk is an
extension of C for multithreaded parallel programming, that provides a light-
weight thread model based on job stealing.

We proceed by annotating the source program with Cilk statements for
thread creation and synchronization, using Cilk locks and spawn procedures
to implement event signaling and efficient variable synchronization. We encap-
sulate inner loops in spawned procedures, and use the C stack allocation scheme
to efficiently allocate memory for vectorization.

3 We use superscripts to denote which loop variables belong to and subscripts to refer
to the value of the variable at a given iteration of its loop.
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Fig. 3: Experimental Results

The proposed transformation has been applied to well-known algorithms that
traverse arrays to obtain information as to the applicability and the efficiency of
our approach. In all cases, the transformation yields good results unless the input
size is tiny enough to make the synchronization overhead relatively significant.

For our tests we have used a 64bit Intel(R) Core(TM)2 Quad CPU at 2.4
GHz clock speed, 1GB of DIMM 800 MHz memory, running GNU/Linux.

In all cases we have labeled the graphics with S for the sequential (unmod-
ified) algorithm, running on a single processor, and we have labeled Pn for our
modified, pipelined algorithm with n processors.

Figure 3 shows the computing time and the relative performance gain of
the DFT, FFT, and MergeSort algorithms run under the different conditions we
have explained. The pipelined version of our DFT program is slightly slower while
running with only one processor, due to the overhead of synchronization variable
allocation and signaling. Once we augment the number of available processors
the amount of time spent computing starts to decrease as the several runs on
the array on which we are working start to (safely) overlap. The efficiency gain
is almost linear, but of course the overhead of signaling and also the thread
creation and manipulation overhead add some extra work to the computation.
The algorithm used is well suited for our transformation since it copies the input
array and then modifies one element at a time incrementally, allowing several
elements to be modified at the same time without interference.

Our experiments with an FFT algorithm also yield good results, though not
as good as with the DFT algorithms. The reason for this is that unlike DFT,
FFT traverses the input array heavily and performs the computation in-place,
so it slowly gives up resources and thus the overlapping of different traversals is
smaller. Nevertheless, some performance gain is indeed achieved in our pipelined
version of the algorithm, roughly a 50% gain with 4 processors. The pipelined
version is still outperformed by the sequential one in the case we have a single
processor available, again due to synchronization overheads.

The last benchmark we present is that of our motivating example, namely
mergesort. This algorithm also traverses an array several times incrementally,
which allows us to obtain greater benefits from our transformation. The bench-



marks were made sorting an array of one million elements. The results show that
our transformation yields a 240% efficiency increase by overlapping the merging
steps that are otherwise run sequentially, for a 4 processor machine.

7 Related Work

Ottoni et al. [19] proposed a technique called Decoupled Software Pipelining
(DSWP) to extract the fine-grained parallelism hidden in most applications.
The process is automatic, and general, since it considers non-scientific applica-
tions in which the loop iterations have heavy data dependencies. It provides a
transformation that is slightly different to typical loop parallelization, in which
each iteration is assigned alternately to each core, with an appropriate synchro-
nization to prevent data races. As a result, no complete iteration is executed
simultaneously with another one, since every iteration has a data dependence
with every other one. Instead of alternating each complete loop iteration on each
core, DSWP splits each loop body before distributing them among the available
cores. This technique improves the locality of reference of standard paralleliza-
tion techniques, and thus reduces the communication latency. It is effective in a
more general set of loop bodies, but it does not take advantage of the eventual
data independence hidden in scientific algorithms.

A recent experimental study [15] analyzes particular cases in which standard
automatic parallelization fails to introduce significant improvements. This is the
case of applications that manipulate complex and mutable data structures, such
as Delauney mesh refinement and agglomerative clustering. The authors propose
a practical framework, the Galois system, that relies on syntactic constructs to
enable programmers to hint to the compiler on parallelization opportunities and
an optimistic parallelization run-time to exploit them. Due to the unpredictabil-
ity of irregular operations on mutable and complex data structures, the Galois
framework is mostly based on runtime decisions and backtracking, and does not
exploit statically inferred data dependence.

Data Parallel Haskell [21] (DPH) provides nested data parallelism to the
existing functional language compiler GHC. Flat parallelism is restricted to the
concurrent execution of sequential operations. Nested parallelism generalizes flat
parallelism by considering the concurrent execution of functions that may be
executed in parallel, and thus provides a more general and flexible approach,
suitable for irregular problems. DPH extends Haskell with parallel primitives,
such as parallel arrays and a set of parallel operations on arrays. The compiler
compiles these parallel constructions by desugaring them into the GHC Core
language, followed by a sequence of Core-to-Core transformations. DPH is a
notable framework for the specification of concurrent programs, but the compiler
is not intended to automatically discover parallel evaluations.

In a different line of work, the Manticore project is developing a parallel pro-
gramming language for heterogeneous multi-core processor systems [6]. A main
feature of the language is the support for both implicit and explicit threading.
Nevertheless, as a design choice, it avoids implicit parallelism (i.e., it requires



the programmer to hint parallelism by providing annotations) since they claim
implicit parallelism to be only effective for dense regular parallel computations.

The goal of the Paraglide project at IBM is to assist the construction of
highly-concurrent algorithms. The Paraglider tool [25] is a linearization-based
framework to systematically construct complex algorithms manipulating concur-
rent data structures, from a sequential implementation. This approach combines
manual guidance with automatic assistance, focusing mainly on fine-grained syn-
chronization.

8 Conclusion

Synchronized pipelining is a parallelization technique that relies on eventual
independence, a new refinement of the established notion of independence, to
successfully transform programs with nested loops. This paper has set the the-
oretical foundations of the transformation, and showed its practical benefits on
representative examples. Future work includes extending the transformation to
languages that manipulate the heap. Many concepts developed in this paper
are largely independent of the underlying programming language, and the main
issue is rather to find an analysis to detect independence. Recent work on the
use of shape analysis and separation logic for detecting data dependence and for
parallelization provide a good starting point (e.g., [22, 23, 12, 9, 18]).
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Abstract. Many answer set solvers deal with programs with variables by requir-
ing a safety condition on rules: any variable in a rule must appear in its positive
body. This idea of safety has recently been extended to cover more general kinds
of rules or first-order formulas that might be accepted by existing or future gen-
eration ASP systems [4, 15, 7]. In this paper we continue the study of the gener-
alised safety concept recently proposed in [7]. In particular, we show that safety
is preserved under a major subset of the transformations that reduce universal
theories to disjunctive rules in ASP.

1 Introduction

This paper is concerned with some program transformations in the declarative program-
ming framework known as answer set programming (ASP). Specifically, we examine
the extent to which general first order formulas that are safe in ASP remain safe when
transformed into sets of disjunctive program rules. Our concept of safety is the one
recently defined in [7, 8], while program transformations are taken from [5] where it
is shown how in ASP any first order formula can be reduced to a strongly equivalent
logic program of a general form.4 Our main result is that for universal formulas safety
is preserved under all but one of the program transformations.

1.1 Extensions of answer set semantics

Answer set programming has become established as a vibrant new sub-field of logic
programming and knowledge representation. There are now several rival implementa-
tions of ASP, many different kinds of language extensions, and a growing catalogue of

? Partially supported by the MEC (now MICINN) projects TIN2006-15455-(C01,C02,C03) and
CSD2007-00022, Junta de Andalucia project P6-FQM-02049 and Xunta de Galicia project
INCITE08-PXIB105159PR.

4 Here we use a slight generalisation and improvement of the safety concept that was defined in
[7] and in the first version of [8]. This improvement was subsequently incorporated into the
final version of [8].



practical applications.5 While ASP systems continue to eliminate variables from pro-
grams by means of a grounding process, there is currently much interest in issues in-
volving first order languages and programs. One important line of work in this direction
concerns extending the basic language of disjunctive programs to embrace more general
kinds of first order formulas.

Answer set semantics can be defined for general logical formulas by regarding an-
swer sets or stable models as minimal models in a non-classical logic called here-and-
there. This was shown for propositional theories in [19] and for first order theories
in [23–25]. Subsequently, equivalent characterisations of answer sets using alternative
logical frameworks were provided by [18, 11] in the propositional case and in [12] for
first order logic. However the here-and-there approach to answer set semantics remains
in our view the most natural and intuitive one. A key point in its favour is that here-
and-there logic precisely captures the robust notion of strong equivalence for theories
or programs under answer set semantics [16, 17]. That is to say, under answer set se-
mantics one theory can be replaced by another in any context without loss if and only if
the theories are equivalent in the logic of here-and-there. We denote this logic by HT
in the propositional and by QHT in the quantified, first order case.

Besides ordinary disjunctive rules and general first order formulas, certain interme-
diate classes of formulas are also of special interest in ASP. Examples are general dis-
junctive rules where negation ‘¬’ is allowed in the heads as well as the bodies of rules,
and rules with nested expressions where the rule body and head can be any compound
expression involving ∧,∨,¬ [18]. Recently [4] has studied a syntactically restricted
subclass of the latter programs, called normal form nested or NFN programs.

Following these extensions of answer set semantics to more general syntactic classes
of formulas, one further line of research in ASP has been to study program transforma-
tions that reduce a program from a more expressive syntactic class to one belonging to
a simpler class. [18] already showed how nested programs could be transformed into
equivalent general disjunctive programs. [6] later showed that any propositional theory
is strongly equivalent to a general disjunctive program in the same vocabulary, while
[5] provided a complete set of transformations that effectively carries out this reduction.

In the first order case, the situation is briefly described as follows. As usual a first
order sentence is said to be in prenex form if it has the following shape, for some n ≥ 0:

Q1x1 . . . Qnxnψ (1)

where Qi is ∀ or ∃ and ψ is quantifier-free. A sentence is said to be universal if it is
in prenex form and all quantifiers are universal. A universal theory is a set of universal
sentences. In [24] it is shown that in the logic QHT every sentence is logically equiva-
lent to a sentence in prenex form. Without loss of generality we can therefore focus on
sentences in prenex form. Since the matrix ψ in a prenex form is quantifier-free, we can
apply equivalences from propositional logic to convert ψ into a special reduced form
using the transformations described in [5]. They allow us to convert ψ into a logically
equivalent general disjunctive rule. In this paper we shall focus on universal theories

5 The recent LPNMR conferences provide a good source of references, eg [3, 2].
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so that the transformations are all of a type that reduce (1) to a logic program of this
general type.6

1.2 Safe formulas

The aim of this paper is to re-examine the transformations described in [5] from the
point of view of safety. This fundamental concept in ASP is applied to rules of ordi-
nary logic programs in the following way. A rule is said to be safe if each variable
in it appears in the positive body of the rule. Many ASP implementations impose this
condition by accepting only safe rules. There are three main properties of safe rules
that we should distinguish. The first is that the answer sets of safe rules do not contain
unnamed individuals. This condition is already fulfilled by formulas that we call semi-
safe. Secondly there is the property usually called domain independence which says
that grounding a program with respect to any superset of the program’s constants will
not change the class of answer sets. The third property satisfied by safe formulas is that
the collection of their answer sets is first order definable. Like the other properties, this
one is relevant for computational purposes, being exploited for instance by the method
of loop formulas.

Recently, the concept of safety has been extended to more general formulas, for
example to NFN programs in [4] and to arbitrary first-order formulas in [15]. Our own
approach also covers arbitrary formulas and is described in [7, 8]. It generalises the
safety concept from [15] by re-classifying some kinds of formulas as safe that are un-
safe according to [15]. At the same time, our concept still satisfies the three mentioned
desiderata for safe formulas.

It is important to notice that safety is defined at the level of single formulas and is an
inherently syntactical condition. It is therefore unreasonable to expect that the safety of
a formula will be transferred to arbitrary equivalent formulas. In particular safety may
be gained or lost by removing or adding some redundant subformulas. For instance, a
rule like p → q(x) is unsafe and, in principle, may easily have different stable models
depending on the domain we use for grounding (just add a fact p). However, if it is
included in any program containing a constraint like p → ⊥, the unsafe rule becomes
irrelevant. Similarly, with nested expressions, any safe rule F → Gmay become unsafe
by a simple addition of a QHT tautology or inconsistency, as in F → G ∨ (p(x) ∧
¬p(x)).

On the other hand, if we start with a general expression that is safe and apply cer-
tain kinds of logical re-writing steps such as those used in [5] to simplify formulas and
reduce them to sets of general disjunctive rules, it might be reasonable to expect that
an adequate concept of safety should be preserved under the transformations. In other
words, while we cannot replace a safe formula by any arbitrary formula logically equiv-
alent to it without losing safety, we can transform it into a possibly simpler expression
while still maintaining safety. This is the problem that we shall study in the remainder
of the paper.

6 We postpone to future work the study of transformations that apply to an arbitrary prenex
sentence or other kind of sentences involving existential quantifiers.
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The main result we establish is that when applied to universal sentences all but one
of the transformation rules from [5] preserves safety. This means that a large class of
safe first order formulas can be converted into strongly equivalent general disjunctive
programs each of whose rules is safe. This collection includes the important class of all
programs with nested expressions. While studying this problem we also found a slight
generalisation of the safety concept from [7] which we have applied here and in [8].
The usual properties of safe formulas remain true for this revised concept.

2 Logical Background

Usually in quantified equilibrium logic we consider a full first-order language allow-
ing function symbols and we include a second, strong negation operator as occurs in
several ASP dialects. However, in this paper we restrict attention to function-free first
order languages L = 〈C,P 〉 built over a set of constant symbols, C, and a set of pred-
icate symbols, P .7 We assume a single negation symbol, ‘¬’, together with the usual
connectives and quantifiers, ∧,∨,→,∃,∀. We shall also assume that L contains the
constants> and⊥ and, where convenient, we regard ¬ϕ as an abbreviation for ϕ→ ⊥.
In other respects we follow the treatment of [25]. The sets of L-formulas, L-sentences
and atomic L-sentences are defined in the usual way. The set of (free) variables of a
formula ϕ will be denoted as VARS(ϕ).

We work in a non-classical logic called Quantified Here-and-There Logic with static
domains and decidable equality. For reasons of space we give here just a short summary.
A complete axiomatisation and more detailed description of this logic can be found
in [17] where the logic is denoted by SQHT=. In terms of satisfiability and validity
this logic is equivalent to the logic previously introduced in [24]. To simplify notation
we drop the labels for static domains and equality and refer to this logic simply as
quantified here-and-there, QHT.

The semantics of QHT is given in terms of intuitionistic Kripke models, see [10],
with two notable exceptions. One concerns equality: we regard equality as decidable
and as satisfying the axiom ∀x∀y((x = y) ∨ ¬(x = y)). Furthermore, we suppose a
logic with constant or static domains; in other words, within a given Kripke model the
same set of individuals populates each world. In addition, QHT is complete for very
simple Kripke models, those possessing just two worlds, sometimes labelled h (“here”)
and t (“there”), ordered by h ≤ t.

