ODBC/C

Para incorporar a ligação ODBC entre um programa e um SGBD é necessário incluir uma biblioteca apropriada.

- ▶ recebe a chamada ODBC API do programa;
- comunica com o servidor (SGBD);
- recebe o resultado que é disponibilizado ao programa.

```
#include <sql.h>
#include <sqlext.h>
gcc exemplo_odbc.c -lodbc -o exemplo
```

2012/12/10 (v76 229 / 308

1^a Forma Normal

- ► Um esquema R diz-se na 1ª forma normal se:
 - ▶ os domínios de todos os seus atributos são atómicos;
 - ► não pode haver repetição de registos.
- ► Um domínio é atómico se os seus elementos forem unidades indivisíveis.

Exemplo de domínios não atómicos:

- ► Atributos "naturalmente" compostos: Nomes, Endereços, etc.
- Atributos com várias partes: Números de telefones com indicativos; B.I. com o número de validação.
- Os valores não atómicos complicam o armazenamento e encorajam repetições desnecessárias de dados.

Daqui para a frente, assume-se que todas os esquemas de relações estão já na 1ª Forma Normal.

Dependências funcionais e normalização

- 1^a Forma Normal
- ▶ 2^a Forma Normal
- ▶ Objectivos na Concepção de Bases de Dados
- ► Dependências funcionais
- ► Decomposição
- ► Forma Normal de Boyce-Codd
- 3^a Forma Normal
- ► Dependências multi-valor
- 4^a Forma Normal
- ► Visão geral sobre o processo de concepção

2012/11/26 (v74 230 / 308

2^a Forma Normal

- ► Um esquema R diz-se na 2ª forma normal se:
 - está na 1ª forma normal:
 - cada atributo n\u00e3o chave tem de depender da chave da tabela na totalidade, e n\u00e3o apenas de uma parte dessa chave.
 - se a chave primária é simples (um só atributo), então a relação está na 2ª forma normal.
 - se a chave primária é composta (mais do que um atributo) e existe um atributo que depende somente de parte da chave primária, então a relação não está na 2ª forma normal.

Por exemplo:

Items-Encomenda | dataEncomenda | quantidade | codCliente | nomeCliente | | the state of the st

Daqui para a frente, assume-se que todas os esquemas de relações estão já na 2ª Forma Normal.

Objectivos na Concepção de Bases de Dados

Pretendem-se encontrar "bons" conjuntos de esquemas de relações para armazenar os dados.

Um "má" concepção pode levar a:

- ► Repetição de dados.
- Inconsistências devidas às operações de introdução, alteração, apagar de dados.
- ► Impossibilidade de representar certos tipos de informação.
- Dificuldade nas verificações de restrições de integridade.

Objectivos na Concepção:

- Evitar dados redundantes.
- Garantir que as relações relevantes sobre dados podem ser representadas.
- ► Facilitar a verificação de restrições de integridade.

2012/11/26 (v74) 233 / 308

Decomposição de Esquemas de Relações

As dependências funcionais podem servir para identificar, e para indicar o caminho para uma melhor concepção global

Substituir uma (ou mais) relações por um conjunto de relações "mais pequenas"

N.S.S.	Nome	Classificação	Horas Trab.
123-22	Abel	8	40
231-31	Silva	8	30
131-24	Sousa	5	30
434-26	Guiomar	5	32
612-67	Miguel	8	40

Classificação	Vencimento/h
8	10
5	7

menos redundância; mais fácil manter a consistência dos dados; é possível acrescentar novos pares Classificação/Vencimento.

Exemplo

Considere o esquema simples:

N.S.S.	Nome	Classificação	Vencimento/h	Horas Trab.
123-22	Abel	8	10	40
231-31	Silva	8	10	30
131-24	Sousa	5	7	30
434-26	Guiomar	5	7	32
612-67	Miguel	8	10	40

Vencimento/h depende de Classificação: este tipo de dependências (funcionais) entre atributos levanta problemas de:

- ▶ redundância:
 - Desperdiça-se espaço de armazenamento.
 - Dá azo a inconsistências.
 - Complica bastante a verificação da integridade dos dados.
- ► Dificuldade de representar certa informação
 - Não se pode armazenar informação de uma nova categoria de Classificação/Vencimento sem que haja um funcionário nessa categoria.

