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1. Course description

We aim to address the questions What? Why? and How? as they apply to
heteroclinic cycles and networks. More specifically:

(1) What is a heteroclinic network? Where do they come from and what
are they useful for?

(2) Why are heteroclinic networks interesting in dynamics?
(3) How do we construct heteroclinic networks and how do we prove dy-

namical results about them?

The lectures will be responsive to the needs and background of the audience.
In general terms, I hope to spend some time discussing where heteroclinic net-
works come from (and where to look for them) with particular reference to
Lotka-Volterra systems, symmetric dynamics and network dynamics. I also
want to look at some possible applications (including to neuroscience and win-
nerless competition) as well as ways in which heteroclinic networks and cycles
can be viewed as templates for complex dynamics (for example, switching).
Overall, I am interested in communicating the basic ideas and interest rather
than in developing highly technical analysis (there is plenty of that to be found).
I intend to provide a detailed set of notes.

2. Summary of past work

Here is a summary – with references – of some work and directions in the
area over the past twenty or so years. This is neither required reading for the
course nor a description of everything I hope to cover! Nevertheless, there may
be references here that could be of interest to potential members of the course.

Heteroclinic and homoclinic cycles can occur in low codimension bifurcations
of vector fields and have been intensively studied by many authors (see, for
example, the volumes by L Shilnikov et al. [49, 50]). Of particular interest are
the mechanisms whereby homoclinic bifurcations can lead to complex dynamics
and chaos. In a related direction that dates back to Duffing [16], and follows on
earlier work by Wang & Ott [51], Mohapatra & Ott have shown how periodic
forcing of homoclinic loops and heteroclinic cycles can lead to the formation
of non-uniformly hyperbolic attractors [41] – these works address the difficult
problem of finding explicit examples of non-uniform hyperbolicity and build
on earlier work of L-S Young et al. on shear induced chaos and rank one
attractors [37, 52].
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On account of the Kupka-Smale theorem, robust heteroclinic cycles and net-
works only occur when vector fields possess additional structure which is invari-
ably associated with the presence of invariant subspaces. They are a well-known
phenomenon in models of population dynamics, ecology and game theory based
on the Lotka-Volterra equations (for example, [38, 27, 28, 29, 30]). Typically,
these systems are defined on a simplex or the positive orthant R

n

+ = {x ∈
R
n | xi ≥ 0, i = 1, · · · , n} and have the ‘extinction’ hyperplanes xi = 0 as in-

variant subspaces. The first example of a heteroclinic cycle that the author is
aware of in the literature appears in the 1975 paper by May & Leonard [38]1

– and has been used to model the ‘rock-paper-scissors’ game and winnerless
competition (for example, [38, 14, 2, 47]).

A large and well-studied class of dynamical systems with invariant subspaces
are differential equations which are equivariant with respect to a compact Lie
group of symmetries (for example, [48, 39, 35, 22, 36, 34, 10, 23, 15, 24]).
Robust heteroclinic cycles and networks occur because generic intersections of
stable and unstable manifolds of equilibria in equivariant dynamics need not be
transverse [17, 18, 19]. This breakdown of transversality is closely associated
with a rich invariant subspace structure. Specifically, if a finite or compact Lie
group G acts smoothly on the phase space M , and H is any non-empty subset
of G, then the submanifold MH = {x ∈ M | hx = x, ∀h ∈ H} is invariant by
the flow of every C1 G-equivariant vector field on M .

From the mathematical point of view, robust heteroclinic networks often
lead to interesting complex dynamics. For example, the phenomenon of ran-
dom switching between nodes [31, 5, 8, 32]. Evidence of heteroclinic switching
has even been observed in vivo in Abeles et al. [1]. From the point of view of
applications, there has been recent interest in robust heteroclinic cycles that ap-
pear in neural microcircuits where they give nonlinear models with ‘winnerless
competition’ – there is a local competition between different states but not nec-
essarily a global winner [46]. These models seem useful for explaining sequence
generation and spatio-temporal encoding and have been found in rate-based
[3] and other models [44]. They can also be found in phase oscillator models
derived from Hodgkin-Huxley models [25] or more general phase oscillator mod-
els [9]. Heteroclinic networks can be used to perform finite-state computations
in phase oscillator systems [6, 8] (see also [42, 43] for pulse coupled systems).
Analogous behaviour is also found in hybrid models of neural systems such as
the networks of unstable attractors in systems of delay-pulse coupled oscillators
[40] as well as in coupled chemical reaction systems [33].

Constructions of heteroclinic networks with specific properties may be found
in [23, 11, 12, 20, 21].

From the point of view of much contemporary research on networks, in partic-
ular neural dynamics, it is interesting to consider networks of coupled nonlinear
oscillators and look for patterns of synchronization. The simplest models of this
type are Kuramoto style coupled phase oscillators where node dynamics is de-
fined on the circle T = R/Z. One approach, due to Ashwin & Swift [13], is

1Interest has continued since that time notwithstanding the authors remark that “Biolog-

ically, the behaviour illustrated in Figs. 4 and 5 is nonsense”.
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to look at all-to-all coupled systems of n-cells with Sn symmetry where there
is often synchronization into clusters of cells combined with heteroclinic phe-
nomena (see, for example, [26, 45, 8]). We will consider networks of interacting
dynamical systems with no symmetries (local or global) but where the network
architecture can lead to invariant subspaces comprised of groups of synchronized
cells and interesting heteroclinic networks (see [4, 20, 21]).
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