We use the following notation. If D is a non-empty set, we denote by At(D,P ) the
set of ground atomic sentences in the language 〈D,P 〉. By an L-interpretation I over a
set D we mean a subset of At(D,P ). A QHT(L)-structure can therefore be regarded
as a tupleM = 〈(D,σ), Ih, It〉 . where Ih, It are L-interpretations over D such that
Ih ⊆ It and σ : C ∪D → D is a mapping, called the assignment, such that σ(d) = d
for all d ∈ D. Evidently, 〈(D,σ), Ih〉 and 〈(D,σ), It〉 are classical L-structures. Given
an interpretation we let σ|C denote the restriction of the assignment σ to constants in
C.

7 Not that in ASP the restriction to function-free languages is standard. The study of functions
in the framework of ASP is recent and still largely theoretical.
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Truth of a sentence in a model is defined as follows:M |= ϕ iffM, w |= ϕ for each
w ∈ {h, t}. In a modelM we also use the symbols H and T , possibly with subscripts,
to denote the interpretations Ih and It, respectively; so, anL-structure may be written in
the form 〈U,H, T 〉, where U = (D,σ). A structure 〈U,H, T 〉 is called total if H = T ,
hence it is equivalent to a classical structure.

An answer set semantics for arbitrary first-order formulas can be defined using the
quantified variant of equilibrium logic [19, 20] that we denote by QEL. As in the propo-
sitional case, this is based on a suitable notion of minimal model as follows.

Definition 1 ([23, 24]). Let Γ be a set of L-sentences. An equilibrium model or answer
set of Γ is a total modelM = 〈(D,σ), T, T 〉 of Γ such that there is no model of Γ of
the form 〈(D,σ), H, T 〉 where H is a proper subset of T .

An equivalent characterisation of stable model or answer set for a finite set of first-order
formulas is given in [12].

The study of strong equivalence for logic programs and nonmonotonic theories was
initiated in [16]. It has since become an important tool in ASP as a basis for program
transformation and optimisation. In equilibrium logic we say that two (first-order) the-
ories Π1 and Π2 are strongly equivalent if and only if for any theory Π , Π1 ∪ Π and
Π2 ∪Π have the same equilibrium models [17, 25]. Under this definition we have:

Theorem 1 ([17, 25]). Two (first-order) theories Π1 and Π2 are strongly equivalent if
and only if they are equivalent in QHT.

Below we shall treat reductions that transform a formula into a logically equivalent set
of formulas. These transformations therefore preserve strong equivalence.

3 Review of the Safety Concept

We use the same concept of restricted variable as in [14, 15]. To every quantifier-free
formula ϕ the set RV(ϕ) of its restricted variables is defined as follows:

– If ϕ is a non-equality atom: RV(ϕ) = VARS(ϕ);
– RV(ϕ1 ∧ ϕ2) = RV(ϕ1) ∪ RV(ϕ2);
– RV(ϕ1 ∨ ϕ2) = RV(ϕ1) ∩ RV(ϕ2);
– For the rest of cases: RV(⊥) = RV(ϕ1 → ϕ2) = RV(t1 = t2) = ∅.

As the following Definition 2 indicates, the set RV(ϕ) comes into play when ϕ is an
antecedent of an implication (i.e., a rule body); it collects each variable x whose extent
can be directly obtained by examining positive occurrences of predicates containing x.

As in [15], we define a concept of semi-safety of a prenex form sentence ϕ in terms
of the semi-safety of all its variable occurrences.8 Formally, this is done by defining
an operator NSS that collects the variables that have non-semi-safe occurrences in a
formula ϕ.

8 Notice that while we study the effect of program transformations on universal sentences, safety
and semi-safety are actually defined for arbitrary prenex sentences, so we give the general
definition here.
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Definition 2 (NSS and semi-safety).

1. If ϕ is an atom, NSS(ϕ) = VARS(ϕ).
2. NSS(⊥) = ∅.
3. NSS(ϕ1 ∧ ϕ2) = NSS(ϕ1 ∨ ϕ2) = NSS(ϕ2) ∪NSS(ϕ1).
4. NSS(ϕ1 → ϕ2) = NSS(ϕ2) r RV(ϕ1).

A sentence ϕ is said to be semi-safe if NSS(ϕ) = ∅.

In other words, a variable x is semi-safe in ϕ if every occurrence is inside some
subformula α→ β such that, either x is restricted in α or x is semi-safe in β. Note that
any negated formula is semi-safe, because NSS(¬ϕ) = NSS(ϕ→ ⊥) = ∅.

Example 1. Suppose that a process y will ignore any request of an item z from another
process x, unless x is a subprocess of y that does not have item z. When the request
is ignored, we further want to assert that x becomes unattended. We can represent this
behaviour by the following rule with nested expressions:

request(x, y, z) ∧ ¬(subproc(x, y) ∧ ¬has(y, z))→ ignore(y, x) ∧ unatt(x) (2)

The formula (2) is semi-safe: all variables x, y and z occur in an implication (the
main one) whose variables are restricted in the antecedent, RV(request(x, y, z) ∧
¬(subproc(x, y) ∧ ¬has(y, z))) = RV(request(x, y, z)) = {x, y, z}.

The following results establish the main property of semi-safe formulas: their equi-
librium models only refer to constants in the original language.

Proposition 1 ([7, 8]). Ifϕ is semi-safe, and 〈(D,σ), T, T 〉 |= ϕ, then 〈(D,σ), T |C , T 〉 |=
ϕ.

Theorem 2 ([7, 8]). If ϕ is semi-safe, and 〈(D,σ), T, T 〉 is an equilibrium model of ϕ,
then T |C = T .

The concept of safety relies on semi-safety plus an additional condition on variable
occurrences. As a technical device we can define this condition using Kleene’s three-
valued logic [13]. Given a three-valued interpretation ν : Atoms → {0, 1/2, 1}, we
extend it to evaluate arbitrary formulas ν(ϕ) as follows:

ν(ϕ ∧ ψ) = min(ν(ϕ), ν(ψ)) ν(⊥) = 0
ν(ϕ ∨ ψ) = max(ν(ϕ), ν(ψ)) ν(ϕ→ ψ) = max(1− ν(ϕ), ν(ψ))

from which we can derive ν(¬ϕ) = ν(ϕ→ ⊥) = 1− ν(ϕ) and ν(>) = ν(¬⊥) = 1.

Definition 3 (νx operator). Given any quantifier-free formula ϕ and any variable x,
we define the three-valued interpretation so that for any atom α, νx(α) = 0 if x occurs
in α and νx(α) = 1/2 otherwise.

Intuitively, νx(ϕ) fixes all atoms containing the variable x to 0 (falsity) leaving
all the rest undefined and then evaluates ϕ using Kleene’s three-valued operators, that
is nothing else but exploiting the defined values 1 (true) and 0 (false) as much as
possible. For instance, νx(p(x) → q(x)) would informally correspond to νx(0 →
0) = max(1 − 0, 0) = 1 whereas νx(p(x) ∨ r(y) → q(x)) = νx(0 ∨ 1/2 → 0) =
max(1−max(0, 1/2), 0) = 1/2.
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Definition 4 (Weakly-restricted variable). An occurrence of a variable x in Qx ϕ is
weakly-restricted if it occurs in a subformula ψ of ϕ such that:

– Q = ∀, ψ is positive and νx(ψ) = 1
– Q = ∀, ψ is negative and νx(ψ) = 0
– Q = ∃, ψ is positive and νx(ψ) = 0
– Q = ∃, ψ is negative and νx(ψ) = 1

In all cases, we say additionally that ψ makes the ocurrence weakly restricted in ϕ.

Definition 5 (safety). A semi-safe sentence is said to be safe if all its positive occur-
rences of universally quantified variables, and all its negative occurrences of existen-
tially quantified variables are weakly restricted.

For instance, notice that (2) introduced in Example 1 is safe. All variables are uni-
versally quantified and all (positive) occurrences of x, y and z occur in a positive sub-
formula, (2) itself, for which νx((2)) = νy((2)) = νz((2)) = 1.

Theorem 3 establishes the main property of safe formulas. The grounding over C of
a sentence ϕ, denoted by GrC(ϕ), is defined recursively: the operator does not modify
ground formulas, commutes with propositional connectives and

GrC(∀xϕ(x)) =
∧

c∈C

GrCϕ(c) GrC(∃xϕ(x)) =
∨

c∈C

GrCϕ(c)

Theorem 3 ([7, 8]). Let ϕ be a safe prenex formula, then: 〈(D,σ), T, T 〉 is an equilib-
rium model of ϕ if and only if it is an equilibrium model of GrC(ϕ).

Notice that, although in [7] Theorems 2 and 3 were established under a slightly different
safety concept, it is easy to see that they continue to hold for the revised concept used
here.

4 Negation Normal Form

The transformations introduced in [5] are top-down processes that rely on the successive
application of several rewriting rules that operate on sets (conjunctions) of implications.
A rewriting takes place whenever one of those implications does not yet have the form
of a (non-nested) program rule.

Two sets of transformations are described next. A formula is said to be in negation
normal form (NNF) when negation is only applied to literals. As a first step, we describe
a set of rules that move negations inwards until a NNF is obtained:

¬> ⇐⇒ ⊥ (N1) ¬⊥ ⇐⇒ > (N2)
¬¬¬α⇐⇒ ¬α (N3) ¬(α ∧ β)⇐⇒ ¬α ∨ ¬β (N4)

¬(α ∨ β)⇐⇒ ¬α ∧ ¬β (N5) ¬(α→ β)⇐⇒ ¬¬α ∧ ¬β (N6)

Lemma 1. For any instance of γ and γ′ in any pair γ ⇐⇒ γ′ in transformations (N1)-
(N6) we have that NSS(γ) = NSS(γ′) and RV(γ) = RV(γ′).
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Proof. Both properties are trivial, because for every transformation the application of
the operators on both sides returns the empty set. ut

By an inductive application of this lemma, we immediatelly conclude that NNF
transformations preserve the semi-safe property, as stated below:

Proposition 2. For any sentence ϕ and for every pair γ ⇐⇒ γ′ in transformations
(N1)-(N6) we have that NSS(ϕ) = NSS(ϕ[γ/γ′]).

So, if ϕ′ is an NNF formula obtained from ϕ by the application of the rules (N1)-
(N6), then ϕ′ is semi-safe if and only if ϕ is semi-safe. We prove now that the NNF
conversion also preserves safety. To this aim, we first provide a pair of properties.

Observation 1 For any pair γ ⇐⇒ γ′ in transformations (N1)-(N6), if ψ is a subfor-
mula of α or β, then the sign of ψ in γ is equal to the sign in γ′. ut

Lemma 2. For any pair γ ⇐⇒ γ′ in transformations (N1)-(N6) we have νx(γ) =
νx(γ′) and thus, νx(ψ) = νx(ψ[γ/γ′]) for any formula ψ.

Proof. It can be easily checked that, for each pair, γ ⇐⇒ γ′, formulas γ and γ′ are
semantically equivalent in Kleene’s three-valued logic, that is ν(γ) = ν(γ′) for any
three-valued interpretation ν. ut

Theorem 4. Consider a semi-safe universal sentence ∀x1 . . . ∀xnϕ and any pair γ ⇐⇒
γ′ in transformations (N1)-(N6) such that γ is a subformula of ϕ. The following hold;
(i) if xi is safe in ϕ then it is also safe in ϕ[γ/γ′]; (ii) therefore, if ϕ is safe and ϕ′ is
an NNF formula obtained from ϕ by applying the transformations (N1)-(N6), then ϕ′ is
also safe.

Proof. To prove the result, we must analyse every occurrence of every variable in
ϕ[γ/γ′] to check if it is made weakly-restricted. It is important to note that each one
of these occurrences corresponds in a natural way to a specific occurrence of the same
variable in the formula ϕ, because the transformations do not modify either the number
or the relative situation of the variables. Note also that, by Observation 1, the trans-
formation does not modify the sign of the variable occurrences. We proceed with the
proof, distinguishing several cases.

Since the formula is universal, let us consider a positive occurrence of xi and ψ the
subformula of ϕ making the ocurrence weakly-restricted.

– If the occurrence is outside γ and γ is not a subformula of ψ, then ψ directly makes
the corresponding ocurrence weakly-restricted in ϕ[γ/γ′].

– If γ is a subformula of ψ, then ψ[γ/γ′] makes the ocurrence weakly-restricted in
ϕ[γ/γ′], because νx(ψ) = νx(ψ[γ/γ′]) (by Lemma 2) and the sign of ψ in ϕ is
equal to the sign of ψ[γ/γ′] in ϕ[γ/γ′].

– If ψ is a strict subformula of γ, then we need to analyse every rule. For (N1), (N2)
and (N3) the result is trivial. For rules (N4), (N5) and (N6), if ψ is subformula of
α or β, then ψ makes the ocurrence weakly restricted in ϕ[γ/γ′], because the rule
preserves the sign of subformulas of α and β.
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– If ψ = α ∧ β then ψ′ = ¬α ∨ ¬β makes the corresponding ocurrence weakly
restricted in ϕ[γ/γ′], because the sign of ψ′ is the opposite of the sign of ψ and
νx(¬α ∨ ¬β) = νx(¬(α ∧ β))

– If ψ = α ∨ β then ψ′ = ¬α ∧ ¬β makes the corresponding ocurrence weakly
restricted in ϕ[γ/γ′], because the sign of ψ′ is the opposite of the sign of ψ and
νx(¬α ∧ ¬β) = νx(¬(α ∨ β))

– If ψ = α → β then ψ′ = ¬¬α ∧ ¬β makes the corresponding ocurrence weakly
restricted in ϕ[γ/γ′], because the sign of ψ′ is the opposite of the sign of ψ and
νx(¬¬α ∧ ¬β) = νx(¬(α→ β)). ut

Continuing Example 1, after applying the NNF transformations, we obtain the safe rule:

request(x, y, z) ∧ (¬subproc(x, y) ∨ ¬¬has(y, z))→ ignore(y, x) ∧ unatt(x) (3)

5 Transformations with implications

In the second set of transformations, as in [5] we deal with sets (conjunctions) of im-
plications (the empty conjunction corresponds to >). Each step replaces one of the
implications by new implications to be included in the set. If ϕ is the (matrix of the)
original formula, the initial set of implications is the singleton {> → ϕ}. Without loss
of generality, we assume that any implication α→ β to be replaced has been previously
transformed into NNF. Furthermore, we always consider that α is a conjunction and β
a disjunction (if not, we just take α∧> or β∨⊥, respectively), and we implicitly apply
commutativity of conjunction and disjunction as needed.

Left side rules:

> ∧ α→ β ⇐⇒ { α→ β } (L1)
⊥ ∧ α→ β ⇐⇒ ∅ (L2)

¬¬ϕ ∧ α→ β ⇐⇒ { α→ ¬ϕ ∨ β } (L3)

(ϕ ∨ ψ) ∧ α→ β ⇐⇒
{
ϕ ∧ α→ β
ψ ∧ α→ β

}
(L4)

(ϕ→ ψ) ∧ α→ β ⇐⇒

¬ϕ ∧ α→ β
ψ ∧ α→ β

α→ ϕ ∨ ¬ψ ∨ β

 (L5)

Right side rules

α→ ⊥∨ β ⇐⇒ { α→ β } (R1)
α→ >∨ β ⇐⇒ ∅ (R2)

α→ ¬¬ϕ ∨ β ⇐⇒ { ¬ϕ ∧ α→ β } (R3)

α→ (ϕ ∧ ψ) ∨ β ⇐⇒
{
α→ ϕ ∨ β
α→ ψ ∨ β

}
(R4)

α→ (ϕ→ ψ) ∨ β ⇐⇒
{

ϕ ∧ α→ ψ ∨ β
¬ψ ∧ α→ ¬ϕ ∨ β

}
(R5)
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It is perhaps worth emphasising that all these transformations (L1)-(L4), (R1)-(R5)
together with those for NNF, (N1)-(N6), are not just the result of an arbitrary choice,
but they are justified9 by (non-redundant) equivalences in the logic HT.