Problemas com a Decomposição de Esquemas de Relações

Ao fazer-se uma decomposição é necessário analisar se:

- ▶ a decomposição é necessária?
- ► a decomposição cria novos problemas?
- Formas normais
- Decomposição sem perdas
- Preservação das relações:
 - as restrições mantêm-se sem que seja necessário fazer junções entre relações;
 - as restrições verificam-se nas relações "menores".

01211126 (v74) 201211126 (v74) 235/308 201211126 (v74)

Exemplo

Considere o esquema simples:

Amigos = (nome, telefone, codigoPostal, localidade)

nome	telefone	codigoPostal	localidade
Maria	1111	2815	Caparica
João	2222	1000	Lisboa
Pedro	1112	1100	Lisboa
Ana	3333	2815	Caparica

- ► Redundância: os valores de codigoPostal e localidade são repetidos para cada amigo com um mesmo código postal.
 - Desperdiça-se espaço de armazenamento.
 - Dá azo a inconsistências.
 - Complica bastante a verificação da integridade dos dados.
- ▶ Dificuldade de representar certa informação.
 - Não se pode armazenar informação do código postal de uma localidade sem que hajam amigos dessa localidade. Podem usar-se valores nulos, mas estes são difíceis de gerir.

237/308

Exemplo de decomposição sem perdas

Decomposição de Amigos em Amigos 1 e CPs:

r				
nome	telef.	CPostal	localidade	
Maria	1111	2815	Caparica	
João	2222	1000	Lisboa	
Pedro	1112	1100	Lisboa	
Ana	3333	2815	Caparica	

$\Pi_{\text{Amigos 1}}(r)$				
nome	telef.	CPostal		
Maria	2815			
João	2222	1000		
Pedro	1112	1100		
Ana	3333	2815		

$\Pi_{\mathrm{CPs}}(r)$			
CPostal localidad			
2815	Caparica		
1000	Lisboa		
1100	Lisboa		

$$\Pi_{\text{Amigos 1}}(r) \bowtie \Pi_{\text{CPs}}(r) = r$$

Decomposição

Decompor o esquema Amigos em:

Todos os atributos do esquema original (R) devem aparecer na decomposição em (R_1, R_2) :

$$R = R_1 \cup R_2$$

Definição (Decomposição sem perdas)

Para todas as (instâncias de) relações r que "façam sentido" sobre o esquema R:

$$r = \Pi_{R_1}(r) \bowtie \Pi_{R_2}(r)$$

Note-se que o "façam sentido" depende do problema concreto.

238/308

Exemplo de decomposição com perdas

Decomposição de CPs em: CP1 = (CPostal) e Locs = (localidade)

	r
CPostal	localidade
2815	Caparica
1000	Lisboa
1100	Lisboa

$\Pi_{\mathrm{CP1}}(r)\bowtie\Pi_{\mathrm{Locs}}(r)$		
CPostal	localidade	
2815	Caparica	
2815	Lisboa	
1000	Caparica	
1000	Lisboa	
1100	Caparica	
1100	Lisboa	

$\Pi_{\text{CP1}}(r)$	$\Pi_{\text{Locs}}(r)$
2815	localidade
1000	Caparica Lisboa
1100	LISDOa

- Perdeu-se a informação de qual os CPs das localidades!
- Decompor parecia bom para evitar redundâncias.
- Mas decompor demais pode levar à perda de informação.

Outro exemplo com perdas

Decomposição de Amigos em: Amigos2 = (nome, telefone, localidade) e Loc = (localidade, CPostal).

	r	
telef.	CPostal	localidade
1111	2815	Caparica
2222	1000	Lisboa
1112	1100	Lisboa
3333	2815	Caparica
	1111 2222 1112	1111 2815 2222 1000 1112 1100

	$\Pi_{\text{Amigos}2}(r)\bowtie\Pi_{\text{Loc}}(r)$					
	nome	telef.	CPostal	localidade		
	Maria	1111	2815	Caparica		
≠	João	2222	1000	Lisboa		
7	João	2222	1100	Lisboa		
	Pedro	1112	1000	Lisboa		
	Pedro	1112	1100	Lisboa		
	Ana	3333	2815	Caparica		