Theorem 5. NSS(γ) = NSS(γ′) for any transformation of the form γ ⇐⇒ γ′ in (L1)-
(L4), (R1)-(R5), where γ′ is the conjunction of the resulting formulas. Therefore, if γ is
semi-safe, then γ′ is also semi-safe.

Proof. We prove case by case:

(L1) Trivially, RV(⊥ ∧ α) = RV(α) and thus,

NSS(>∧α→ β) = NSS(β) r RV(>∧α) = NSS(β) r RV(α) = NSS(α→ β)

(R1) Trivially, NSS(> ∨ β) = NSS(β) and thus,

NSS(α→ ⊥∨ β) = NSS(⊥∨ β) r RV(α) = NSS(β) r RV(α) = NSS(α→ β)

(L3) In the equality (∗) of the following sequence, we use that RV(¬¬ϕ) = ∅ =
NSS(¬ϕ):

NSS(¬¬ϕ ∧ α→ β) = NSS(β) r RV(¬¬ϕ ∧ α)
= NSS(β) r (RV(¬¬ϕ) ∪ RV(α))
= (NSS(¬ϕ) ∪NSS(β)) r RV(α) (∗)
= (NSS(¬ϕ ∨ β)) r RV(α)
= NSS(α→ ¬ϕ ∨ β)

(R3) In the equality (∗) of the following sequence, we use that RV(¬¬ϕ) = ∅ =
NSS(¬ϕ):

NSS(α→ ¬¬ϕ ∨ β) = NSS(¬¬ϕ ∨ β) r RV(α)
= (NSS(¬¬ϕ) ∪NSS(β)) r RV(α)
= NSS(β) r (RV(¬ϕ) ∪ RV(α)) (∗)
= NSS(β) r (RV(¬ϕ ∧ α))
= NSS(¬ϕ ∧ α→ β)

(L4) The main steps are properties of naive set theory

NSS((ϕ ∨ ψ) ∧ α→ β) = NSS(β) r RV((ϕ ∨ ψ) ∧ α)
= NSS(β) r ((RV(ϕ) ∩ RV(ψ)) ∪ RV(α))
= NSS(β) r ((RV(ϕ) ∪ RV(α)) ∩ (RV(ψ) ∪ RV(α)))

= NSS(β) ∩ ((RV(ϕ) ∪ RV(α)) ∩ (RV(ψ) ∪ RV(α))){

= NSS(β) ∩ ((RV(ϕ) ∪ RV(α)){ ∪ (RV(ψ) ∪ RV(α)){)

= (NSS(β) ∩ (RV(ϕ) ∪ RV(α)){) ∪ (NSS(β) ∩ (RV(ψ) ∪ RV(α)){)
= NSS(ϕ ∧ α)→ β) ∪NSS(ψ ∧ α→ β)

9 In fact, all the right hand sides of these transformations constitute a minimal representation (in
the sense of [9]) in HT of their corresponding left hand sides as logic program rules.
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(R4) The main steps are properties of naive set theory

NSS(α→ (ϕ ∧ ψ) ∨ β) = NSS((ϕ ∧ ψ) ∨ β) ∩ RV(α){

= (NSS(ϕ) ∪NSS(ψ) ∪NSS(β)) ∩ RV(α){

= (NSS(ϕ) ∪NSS(β) ∪NSS(ψ) ∪NSS(β)) ∩ RV(α){

= ((NSS(ϕ) ∪NSS(β)) ∩ RV(α){) ∪ ((NSS(ψ) ∪NSS(β)) ∩ RV(α){)
= NSS(α→ ϕ ∨ β) ∪NSS(α→ ψ ∨ β)

(R5) In the equality (∗) of the following sequence, we use that RV(¬ϕ) = ∅ = RV(¬ψ):

NSS(α→ (ϕ→ ψ) ∨ β) = (NSS(ϕ→ ψ) ∪NSS(β)) ∩ RV(α){

= ((NSS(ψ) ∩ RV(ϕ){) ∪NSS(β)) ∩ RV(α){

= (NSS(ψ) ∪NSS(β)) ∩ (RV(ϕ){ ∪NSS(β)) ∩ RV(α){

= (NSS(ψ) ∪NSS(β)) ∩ ((RV(ϕ){ ∩ RV(α){) ∪ (NSS(β) ∩ RV(α){))

= ((NSS(ψ) ∪NSS(β)) ∩ (RV(ϕ){ ∩ RV(α){))

∪ ((NSS(ψ) ∪NSS(β)) ∩ (NSS(β) ∩ RV(α){))

= NSS(ϕ ∧ α→ ψ ∨ β) ∪ (NSS(β) ∩ RV(α){)

= NSS(ϕ ∧ α→ ψ ∨ β) ∪ ((NSS(¬ϕ) ∪NSS(β)) ∩ (RV(α) ∪ RV(¬ψ)){)
= NSS(ϕ ∧ α→ ψ ∨ β) ∪NSS(¬ψ ∧ α→ ¬ϕ ∨ β)

ut

It is important to note that (L5) does not preserve semi-safety. If (ϕ→ ψ)∧α→ β
is semi-safe then, although we can easily see that the two first rules resulting from (L5)
are semi-safe:

∅ = NSS((ϕ→ ψ) ∧ α→ β) = NSS(β) r RV((ϕ→ ψ) ∧ α)
= NSS(β) r RV(α)
= NSS(β) r (RV(¬ϕ) ∪ RV(α))
= NSS(¬ϕ ∧ α→ β)

∅ = NSS((ϕ→ ψ) ∧ α→ β) = NSS(β) r RV(α)
⊇ NSS(β) r (RV(ψ) ∪ RV(α))
= NSS(ψ ∧ α→ β)

the third rule α → ϕ ∨ ¬ψ ∨ β , in the general case, is not semi-safe. As a counterex-
ample, take the formula

(p(x)→ q)→ ¬r(x) (4)

This formula is semi-safe and in fact, is safe. However, after applying (L5) to (4), we
get the implication > → p(x) ∨ ¬q ∨ ¬r(x), which is not semi-safe (in particular,

11



the first of occurrence of x is not semi-safe) and thus, is not safe either. As we will
see next, our definition of safety is indeed preserved for all transformations involving
nested expressions (N1)-(N6), (L1)-(L4), (R1)-(R4), but fails for some cases dealing
with nested implications.

Lemma 3. For any pair γ ⇐⇒ γ′ in transformations (L1)-(L5), (R1)-(R5) we have
νx(γ) = νx(γ′) and thus, νx(ψ) = νx(ψ[γ/γ′]) for any formula ψ.

Proof. Again, the result follows from semantic equivalences in Kleene’s logic. ut

Theorem 6. Consider a semi-safe sentence ∀x1 . . . ∀xnγ and a pair γ ⇐⇒ γ′ in trans-
formations (L1)-(L4), (R1)-(R5): if xi is safe in γ then it is also safe in γ′.

Proof. The proof is similar to that for Theorem 4. To prove the result, we must analyse
each occurrence of every variable in γ′ to check if it is made weakly restricted. Again,
each of these occurrences corresponds, in a natural way, to a specific occurrence of the
same variable in the formula ϕ, although an occurrence in γ may correspond to up to
two occurrences in γ′. Also, it is easy to check now that the transformation does not
modify the sign of the occurrences of the variables and that, in any pair in transforma-
tions (L1)-(L5), (R1)-(R5), if δ is a subformula of α, β, ϕ or ψ, then the sign of δ in γ
is equal to the sign of the corresponding occurrence of δ in γ′.

Since the sentence is universal, if δ is a subformula that makes weakly restricted an
ocurrence of xi then we only need to analyse the cases in which δ is a strict subformula
of γ, because the proof for the other situations is the same as for Theorem 4. Finally,
for (L1), (L2), (L3), (R1), (R2) and (R3) the result is trivial.

(L4) If δ = ϕ ∨ ψ, then νx(ϕ ∨ ψ) = ⊥ and thus νx(ϕ) = νx(ψ) = ⊥; therefore, ϕ
makes weakly restricted the corresponding ocurrence of xi in ϕ ∧ α → β and ψ
makes weakly restricted the corresponding ocurrence of xi in ψ ∧ α→ β.
If δ = (ϕ ∨ ψ) ∧ α, then νx((ϕ ∨ ψ) ∧ α) = ⊥ and either νx(ϕ ∨ ψ) = ⊥ or
νx(α) = ⊥; both cases reduce to some of the previous cases.

(R4) If δ = ϕ ∧ ψ, then νx(ϕ ∧ ψ) = > and thus νx(ϕ) = νx(ψ) = >; therefore, ϕ
makes weakly restricted the corresponding ocurrence of xi in α → ϕ ∨ β and ψ
makes weakly restricted the corresponding ocurrence of xi in α→ ψ ∨ β.
If δ = (ϕ ∧ ψ) ∨ β, then νx((ϕ ∨ ψ) ∧ α) = > and either νx(ϕ ∧ ψ) = > or
νx(α) = >; both cases reduce to some of the previous cases.

(R5) If δ = ϕ → ψ, then νx(ϕ → ψ) = > and either νx(ϕ) = ⊥ or νx(ψ) = >. In
both cases, νx(ϕ ∧ α→ ψ ∨ β) = νx(¬ψ ∧ α→ ¬ϕ ∨ β) = > and the complete
formulas make the corresponding occurrences weakly restricted. ut

This result shows that transformations (L1)-(L4) and (R1)-(R4) plus (N1)-(N6),
which allow unfolding rules with nested expressions, preserve safety. If we apply these
transformations to our running example (3) we obtain the four safe rules:

request(x, y, z) ∧ ¬subproc(x, y)→ ignore(y, x)
request(x, y, z) ∧ ¬subproc(x, y)→ unatt(x)

request(x, y, z)→ ignore(y, x) ∨ ¬has(y, z)
request(x, y, z)→ unatt(x) ∨ ¬has(y, z)
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In the case of nested implications, although for (L5) we do not obtain a positive
result, we can still establish a sufficient condition for preserving safety, as follows.10

Theorem 7. Consider a semi-safe sentence ∀x1 . . . ∀xnϕ, the pair γ ⇐⇒ γ′ in trans-
formation (L5) and suppose that α → ϕ is semi-safe. Then, if xi is safe in ϕ then it is
also safe in ϕ[γ/γ′].

Proof. Semi-safety of rules (¬ϕ ∧ α → β) and (ψ ∧ α → β) was proved before. As
for (α→ ϕ ∨ ¬ψ ∨ β), we get:

NSS(α→ ϕ ∨ ¬ψ ∨ β) = (NSS(β) ∪NSS(ϕ) ∪NSS(¬ψ)) r RV(α)
= (NSS(β) ∪NSS(ϕ)) r RV(α)

but as α→ ϕ is semi-safe, NSS(ϕ) r RV(α) = ∅ and we obtain:

= NSS(β) r RV(α)
= NSS((ϕ→ ψ) ∧ α→ β) = ∅ ut

To see how this sufficient condition can be applied, let us consider a variation of
(4) where we include in the antecedent an additional atom dom(x) (possibly fixing the
“domain” of x):

(p(x)→ q) ∧ dom(x)→ ¬r(x)
This formula is still safe and, furthermore, the implication dom(x) → p(x) is semi-
safe. Thus, the result of applying (L5) yields the three (now safe) rules:

¬p(x) ∧ dom(x)→ ¬r(x) dom(x)→ p(x) ∨ ¬q ∨ ¬r(x)
q ∧ dom(x)→ ¬r(x)

5.1 Discussion

Taken together, the transformations (N1)-(N6), (L1)-(L5), (R1)-R(5), are sufficient to
reduce a universal sentence in prenex form with matrix ϕ into a prenex formula whose
matrix, say ϕ′, has the form of a general disjunctive program rule of shape α → β,
where α is a conjunction of literals and β is a disjunction of literals. The resulting
transformation therefore has the form of a logic program allowing negation in the heads
of rules. As we saw, all transformations preserve the property of safety, except (L5),
where safety preservation can be ensured, but at the cost of an additional condition. On
the other hand, removing nested occurrences of implication in the heads of rules does
not affect safety.

Quantifier-free formulas of the form α→ β where α, β do not contain occurrences
of implication, other than in the form ‘→ ⊥’, are known in ASP as rules with nested ex-
pressions and a set of such rules is called a nested program, [18]. Taken together, there-
fore, (N1)-(N6), (L1)-(L4), (R1)-R(5), are sufficient to transform any nested program
into a fully equivalent general disjunctive program, preserving the safety of formulas in
each case.
10 Notice that rule (L5) cannot be further simplified. In particular, dropping the problematic third

formula on the right hand side we would lose strong equivalence. For instance, the formulas
((p → q) ∧ r) → s and ((¬p ∧ r) → s) ∧ ((q ∧ r) → s) are not strongly equivalent:
〈{r}, {p, q, r, s}〉 is a model of the second one but not of the former.
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6 Related Work and Conclusions

We have studied the safety condition on first order formulas from [7, 8] and identified
a syntactic class of formulas that can be transformed via rewriting rules that preserve
strong equivalence and safety. This syntactic class contains eg. all nested logic pro-
grams.

While the condition of safety is in general highly relevant for computational pur-
poses, it should be noted that here we have been concerned with logical issues rather
than matters of computation and implementation. In fact, while the transformations we
have studied do not introduce any new terms into the language, they are also in gen-
eral not polynomial in size. Polynomial reductions of nested programs have been stud-
ied in [21, 22] and polynomial reductions of arbitrary propositional formulas to logic
programs are discussed in [5]. These transformations may lend themselves to a more
efficient implementation of the reductions, but they introduce new predicates that may
cause loss of safety. In [4] a restricted subclass of nested programs is identified, called
normal form nested or NFN. A concept of safety for NFN rules is proposed in [4] along
with a polynomial algorithm for reducing them to disjunctive programs that can be pro-
cessed by the DLV system. This reduction method introduces new predicates and other
auxiliary devices. It does preserve safety, however [4] does not prove the correctness
of the reduction, something that in our case of strong-equivalence preserving transfor-
mations is easy to establish. Evidently, our safety concept is also much more widely
applicable than that of [4].

There remain several directions for further study. One is the search for an improved
concept of safety along with a complete set of transformations that preserve this prop-
erty. Another is the investigation of algorithms for a more efficient reduction of general
formulas to logic programs while preserving safety. Another topic is the study of trans-
formations on existential sentences and arbitrary formulas involving existential quanti-
fiers.
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Abstract. Order-sorted algebras provide a well developed and expres-
sive framework for theoretical considerations about programming lan-
guages. We show that a number of declarative program paradigms fit
well into this setting. For this aim we introduce a simple order, based
on which strict functional programs, lazy functional programs and lazy
functional logic programs with run-time choice or call-time choice can
be modeled. An interesting feature of the presented approach is that the
semantic differences between strictness/laziness on one hand and run-
time/call-time choice on the other hand are only reflected in the type of
variables allowed in the programs. Especially, this feature allows the ad-
mission of mixed programs without any change in the underlying theory.

1 Introduction

The presented work introduces an application of order-sorted algebra to func-
tional and functional logic programming languages. We show that a simple order
structure suffices to capture four basic semantical notions within a single formal
framework. The result is a unified approach entailing the following advantages.

– By connecting functional logic programming to order-sorted algebra stan-
dard results from a well developed theory become applicable to these pro-
gramming languages. This enables for example the use of standard transfor-
mations to obtain unsorted conditional rewrite systems and, further, stan-
dard unconditional rewrite systems for a given program.

– The presented framework contains an explicit specification of the laws of
non-deterministic choice. This allows for a flexibility to examine alternative
approaches to non-determinism by providing different specifications. This
flexibility could be used, for example, to integrate approaches to encapsu-
lated search [3, 7] or probabilistic programming languages [9] in the future.

– Because of this integration into a uniform framework, the presented approach
allows an arbitrary mix of the integrated semantic notions. This could be
useful to examine, e.g., the problems involved with approaches to encapsu-
lated search. In the presented framework these problems can be expressed
as a clash of intuitions about the sort of program variables.

? This work has been partially supported by the DFG, grant Ha 2457/1-2.



– The high level of abstraction supported by order-sorted algebra makes the
presented framework modularly extensible. Further specifications modeling,
e.g., typed programs could be added without losing the achieved results.

The remaining introductory subsection will provide minimalistic examples to
distinguish the four basic notions of semantics integrated in the presented frame-
work. Section 2 will then give an introduction to order-sorted algebra. Section 3
develops the new representation of functional (logic) programs as equations over
an order-sorted signature. Section 4 discusses the semantics of the resulting pro-
grams as well as the connection to former approaches. Especially, that section
contains the discussion of how the four semantic notions exemplified in Sec-
tion 1.1 are integrated within the framework. Section 5 concludes.

1.1 Four Basic Semantic Notions

The formal framework presented in this work integrates four different semantic
notions by introducing a simple order of sorts. For functional programming lan-
guages the basic semantic notions are well known as call-by-value, call-by-name
and call-by-need. With the extension to functional logic programming call-by-
need is to be further distinguished into call-time choice and run-time choice [6].
The differences between the semantics become apparent in non right-linear pro-
gram rules, i.e., when variables are duplicated on the right hand side of a rule.
The following example is therefore a standard minimal one.

Example 1. Consider the following functional program rule.

double x = x+x

When evaluating the expression double (0+1), call-by-value allows the following
derivation only.

double (0+1) = double 1 = 1+1 = 2

With call-by-name, in contrast, the sub-expression (0+1) is copied and may there-
fore be evaluated more than once as in the following derivation.

double (0+1) = (0+1) + (0+1) = 1 + (0+1) = 1 + 1 = 2

Like call-by-name, call-by-need allows to apply the rule for double before fully
evaluating the arguments. In contrast to call-by-name, however, not sub-ex-
pressions but references to sub-expressions are copied. This requires syntactic
extensions to, e.g., graph rewriting or the introduction of let-expressions, as in
the following derivation.

double (0+1) = let x=0+1 in x+x =
let x=1 in x+x = 1+1 = 2

When considering pure functional programs only it is a well known and intuitive
fact that call-by-need semantics corresponds to call-by-name. With the extension
to non-deterministic choice, this correspondence becomes less tight and there are
two possibilities to interpret call-by-need derivations as illustrated in the next
example.
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Example 2. A minimalistic way to define a non-deterministic operation in func-
tional logic programming languages is the following.

coin = 0

coin = 1

We consider the evaluation of the expression double coin and separate indepen-
dent non-deterministic possibilities by the symbol “|”. In a call-by-value deriva-
tion of the expression, the possible choices for code are done before applying the
rule for double. The resulting semantics is called call-time choice.

double coin = double 0 = 0+0 = 0

| double 1 = 1+1 = 2

In call-by-name the sub-expression coin is copied resulting in more non-deter-
ministic combinations. The corresponding semantics is called run-time choice.

double coin = coin + coin = 0 + coin = 0 + 0 = 0

| 0 + 1 = 1

| 1 + coin = 1 + 0 = 1

| 1 + 1 = 2

Call-by-need is compatible with both variations of choice semantics. A derivation
call-by-need with run-time choice could be represented as follows.

double coin = let x=coin in x+x

= let x=0|1 in x+x = 0|1 + 0|1

= ... = 0 | 1 | 1 | 2

And call-by-need with call-time choice is realized in the next derivation.

double coin = let x=coin in x+x
= let x=0 in x+x = 0

| let x=1 in x+x = 2

The four basic semantic notions considered in the following are therefore call-
by-value, call-by-name, call-by-need with run-time choice and call-by-need with
call-time choice.

2 (Order-)Sorted Algebra

The aim of this section is to give an account of the notions and notations used
in the theory of both sorted and order-sorted algebra [4]. We assume the reader
to be familiar with the notions of a relation, a partial order, the least and largest
element of a partial order, an equivalence class and the transitive and symmetric
closure of a relation. We recall that the connected components of a partial order
(M,≤) are the equivalence classes of the transitive and symmetric closure of ≤.
A subset D ⊆ M is called directed iff for all a, b ∈ D there exists an element
c ∈ D with a ≤ c and b ≤ c. A partial order is called locally directed iff each
connected component is directed. The first central notion is that of sorts, sorted
sets and functions/relations on such sets.
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Definition 1. Let S be an arbitrary set and call it a set of sorts. An S-sorted
set A is a family of sets As for each sort in S; and we write {As | s ∈ S}. For
S-sorted sets A and B an S-sorted function f : A → B is an S-sorted family
f = {fs : As → Bs | s ∈ S} and an S-sorted relation (A,on) is an S-sorted
family on= {ons⊆ As × As | s ∈ S}. Let (S,≤) be a partially ordered set. Then
we call S-sorted sets, functions, and relations order-sorted.

A signature is a collection of symbols which are later interpreted in algebraic
structures. For each symbol a signature contains some structural information, in
the simplest case a natural number, called the symbol’s arity. Sorted signatures
add more structure to this concept and once sorted signatures are established
a desirable next step is to add subsort relations. This line of thought leads to
order-sorted signatures.

Definition 2. A many-sorted signature Σ is a pair (S,M) such that M is an
S∗ × S-sorted family {Mw,s | 〈w, s〉 ∈ S∗ × S}. We call S the sort set of Σ and
the elements of M are called the symbols of Σ.

An order-sorted signature Σ is a triple (S,≤,M), such that (S,M) is a
many-sorted signature, (S,≤) is a partial order for which the symbols in Σ satisfy
the monotonicity condition:

σ ∈Mw,s ∩Mw′,s′ and w ≤ w′ imply s ≤ s′

We write o : w → s ∈ Σ to state that o ∈ Mw,s and say that o has rank 〈w, s〉,
arity w and (result-)sort s. In the special case that w = ε, the empty sequence,
we call o : ε → s a constant (of sort s). We call an order-sorted signature
regular iff given o : w → s ∈ Σ and given w′ ≤ w in S∗ there exists a least
rank 〈w0, s0〉 ∈ S∗ × S such that w′ ≤ w0 and o : w0 → s0 ∈ Σ. We call an
order-sorted signature coherent if it is regular and its sort set is locally directed.

In the following we assume Σ to denote a many- or order-sorted signature with
sort set S.

Definition 2 introduces several concepts to formalize the idea of subsorts.
Firstly, an order serves the purpose of defining the inclusion structure. The pur-
pose of the monotonicity condition is to minimize redundancy in the algebras.
When the signature is monotone it is possible, for example, to employ the same
function to interpret + for integers and natural numbers by simply restricting its
domain. Naturally, this property is interesting when thinking about implemen-
tation and code duplication. Monotonicity is not enough to ensure that terms
can be constructed without type information. A sufficient additional condition is
regularity. Together with monotonicity the regularity condition makes sure that
each term has a well defined least sort [4, Fact 2.4, Proposition 2.10]. Finally,
coherence will get important when we add equations to the setting below.

Naturally, order-sorted algebra features extended versions of notions like al-
gebra, homomorphisms, isomorphism, etc. In this work, however, we can be con-
tent with defining the special algebra of terms and the special homomorphisms
called substitutions.
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Definition 3. Let X be an S-sorted family of disjoint sets X = {Xs | s ∈ S}
which we call variable set disjoint from S.

Then the set of terms TΣ(X) is a family of sets {TΣ(X),s | s ∈ S} defined as
the smallest set satisfying:

(1) Xs ∪Σε,s ⊆ TΣ(X),s for any s ∈ S
(2) if o : w → s ∈ Σ and if ti ∈ TΣ(X),si

for i ∈ {1, . . . , n} where w = s1 . . . sn 6=
ε, then o(t1, . . . , tn) is in TΣ(X),s

When Σ = (S,≤,M) is an order-sorted signature we additionally have

(3) TΣ(X),s ⊆ TΣ(X),s′ if s ≤ s′

We will often write on as an abbreviation for arbitrary objects o1, . . . , on, e.g.,
o(tn) for the term above.

An important feature of a given order-sorted Σ-term t is that there is a unique
least sort s such that t ∈ TΣ,s. We denote this least sort by LS (t). By Var(t)
we will denote the set of variables occurring in a term t which is defined in the
usual inductive way.

Definition 4. Let X,Y be two S-sorted variable sets. Then a substitution is
an S-sorted map σ : X → TΣ(Y ). This map can be extended canonically to
σ̂ : TΣ(X) → TΣ(Y ) in the usual inductive way. We adopt the convention that
this unique many- or order-sorted homomorphism σ̂ is also denoted as σ.

Note especially that variable substitutions are by definition sorted. A variable of
sort s is always assigned a term of sort s. Hence, substitutions are sort preserv-
ing. It may happen, however, that the least sort LS (σ(t)) is smaller than LS (t)
because, e.g., a variable of the sort representing integers is replaced with a term
of the sort representing natural numbers. The feature of sort preservation is im-
portant for the correspondence between variable sorts and the semantic notions
introduced in Section 1.1.

Functional and functional logic programs will be defined as a set of equations
over special order-sorted signatures.

Definition 5. A Σ-equation is of the form ∀X.l = r where X is a variable set
and l, r ∈ TΣ(X) such that l and r are of the same sort when Σ is many-sorted
and LS (l) and LS (r) are connected in the sort order when Σ is order-sorted.

When the variable set X is clear from the context, e.g., if it contains only the
variables of l and r and these variables and their sorts are clear, we may omit
the quantifier ∀X.

Up to now we have considered regular signatures. Adding equations to the set-
ting requires the signatures to satisfy an additional property introduced in Defi-
nition 2: coherence. Coherence means that for any two connected sorts s, s′ there
is a sort greater or equal than both. In other words the set of sorts is locally
directed with respect to the sort order. Coherence is a sufficient requirement to
ensure that isomorphic models satisfy the same equations.

Five rules are sufficient to derive all and only those equations holding in any
model of a given set of equations [4, Theorem 3.1 and Corollary 3.2].
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Definition 6. Let Γ be a set of Σ-equations, called derivable. The following
rules allow to derive further equations:

(1) Reflexivity: Each equation of the form ∀X.t = t is derivable.
(2) Symmetry: If ∀X.t = t′ is derivable then so is ∀X.t′ = t.
(3) Transitivity: If ∀X.t = t′, ∀X.t′ = t′′ are derivable then so is ∀X.t = t′′.
(4) Congruence: If σ, σ′ : X → TΣ(Y ) are substitutions such that for each x ∈ X
∀Y.σ(x) = σ′(x) is derivable then so is ∀Y.σ(t) = σ′(t) for any t ∈ TΣ(X).

(5) Substitutivity: If ∀X.t = t′ is in Γ and if σ : X → TΣ(Y ) is a substitution
then ∀Y.σ(t) = σ(t′) is derivable.

In comparison to equational deduction rewriting is more operational.

Definition 7. A Σ-rewrite rule is of the form l → r where l, r are terms in
TΣ(X) such that l and r are of the same sort if Σ is many sorted or LS (l) and
LS (r) are connected when Σ is order-sorted, respectively. For a special constant
symbol � 6∈ Σ and a sort s in the sort set of Σ, a context (of sort s) is a term C
over Σ∪{�ε,s} such that � occurs exactly once in C. For given terms tn ∈ TΣ,s
the notation C[t] denotes the replacement of the hole from t. A reduction step
according to the rewrite rule ρ = l→ r is of the form

C[σ(l)]→ρ C[σ(r)]

where C is a context of sort s such that LS (l),LS (r) ≤ s and σ is a Σ-
substitution. A Σ-rewrite system R is a set of rewrite rules. The one-step rewrite
relation of R, denoted by →R, is defined by t →R s′ iff there is a rule ρ ∈ R
such that t→ρ t

′ is a reduction step according to ρ. We may omit the subscripts
ρ or R when rule or rewrite system is clear from context or arbitrary. By →∗R
we denote the reflexive and transitive closure of →R.

Finally, a rewrite system R is called compatible iff for any rewrite step
t→R t′ and any context C, we have that C[t]→R C[t′] is also a rewrite step.

We will only consider compatible rewrite systems as it can be shown that for such
systems key results of the theory of unsorted rewriting carry over. We deviate,
however, from common restrictions to rewriting that the left hand side of a rule
must not be a variable and that Var(l) ⊇ Var(r) should be satisfied without
consequences for the purposes of this work.1

3 Functional (Logic) Programs

A functional logic program will be defined as a restricted set of equations over an
order-sorted signature. Therefore, the first step will be to define the sorts used
1 Compare also to [2, page 36] “the restrictions on rewrite rules are not a priori nec-

essary and some authors prefer not to have them.” and [1, page 61]: “The two
restrictions that distinguish a rewrite rule from an identity avoid certain patholog-
ical cases and obvious sources of non-termination. Much of term rewriting carries
over to arbitrary identities with only minor modifications.”
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in a functional logic program together with an appropriate order on these sorts.
After that we will define what kind of symbols and equations will be used to con-
struct functional logic programs. The sorts for functional logic programs will be
defined to distinguish four classes of terms: (total) values, partial values, choices
(over partial values) and finally arbitrary expressions. The distinction between
these classes is at the heart of our discussion of different semantic conceptions,
such as call-by-name versus call-by-value and run-time choice versus call-time
choice. The notions of order-sorted algebra will allow us to conveniently state
that, e.g., values are a subsort of partial values.

Definition 8. Let SP ={Val ,PVal ,Ch,Exp}. The set of program sorts (SP ,≤P )
is the smallest partial order containing the chain Val < PVal < Ch < Exp.