$\Pi_{\text{Amigos}2}(r)$			
nome	telef.	localidade	
Maria	1111	Caparica	
João	2222	Lisboa	
Pedro	1112	Lisboa	
Ana	3333	Caparica	

$\Pi_{\mathrm{Loc}}(r)$		
localidade	CPostal	
Caparica	2815	
Lisboa	1000	
Lisboa	1100	

- ► Perdeu-se a informação de qual é o CP do João (e do Pedro)!
- ► O que torna esta decomposição diferente da primeira?

Temos de ter critérios que nos permitam decompor uma relação, sem perda de informação.

241 / 308

Dependências funcionais

- ► Restrições sobre o conjunto de relações possíveis.
- ► Exige que os valores num conjunto de atributos determinem univocamente os valores noutro conjunto de atributos.
- ► São uma generalização da noção de chave.

Definição (Dependência Funcional)

Seja R o esquema duma relação e $\alpha \subseteq R$ e $\beta \subseteq R$. A dependência funcional:

$$\alpha \to \beta$$

é verdadeira em R sse, para toda a relação possível (i.e. "que faça sentido") r(R), sempre que dois tuplos t_1 e t_2 de r têm os mesmos valores em α , também têm os mesmos valores em β :

$$\forall_{t_1,t_2\in r(B)}$$
 $t_1[\alpha]=t_2[\alpha]\Rightarrow t_1[\beta]=t_2[\beta]$

Objectivo: um bom conjunto de relações

Este objectivo pode ser atingido utilizando o seguinte "algoritmo".

- ► Decidir se o esquema R já está num "bom" formato.
- ► Se não estiver, decompor R num conjunto de esquemas $\{R_1, R_2, \dots, R_n\}$ tal que:
 - cada um deles está num "bom" formato;
 - ► A decomposição é sem perdas.
- ► A teoria é baseada em:
 - Dependências funcionais;
 - Dependências multi-valor

2012/11/26 (v74 242 / 308

Dependências Funcionais (continuação)

▶ De forma equivalente. A dependência funcional $\alpha \to \beta$ é verdadeira em R sse

$$\forall_{a \in \text{dom}(\alpha)} \Pi_{\beta}(\sigma_{\alpha=a}(r))$$

tem no máximo 1 tuplo.

► Exemplo: Seja r(A, B):

Α	В
1	4
1	5
3	7

Nesta instância, $A \rightarrow B$ não é verdadeira, mas $B \rightarrow A$ é.

Dependências Funcionais

Α	В	С	D
a ₁	<i>b</i> ₁	C ₁	<i>d</i> ₁
a ₁	b ₁	C ₁	d_2
a ₁	<i>b</i> ₂	<i>C</i> ₂	d ₁
a ₂	<i>b</i> ₁	<i>c</i> ₃	d_2

$$AB \rightarrow C$$
 $AB \not\rightarrow D$

- ► AB não é uma chave
- A verificação para uma dada instância da relação não valida uma dependência funcional
- As dependências funcionais são restrições de integridade que tem de ser satisfeitas por todos os valores possíveis no esquema de relações.

2012/11/26 (v74 245 / 308

Dependências Funcionais

Casos extremos

 {} → α
 Só se verifica se na relação r todos os tuplos têm o mesmo valor em α (nunca deve ser permitido).

α → {}
 Verifica-se para toda a relação r e conjunto de atributos α.

Dependência Trivial Diz-se que uma dependência é <u>trivial</u> se é satisfeita por todas as relações (quer façam sentido ou não) sobre um esquema.

Por exemplo:

 $\begin{array}{ll} nomeCliente, numEmprestimo \ \rightarrow \ nomeCliente \\ nomeCliente \ \rightarrow \ nomeCliente \end{array}$

Em geral, $\alpha \to \beta$ é trivial se $\beta \subseteq \alpha$.

2012/11/26 (v74 246 / 308

Dependências Funcionais

Chaves, são dependências funcionais.