Obviously, the set of program sorts is locally directed. In functional and func-
tional logic programs alike there is a basic partition of the symbols of a program
signature into constructor and operation symbols. In addition to these user de-
fined symbols we will use the constant symbol ⊥ and the binary symbol t.
Constructors are used to build values while the inclusion of ⊥ yields a partial
value. The symbol t is used to construct terms of sort Ch and, finally, the ap-
pearance of an operation symbol in a term leads to its sort being Exp. This is
the content of the following definition.

Definition 9. Let C and O be two disjoint (standard) signatures with natural
numbers as arity such that ⊥ 6∈ C0 ∪ O0 and t 6∈ C2 ∪ O2. Then the program
signature of C ∪O is the triple (SP ,≤P , C ′ ∪O′ ∪ L) where

C ′ :=
⋃
{{c : Valn → Val , c : PValn → PVal ,
c : Chn → Ch, c : Expn → Exp} | c ∈ Cn}

O′ := {o : Expn → Exp | c ∈ On}
L := {⊥ : ε→ PVal ,t : ChCh → Ch,t : ExpExp → Exp}

Here, for p ∈ SP the notation pn denotes a sequence w = p . . . p with |w| = n.
The symbols in the subsets of C are called constructor symbols and those in

the subsets of O are called operation symbols, respectively. By ΣC and ΣO we
denote the sub-signature of constructor and operation symbols, respectively.

We will prove that program signatures are order sorted signatures and then
give some examples of terms constructed from program signatures and their
respective terms.

Proposition 1. Program signatures are regular and coherent order-sorted sig-
natures. Moreover, any rewrite system over a program signature is compatible.

Proof. Let Σ = (S,≤,M) be a program signature. Then Σ satisfies the mono-
tonicity condition of Definition 2 since all ranks in Σ are of the form 〈pn, p〉 and
therefore o ∈ Mw,p ∩Mw′,p′ and w ≤ w′ always imply p ≤ p′. Moreover, Σ is
regular since for any s and natural number n the ranks

{〈w, p〉 | s : w → p ∈ Σ, |w| = n}
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term t LS(t)

Cons(True, Nil) Val
Cons(True,⊥) PVal
Cons(True t False,⊥) Ch
Cons(True, tail(Nil)) Exp

term t LS(t)

Cons(v, Nil) Val
Cons(True, p) PVal
Cons(c,⊥) Ch
Cons(True, e) Exp

Fig. 1. Different Terms and their Respective Sorts

form a chain. Finally, Σ is coherent by Definition 8. Rewrite systems over Σ are
compatible since each n-ary symbol has a rank 〈Expn,Exp〉. Therefore, replacing
a sub-term of program sort s with a term of program sort s′ > s again yields a
well-sorted term in general, regardless of the rewrite rules. ut

Example 3. Let C := C0 ∪ C2 where C0 := {True, False, Nil} and C2 = {Cons}
and let O := O1 := {tail}. Then the left table of Figure 1 shows terms over
the program signature of C ∪ O together with their least sort. By Definition 3
variables are also sorted. Let X be an according set of variables and v ∈ XVal ,
p ∈ XPVal , c ∈ XCh and e ∈ XExp . The terms with variables and their least sorts
are shown in the right table of Figure 1. Moreover, note that no substitution in
the sense of Definition 4 can map the variable v to, e.g., the term tail(Nil) or
to Nil t Cons(True, Nil).

We are now ready to give our notion of a program.

Definition 10. Let C be a set of constructor and O a set of operations symbols,
and Σ- be the program signature for C ∪ O. Then a program over Σ is a pair
(Σ,E) such that the following conditions hold.

– E is a set of program rules. There are two forms of rules: Σ-equations l = r
and Σ-inequations l w r. In both forms we call l the left-hand side and r the
right-hand side of the rule. For any rule l, r must satisfy the conditions
• l is linear, i.e., each variable in Var(l) occurs at most once in l
• l is of the form f(tn) where f ∈ On and for each ti holds ti ∈ TΣC (X)

– If l = r is a rule in E there must be no other rule l′ = r′ or l′ w r′ in E
such that l, l′ are unifiable, i.e., there is no substitution σ with σ(l) = σ(l′).

4 Semantics

Definition 10 introduces two kinds of program rules: equations and inequations.
Definition 6 introduced how new equations can be derived from given ones.
However, we still have to define how the inequations contained in a program
should be treated in such a derivation. For this we follow the classic way to
integrate inequations into an equational setting: by embedding orders into (semi)
lattices. The idea is that inequations of the form l w r will be treated as equations
l = l t r. Not incidentally, the symbol t will serve at the same time as an
operator for non-deterministic choice. The benefit we get from the general setting
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of arbitrary equations over program signatures introduced in Section 2 is that
we can define the laws for t within the same framework as the programs. Thus,
the setting allows us to define not only program rules but also the semantical
logic within the same framework. The additional equations fixing semantical
properties will be called the program logic in the following.

4.1 Semi Lattices, Inequations and Program Logic

We start our semantic considerations by defining the notion of a semi lattice.

Definition 11. A semi lattice is a structure (S,t) satisfying the following laws
for all elements of S.

x t x = x (idem) x t y = y t x (comm) (x t y) t z = x t (y t z) (assoc)

A structure (S,t,⊥) is called a semi lattice with identity iff (S,t) is a semi
lattice which additionally satisfies the following law for all elements of S.

x = ⊥ t x (bot)

Semi lattices induce a partial order (S,v) defined by x v y iff x t y = y.
Moreover, for a semi lattice with identity, ⊥ is the least element of (S,v).

A semi lattice homomorphism is a function h : S → S′ where S, S′ are semi
lattices such that h(a tS b) = h(a) tS′ h(b). As we will see below, constructors
will be defined to be semi lattice homomorphisms. A monotone function can be
likewise understood as a homomorphism on orders. For such a function h : S →
S′, we have that a wS b implies h(a) wS′ h(b). Below we will define that all
operations introduced in a program are monotone.

In accordance with Definition 11, inequations are treated as syntactic sugar
for special equations. The reason to add inequations at all is to make our pro-
grams look similar to those used in existing functional logic languages. The main
difference now is that we require the use of l w r for overlapping rules instead
of also using the symbol =. Actually, we think that adding such a requirement
to existing languages could improve the programming practice. With such a
requirement, the program from Example 2

coin = 0

coin = 1

would be rejected by the compiler, since the left-hand sides of the rules are
trivially unifiable. Rather, the program should be written as

coin w 0

coin w 1

and by stating it this way, we would have more confidence that the programmer
knows “what he is doing”. (In addition we do no longer induce the feeling that
True=False is derivable via a reasoning along the lines of True=coin=False.)

Like a program, a program logic is a set of equations over a program signature.
Unlike the program, however, the program logic is not restricted syntactically.
This allows us to add the equations fixing the laws of non-determinism.
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Definition 12. Let P be a program over a program signature Σ with operations
O and constructors C. The set of Σ-equations PL(P ) contains the equations of
a semi lattice with identity (Definition 11) together with the following equations,
where the variables x, y, z, xn, ym are of sort Exp.

{f(xn, x t y, ym) w f(xn, x, ym) | f ∈ On+m+1} (mon)
{c(xn, x t y, ym) = c(xn, x, ym) t c(xn, y, ym) | c ∈ Cn+m+1} (hom)

4.2 Program Classification

The definition of program sorts allows us to define different classes of programs.
The distinction concerns the variables used within the program. If, for instance,
all variables have to be of sort Val then every argument of any function has to
be a constructor term. Obviously, this corresponds to the arguments being fully
evaluated. In the other extreme if variables are of sort Exp the resulting program
will be call-by-name. The two intermediate possibilities classify the different
approaches to non-determinism in programs with call-by-need semantics.

Definition 13. When all the variables contained in program rules are

of sort the program obeys
Val call-by-value (with call-time choice)

PVal call-by-need with call-time choice
Ch call-by-need with run-time choice
Exp call-by-name (with run-time choice)

A program containing variables of different sorts will be called mixed. In addi-
tion there is the classification into functional and functional logic programs. A
program is called functional iff all program rules are of the form l = r, do not
contain the symbol t and satisfy the proposition Var(l) ⊇ Var(r). A program
which is not functional is called a functional logic program.

In the remainder of this section we will exemplify the different program classes
by revisiting the introductory example from Section 1.1. After that we will
strengthen our result by showing that functional logic programs with call-by-
need and call-time-choice correspond in our framework to the classical modeling
of this class [5].

Example 4. Recall the program in Example 1.

double x = x+x

First we consider x to be of sort Exp. Then mapping x to 0+1 yields a valid
substitution and therefore we can derive from the equation double x = x+x that
double (0+1) = (0+1) + (0+1) holds by the substitutivity rule of Definition 6.
This yields the validity of the corresponding equational deduction from Exam-
ple 1 (assuming suitable equations for addition).

double (0+1) = (0+1) + (0+1) = 1 + (0+1) = 1+1 = 2
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When x is of sort Val , in contrast, 0+1 is not a valid substitution for x. Therefore,
the above deduction is not possible. The only derivation to yield a constructor
value is the call-by-value deduction of Example 1.

double (0+1) = double 1 = 1+1 = 2

That program variables of sort PVal yield a call-by-need semantics is less obvi-
ous. Indeed, the only valid deduction to a value in such a program corresponds
to the call-by-value one above. Therefore we consider an example for which call-
by-value and call-by-need indeed have different semantics. For this we consider
Z and S the symbols to construct Peano numbers.

loop = loop

isZero (S x) = True

For this program the expression isZero (S loop) is not greater or equal than
any constructor value when x is of sort Val . If, however, the sort of x is PVal ,
then we may substitute x by ⊥ and get the following deduction.

isZero (S loop) = isZero (S (⊥ t loop)) (bot)
= isZero (S ⊥ t S loop) (hom)
w isZero (S ⊥) (mon)
= True

The above considerations make it is easy to see that programs with variables of
sort Val feature call-time and those of sort Exp feature run-time choice. There-
fore, the further classification will consider call-by-need programs, only.

Example 5. Reconsider the program from Example 2 (in the new syntax).

coin w 0

coin w 1

When the variable x in the definition of double is of sort Ch, mapping it to 0t1
yields a valid substitution. Therefore we get the following deduction.

double coin = double (0 t coin)

= double (0 t (1 t coin))

= double ((0 t 1) t coin) (assoc)
w double (0 t 1) (mon) (∗)
= (0 t 1) + (0 t 1)

w 0 + (0 t 1) t 1 + (0 t 1) (idem),(mon)
w 0+0 t 0+1 t 1+0 t 1+1 (idem),(mon)

... = 0 t 1 t 2 (+),(assoc),(idem)

When x is of sort PVal , we can likewise proceed to the term double (0t1) in the
line marked (∗). But then the above deduction is no longer valid as x may not
be substituted with 0t1. Instead we can only derive values in the following way.

11



double (0t1) = double 0 t double 1 t double (0t1) (mon)×2
w double 0 t double 1 def w
= 0+0 t 1+1

= 0 t 2

The discussion above employed the general assumption of functional logic pro-
gramming that one is only interested in values, i.e., constructor terms which
are terms of sort PVal in our setting. In general, the terms considered as val-
ues should match the maximal sort of the variables allowed in the program. A
program employing variables of sort PVal , for instance, should consider the set
TPVal for values whereas a call-by-value program should employ TVal . This is
the content of the following definition.

Definition 14. Let P be a Σ-program and s a program sort. Then the s-seman-
tics of a given Σ-term e, denoted by [[e]]s, is the set [[e]]s = {v ∈ Ts | e w v}.

In order to lift this definition to an algebraic semantics one would need to use
standard constructs to obtain a complete lattice from the lattice defined by
the Σ-terms. Well known constructions are completion by ideals or Dedekind-
MacNeille completion [8, Section 2.2]. We omit the according development due
to space constraints. Also due to space constraints we consider the above ob-
servations as sufficient to demonstrate the correspondences for call-by-value. As
call-by-need with call-time choice is a more subtle concept we show that pro-
grams with variable sort PVal indeed obey this semantics. For this we prove
correspondence with the classical setting [5] in the next subsection. Regarding
the two remaining semantics employing run-time choice we think that our ap-
proach is indeed novel as detailed in the conclusion.

4.3 Call-by-Need with Call-Time Choice – a Proof

In this section we compare our notion of call-by-need with call-time choice with
the classical setting for functional logic programs by González-Moreno et al [5],
called the CRWL-calculus.

Definition 15 (CRWL). Let C,O be two disjoint (standard) signatures with
natural numbers as arity such that ⊥ 6∈ C0 ∪O0 and t 6∈ C2 ∪O2. Then the set

1) of CRWL-values CV is defined as the terms over C
2) of CRWL-partial values CP is defined as the terms over C ∪ {⊥(0)}
3) of CRWL-expressions CE is defined as the terms over C ∪O ∪ {⊥(0)}

in the usual inductive way. A substitution θ over the signature C ∪ O ∪ {⊥(0)}
is a CRWL-substitution (θ ∈ CS ) iff its range is a subset of CP.

We assume C and O fixed in the following. The terms employed in the CRWL-
setting correspond very closely to those defined in this work as indicated by the
following proposition.
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Proposition 2. Let Σ be the program signature over C and O and for any Σ-
term t let btc be the term over the signature C ∪ O ∪ {⊥(0),t(2)} derived by
simply forgetting about the sorts, which is possible by Definition 9. Likewise, for
any expression e ∈ CE we define dee to be the Σ-term whith bdeec = e and
where all variables are of sort PVal. This definitions are naturally extended to
Σ-substitutions and constructor substitutions. Then we have

1) t ∈ TΣ(X),Val implies btc ∈ CV
2) t ∈ TΣ(X),PVal implies btc ∈ CP and dbtce = t
3) e ∈ CE implies dee ∈ TΣ(X),PVal

4) Var(t) ⊆ TΣ(X),PVal implies for any Σ-substitution σ that bσc restricted to
Var(t) is in CS

5) ρ ∈ CS and e ∈ CE imply dρe(dee) = dρ(e)e.

Proof. Obvious by construction of the program signature from C and O.

Definition 16. For any Σ-program P the set of rewrite rules

{blc� brc | l = r ∈ P ∨ l w r ∈ P} ∪ {x t y � x} ∪ {x t y � y}

is called the CRWL-Program bP c. For any such program the one-step CRWL-
reduction � is defined by

(OR) C[f(θ(tn))] � C[θ(e)] if θ ∈ CS and f(tn) � e ∈ bP c
(B) C[e] � C[⊥] if e ∈ CE

where C is a context over signature C ∪O ∪ {⊥(0),t(2)}.

Because of the close correspondence between the CRWL-notions and those intro-
duced in this paper, we can directly relate CRWL derivations and order-sorted
rewriting with respect to a Σ-program.

Proposition 3. Let P be a Σ-program and P ′ be the set of the following order-
sorted rewrite rules, where x, y are of sort PVal, z of sort Exp.

{l→ r | l = r ∈ P ∨ l w r ∈ P} ∪ {xt y → x} ∪ {xt y → y} ∪ {z → ⊥}

Then we have for any Σ-terms t, t′ of sort Exp that t→ t′ implies btc� bt′c for
CRWL-program bP c. And for any e, e′ ∈ CE with e � e′ we have dee → de′e.