- ► K é uma super-chave no esquema R sse $K \to R$.
- ► K é uma chave candidata em R sse $K \to R$, e para nenhum $\alpha \subset K$, $\alpha \to R$.

As dependências funcionais permitem expressar restrições, que não podem ser expressas somente através dos conceitos de chave.

Por exemplo, em (nomeCliente, numEmprestimo, nomeBalcao, quantia).

► Espera-se que as seguintes dependências sejam verdadeiras:

 $numEmprestimo \rightarrow quantia$ $numEmprestimo \rightarrow nomeBalcao$

Mas não se espera que a dependência abaixo seja verdadeira:

 $numEmprestimo \rightarrow nomeCliente$

Uso de Dependências Funcionais

Usam-se dependências funcionais para:

► testar (instâncias de) relações, para verificar se "fazem sentido" de acordo com as dependências funcionais.

Definição (Satisfação de Dependência Funcional)

Se uma relação r torna verdadeiras todas as dependências dum conjunto F, então diz-se que r satisfaz F.

Especificar restrições sobre as relações.

Definição (Dependência Funcional Verdadeira)

Diz-se que F é verdadeira em R se todas as relações (possíveis) sobre R satisfazem as dependências em F.

Nota: Uma instância particular duma relação pode satisfazer uma dependência funcional mesmo que a dependência não seja verdadeira no esquema. Por exemplo, uma instância particular (em que, por acaso, nenhum empréstimo tenha mais que um cliente) satisfaz: numEmprestimo → nomeCliente.

Fecho de um Conjunto de Dependências Funcionais

Dado um conjunto F de dependências, há outras dependências que são logicamente implicadas por F. Por exemplo, se $A \rightarrow B$ e $B \rightarrow C$, então, ter-se-á $A \rightarrow C$.

Definição (Fecho de *F*)

Ao conjunto de todas as dependências funcionais implicadas por F chama-se **fecho** de F (denotado por F^+).

Podem encontrar-se todas as dependências em F⁺ por aplicação dos Axiomas de Armstrong.

Definição (Axiomas de Armstrong)

► Se $\beta \subseteq \alpha$, então $\alpha \to \beta$

(reflexividade)

► Se $\alpha \to \beta$, então $\gamma \alpha \to \gamma \beta$

(aumento)

• Se $\alpha \to \beta$, e $\beta \to \gamma$, então $\alpha \to \gamma$

(transitividade)

Estes regras são:

- ► coerentes, isto é, só geram dependências que pertencem a F⁺
- completas, isto é, geram todas as dependências pertencentes a F⁺

249/308

Construção de F⁺

Para calcular o fecho de um conjunto de dependências F podemos aplicar o seguinte algoritmo:

$$F^+ := F$$

repete

para cada uma das dependências funcionais $f \in F^+$ faz aplicar reflexividade e aumento em f adicionar os resultados a F^+ **para cada** par de dependências $f_1, f_2 \in F^+$ **faz se** f_1 e f_2 podem combinar-se por transitividade **então** adicionar a dependência resultante a F^+ até que F^+ não mude mais

NOTA: Veremos, mais tarde, outro procedimento para esta problema

Exemplo

Sejam

$$R = (A, B, C, G, H, I)$$

е

$$F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}.$$

Podemos obter alguns dos elementos de F^+ , aplicando os axiomas de Armstrona.

- ▶ $A \rightarrow H$, por transitividade a partir de $A \rightarrow B$ e $B \rightarrow H$.
- ▶ $AG \rightarrow I$, por aumento de $A \rightarrow C$ com G, obtendo-se $AG \rightarrow CG$, de seguida, por transitividade com $CG \rightarrow I$.
- ► $CG \rightarrow HI$, por aumento de $CG \rightarrow I$ inferindo $CG \rightarrow CGI$, de seguida por aumento de $CG \rightarrow H$ inferindo $CGI \rightarrow HI$, e depois transitividade.

250/308

Fecho de Dependências

Podemos facilitar a construção de F⁺ usando mais algumas regras coerentes:

► Se
$$\alpha \to \beta$$
 e $\alpha \to \gamma$, então $\alpha \to \beta \gamma$ (união)

► Se
$$\alpha \to \beta \gamma$$
, então $\alpha \to \beta$ e $\alpha \to \gamma$ (decomposição)

► Se
$$\alpha \to \beta$$
 e $\gamma\beta \to \delta$, então $\alpha\gamma \to \delta$ (pseudo-transitividade)

Estas regras adicionais podem-se derivar dos Axiomas de Armstrong.

Fecho de um Conjunto de Atributos

Dado um conjunto de atributos α , define-se o fecho de α sobre F.

Definição (Fecho de um Conjunto de Atributos)

Dado um conjunto de dependências funcionais F, e $\alpha \subseteq R$, define-se o fecho de α sobre F, denotado por α^+ , como sendo o conjunto de atributos que dependem funcionalmente de α dado F, isto \acute{e} :

$$\alpha \to \beta \in F^+ \text{ sse } \beta \subseteq \alpha^+$$

Algoritmo para calcular α^+ .

$$\begin{array}{l} \alpha^+:=\alpha\\ \text{repete}\\ \text{para cada }\beta\to\gamma\in F \text{ faz}\\ \text{se }\beta\subseteq\alpha^+ \text{ então }\alpha^+:=\alpha^+\cup\gamma\\ \text{até que }\alpha^+ \text{ não mude mais} \end{array}$$

2012/11/26 (v74 253 / 308

Uso de fecho de atributos

O cálculo do fecho de atributos pode ser usado para vários fins:

- ► Testar super-Chaves: para testar se α é super-chave, calcular α^+ , e verificar se α^+ contém todos os atributos de R.
 - Será AG super-chave?
 - ► E algum subconjunto próprio de AG é super-chave?
- ► Testar dependências funcionais: para verificar se a dependência $\alpha \to \beta$ é verdadeira (isto é pertence a F^+), basta verificar se $\beta \subseteq \alpha^+$, para um dado α^+ .
- ► Cálculo do fecho de F: para cada $\gamma \subseteq R$, calcular γ^+ . Para cada $S \subseteq \gamma^+$, devolver como resultado a dependência $\gamma \to S$.

Exemplo de fecho de atributos

$$\triangleright$$
 $R = (A, B, C, G, H, I)$

$$ightharpoonup F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$$

► cálculo de (AG)+

1.
$$(AG)^+ := AG$$

2.
$$(AG)^+ := ABCG$$
 $(A \rightarrow C e A \rightarrow B)$

3.
$$(AG)^+ := ABCGH$$
 $(CG \rightarrow H e CG \subseteq AGBC)$

4.
$$(AG)^+ := ABCGHI$$
 $(CG \rightarrow I e CG \subseteq AGBCH)$

 $(AG)^+$ já não muda mais dado que já inclui todos os atributos de R.

2012/11/26 (v74) 254 / 308

Cobertura Canónica

Um conjunto de dependências, podem conter algumas delas que são redundantes (por se inferirem das outras). Por exemplo:

$$A \rightarrow C$$
 é redundante em: $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$. Porquê?

- Partes de dependências também podem ser redundantes. Por exemplo:
 - $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$ pode ser simplificado para $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$. Porquê?
 - ► $\{A \to B, B \to C, AC \to D\}$ pode ser simplificado para $\{A \to B, B \to C, A \to D\}$. Porquê?
- ► Intuitivamente, uma cobertura canónica de F é um conjunto "minimal" de dependências, equivalente a F, e em que nenhuma dependência tem partes redundantes.

Atributos dispensáveis

Considere o conjunto de dependências F e a dependência $\alpha \to \beta \in F$.

Definição (Atributo dispensável à esquerda)

O atributo A é <u>dispensável à esquerda</u> em α se A $\in \alpha$ e F implica $(F - \{\alpha \to \beta\}) \cup \{(\alpha - A) \to \beta\}.$

Definição (Atributo dispensável à direita)

O atributo A é <u>dispensável à direita</u> em β se A $\in \beta$, e o conjunto $(F - \{\alpha \to \beta\}) \cup \{\alpha \to (\beta - A)\}$ implica F.

Nota: a implicação na direcção oposta é trivial em ambos os casos.