Proof. Obvious by Definitions 7 and 16 and by Proposition 2.

For the rewrite system of Proposition 3 the semantics of a given term e is:

{{e}} := {v ∈ TPVal | e→∗ v}

With this last definition we have translated the CRWL-setting into a rewrite
system which is comparable within our framework. It remains to be shown how
the equational deduction for our programs correspond to this rewrite system.
For this, we will show that [[e]]PVal in our setting is equivalent to {{e}}. The
following lemma translated from the classical setting will be useful.
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Lemma 1. Let P be a Σ-program, C a Σ-context, σ a Σ-substitution and s, t
Σ-terms. Then {{s}} = {{t}} implies {{C[s]}} = {{C[t]}} and {{σ(s)}} = {{σ(t)}}.

Proof. We proof context stability by induction on the structure of C. The base
case C = � holds trivially. There are the following inductive cases.
Case 1, C = et� or C = �t e: The only way to eliminate the t-symbol of the
context is by a reduction via one of the rules x t y → x or x t y → y. In both
cases we have C[s]→∗ v iff e→∗ v or s→∗ v which is equivalent by assumption
to C[t]→∗ v.
Case 2, C = c(e,�, e′): Since c is a constructor symbol we directly have C[t]→∗ v
iff C[t′]→∗ v.
Case 3, C = f(ei,�, e′j): By assumption all program variables are of sort PVal .
Therefore we have σ(f(pi+j+1))→ σ(r) for any rule with left hand side f(pi+j+1)
and right-hand side r iff σ(pi+1) is a term of sort PVal . This in turn means that
C[t] has to be reduced to C[v] for some v ∈ {{t}} before the rule can be applied.
Therefore we have C[s]→∗ v iff C[t]→∗ v as required.

For stability under substitution we show that generally s →∗ t implies
σ(s) →∗ σ(t). This claim follows by a simple induction on the length of the
derivation because for any term C[θ(t)] we have

σ(C[θ(t)]) = σ(C)[σ(θ(x))] = σ(C)[σ ◦ θ(x)]

by definitions of context and substitution. Thus, any step C[θ(l)] → C[θ(r)]
implies by definition the existence of a rewrite step σ(C[θ(l)])→ σ(C[θ(r)]). ut

Theorem 1. Let P be a Σ-Program, e ∈ TExp and v ∈ TPVal . Then we have
that {{e}} = [[e]]PVal , i.e., e→∗ v iff e w v.

Proof. (⇒): We first observe that a simple induction on the structure of an
arbitrary context C shows that a finite application of the laws (mon) and (hom)
derive C[s t t] w C[s] for arbitrary terms s, t. With this we show the claim by
induction on the length n of the derivation e→∗ v.
Base case n = 0: By the reflexivity rule (1) of Definition 6 we have v = v.
Employing a substitution of law (idem) we get v = v t v which yields v w v.
Inductive case, let the claim hold for t →∗ v. We show the claim for e →ρ t by
distinguishing the rule applied in that step.
Case 1, ρ is x t y → x or x t y → y. Then the step e → t is of the form
C[e1 t e2]→ C[ei] for suitable C, e1, e2 and i. By the above observation we can
derive, applying laws (mon), (hom)and maybe (comm) if i = 2, that C[e1t e2] w
C[ei].
Case 2, ρ is x → ⊥. Then e → t is of the form C[e′] → C[⊥] for a suitable
C,e′. An application of law (bot) yields C[e′] = C[⊥t e′] by congruence and the
observation thus entails e w C[⊥].
Case 3, ρ is derived from a program rule. Then the step e → t is of the form
C[σ(l)]→ C[σ(r)] and we have either l w r or l = r in P . In this case the claim
holds by substitutivity and congruence.

(⇐): We first note that xty →∗ x and xty →∗ y by xty → xt⊥ → x and
x t y → ⊥ t y → y. Now let s, t be Σ-terms such that s = t. We show that for
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any v ∈ TPVal that s→∗ v iff t→∗ v. This implies the claim because, especially,
e = v t e implies e →∗ v since v t e →∗ v. The according proof is by induction
on the equational derivation to obtain s = t from P ∪ PL(P ).
Base cases, s = t ∈ P ∪ PL(P ). For (idem), we have x t x→∗ x. For (comm), v
must be either x or y and we can derive both from xty and ytx. The analogue
argument holds for (assoc), with respect to the derivability of x, y, z. For (bot),
we have ⊥t x→ x. Finally, if s = t is a program rule l = r or l = r t l we have
by construction l→∗ r.
Inductive cases, let the claim hold for all equations in a set Γ derivable from
P ∪PL(P ). Then it also holds for an equation s = t derivable from Γ by applying
one of the rules We distinguish the rule applied to obtain the equation.
(1)-(3) Reflexivity, Symmetry, Transitivity: immediate from reflexivity, symme-
try and transitivity of iff.
(4) Congruence, there exist substitutions σ, σ′ : X → TΣ(Y ) such that for each
x ∈ X the equation ∀Y.σ(x) = σ′(x) is in Γ and there is a t′ such that s = σ(t′)
and t = σ′(t′): We show the claim by induction on the number n of variable
occurrences in t′. For the base case n = 0 the claim is immediate by reflexivity
of →∗. For the inductive step let the claim hold for all terms with n or less
variables, |Var(t′)| = n + 1 and x a variable in Var(t′). Then we can construct
a context C by replacing one occurrence of x by � and get t = C[σ(x)]. As
the induction hypothesis yields σ(x) →∗ v iff σ′(x) →∗ v, the claim holds by
Lemma 1.
(5) Substitutivity, there exists a substitution σ and terms u, u′ such that s =
σ(u), t = σ(u′) and ∀X.u = u′ ∈ Γ : the claim follows directly from the induction
hypothesis and Lemma 1. ut

5 Conclusion

We have applied order-sorted algebra to define a semantics for functional and
functional-logic programs. It is based on a linearely ordered set of four sorts,
the representation of programs as equations over an order-sorted signature and
the sorts of variables allowed in a program. As main result we have modeled
four import semantic notions in a uniform and succinct manner: call-by-value,
call-by-name and call-by-need with run-time choice and call-time choice.

Regarding related work we have shown that our modeling of call-by-need
with call-time choice corresponds to the classic setting [5]. That

With regard to run-time choice a recent investigation [10] has shown that in
the presence of complex data structures a compositional run-time choice seman-
tics does not correspond to standard (unsorted) rewriting, contrasting general
assumption. The illustrative example employs the definition f (S x) = x+x. For
this the expression f (S (1t0)) rewrites to 1 among other possibilities. However,
the expression f (S 1 t S 0) does not yield 1, in contrast. As both arguments,
S (1t0) and S 1 t S 0, represent the same constructor terms this can be seen as
a breech with compositionality [10]. To improve matters Rodŕıguez-Hortalá pro-
poses a plural semantics for run-time choice [10]. In our framework, the equality
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S (1t0)= S 1 t S 0 is established by law (hom). In contrast to plural semantics,
however, we do not identify arbitrary products, e.g., the terms C 0 1 t C 1 0

and C (0t1) (1t0) for a binary C. In the hierarchy containing known approaches
to run-time choice [10] our approach is, thus, indeed a novel intermediate step.

Several extensions of the presented framework could be future work. Firstly,
an introduction of (non-polymorphic) many-kinded sub-typing to our frame-
work causes no problems. First positive investigations give reason to hope that
exchanging partially ordered sort sets with quasi-ordered ones could also incor-
porate parametric polymorphism. A second extension could be the formulation
and investigation of laws for encapsulated search [3, 7]. And, lastly, we plan to
generalize the hitherto framework to an algebraic semantics, i.e., in such a way
that a semantics is given not only to expressions over the programs but also to the
single functions introduced within the scope of a program. Standard approaches
to lattice completion seem to be a suitable means to obtain this goal.
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Abstract. Recently, it has been demonstrated the effective application
of logic programming to problems in program analysis. Using a simple
relational query language, like Datalog, complex interprocedural anal-
yses involving dynamically created objects can be expressed in just a
few lines. By exploiting the main features of a term rewriting system like
Maude, we aim at transforming Datalog programs into efficient rewrite
systems. The transformation is proved to be sound and complete. A pro-
totype has been implemented and applied to some real-world Datalog-
based analyses. Experimental results show that solving a Datalog query
using rewriting logic is comparable to state-of-the-art Datalog solvers.

1 Introduction

Datalog [1] is a simple relational query language which permits to describe, in
an intuitive way, complex interprocedural program analyses involving dynami-
cally created objects. The main advantage of formulating data-flow analyses as
a Datalog query is that analyses that take hundreds of lines of code in a tra-
ditional language can be expressed in a few lines of Datalog [2]. In real-world
problems, the Datalog rules encoding a particular analysis must be solved
generally under the huge set of Datalog facts that are automatically extracted
from the analyzed program. In this context, all program updates, like pointer up-
dates, might potentially be inter-related, leading to an exhaustive computation
of all results. An important number of optimization techniques for Datalog has
been designed and studied extensively in program analysis, logic programming,
and deductive databases [3, 4].

The aim of this paper is to provide efficient Datalog query answering in
Rewriting Logic [5], a very general logical and semantical framework efficiently
implemented in the high-level programming language Maude [6]. Our motiva-
tion for using Rewriting Logic is to overcome the difficulty to handle metapro-
gramming features such as reflection in traditional analysis frameworks [7]. Ac-
tually, tracking reflective methods invocations requires not just tracking object
references through variables but actually tracking method values and method

? This work has been partially supported by the eu (feder), the Spanish mec/micinn
under grant tin 2007-68093-C02, the Generalitat Valenciana under grant Emergentes
gv/2009/024, and the Universidad Politécnica de Valencia under grant paid-06-07.



name strings. We consider it a challenge to investigate the interaction of static
analysis with metaprogramming frameworks. An additional goal of this work is
to evaluate if Maude is able to process a sizable number of equations that come
from real-life problems, like those from static analysis problems.

In the related literature, the solution for a Datalog query is classically con-
structed following a bottom-up approach, thus not taking advantage of the in-
formation in the query until the model has been constructed [8]. On the con-
trary, the typical logic programming interpreter would produce the output in
a top-down fashion by reasoning backwards from the query. Between these two
extremes, there is a whole spectrum of evaluation strategies [4, 9, 10]. While
bottom-up computation may be very inefficient, the top-down approach is prone
to infinite computations. In this work, we follow a top-down approach equipped
with a loop check in order to avoid infinite computations, as in [11].

Logic and functional programming are both instances of rule-based, declar-
ative programming and hence it is not surprising that the relationship between
them has been studied. However, the operational principle differs: logic pro-
gramming is based on resolution whereas functional programs are executed by
term rewriting. There exist many proposals for transforming logic programs into
rewriting theories [12–15]. These transformations aim at reusing the infrastruc-
ture of term rewriting systems to run the (transformed) logic program while
preserving the intended observable behavior (e.g. termination, success set, com-
puted answers, etc). Traditionally, translations of logic programs into functional
programs are based on imposing an input/output relation among the parameters
of the original program [15]. However, one distinguished feature of Datalog pro-
grams burdening the transformation is that predicate arguments are not moded,
meaning that they can be used both as input or output parameters.

One recent transformation that does not impose an input/output behavior
among parameters was presented in [14]. The authors defined a transformation
from definite logic programs into (infinitary) term rewriting for the termination
analysis of logic programs. Contrary to our approach, the transformation of [14]
is not concerned with preserving the computed answers, but only the termination
behavior. Moreover, [14] does not tackle the problem of efficiently encoding logic
(Datalog) programs containing a huge amount of facts in a rewriting-based
infrastructure such as Maude. After exploring the impact of different imple-
mentation choices (equations vs rules, extra conditions, etc.) in our working
scenario, i.e., heavy data load (sets of hundreds of facts) together with rela-
tively few clauses encoding the analysis to perform, in this work we present an
equation-based transformation that leads to efficient Maude programs.

In previous work [16], we developed a Datalog query solving technique
based on Boolean Equation Systems (Bess) [17]. Although the correspondence
between answering a Datalog query and solving a Bes can be established
naturally, the main limitation of this approach is in the difficulty to combine
indexed and linked data structures in order to schedule suitable optimizations
which ensure that only useful combination of facts are simultaneously considered.
In this paper, we stay at a higher level in the sense that we transform a high-
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level Datalog program into another high-level Maude program. The goal is
to take advantage of the flexibility and versatility of Maude in order to achieve
scalability without losing declaratively.

In Section 2, we present our running example: a program analysis expressed
as a Datalog program that we will use to illustrate the general transformation
from a Datalog program into a Maude program. In Section 3, we describe the
transformation of the example. Section 4 formalizes the general process and prove
its correctness and completeness. Section 5 shows experimental results obtained
with realistic examples and compares our Maude implementation to state-of-
the-art Datalog solvers. We conclude and discuss future work in Section 6.

2 A program analysis written as a Datalog program

Datalog is a relational language using declarative clauses to both describe and
query a deductive database. A Datalog clause is a function-free Horn clause
over a finite alphabet of predicate symbols (e.g., relation names or arithmetic
predicates, such as <) whose arguments are either variables or constant symbols.
A Datalog program R is a finite set of Datalog clauses [8].

Definition 1 (Syntax of Rules). Let P be a set of predicate symbols, V be
a finite set of variable symbols, and C a set of constant symbols. A Datalog
clause r defined over a finite alphabet P ⊆ P and arguments from V ∪C, V ⊆ V,
C ⊆ C, has the following syntax:

p0(a0,1, . . . , a0,n0) : − p1(a1,1, . . . , a1,n1), . . . , pm(am,1, . . . , am,nm
).

where m ≥ 0, and each pi is a predicate symbol of arity ni with arguments
ai,j ∈ V ∪ C (j ∈ [1..ni]).

The atom p0(a0,1, . . . , a0,n0) in the left-hand side of the clause is the clause’s
head, where p0 is not arithmetic. The finite conjunction of subgoals in the right-
hand side of the clause is the clause’s body, i.e., a sequence of atoms that contain
all variables appearing in the head. Following logic programming terminology,
a clause with empty body (m = 0) is called a fact. A clause with empty head
and m > 0 is called a query, and � denotes the empty clause. A syntactic
object (argument, atom, or clause) that contains no variables is called ground.
Moreover, an existentially quantified variable is a variable that appears in the
body of a clause and does not occur in its head. The variables appearing in a
query are called output variables.1

Given a Datalog program R and a query q, we follow a top-down approach
and use SLD-resolution to compute the set of answers of q in R. Given the
successful derivation D ≡ q ⇒θ1

SLD q1 ⇒θ2
SLD . . .⇒θn

SLD �, the answer computed
by D is θ1θ2 . . . θn restricted to the variables occurring in q.

1 In the sequel of the paper, Datalog programs are considered to be as defined in
this section.
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Let us now introduce the running Datalog program example that we use
along the paper. This program defines a simple context-insensitive inclusion-
based pointer analysis for an object-oriented language such as Java. This analy-
sis is defined by the following predicate vP/2 representing the fact that a program
variable points directly (via vP0/2) or indirectly (via a/2) to a given position in
the heap. The second clause states that Var1 points to Heap if Var2 points to
Heap and Var2 is assigned to Var1:

vP(Var,Heap) :- vP0(Var,Heap).

vP(Var1,Heap) :- a(Var1,Var2),vP(Var2,Heap).

The predicates a/2 and vP0/2 are defined extensionally by a number of facts that
are automatically extracted from the original program being statically analyzed.
The intuition is that the a/2 predicate represents a direct assignment from a
program variable to another variable, whereas vP0/2 represents newly created
pointers within the analyzed (object-oriented) program from a program variable
to the heap. The following code excerpt contains a number of Datalog facts
complementing the above pointer analysis description for a particular object-
oriented example program.

a(v1,v2).

a(v1,v3).

vP0(v2,h5).

vP0(v3,h4).

In the considered Datalog analysis program, a query typically consists in com-
puting the objects in the heap pointed by a specific variable. We write such a
query as ?- vP(v1,Heap).. The expected outcome of this query is the set of
all possible answers, i.e., the set of substitutions mapping the variable Heap to
constants satisfying the query. In the example, the set of computed answers for
the considered query is {{Heap/h4},{Heap/h5}}.

Another possible query is ?- vP(Var,h5)., where h5 stands for a heap ob-
ject. The solver should compute which are the variables in the analyzed program
that can point to the object h5.

Similarly to [14], our goal is to define a mode-independent transformation
for (Datalog) logic programs in order to keep the possibility of running both
kinds of queries. Since variables in rewriting logic are input-only parameters, we
cannot use them to encode logic variables of Datalog. We follow the standard
approach based on defining a ground representation for logic variables [6, 18].

3 From Datalog to Maude

As explained above, we are interested in computing by rewriting all answers for
a given query. A näıve approach is to translate Datalog clauses into Maude
rules, similarly to [14], and then use the search2 command of Maude in order
to mimic all possible executions of the original Datalog program. However, in
the context of program analysis, this approach results in poor performance.
2 Intuitively, search t → t′ explores the whole rewriting space from the term t to any

other terms that match t′ [6].
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In this section, we first formulate a suitable representation in Maude of the
Datalog computed answers. Then, we informally introduce the transformation
by means of the running example. Section 4 formalizes the translation procedure
and proves its correctness.

3.1 Answers representation

Let us first introduce our representation of variables and constants of a Datalog
program as ground terms of a given sort in Maude. We define the sorts Variable
and Constant to specifically represent in Maude the variables and constants of
the original Datalog program, whereas the sort Term (resp. TermList) repre-
sents Datalog terms (resp. lists of terms, built by simple juxtaposition):

sorts Variable Constant Term TermList .

subsort Variable Constant < Term .

subsort Term < TermList .

op : TermList TermList -> TermList [assoc] .

op nil : -> TermList .

For instance, T1 T2 represents the list of terms T1 and T2. In order to construct
the elements of the Variable and Constant sorts, we introduce two construc-
tor symbols: Datalog constants are represented as Maude Quoted Identifiers
(Qids), whereas logical variables are encoded in Maude by means of the con-
structor symbol v. These constructor symbols are specified in Maude as follows:

subsort Qid < Constant . --- Every Qid is a Constant

op v : Qid -> Variable [ctor] . --- v(q) is a Variable if q is a Qid

op v : Term Term -> Variable [ctor] .

The last line of the above code excerpt allows us to build variable terms of the
form v(T1,T2) where both T1 and T2 are Terms. This is used to ensure that the
ground representation in Maude for existentially quantified variables appearing
in the body of Datalog clauses is unique to the whole Maude program.

Having ground terms representing variables, we still lack a way to collect the
answers for an output variable. In our formulation, answers are stored within
the term representing the ongoing partial computation of the Maude program.
Thus, we represent a (partial) answer for the original Datalog query as a se-
quence of equations (called answer constraint) that represents the substitution
of (logical) variables by (logical) constants computed during the program execu-
tion. We define the sort Constraint representing a single answer for a Datalog
query, but we also define a hierarchy of subsorts (e.g., the sort FConstraint, at
the bottom of the hierarchy, represents inconsistent solutions) that allows us to
identify the inconsistent as well as the trivial constraints (Cte = Cte) whenever
possible. This hierarchy allows us to simplify constraints as soon as possible and
to improve performance. The resulting Maude program is as follows:

sorts Constraint EmptyConstraint NonEmptyConstraint TConstraint FConstraint .

subsort EmptyConstraint NonEmptyConstraint < Constraint .

subsort TConstraint FConstraint < EmptyConstraint .
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op = : Term Constant -> NonEmptyConstraint .

op T : -> TConstraint .

op F : -> FConstraint .

op , : Constraint Constraint -> Constraint [assoc comm id: T] .

op , : FConstraint Constraint -> FConstraint [ditto] .

op , : TConstraint TConstraint -> TConstraint [ditto] .

op , : NonEmptyConstraint TConstraint -> NonEmptyConstraint [ditto] .

op , : NonEmptyConstraint FConstraint -> FConstraint [ditto] .

op , : NonEmptyConstraint NonEmptyConstraint -> NonEmptyConstraint [ditto] .

var NEC : NonEmptyConstraint .

var V : Variable .

var Cte Cte1 Cte2 : Constant .

eq (Cte = Cte) = T . --- Simplification

eq (Cte1 = Cte2) = F [owise] . --- Unsatisfiability

eq NEC,NEC = NEC . --- Idempotence

eq F,NEC = F . --- Zero element

eq F,F = F . --- Simplification

eq (V = Cte1),(V = Cte2) = F [owise] .--- Unsatisfiability

Note that the conjunction operator , has identity element T and obeys the
laws of associativity and commutativity. We express the idempotence property
of the operator by a specific equation on variables from the NonEmptyConstraint
subsort NEC. A query reduced to T represents a successful computation.

Since equations in Maude are run deterministically, all the non-determinism
of the original Datalog program has to be embedded into the carried constraints
themselves. This means that we need to carry on not only a single answer, but
all the possible (partial) answers at a given execution point. To this end, we
introduce the notion of set of answer constraints, and implement in Maude a
new sort called ConstraintSet:

sorts ConstraintSet EmptyConstraintSet NonEmptyConstraintSet .

subsort EmptyConstraintSet NonEmptyConstraintSet < ConstraintSet .

subsort NonEmptyConstraint TConstraint < NonEmptyConstraintSet .

subsort FConstraint < EmptyConstraintSet .

op ; : ConstraintSet ConstraintSet -> ConstraintSet [assoc comm id: F] .

op ; : NonEmptyConstraintSet ConstraintSet -> NonEmptyConstraintSet [assoc comm id: F] .

var NECS : NonEmptyConstraintSet .

eq NECS ; NECS = NECS . --- Idempotence

It is easy to grasp the intuition behind the different sorts and subsort relations in
the above fragment of Maude code. The operator ; represents the disjunction
of constraints. The associativity, commutativity and (the existence of an) iden-
tity element properties of ; can be easily expressed by using ACU attributes
in Maude, thus simplifying the equational specification and achieving better
efficiency. We express the idempotence property of the operator ; by a specific
equation on variables from the NonEmptyConstraintSet subsort.

6



In order to incrementally add new constraints along the program execution,
we define the composition operator x as follows:

op x : ConstraintSet ConstraintSet -> ConstraintSet [assoc] .

var CS : ConstraintSet .

var NECS1 NECS2 : NonEmptyConstraintSet .

var NEC NEC1 NEC2 : NonEmptyConstraint .

eq F x CS = F . --- L-Zero element

eq CS x F = F . --- R-Zero element

eq F x F = F . --- Double-Zero

eq NEC1 x (NEC2 ; CS) = (NEC1 , NEC2) ; (NEC1 x CS) . --- L-Distributive

eq (NEC ; NECS1) x NECS2 = (NEC x NECS2) ; (NECS1 x NECS2) . --- R-Distributive

In order to keep information consistent, some simplification equations are auto-
matically applied. These equations make every inconsistent constraint collapse
into a F value, and trivial constraints are simplified.

3.2 A glimpse of the transformation

In order to mimic the execution order of the subgoals in the body of the Datalog
clauses, the first näıve idea is trying to translate each Datalog clause into a
conditional equation. The execution of these kinds of equations suffers an impor-
tant penalty within the rewriting machinery of Maude that dramatically slows
down the overall performance of the computation. In order to obtain better per-
formance, we disregard conditional equations in favor of non-conditional ones
and impose an evaluation order by means of some auxiliary unraveling [19] func-
tions that stepwisely evaluate each call and propagate the (partially) computed
information. We rely on pattern matching to ensure that a call is executed only
when the previous one has been solved.

For each Datalog predicate, we introduce one equation representing the
disjunction of the possible answers delivered by all the clauses defining that
predicate. In the case of predicates defined by facts, each fact can be represented
as a Constraint term in our setting. Thus, we transform the set of facts defining
a particular predicate as a single equation whose rhs consists of the disjunction
of Constraint terms representing each particular Datalog fact. Considering
the running example, facts are transformed to:
eq a(T1,T2) = ((T1 = ’v1) , (T2 = ’v2)) ; ((T1 = ’v1) , (T2 = ’v3)) .

eq vP0(T1,T2) = ((T1 = ’v2) , (T2 = ’h5)) ; ((T1 = ’v3) , (T2 = ’h4)) .

In the case of predicates defined by clauses with non-empty body, we generate
as many auxiliary functions as different clauses define the Datalog predicate.
For instance, the answers for vP/2 in the example are the disjunction of the
answers of functions vPc1 and vPc2,3 representing the calls to the first and
second Datalog clauses of the running example, respectively:

eq vP(T1,T2) = vPc1(T1,T2) ; vPc2(T1,T2) .

3 The c in vPc1 and vPc2 stands for clause.
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The specification for the first clause vPc1 is given by

eq vPc1(T1,T2) = vP0(T1,T2) .

The transformation for the second clause of the program, represented by vPc2,
is a bit more elaborated since, first, it contains more than one subgoal, thus we
need an auxiliary function to impose the execution order. Moreover, it contains
an existentially quantified variable (not appearing in the head of the clause) that
carries information from one subgoal to the other.
eq vPc2(T1,T2) = vPc2s2(a(T1,v(T1,T2)), T1 T2) .

eq vPc2s2(((v(T1,T2) = Cte) , C) ; CS, T1 T2) =

(vP(Cte,T1 T2) x ((v(T1,T2) = Cte) , C)) ; vPc2s2(CS,T1 T2) .

eq vPc2s2(F,T1 T2) = F .

As one can observe, vPc2 calls to vPc2s2, whose first argument represents the
execution of the first subgoal and the second one is the list of parameters in the
head of the original clause. The pattern in the first argument in the lhs of the
equation for vPc2s2 forces to compute the (partial) answers resulting from the
resolution of a(T1,v(T1,T2)) first to proceed. The use of the term v(T1,T2),
representing the existentially quantified variable Var2 of the original Datalog
program, in the pattern of the specification of the equation vPc2s2 is the key
for carrying the computed information from one subgoal to the subsequent sub-
goals where the variable occurs. The idea is that vPc2s2 is defined to receive
the value of the shared variable on the pattern ((V = Cte) , C) ; CS). The
recursion over vPc2s2 is needed because its first argument represents all the
possible answers computed by a(T1,v(T1,T2)), thus we recursively compute
each solution and use the constraints composition operator previously defined
to combine them.

In order to execute a query in the transformed program, we call the Maude
reduce command. The query that computes all positions to which each variable
can point-to can be written in Maude as follows:

reduce vP(v(’variable),v(’heap)) .

The answers to this query are shown below. The first sentence specifies the term
which has been reduced. The second sentence shows the number of rewrites and
the execution time that Maude invested to perform the reduction. The last
sentence, written in several lines for the sake of readability, shows the result of
the reduction together with its type.

reduce in ANALYSIS : vP(v(’v), v(’h)) .

rewrites: 39 in 0ms cpu5 (0ms real) ( rewrites/second)

result NonEmptyConstraintSet:

((v(’h) = ’h4),v(’v) = ’v3) ;

((v(’h) = ’h5),v(’v) = ’v2) ;

((v(’h) = ’h4),(v(’v) = ’v1),v(v(’v), v(’h)) = ’v3) ;

(v(’h) = ’h5),(v(’v) = ’v1),v(v(’v), v(’h)) = ’v2

As it was expected, four answers have been returned: the first two are obtained
by the auxiliary function vPc1, whereas the other two are computed by the
function vPc2.
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4 Formal definition of the transformation

In this section, we first give a formal description of the new transformation from
a Datalog program into a Maude program. Then, in Section 4.2 we prove the
correctness and completeness of the transformation.

4.1 The transformation

Let P be a Datalog program defining predicate symbols p1 . . . pn. Before de-
scribing the transformation process, we introduce some auxiliary notations. |pi|
is the number of facts or clauses defining the predicate symbol pi. Following the
Datalog standard, we assume without loss of generality that a predicate pi is
defined only by facts, or only by clauses [8]. The arity of pi is ari.

Let us start by describing the case when predicates are defined by facts.
We transform the whole set of facts defining a given predicate symbol pi into
a single equation by means of a disjunction of answer constraints. Formally, for
each pi with 1 ≤ i ≤ n that is defined in the Datalog program only by facts,
we write the following snippet of Maude code, where the symbol ci,j,k is the
k-th argument of the j-th fact defining the predicate symbol pi:

var Ti,1 ... Ti,ari
: Term .

eq pi(Ti,1, ... ,Ti,ari
) = (Ti,1 = ci,1,1, ... , Ti,ari

= ci,1,ari
) ; ...

; (Ti,1 = ci,|pi|,1, ... , Ti,ari
= ci,|pi|,ari

) .

Similarly, our transformation for Datalog clauses with non-empty body
combines, in a single equation, the disjunction of the calls to all functions rep-
resenting the different clauses for the considered predicate symbol pi. For each
pi with 1 ≤ i ≤ m with non empty body, we have the following Maude piece of
code:
var Ti,1 ... Ti,ari : Term .
eq pi(Ti,1, ... ,Ti,ari

) = pi,1(Ti,1, ... ,Ti,ari
) ; ...

; pi,|pi|(Ti,1,...,Ti,ari
) .

Each call pi,j with 1 ≤ j ≤ |pi| produces the answers computed by the j-th
clause of the predicate symbol. Now we need to define how each of these clauses
is transformed. Notation τai,j,s,k denotes the name of the variable or constant
symbol appearing in the k-th argument of the s-th subgoal in the j-th clause
defining the i-th predicate of the original Datalog program. When s = 0 then
the function refers to the arguments in the head of the clause.

Let us start by considering the case when the body has just one subgoal. We
define the function τpi,j,s that returns the predicate symbol appearing in the s-th
subgoal of the j-th clause defining the i-th predicate in the Datalog program.
For each clause having just a subgoal, we get the following transformation:
eq pi,j(τai,j,0,1,...,τ

a
i,j,0,ari

) = τpi,j,1(τ
a
i,j,1,1, . . . , τ

a
i,j,1,ar l

) .