Exemplos:

- ▶ Dado $F = \{A \rightarrow C, AB \rightarrow C\}$, B é dispensável em $AB \rightarrow C$ porque $A \rightarrow C$ implica $AB \rightarrow C$.
- Dado F = {A → C, AB → CD}, C é dispensável em AB → CD pois com A → C, AB → CD pode ser inferido de AB → D.

2012/11/26 (v74) 257 / 308

Teste para atributos dispensáveis

Considere o conjunto F de dependências, e a dependência $\alpha \to \beta \in F$.

- ▶ Para testar se $A \in \alpha$ é dispensável em α , basta:
 - 1. calcular $(\alpha A)^+$ usando as dependências em F;
 - 2. verificar se $(\alpha A)^+$ contém A. Se contém, então A é dispensável.
- ▶ Para testar se $A \in \beta$ é dispensável em β , basta:
 - 1. calcular α^+ usando as dependências em $F' = (F \{\alpha \to \beta\}) \cup \{\alpha \to (\beta A)\};$
 - 2. verificar se α^+ contém A. Se contém, então A é dispensável.

2012/11/26 (v74 258 / 308

Cobertura Canónica

Definição (Cobertura Canónica)

Uma cobertura canónica de F é um conjunto de dependências F_c tal que:

- ► F implica todas as dependências em F_c, e
- ► F_c implica todas as dependências em F, e
- Nenhuma dependência em F_c contém atributos dispensáveis, e
- ► O lado esquerdo de cada dependência em F_c é único.

Uma cobertura canónica de F é o conjunto de dependências funcionais com o mesmo poder expressivo que F e mínimo, isto é com o menor número de dependências funcionais possível.

Cálculo da Cobertura Canónica

Para calcular uma cobertura canónica de F:

```
\begin{array}{l} \textit{F}_c := \textit{F} \\ \textbf{repete} \\ \textbf{Usar a regra da união para substituir as dependências em } \textit{F}_c, \\ \alpha_1 \rightarrow \beta_1 \text{ e } \alpha_1 \rightarrow \beta_2 \text{ por } \alpha_1 \rightarrow \beta_1 \beta_2 \\ \textbf{enquanto há dependências com atributos dispensáveis faz} \\ \textbf{Encontrar dependências } \alpha \rightarrow \beta \text{ com atributos dispensáveis (em } \alpha \\ \textbf{ou } \beta) \\ \textbf{Quando se encontra atributo dispensável, apaga-se de } \alpha \rightarrow \beta \\ \textbf{fimenquanto} \\ \textbf{até que } \textit{F}_c \text{ não muda.} \end{array}
```

Nota: A regra da união pode tornar-se aplicável depois de retirados alguns atributos dispensáveis. Por isso há que re-aplicá-la.

Exemplo de cálculo de cobertura canónica

- ightharpoonup R = (A, B, C)
- ► $F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$
- ► cálculo de *F_c*:
 - 1. Combinar $A \rightarrow BC$ e $A \rightarrow B$ para obter $A \rightarrow BC$;
 - 2. $F_c = \{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\};$
 - 3. A é dispensável em $AB \rightarrow C$ porque $B \rightarrow C$ implica $AB \rightarrow C$;
 - 4. $F_c = \{A \rightarrow BC, B \rightarrow C\};$
 - 5. C é dispensável em $A \rightarrow BC$ pois $A \rightarrow BC$ é implicado por $A \rightarrow B$ e $B \rightarrow C$;
 - 6. $F_c = \{A \rightarrow B, B \rightarrow C\};$
 - 7. Não há mais atributos dispensáveis. Verifica-se também que F_c não muda mais
- ▶ A cobertura canónica é: $F_c = \{A \rightarrow B, B \rightarrow C\}$.

2012/11/26 (v74 261 / 308

Objectivos com a Concepção de BDs Relacionais

- ► Pretende-se encontrar "bons" conjuntos de esquemas relações, para armazenar os dados.
- ► Uma "má" concepção pode levar a:
 - Repetição de dados;
 - Impossibilidade de representar certos tipos de informação;
 - Dificuldade na verificação da integridade.
- ► Objectivos da concepção (para atingir um "bom" esquema):
 - Evitar dados redundantes:
 - Garantir que as relações relevantes sobre dados podem ser representadas;
 - Facilitar a verificação de restrições de integridade.