In the case where more than one subgoal appears in the body of a clause,
we want to impose a left-to-right evaluation strategy. We use auxiliary functions
defined by patterns to force such an execution order. In particular, we set that a
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subgoal cannot be invoked until the variables in its arguments that also occur in
previous subgoals have been instantiated. We call these variables linked variables.

Let us first introduce some definitions and functions that will be used in our
transformation.

Definition 2 (linked variable). A variable is called linked variable iff it does
not occur in the head of a Datalog clause, and occurs in two or more subgoals
of the clause’s body.

Definition 3 (function linked). Let C be a Datalog clause. Then the func-
tion linked(C) is the function that returns the list of pairs containing in the first
component a linked variable, and in the second component the list of positions
where such a variable occurs in the body of the clause4.

Example 1. For example, given the Datalog clause
C = p(X1,X2) :- p1(X1,X3), p2(X3,X4), p3(X4,X2).

we have that
linked(C) = [(X3,[1.2,2.1]),(X4,[2.2,3.1])]

Now we define the notion of relevant linked variables for a given subgoal,
namely the linked variables of a subgoal appearing also in some previous subgoal.

Definition 4 (Relevant linked variables). Given a clause C and an integer
number n, we define the function relevant that returns the variables that are
common for the n-th subgoal and some previous subgoal:

relevant(n,C)={X|(X,LX)∈ linked(C), and there existsm<n, ∃j s.t.m.j∈LX}

Note that, similarly to [14], we are not marking the input/output positions
of predicates, as required in more traditional transformations. We are just iden-
tifying which are the variables whose values must be propagated for evaluating
the subsequent subgoals following the evaluation strategy.

Now we are ready to address the problem of transforming a clause with more
than one subgoal (and maybe existentially quantified variables) into a set of
equations. Intuitively, the main function initially calls to an auxiliary function
that undertakes the execution of the first subgoal. We have as many auxiliary
functions as subgoals in the original clause, and in the rhs’s of the auxiliary
functions, the execution order of the successive subgoals is implictly controlled
by passing the results of each subgoal as a parameter to the subsequent function.

Let the function pi,j generate the solutions calculated by the j-th clause of the
predicate symbol pi. We state that psi,j,s represents the auxiliary function cor-
responding to the s-th subgoal of the j-th clause defining the predicate pi. Then,
for each clause we have the following translation, where the variables X1...XN
of each equation are calculated by the function relevant(k,linked(clause(i,j)))5

and transformed into the corresponding Maude terms.
4 Positions extend to goals in the natural way.
5 clause(i,j) represents the j-th Datalog clause defining the predicate symbol pi.
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The first equation reduces the considered Datalog predicate to a call to
the first auxiliary function that calculates the (partial) answers for the second
subgoal, first computing the answers from the first subgoal τpi,j,1 in its first argu-
ment. The second argument of the equations represents the list of terms in the
initial predicate call that, together with the information retrieved from Defini-
tions 3 and 4, allow us to correctly build the patterns and function calls during
the transformation.
eq pi,j(τ

a
i,j,0,1,...,τ

a
i,j,0,ari

) = psi,j,2(τ
p
i,j,1(τ

a
i,j,1,1,...,τ

a
i,j,1,r), τa

i,j,0,1 ... τa
i,j,0,ari

) .

where r is the arity of the predicate τpi,j,1. Then, for each auxiliary function, first
we declare as many constants as relevant variables the given subgoal has. The
left hand side of the equation is defined with patterns that adjust the relevant
variables to the values already computed by the execution of a previous subgoal.
Note that we may have more assignments in the constraint, represented by C, and
that we may have more possible solutions in CS. The auxiliary equation ps’i,j,s
takes each possible (partial) solution and combines it with the solutions given
by the s-th subgoal in the clause (whose predicate symbol is τpi,j,s). Note that we
propagate the instantiation of the relevant variables by means of a substitution.
var C1 ...CN : Constant .

var NECS : NonEmptyConstraintSet .

eq psi,j,s(NECS, T1...Tari) = psi,j,s+1(ps’i,j,s(NECS, T1...Tari), T1...Tari) .

eq psi,j,s(F , LL) = F .

eq ps’i,j,s(((X1=C1,...,XN=CN, C) ; CS), T1...Tari) =

((τp
i,j,s(τ

v
i,j,s,1,...,τ

v
i,j,s,r)[X1\C1,...,XN\CN]) x (X1=C1,...,XN=CN, C)) ;

ps’i,j,s(CS, T1...Tari) .

eq ps’i,j,s((T ; CS), T1...Tari) =

τp
i,j,s(τ

v
i,j,s,1,...,τ

v
i,j,s,r) ; ps’i,j,s(CS, T1...Tari) .

eq ps’i,j,s(F , LL) = F .

The equation for the last subgoal in the clause is slightly different, since we
need not invoke the following auxiliary function. Assuming that g denotes the
number of subgoals in a clause, we define
eq psi,j,g(((X1=C1,...,XN=CN, C) ; CS) , T1...Tari) =

((τp
i,j,g(τ

v
i,j,g,1,...,τ

v
i,j,g,r)[X1\C1,...,XN\CN]) x (X1=C1,...,XN=CN, C)) ;

psi,j,g(CS , T1...Tari) .

eq psi,j,g((T ; CS) , T1...Tari) =

τp
i,j,g(τ

v
i,j,g,1,...,τ

v
i,j,g,r) ; psi,j,g(CS , T1...Tari) .

eq psi,j,g(F , LL) = F .

Finally, we define the transformation for the Datalog query q(X1, . . . , Xn)
where Xi, 1 ≤ i ≤ n are Datalog variables or constants. The Maude encoding
of the query is q(τ q1,...,τ

q
n) where τ qi , 1 ≤ i ≤ n is the transformation of the

corresponding Xi.

4.2 Correctness of the transformation

We have defined a transformation from Datalog programs specifying static
analyses into Maude programs in such a way that the normal form computed
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for a term of the ConstraintSet sort represents the set of computed answers
for a query of the original Datalog program. In this section we show that the
transformation is sound and complete w.r.t. computed answers.

We first introduce some notation. Let CS be a ConstraintSet of the form
C1 ; C2 ; ...; Cn where each Ci, i ≥ 1 is a Constraint in normal form (C1

= Cte1,...,Cm = Ctem), and V be a list of variables. We write Ci|V to the
restriction of the constraint Ci to the variables in V . We extend the notion to
sets of constraints in the natural way, and denote it as CS|V . Given two terms t
and t′, we write t →∗S t′ when there exists a rewriting sequence from t to t′ in
the Maude program S. Also, var(t) is the set of variables occurring in t.

Now we define a suitable notion of (rewriting) answer constraint :

Definition 5 (Answer Constraint Set). Given a Maude program S as de-
scribed in this work and a input term t, we say that the answer constraint set
computed by t→∗S CS is CS|var(t).

There is a natural isomorphism between the equational constraint C
and an idempotent substitution θ = {X1/C1, X2/C2, . . . , Xn/Cn}, given by:
C is equivalent to θ iff (C⇔ θ̂), where θ̂ is the equational representation of θ. By
abuse, given a disjunction CS of equational constraints and a set of idempotent
substitutions (Θ = ∪ni=1θi), we define Θ ≡ CS iff CS⇔

∨n
i=1 θ̂i

Next we prove that for a given query and Datalog program, each answer
constraint set computed for the corresponding input term in the transformed
Maude program is equivalent to the set of computed answers of the original
Datalog program. The proof of this result is given in [21].

Theorem 1 (Correctness and completeness). Consider a Datalog pro-
gram P together with the query q. Let T (P ) be the corresponding, transformed
Maude program, and Tg(q) be the corresponding, transformed input term. Let
Θ be the set of computed answers of P for the query q, and CS|var(Tg(q)) be the
answer constraint set computed by Tg(q)→∗T (P ) CS. Then, Θ ≡ CS|var(Tg(q)).

5 Experimental results

This section reports on the performance of our prototype implementing the trans-
formation. First, we compare the efficiency of our implementation with respect
to a näıve transformation to rewriting logic documented in [20]; then, we evalu-
ate the performance of our prototype by comparing it to three state-of-the-art
Datalog solvers.

All experiments were conducted using Java JRE 1.6.0, Joeq version
20030812, on a Mobile AMD Athlon XP2000+ (1.66GHz) with 700 Megabytes
of RAM, running Ubuntu Linux 8.04.

5.1 Comparison w.r.t. the previous rewriting-based versions

We implemented several versions of transformation from Datalog programs
to Maude programs before the one presented in this paper [20]. The first at-
tempt consisted on a transformation based on a one-to-one correspondence of

12



Datalog rules and Maude conditional rules. Then we tried to get rid of all
the non-determinism introduced by conditional equations and rules. In the fol-
lowing, we briefly present the results obtained by using the rule-based approach,
the equational-based approach, and the equational-based approach improved by
using the memoization capability of Maude [6]. Maude is able to store each
call to a given function (in the running example vP(X,Y)) together with its nor-
mal form. Thus, when Maude finds a memoized call it won’t reduce it but just
replaces it with its normal form, saving a great amount of rewrites.

Table 1 shows the resolution times of the three selected versions. The sets
of initial Datalog facts (a/2 and vP0/2) are extracted by the Joeq compiler
from a Java program (with 374 lines of code) implementing a tree visitor. The
Datalog clauses are those of our running example: a simple context-insensitive
inclusion-based pointer analysis. The evaluated query is ?- vP(Var,Heap)., i.e.,
all possible answers that satisfy the predicate vP/2.

Table 1. Number of initial facts (a/2 and vP0/2) and computed answers (vP/2), and
resolution time (in seconds) for the three implementations.

a/2 vP0/2 VP/2 rule-based equational equational+memo

100 100 ? 6.00 0.67 0.02
150 150 ? 20.59 2.23 0.04
200 200 ? 48.48 6.11 0.10
403 399 ? 382.16 77.33 0.47
807 1669 ? 4715.77 1098.64 3.52

The results obtained with the equational implementation are an order of
magnitude better than those obtained by the näıve transformation based on
rules. These results are due to the fact that backtracking operations associated
to the non-determinism of rules and conditional equations and rules penalize the
näıve version. We can also observe that using memoization enables us to gain
another order of magnitude in execution time with respect to the basic equational
implementation. These results confirm that the equational implementation fits
our stated purpose, namely program analysis, and that it is likely to provide a
useful way forward, compared to other implementations of Datalog.

5.2 Comparison w.r.t. other state-of-the-art Datalog solvers

The same sets of initial facts were used to compare our prototype (the equational-
based version with memoization) with three state-of-the-art Datalog solvers,
namely Xsb 3.2 6, Datalog 1.4 7, and Iris 0.58 8. Average resolution times of
three runs for each solver are shown in Figure 1.

In order to evaluate the performance of our implementation with respect to
the other Datalog solvers, only resolution times are presented in Figure 1. This
6 http://xsb.sourceforge.net
7 http://datalog.sourceforge.net
8 http://iris-reasoner.sourceforge.net
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Fig. 1. Average resolution times of four Datalog solvers (logarithmic time).

means that initialization operations, like loading and compilation, are not taken
into account in the results. Although being slower than Xsb or Iris, from our
figures we can conclude that Maude behaves similarly to optimized deductive
database systems, like Datalog 1.4, which is implemented in C. This validates
that Maude is able to process, under a good transformation such as the equa-
tional implementation extended with memoization, a large number of equations
extracted from real programs in the context of static program analysis. Our
rewrite system could be even more enhanced with the incorporation of efficient
Bdd representation [22] of the input data.

6 Conclusion

In this work, we have defined and implemented an efficient transformation from
definite Datalog programs into Maude programs in the context of Datalog-
based static analysis. We have formalized and proved the correctness of the trans-
formation, and compared the implementation to standard Datalog solvers. We
evaluated that Maude was able to process a sizable number of equations, that
come from real-life problems, like those from the static analysis of programs.

As a future work, we plan to use a more compact representation of the facts,
such as Bdds, in order to minimize the significant loading time and size of the
manipulated term in the rewriting system. We also plan to explore the impact of
more sophisticated optimization techniques like tail-recursion or memoization (at
the logical level) and other specific Datalog optimizations [23]. Our final goal
is to explore the impact of using the metalevel capabilities of rewriting logic for
the analysis of object-oriented programs that include metaprogramming features
such as reflection.

References

1. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, Vol. I and II,
The New Technologies. Computer Science Press (1989)

2. Whaley, J., Avots, D., Carbin, M., Lam, M.: Using Datalog with Binary Decision
Diagrams for Program Analysis. In: Proc. of 3rd Asian Symp. on Programming
Lang. and Systems (APLAS’05). Vol. 3780 of LNCS, Springer-Verlag (2005) 97-118

14



3. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley
(1995)

4. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer-
Verlag (1990)

5. Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency.
Theoretical Computer Science 96(1) (1992) 73–155

6. Clavel, M., Durán, F., Ejer, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude – A High-Performance Logical Framework. Vol. 4350 of
LNCS. Springer-Verlag (2007)

7. Livshits, B., Whaley, J., Lam, M.: Reflection Analysis for Java. In: Proc. of the 3rd
Asian Symp. on Programming Lang. and Systems (APLAS’05). (2005) 139–160

8. Leeuwen, J., ed.: Formal Models and Semantics. Volume B. Elsevier, The MIT
Press (1990)

9. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic Sets and Other Strange
Ways to Implement Logic Programs. In: Proc. of the 5th ACM SIGACT-SIGMOD
Symp. on Principles of Database Systems (PODS’86), ACM Press (1986) 1–15

10. Vieille, L.: Recursive Axioms in Deductive Databases: The Query/Subquery Ap-
proach. In: Proc. of the 1st Int’l Conf. on Expert Database Systems (EDS’86).
(1986) 253–267

11. Sagonas, K.F., Swift, T., Warren, D.S.: XSB as an Efficient Deductive Database
Engine. In: Proc. of the 1994 ACM SIGMOD Int’l Conf. on Management of Data,
ACM Press (1994) 442–453

12. Emden, M., Lloyd, J.: A logical reconstruction of Prolog II. Journal on Logic
Programming 1 (1984)

13. Marchiori, M.: Logic Programs as Term Rewriting Systems. In: Proc. of the 4th
Int’l Conf. on Algebraic and Logic Programming (ALP’94. Vol. 850 of LNCS.,
Springer-Verlag (1994) 223– 241

14. Schneider-Kamp, P., Giesl, J., Serebrenik, A., Thiemann, R.: Automated Termi-
nation Analysis for Logic Programs by Term Rewriting. In: Proc. of the 16th Int’l
Symp. on Logic-Based Program Synthesis and Transformation (LOPSTR’06). Vol.
4407 of LNCS., Springer-Verlag (2007) 177–193

15. Reddy, U.: Transformation of Logic Programs into Functional Programs. In: Proc.
of the Symp. on Logic Programming (SLP’84), IEEE Computer Society Press
(1984) 187–197
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21. Alpuente, M., Feliú, M., Joubert, C., Villanueva, A.: Defining Datalog in
Rewriting Logic. Technical Report DSIC, Universidad Politécnica de Valencia.
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