2012/11/26 (v74 262 / 308

Exemplo

Concepção de um esquema de base de dados, avaliação do mesmo, e sua (se necessário) transformação num "bom" esquema.

Concepção: Considere o esquema simples: Amigos = (<u>nome</u>, telef, codPostal, localidade). E uma sua instância:

nome	telef	codPostal	localidade
Maria	1111	2815	Caparica
João	2222	1000	Lisboa
Pedro	1112	1100	Lisboa
Ana	3333	2815	Caparica

- ► Redundância: os valores de (codPostal, localidade) são repetidos para cada amigo com um mesmo código postal;
 - Desperdiça-se espaço de armazenamento;
 - Dá azo a inconsistências;
 - Complica bastante a verificação da integridade dos dados
- Dificuldade de representar certa informação: Não se pode armazenar informação do código postal de uma localidade sem que hajam amigos dessa localidade.
 - ► Podem usar-se valores nulos, mas estes são difíceis de gerir.

Objectivos da Normalização

Após a concepção (e antes da implementação num dado SGBD), pretende-se obter um "bom" esquema. Temos então que:

- Avaliar: decidir se o um dado esquema R já está num "bom" formato.
- ► Transformar (normalizar): se não estiver, decompor *R* num conjunto de esquemas {*R*₁, *R*₂, ..., *R*_n} tal que:
 - cada um deles está num "bom" formato:
 - a decomposição é sem perdas.
- ► A normalização é baseada em:
 - dependências funcionais;
 - dependências multi-valor.

Exemplo - Decomposição

► Decompor o esquema Amigos em:

Uma qualquer decomposição tem de preservar a informação, contida no esquema inicial.

- Não pode haver perda de atributos: todos os atributos do esquema original (R) têm que aparecer na decomposição (R₁, R₂), isto é, R = R₁ ∪ R₂.
- ► Decomposição sem perdas: para todas as relações possíveis *r* sobre o esquema *R* tem de se verificar que:

$$r = \Pi_{R_1}(r) \bowtie \Pi_{R_2}(r)$$

A decomposição de R em R_1 e R_2 é sem perdas sse pelo menos uma das dependências abaixo pertence a F^+ :

- $ightharpoonup R_1 \cap R_2 \rightarrow R_1$
- $ightharpoonup R_1 \cap R_2 \rightarrow R_2$

2012/11/26 (v74) 265 / 308

Exemplo de decomposição com perdas

Decomposição de Amigos em:

Amigos2 = (<u>nome</u>,telef,localidade)
Loc = (localidade,codPostal).

		r	
nome	telef	codPostal	localidade
Maria	1111	2815	Caparica
João	2222	1000	Lisboa
Pedro	1112	1100	Lisboa
Ana	3333	2815	Caparica

	$\Pi_{\text{Amigos}2}(r) \bowtie \Pi_{\text{Loc}}(r)$			
	nome	telef	codPostal	localidade
	Maria	1111	2815	Caparica
≠	João	2222	1000	Lisboa
,	João	2222	1100	Lisboa
	Pedro	1112	1000	Lisboa
	Pedro	1112	1100	Lisboa
	Ana	3333	2815	Caparica

$\Pi_{\text{Amigos}2}(r)$			
nome telef localidade			
Maria	1111	Caparica	
João	2222	Lisboa	
Pedro	1112	Lisboa	
Ana	3333	Caparica	

$\Pi_{\mathrm{CPs}}(r)$		
localidade codPostal		
Caparica	2815	
Lisboa	1000	
Lisboa	1100	

Note-se que nenhuma das duas dependências seguintes é válida:

- ▶ localidade \rightarrow nome, telefone, isto é, $R_1 \cap R_2 \not\rightarrow R_1$.
- ▶ localidade \rightarrow codPostal, isto é, $R_1 \cap R_2 \not\rightarrow R_2$.

Exemplo de decomposição sem perdas

Decomposição de Amigos em:

Amigos1 = (nome, telef, codPostal)
CPs = (codPostal, localidade)

		r	
nome	telef	codPostal	localidade
Maria	1111	2815	Caparica
João	2222	1000	Lisboa
Pedro	1112	1100	Lisboa
Ana	3333	2815	Caparica

$\Pi_{\text{Amigos}1}(r)$			
nome	telef	codPostal	
Maria	1111	2815	
João	2222	1000	
Pedro	1112	1100	
Ana	3333	2815	

$\Pi_{\mathrm{CPs}}(r)$			
codPostal	localidade		
2815	Caparica		
1000	Lisboa		
1100	Lisboa		

Verifica-se que:

$$\Pi_{\text{Amigos1}}(r) \bowtie \Pi_{\text{CPS}}(r) = r$$

Notar que é valida a dependência: codPostal \rightarrow localidade, isto é, verifica-se $R_1 \cap R_2 \rightarrow R_2$.

2012/11/26 (v74 266 / 308

Normalização por uso de Dependências

Quando se decompõe um esquema R com dependências F, em R_1, R_2, \ldots, R_n quer-se:

- Decomposição sem perdas. Por forma a não se perder informação.
- ▶ Não haja redundância. Ver-se-à mais à frente como ...
- Preservação de dependências. Por forma a que verificação das dependências possa ser feita de forma eficiente.

Seja F_i o conjunto de dependências de F^+ que só contêm atributos de R_i .

A decomposição preserva as dependências se

$$(F_1 \cup F_2 \cup \cdots \cup F_n)^+ = F^+$$

Sem preservação de dependências, a garantia de integridade pode obrigar à computação de junções, sempre que se adicionam, apagam ou actualizam relações da base de dados. Tal pode tornar-se bastante ineficiente.

Exemplo

- ► Sejam R = (A, B, C) e $F = \{A \rightarrow B, B \rightarrow C\}$.
- ► Decomposição 1: $R_1 = (A, B), R_2 = (B, C)$:
 - ▶ Decomposição sem perdas: $R_1 \cap R_2 = \{B\}e\ B \to BC$;
 - Preserva as dependências.
- ▶ Decomposição 2: $R_1 = (A, B), R_2 = (A, C)$:
 - ▶ Decomposição sem perdas: $R_1 \cap R_2 = \{A\} \ e \ A \rightarrow AB$;
 - ▶ Não preserva as dependências. Não se pode verificar $B \to C$ sem calcular $R_1 \bowtie R_2$.

2012/11/26 (v74 269 / 308

Forma Normal de Boyce-Codd

Definição (Forma Normal de Boyce-Codd)

Um esquema R diz-se na Forma Normal de Boyce-Codd, BCNF, relativamente a um conjunto de dependências F, sse para toda a dependência em F^+ da forma $\alpha \to \beta$, onde $\alpha \subseteq R$ e $\beta \subseteq R$, pelo menos uma das seguintes condições é verdadeira:

- $\alpha \rightarrow \beta$ é trivial, isto é, $\beta \subseteq \alpha$.
- α é super-chave de R, isto é, $\alpha \to R$.

Evita redundâncias

Verificação de dependências funcionais definidas sobre atributos de *R*, limita-se à verificação de chaves.

Teste de Preservação de Dependências

Para verificar se $\alpha \to \beta$ é preservada na decomposição R em R_1, R_2, \dots, R_n aplica-se o seguinte teste:

```
res := \alpha enquanto (houver alterações em res) faz para cada R_i na decomposição faz t := (\operatorname{res} \cap R_i)^+ \cap R_i res := res \cup t fimpara fimenquanto
```

•

Se res contém todos os atributos em β , então $\alpha \to \beta$ é preservada.

Aplica-se este teste a todas as dependências de F, para verificar se a decomposição preserva as dependências.

Ao contrário do cálculo de F^+ ou de $(F_1 \cup F_2 \cup \cdots \cup F_n)^+$, que têm ambos complexidade exponencial, este procedimento tem complexidade polinomial.

270/308

BCNF — Exemplo/Exercício

- ► $R = (A, B, C), F = \{A \to B, B \to C\}.$
- ► Chave, {*A*}.
- ► R não está em BCNF.
- ▶ Decomposição em $R_1 = (A, B), R_2 = (B, C).$
 - ► R₁ e R₂ estão na BCNF.
 - Decomposição sem perdas.
 - ► Preserva as dependências.